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Abstract pH is a critical parameter for biological and tech-

nological systems directly related with electrical charges.

It can give rise to peculiar electrostatic phenomena, which

also makes them more challenging. Due to the quantum

nature of the process, involving the forming and break-

ing of chemical bonds, quantum methods should ideally

by employed. Nevertheless, due to the very large number

of ionizable sites, different macromolecular conformations,

salt conditions, and all other charged species, the CPU time

cost simply becomes prohibitive for computer simulations,

making this a quite complex problem. Simplified methods

based on Monte Carlo sampling have been devised and

will be reviewed here, highlighting the updated state-of-

the-art of this field, advantages, and limitations of different

theoretical protocols for biomolecular systems (proteins
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Av. do café, s/no. – Universidade de São Paulo,

BR-14040-903 Ribeirão Preto, SP, Brazil

2 UCD School of Physics, UCD Institute for Discovery,

University College Dublin, Belfield, Dublin 4, Ireland

3 Department of Chemical and Biomolecular Engineering,

North Carolina State University, Raleigh, NC, USA

4 Departamento de Quı́mica, Faculdade de Filosofia,

Ciências e Letras de Ribeirão Preto, Av. Bandeirantes,

3900 – Universidade de São Paulo, BR-14040-901 Ribeirão

Preto SP, Brazil

and nucleic acids). Following a historical perspective, the

discussion will be associated with the applications to pro-

tein interactions with other proteins, polyelectrolytes, and

nanoparticles.

Keywords Protein titration · RNA titration · Monte Carlo

simulations · Tanford and Kirkwood model · Electrostatics

interactions · pH effects

Introduction

pH is a critical physical chemical parameter for biologi-

cal, chemical, medical and technological systems. Being by

a stoichiometric definition a measurement of the concen-

tration of hydrogen ions ([H+]) in the aqueous solution

(pH = − log[H+]), it is intuitive to make a direct relation

between H+, an electrical charge and electrostatic interac-

tions (Bell 1959). In fact, pH quantifies the availability of

protons to go from the aqueous solution to titratable sites

on the macromolecule (when there are H+ available in the

solution, i.e., at lower pH, the acid regime) or from the

macromolecule to the solution (when the solution is lack-

ing H+, i.e., at higher pH, the basic regime). This does

indicate that pH can control amino acids and nucleotides

charges and as such the electrostatic interactions in and

between biomolecules governing their conformation, sta-

bility, solubility, association, and function. Several works

have given special emphasis to these features. For example,

the Nobel laureate Perutz has started one of his classical

papers (Perutz 1978) saying that “electrostatic effects dom-

inate many aspects of protein behavior” exemplifying “the

decisive influence of electrostatic effects on the structure,

assembly, and hydration of proteins, and on the catalytic

power of enzyme” (Perutz 1978).
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Being well known that the magnitude of the electro-

statics contributions depends on the charges that are given

by pH, it becomes logical to relate them to the biological

function. In reality, it is often illustrated in biochemical text-

books how the enzyme activity is controlled by pH (Garrett

and Grisham 1999; Creighton 1983; Devlin 1997) and can

affect clinical conditions (Piper and Fenton 1965). There is

evidence that pH works as a signaling mechanism to reg-

ulate a number of cell processes (Schönichen et al. 2013;

Jin et al. 2017). For instance, a small increase of 0.1 units

in the intracellular pH can promote cell proliferation and

cell cycle progression while a decrease can contribute to

apoptosis. Some diseases like cancers and neurodegener-

ative disorders might be trigged by such changes in the

intracellular pH as well (Schönichen et al. 2013). Studies

have also reported pH-dependent ATPase activity (Jin et al.

2017). Other common examples of processes controlled

by pH include protein/RNA stability and folding, (Stigter

and Dill 1990; Garcia-Moreno 1995; Harano and Kinoshita

2006; Tang et al. 2007; Thaplyal and Bevilacqua 2014) reg-

ulation through conformational switches, (Lizatović et al.

2016) amyloid formation, (Enciso et al. 2013) protein–

polyelectrolyte association, (Barroso da Silva and Jönsson

2009; Stoll 2014) protein–nanoparticle interactions (Chen

et al. 2011; Barroso da Silva et al. 2014) protein–protein

complexation (Sheinerman et al. 2000; Lund and Jönsson

2013; Delboni and Barroso da Silva 2016) and protein–RNA

interactions (Ye et al. 2003; Koukiekolo et al. 2007; Barroso

da Silva et al. 2017c). All these biomolecular systems are

of importance too in many technological systems in food,

brewing, pharma, bioseparations, and biomaterials in gen-

eral (Chen et al. 2011; Steiner et al. 2011; Egan et al. 2014;

Barroso da Silva et al. 2016; Wagoner et al. 2016).

Amino acids and nucleotides have ionizable groups that

can be protonated or deprotonated depending on the solution

pH (Nozaki and Tanford 1967; Thaplyal and Bevilacqua

2014). For instance, a single amino acid contains at least the

amino group, whose net charge in elementary charge units

(valency) can vary from +1 to 0, and a carboxyl, whose net

charge can vary from 0 to −1, from the protonated to the

deprotonated states in an aqueous solution. Side chains as

α-carboxyl, aspartyl carboxyl, glutamyl carboxyl, imida-

zole, α-amino, thiol (when not involved in SS bridges),

phenolic, amino and guanidyl groups in amino acids and

imino nitrogens and phosphodiesters in nucleotides can also

titrate (Nozaki and Tanford 1967; Thaplyal and Bevilacqua

2014). The proton-transfer mechanism can be direct from a

donor to an acceptor (including proton sharing among two

ionizable groups) or solvent mediated (via a proton conduct-

ing path between the donor and acceptor). Any change in

the environment (e.g., ionic strength, molecular concentra-

tion, presence of other charged objects, hydration, etc.) can

affect the ionization behavior of these titratable chemical

groups. As suggested by Nozaki and Tanford (1967), the

chemical structure of macromolecules such as a protein (or

nucleic acid) might be seen as a (flexible) polymer chain

with a number of ionizable side-chain groups attached on

it that can all interfere with each other. At one end of this

chain, there is always an amino group and a carboxyl group

at the other end of the chain participating in this interplay

that challenges experimental, theoretical, and computational

approaches.

It seems natural to understand that at a given aque-

ous solution pH will control not only the amino acids,

nucleotides, proteins, and nucleic acids electrical charges,

but also all their multipolar moments. Consequently, their

charge–charge, charge–dipole, dipole–dipole, etc. interac-

tions with other molecules will be governed by pH. Perhaps

less trivial is that these physical quantities can also fluc-

tuate as a function of pH, which can result in attractive

mesoscopic forces, forming an important driving force for

macromolecular complexation (Kirkwood and Shumaker

1952). This peculiar electrostatic interaction, due to the

fluctuations in proton charge as a function of pH, was ana-

lytically predicted by the Kirkwood–Shumaker (KS) theory

(Kirkwood and Shumaker 1952). It is at the origin of the

so-called “charge regulation mechanism”, which is essen-

tial to explain macromolecular complexation particularly

at low salt and at pH regimes closer to pI (the isoelec-

tric point) (Barroso da Silva et al. 2006, 2014; Barroso da

Silva and Jönsson 2009; Lund and Jönsson 2013; Barroso

da Silva 2013). Since pH can also affect the macromolec-

ular conformation, at pH regimes far from the pI, the

macromolecule denaturation may happen as a result of the

increase in the repulsive forces between its titratable groups

that tend to repeal the monomers and expand the polymeric

chain. This gives a tendency to expose hydrophobic residues

leading them to stick on surfaces and/or aggregate as an

indirect manner that pH can control inter macromolecular

interactions.

Due to their unquestionable importance and rich physical

chemical aspects, pH-related processes have been attract-

ing scientific interest since ancient times. The search for the

optimal pH condition at which an enzyme is most effec-

tive has probably motivated the initial investigations. It is

not a surprise that various studies were carried out at Carls-

berg Laboratory’s Chemical Department: brewing requires

to control the pH of the mash to optimize the effectiveness

of the mash enzymes of the product stability and the yeast

flocculation. It is also necessary to control the pH to pre-

vent excessive tannin extraction (Lewis and Bamforth 2006;

Steiner et al. 2011).

The modeling and theoretical computation of pH

effects is far from trivial. Several species including the

macromolecule(s), solvent, and mobile ions participate in a

complex interplay of interactions and coupled mechanisms
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hardly to be well described by classical empirical force

fields and even more difficult to be properly sampled by the

present computer resources. Macromolecules are immersed

in an electrolyte solution that is per se a quite complex

system. Ion pairs and even larger clusters of ions can be

formed due to correlations with molecular water in con-

centrated salt solutions (Tironi et al. 1995; Degrève and

Barroso da Silva 1999a, b, 2000). Many aspects of this prob-

lem (e.g., the interconversion of ion pairs in solution) are

still unclear since the complexity of the liquid state struc-

ture does not allow the easy development of exact liquid

state theories. The modeling of the simple ionic species (Na,

Cl, K, etc.) is another example of this field Achilles’ heel.

Simulation ion parameters are widely scattered, and their

rational design might surprisingly reveal ambiguity (e.g.,

the same Lennard–Jones interaction strength parameter can

be found for modeling different ionic species!) (Horinek

et al. 2009). Ion specificity is another property to be taken

into account (Medda et al. 2012; Becconi et al. 2017). Due

to the high anisotropy of intermolecular forces involved

in the solvation of these ionic species, the convergence of

the required numerical sampling in molecular simulations

is another complicating factor (Lyubartsev and Laakso-

nen 1996; Degrève and Barroso da Silva 1999a, b, 2000).

Including a biomolecule in this medium increases drasti-

cally the difficulties as noted a long time ago (Northrup

and McCammon 1980). Water modeling itself requires cau-

tion. A large diversity of molecular models are available for

liquid water (Guillot 2002; Hess and van der Vegt 2006).

Nevertheless, it seems difficult to obtain a model able to

reproduce its static dielectric constant (78.43 ± 0.10 at

room temperature) (Fernández et al. 1995). Only a quite

few commonly used water molecular models have recently

achieved a reasonable reproduction of its dielectric con-

stant [e.g., Dill’s SPC/DC model (78.3 ± 6), (Fennell et al.

2012) Barbosa’s TIP4P/ǫ (78.3), (Fuentes-Azcatl and Bar-

bosa 2016) Roux & MacKerell’s polarizable water model

(78.1) (Yu et al. 2013)] although the adequacy of their com-

bination with available biomolecular force fields remains

to be investigated. Up to this point, the presentation cov-

ered only nontitratable water models. The parametrization

of good dissociative water potentials (and their combination

with force fields parameters for the other molecular species)

is another critical issue and open question (Mahadevan and

Garofalini 2008). In the same line, it has not been proven

yet that the classical force fields parameters obtained at a

given fixed experimental pH and salt conditions and rou-

tinely used to study the biomolecular phenomena are valid

to explore all other interesting physical chemical regimes

different than the ones used in the calibration process.

Despite the complexity and difficulties, efforts to theo-

retically calculate and predict the proton binding started in

remote times at Carlsberg before the modern computational

era. Since then, the common philosophy has been to be

able to capture the essential features of the real system

in a simple tractable set of mathematical equations. As far

as we are aware, the earliest theoretical–analytical attempts

to study the ionization process in biomolecules is due to

Linderstrøm-Lang (1924), after the experimental paper of

Sorensen et al. (1917) (who had introduced before the pH

definition (Sorensen 1909)) with the experimental titration

of the egg albumin. Both works were conducted at Carls-

berg. Later, Kirkwood’s approach (Kirkwood 1934a, b)

established the theoretical view of this problem. This model

gave the mathematical basis of the work done subsequently

by Hill, (1955, 1956a) and also the classical work of Tanford

and Kirkwood (1957). The latter paper describes the famous

Tanford–Kirkwood (TK) model, which is a well-known

landmark in this field and will be commented out below

in more details (see page 14). Tanford and Kirkwood have

published several other important contributions in this area

(Tanford and Kirkwood 1957; Kirkwood 1934b; Kirkwood

and Westheimer 1938; Westheimer and Kirkwood 1938;

Tanford 1957a, b; Roxby and Tanford 1971; Tanford and

Roxby 1972). In common, these studies involve the implicit

(or continuum) solvent description, i.e., the molecular water

is replaced by a structureless continuum medium described

by its bulk static dielectric constant. Therefore, the sol-

vent effect only enters in these theoretical treatments by its

averaged screening behavior. In contrast to explicit molec-

ular water models, (Guillot 2002; Hess and van der Vegt

2006) in the implicit solvent description, water molecules

coordinates and momenta are averaged over, losing their

intrinsic molecular nature. This approximation is known as

the McMillan–Mayer model level, (Friedman 1977, 1981)

and it is also used in the notorious and successful DVLO

theory for colloidal stability (Derjaguin and Landau 1941;

Verwey and Overbeek 1948; Overbeek 1982). Another com-

mon characteristic of these models was the use of a rigid

macromolecular structure without its internal degrees of

freedom. This implies that any change in the protonation

state does not affect the macromolecular conformation (and

vice versa) that is assumed to be at the same conforma-

tion during all titration process. Well-known processes such

as denaturation caused by changes in the solution pH (e.g.,

pepsin, the enzyme that breaks down protein in the stomach,

becomes dysfunctional at high pH with gastrointestinal con-

sequences because it changes its conformation to undergo

an unfolding process (Piper and Fenton 1965)) can not be

completely described by these theoretical approaches.

All these pioneering analytical works provided the

solid theoretical background where the modern computa-

tional approaches, the core of our discussions here, are

grounded. Different aspects of available computational

methods to study acid-base processes in biomolecules have

been reviewed in the literature (Mongan and Case 2005;
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Chen et al. 2008, 2014; Wallace and Shen 2009; Alexov

et al. 2011; Kim and McCammon 2016), evidencing their

increasingly important role in biophysics, biochemistry,

and biotechnological processes. Most of the reviews con-

centrated their discussions on atomistic level constant-pH

(CpH) molecular dynamics (MD) techniques. Here, we will

focus on aspects not covered before, particularly related

with the fundamental ideas, simplified CpH Monte Carlo

(MC) methods and the charge regulation mechanism (Kirk-

wood and Shumaker 1952; Barroso da Silva et al. 2006;

Barroso da Silva and Jönsson 2009; Barroso da Silva 2013;

Lund and Jönsson 2013). A short description of the main

modern CpH methods and comparisons among them will

also be partially described in this text highlighting the

present state-of-art of this field, advantages, and limitations

of different protocols for biomolecular systems. In the first

part of this review article, we shall introduce the quantum

and classical physical chemical approaches. A common set

of basic thermodynamics concepts is initially introduced

before the discussion of the computer models. In the central

part of the text, the CpH MC methods and especially the fast

proton titration scheme (FPTS) for proteins (Teixeira et al.

2010; Barroso da Silva and MacKernan 2017b) and nucleic

acids (Barroso da Silva et al. 2017a) are critically presented.

A following section is dedicated to some examples of the

application of the CpH MC methods for protein complex-

ation. Wherever possible, we complement the discussion

providing alternative interpretations for some aspects of

the problem and bringing other points of view. Future per-

spectives are outlined too. During our narrative, we shall

also refer the reader to classical papers covering details not

deeply considered here. This is the case, for instance, of the

experimental approaches. A great diversity of experimen-

tal techniques has been employed to study pH effects in

and between biomolecules. This is too broad of a research

field and is impossible to be included in a computation-

ally oriented review paper. Even specifically for ionization

equilibria in biomolecules, a number of both macroscopic

(e.g., potentiometric titrations) and spectroscopic methods

[e.g., nuclear magnetic resonance (NMR), infrared, ultravi-

olet and visible spectroscopy] are routinely used. Here, we

point the reader to specific texts (Schlichter 1980; Bartik

et al. 1994; Legault and Pardi 1994; Borkovec et al. 2001;

Harris and Turner 2002; Thurlkill et al. 2006).

A quantum mechanical treatment

Essentially, the proton transfer events between solute and

solvent should be treated by quantum mechanics. Thus,

the Schrödinger equation could be solve and after a long

production time, observables values related to the proton

transfer phenomenon would be evaluated. Such a scenario

is not possible and many approximations are applied to

simplify the quantum problem. It is worthy to cite the

Born–Oppenheimer approximation, separating the motion

of atomic nuclei and electrons in a molecule, and the

orbital approximation, the overall wavefunction describing

electrons is decomposed into antisymmetric product of

monoelectronic functions, due to their importance in the

electronic structure modern calculations (Szabo and Ostlund

1989). After the 1990s, density functional theory (DFT)

came on the scene with low computational cost when com-

pared to ab initio post-Hartree–Fock or even Hartree–Fock

method (Capelle 2006).

Nowadays, protonation or deprotonation of molecules

containing more than a dozen atoms immersed in a discrete

and molecular solvent can be treated using DFT molecu-

lar dynamics or Monte Carlo simulations coupled to the

rare event sampling technique. For a recent example, Tum-

manapelli and Vasudevan (Tummanapelli and Vasudevan

2015) have calculated the free energy profiles for proton

dissociation of the 20 canonical alpha amino acids in water

using Car-Parrinelo MD at HCTH-D2 level (Boese et al.

2000; Grimme 2006) and plane-wave basis set with metady-

namics sampling (Laio and Parrinello 2002). Tummanapelli

and Vasudevan (2015) have related a mean relative error of

0.2 pKa units in their calculations.

Surely, the advantage of such an approach is an egali-

tarian treatment of the system, taking solvent and solute at

same level of details. There is still room for development in

sampling techniques, the choice of reaction progress coor-

dinate (Meyer et al. 2016), new DFT methods for molecular

interactions (Brémond et al. 2016; Taylor et al. 2016), and

so on. Grand challenges are the DFT treatment for colloidal

dimension systems as proteins and RNA/DNA or high-level

quantum chemistry calculations for medium molecules with

inclusion of the solvent sampling. Good ideas to solve these

problems are divide-and-conquer, subsystem DFT, and frag-

ment molecular-orbital approaches (Gordon et al. 2012; He

and Jr 2010; Andermatt et al. 2016) combined with the

special sampling techniques. As an example of these new

approaches, Genova and co-workers have implemented and

reported a speedup of 40x for simulation of (GLY)6 solvated

by 395 water molecules (1230 atoms) using a frozen density

embedding (FDE) formulation of subsystem DFT (1462 s

for subsystem DFT against 56,405 s for conventional DFT,

both carrying out ten steps of ab initio MD) (Genova et al.

2017).

At present, practical alternatives disregard the solvent

and solute quantum mechanical nature, or better, only a few

atoms are treated as quantum mechanics objects while the

neighbors are approximated by classical ones. Thus, the

reacting system can be described by a high-level ab initio
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Fig. 1 Thermodynamic cycle for the pKa calculation using the direct

method. All quantities are standard-state (denoted by ∗) at 1 mol

L−1. The ΔG∗
g , ΔG∗

soln, ΔG∗
solv(AH), ΔG∗

solv(A−) and ΔG∗
solv(H+)

are gas-phase acidity, Gibbs free energy of deprotonation in solu-

tion, Gibbs free energy of solvation for AH, A− and proton species,

respectively

method and the environment is represented by sites interact-

ing following molecular mechanics force fields, (Kamerlin

et al. 2009) or even simplified as a dielectric medium

(Li et al. 2002; Freitas et al. 2007; Ho and Coote 2009b;

Casasnovas et al. 2014).

Such calculations are all performed on thermodynamic

cycles and, although the free-energy difference between

initial and final states is not path dependent, the chosen

cycle can determine the predicted pKa accuracy (the phys-

ical meaning of this quantity and other thermodynamical

ones are described in detail in the next section). As dis-

cussed by Ho and Coote (2009b), two methods are suitable

for pKa predictions: (i) the direct method, and (ii) the

proton exchange method.

The direct method (scheme given in Fig. 1) combines

gas-phase acidity experimental results or high level ab initio

calculations with standard-state Gibbs free energy of solvation

as calculated by either discrete or continuum solvent mod-

els (Marenich et al. 2009; Takano and Houk 2005; Shimizu

et al. 2005; Florián and Warshel 1997; Klamt 1995).

From Fig. 1, it is possible to derive:

pKa = − log Ka =
ΔG∗

soln

RT ln 10

=
ΔG∗

g + ΔG∗
sol(A

−)+ ΔG∗
sol(H

+)− ΔG∗
sol(AH)

RT ln 10
(1)

where R is the molar gas constant (8.3144598JK−1mol−1),

and T is the absolute temperature.

Different thermodynamic cycles can also be derived

by inclusion of solvent molecules, (Ho and Coote 2009b;

Casasnovas et al. 2014) but they do not eliminate the sources

of uncertainties. These uncertainties on the solvation-free

energies are higher for ionic species when compared with

neutral molecules (Ho and Ertem 2016). This implies that

the pKa predictions using the direct method can lead to

very large errors. Also, the data scattering in the solvation

free energy of proton could be an additional source of error.

Actually, modern theoretical calculations for solvation-free

energy of protons are very trustworthy. As an example,

Rossini & Knapp have computed highly accurate proton

solvation-free energies in acetonitrile, methanol, water, and

dimethyl sulfoxide (Rossini and Knapp 2016). In water, they

have obtained −266.3 kcal mol−1 against the consensus

value of −265.9 kcal mol−1.

The proton exchange method (scheme given in Fig. 2)

is based on isodesmic reactions (i.e., reaction in which the

type of chemical bonds broken in the reactant side appears

in the product side).

From Fig. 2, it is simple to show that:

pKa(A) − pKa(B) = − log
Ka

Kb

=
ΔG∗

soln

RT ln 10

=
ΔG∗

g+ΔG∗
sol(A

−)+ΔG∗
sol(BH)−ΔG∗

sol(AH)−ΔG∗
sol(B

−)

RT ln 10
(2)

The uncertainties in the proton exchange method depend

of the chemical similarities between the compounds in the

cycle. A higher structural similarity between them must

lead to higher cancellation of errors in the gas phase

relative acidity calculation and solvation-free energies of

ionic species. Thus, the proton exchange method must lead

to more reliable pKa estimates when compared to the direct

method (Ho and Coote 2009a).

An alternative to these computationally quite expensive

simulations is to invoke effective Hamiltonians that can

capture at least the principal part of the real phenomenon

(i.e., the free energy cost of a change in the net charge of

the solute immersed in a medium). The next sections will

address this question.

Fig. 2 Thermodynamic cycle for the pKa calculation using the proton exchange method. The quantities have similar meaning as presented in Fig. 1
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A classical physical chemical treatment

An alternative to the computationally expensive and often

prohibitive quantum mechanical treatment is to invoke

effective Hamiltonians that can capture at least the prin-

cipal part of the real phenomenon. Diverse possibilities

ranging from full atomistic to colloidal-like models for

the macromolecules are available. Differences between the

theoretical treatments can also be seen in the manner the

solvent is described and/or the numerical method applied to

solve a given model. Empirical methods such as PROPKA,

(Li et al. 2005; Olsson et al. 2011) Vriend’s method (Krieger

et al. 2006) and the Burger & Ayers predictor (Burger and

Ayers 2011) that have introduced plausible contributions in

this field especially for high-throughput uses should also

be mentioned here. Table 1 summarizes the main theoret-

ical contributions to develop these classical effective CpH

simulation methods that are also cited together with them

as a function of the year of the published original works.

The presentation here is not always complete, which means

that the reader is expected to explore the list of references

for details and other methods omitted in the text. We have

picked up some main theoretical methods that we believe

are key examples for an overview of the past, present, and

future of this field. In the same line, Fig. 3 presents a scheme

illustrating a selection of the main CpH simulation methods

organized from their common features and using a historical

point of view. This kind of conceptual map will be useful

to relate the ideas further discussed. In the present arti-

cle, we shall follow this historical perspective starting with

models directly derived from the analytical ones already

mentioned at the introduction section. They are represented

in the first row of this picture classified as “rigid models

in implicit solvent”, beginning with the Linderstrøm-Lang

colloidal-like protein model (Linderstrøm-Lang 1924) (at

the top left) to the FPTS (at the top right) (Teixeira et al.

2010; Barroso da Silva et al. 2017a; Barroso da Silva and

MacKernan 2017b). The other methods exemplified in this

Table 1 History of the main contributions to develop classical constant-pH simulation methods

Year Author(s) Contribution Ref(s)

1924 Linderstrøm-Lang Protein electrostatics described by a colloidal-like (Linderstrøm-Lang 1924)

particle using the Debye-Hückel theory

1934 Kirkwood Mathematical basis of Tanford–Kirkwood model (Kirkwood 1934a, b)

1957 Tanford & Kirkwood Classical Tanford Kirkwood model (Tanford and Kirkwood 1957)

1976 Warshel & Levitt Proposed a microscopic dielectric model for proteins (Warshel and Levitt 1976)

1981 Warshel Introduced the empirical valence method (Warshel 1981)

to calculate pKas

” Berendsen, Postma, van Gunsteren Molecular dynamics simulation (Berendsen et al. 1981)

& Hermans applied to study protein hydration

1982 Warwicker & Watson Linear Poisson–Boltzmann applied for protein (Warwicker and Watson 1982)

electrostatics (atoms represented at specific

structural locations)

1990 Svensson, Woodward & Jönsson Monte Carlo simulation applied for protein (Svensson et al. 1990)

electrostatics (with a uniform dielectric response)

1996 Kong & Brooks The “λ”’s dynamics method (Kong and Brooks 1996)

1997 Baptista, Marte & Petersen Coupling molecular dynamics with LPB (Baptista et al. 1997)

2001 Barroso da Silva, Penfold & Jönsson Monte Carlo simulation applied for protein (Barroso da Silva et al. 2001)

electrostatics (with a dielectric interface)

2004 Lee, Salsbury Jr & Brooks Apply the “λ”’s dynamics method for CpH (Lee et al. 2004)

2005 Li, Robertsen & Jensen Empirical methods to predict pKas (Li et al. 2005)

2007 Tang, Alexov, Pyle & Honig Use of PB to calculate pKas in RNA (Tang et al. 2007)

2010 Teixeira, Lund & Barroso da Silva A fast proton titration scheme for proteins (Teixeira et al. 2010)

2013 Chen, Wallace, Yue & Shen Introduce a titratable water model for CpH (Chen et al. 2013)

simulations

2015 Chen & Roux Hybrid nonequilibrium MD-MC for CpH (Chen and Roux 2015)

2015 Carnal, Claviera & Stoll Introduced a CG titratable flexible chain (Carnal et al. 2015)

2016 Donnini, Ullmann, Groenhof & Grubmüller Introduced the Parsimonious Proton Buffer (Donnini et al. 2016)

2017 Barroso da Silva, Derreumaux & Pasquali A fast coarse-grained model for RNA titration (Barroso da Silva et al. 2017a)
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Fig. 3 Scheme illustrating a selection of the main classical constant-

pH simulation methods organized based on their common features and

using a historical point of view. The time arrow at the bottom indi-

cates the chronological order. The small arrows between the models

show how they evolved from the others. The double arrows (on the left)

are used to classify models that allow conformational protein changes

(flexible) or not (rigid). {r, q} represents the protein atomic coordinates

(r) and charges (q). κ is the inverse Debye-Hückel screening length,

which is proportional to the square root of the salt concentration. This

indicates the implicit ion models in this figure. Similarly, ǫ is used to

label the implicit (or continuum) solvent models. Explicit (or molecu-

lar) solvent models are represented by the drawing of a water molecule.

See the text for more details

figure will be introduced during our narrative after the

MC schemes.

A Thermodynamical picture

Let us recall basic concepts that will be needed in the fol-

lowing sections. From a physical chemical perspective, the

proton binding process is a chemical reaction. That is, a

protonation can be written as

M + H+ Kr
→ MH

According to thermodynamics, the binding constant

relates to the Gibbs free energy change (ΔGr ) per mole for

this reaction by: (Atkins 1995)

ΔGr = −RT ln Kr (3)

where Kr is the reaction constant (i.e., the binding constant).

This constant is frequently expressed in concentration units,

e.g., mol l−1):

Kr =
[MH ]

[M] [H+]
(4)
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Typically, Kr may be a number very small (10−14) or

very big (10+14) (Devlin 1997). Therefore, it is much more

convenient to describe it by the base-10 logarithm. That is,

instead of Kr , one usually uses:

pKr = − log Kr (5)

as is done for the pH definition.

This means that Eq. 3 can be rewritten as

ΔGr = 2.303 RT pKr (6)

where the factor 2.303 (= ln 10) comes from the transfor-

mation between the base-10 and the natural logarithms.

However, what is the point in calculating ΔGr? Well,

the knowledge of ΔGr provides a “feeling” for the reac-

tion behavior, i.e., its driving force. For instance, it is often

said that a process is spontaneous when ΔGr < 0. Con-

versely, if ΔGr > 0, the reverse process is spontaneous,

and equilibrium is seen for ΔGr = 0. Therefore, compar-

ing different ΔGr ’s, we can have an idea of what is the

effect of a specific change [e.g., mutation, variation in the

ionic strength, macromolecular concentration, conforma-

tional change, presence of other (charged) molecules, etc.]

on the system. It is particularly useful to quantify how spe-

cific micro-environments affect the proton binding reaction.

This is really what we are after here, i.e., we are interested

in calculating ΔΔGr , or equivalently, ΔpKr . Particularly,

we would like to know the effects that perturb and result in

highly shifted pKrs.

pKrs for each individual titratable chemical group at

a particular micro-environment (specified by the neighbor

charges and ionic strength) are often obtained from a titra-

tion plot where net charge numbers (z) are given as a func-

tion of solution pH at this condition. It corresponds to the

solution pH where this ionizable group i is half-protonated

(e.g., < zi(pH) >= −0.5, for ASP, < zi(pH) >= +0.5,

for LYS, and so on). Frequently, pKr is called pKa (or

pKapp (Bashford and Karplus 1990)) and used to describe

several physical events (e.g., protein stability, macromolec-

ular assembly, binding of ligands, conformational changes,

added salt effects, etc.) and their dependency with the envi-

ronment (Garcia-Moreno 1995). This is a central physical

quantity in most of the studies of biomolecular electro-

static interactions. From hereon, pKa will be used here for

the equilibrium constants when the ionizable group is at

a particular physical chemistry condition specified by the

temperature, salt solution, macromolecular concentration,

and conformation.

For the deprotonation process, Eq. 4 can be rearranged

into the so-called Henderson–Hasselbalch equation: (Devlin

1997)

pH = pKa + log
[M]

[MH ]
(7)

that can be conveniently re-written as

[MH ] =
[M]

10pH−pKa
(8)

Substituting this expression in the definition of the

fraction of protonated molecules or degree of association

(fMH ), one obtains:

fMH =
[MH ]

[MH ] + [M]
=

1

10pH−pKa + 1
(9)

which yields the well-known sigmoid analytical titration

curve for an ideal case, i.e., an isolated amino acid in the

absence of any external field. Note that for pH equals to

pKa , fMH becomes 0.5 as expected by the own definition

of pKa .

Alternatively, it follows that the absolute charge number

for a base titratable group (e.g., LYS) is

zi =
1

10pH−pKa + 1
(10)

being +1 at the very acid regime and 0 at the very basic

regime. Analogously, for an acid ionizable group (e.g.,

GLU),

zi = −
1

10pKa−pH + 1
(11)

varying from 0 (at low pH) to −1 (at high pH). Charge num-

bers are equivalent to valence in the chemical context, and

both forms are used in biophysics texts. We shall next see

how these physical quantities are computed by theoretical

methods.

The Tanford–Kirkwood model Following a historical

perspective, one of the earliest attempts to calculate the

electrostatic ΔGr and derived quantifies is due to Tan-

ford and Kirkwood (1957). Employing the mathematical

formalism deduced before by Kirkwood (1934a, b) they

introduced discrete state variables for the enumeration of all

possible protonation states of a polyprotic macromolecule.

Therefore, for the first time, a model allowed the titratable

chemical groups to be at specific locations, e.g., as given

by the X-ray, NMR, or homology built model coordinates

in the macromolecule (in the original TK model, a protein)

rather than smeared out on the macromolecular surface.

The TK model belongs to the McMillan–Mayer model

level (Friedman 1977, 1981). It is a dielectric continuum

model (implicit solvent) that assumes that the protein (or

any other macromolecule) may be modeled as a hard-sphere

of radius Rp treated as a low dielectric permittivity (ǫp)

body without internal degrees of freedom. This sphere is

immersed in a medium with high dielectric permittivity (ǫs),

the electrolyte solution. At this point, proposing a dielectric

interface, they introduced a rather polemical and contro-

versial model choice under intense debate in the literature
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(Demchuk and Wade 1996; Penfold et al. 1998; Warshel

and Åqvist 1991; King et al. 1991; Antonsiewicz et al.

1994, 1996; Simonson and Perahia 1995; Simonson and

Brooks 1996; Löffler et al. 1997; Sham et al. 1997; War-

wicker 1999; Barroso da Silva et al. 2001; Autreto et al.

2003; Schutz and Warshel 2001; Dudev and Lim 2000;

Varma and Jakobsson 2004; Archontis and Simonson 2005;

Ko et al. 2005; He et al. 2007; de Carvalho et al. 2008;

Vicatos et al. 2009; Simonson 2013). This vast list of ref-

erences represents only a small part of the papers and

should be seen as an example of the scattered views of

this issue.

A dielectric constant is a macroscopic parameter related

to the movement of microscopic charges. It describes the

reorientation of the electronic cloud around a nucleus and/or

the reorientation of permanent dipoles in the presence of an

electric field (Böttcher 1973). Being a macroscopic prop-

erty, one might wonder how the dielectric constant can be

applied on a microscopic object as a protein where atomic

charges that can be at relatively short distances (< 5 Å) have

to be handled. With two dielectric constants, ǫp and ǫs , a

natural and necessary question is to define where one should

place the dielectric interface, and also what value should be

used for ǫp. There is a priori no prescription for locating the

intervening dielectric boundaries, and a method for estimat-

ing the dielectric response of the macromolecule. Results

are dramatically sensitive to these choices (Barroso da Silva

et al. 2001). We shall return to this point in the next sub-

section (see Fig. 5). Although the physical and/or biological

arguments may be criticized (Kukic et al. 2013), it seems

an accepted idea in this set of strong divergent opinions that

the dielectric constant of the biomolecule can be assumed to

be an adjustable or empirical parameter (specific for a given

model) whose choice is based on obtaining the best agree-

ment between the predicted properties and the experimental

results (Schutz and Warshel 2001; Autreto et al. 2003; de

Carvalho et al. 2008).

With respect to the rigid macromolecular reference frame

with fixed charged groups, the salt ions and other charged

ligands are supposed to be in relative motion throughout the

solvent medium. However, Tanford and Kirkwood avoided

the formidable statistical thermodynamics problem that this

motion implies by appealing to the construction of an effec-

tive interaction, eliminating explicit reference to the mobile

particles and introducing the Debye–Hückel (DH) poten-

tial. This means that the salt ions and other charged ligands

were not explicitly taken into account. They just “partic-

ipate“ through their mean-field contribution. All protein

charges are assumed to be inside the low dielectric sphere

(radius Rd ). A schematic picture of the TK model is given in

Fig. 4.
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Fig. 4 The Tanford–Kirkwood model (adapted from ref. Tanford and

Kirkwood (1957)). A spherical protein of radius RP immersed in an

electrolyte solution. The protein interior with a low dielectric permit-

tivity (ǫP ) is shown as a shaded region of radius Rd < RP . Two protein

titratable sites k and l are represented at a given specific structural

locations. The solvent dielectric constant is ǫs . See text for more details

Basically, the TK model assumes that the electrostatic

contributions to the free energy may be calculated by:

ΔGr =
1

2

N
∑

i=1

qiφ(ri) (12)

where qi is the net charge of site i and φ(ri) is the electro-

static potential at position ri, which was obtained from the

DH theory. The full analytical expressions of the model are

given in their original work (Tanford and Kirkwood 1957)

and critically analyzed in Barroso da Silva et al. (2001)

by means of MC simulations. These simulations were car-

ried out for a model including the dielectric discontinuity

and the mobile species in the solution comprise salt parti-

cles as well as additional counter ions in order to maintain

electroneutrality (Barroso da Silva et al. 2001).

The success of the TK model may be seen by the num-

ber of investigations where it has been invoked to study the

interactions between charged ligands and proteins, mem-

branes, and other macromolecules (e.g., Harvey (1989),

Warwicker and Watson (1982), Warshel et al. (1984), Bash-

ford et al. (1988), Havranek and Harbury (1999), and Teix-

eira et al. (2010)). Despite its evident success, the TK model

suffers from two significant limitations:

1. closed form analytical solutions are only available in

simple geometric configurations (usually spherical);

2. nonlinear thermal effects and explicit ion–ion interac-

tions are ignored.
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An additional simplification of the TK prescription,

which may prove unrealistic at low ionic strength, lies in the

assumption of infinitesimally small macromolecule concen-

tration (Linse et al. 1995). In NMR studies of proteins, the

typical protein concentration is of the order of 1 mM and the

concentration of the accompanying counter ions could be an

order of magnitude larger or more. Anomalous salt effects

at moderate macromolecular concentrations have also been

reported in the literature (Barroso da Silva et al. 2005).

These approximations were scrutinized in a set of numer-

ical simulations (Barroso da Silva et al. 2001; de Carvalho

et al. 2006, 2008). Unexpectedly, the findings show that the

TK prescription is an excellent approximation for studies

of the binding of charged ligands to macromolecules, espe-

cially at moderate- and high-salt concentrations. Macro-

molecules moderately charged (less than 10 units of ele-

mentary charge) give the best response of the model. For

sufficiently highly charged systems, the limitations of the

DH theory become apparent. The linearization in the DH

equation is unjustified and one must invoke a more accurate

theory (e.g., the nonlinear Poisson–Boltzmann equation).

Ion-ion correlation effects are of minor importance for ion-

binding measurements at symmetrical 1:1 electrolyte solu-

tions. The TK predictions for the free energy shifts become

less reliable at moderately macromolecular concentrations.

This can be remedied by the replacement of the original DH

screening length by its modified version that incorporates

the counter ion concentration (Beresford-Smith and Chan

1983; Schmitz 1994).

The Poisson–Boltzmann equation With the advent of

faster computers together with improvements in numerical

algorithms, it became possible to numerically solve the TK

model for arbitrary molecular shapes. It was the beginning

of the Poisson–Boltzmann (PB) equation era in biophysics

and biochemistry. The pioneering and landmark work of this

“new” approach for macromolecules represented at atom-

istic level and nonuniform dielectrics (in implicit solvent)

is due to Warwicker and Watson (1982), which was fol-

lowed by many others (e.g., Davis and McCammon (1990),

Holst (1993), Davis et al. (1991), Juffer et al. (1991), Juf-

fer (1998), Honig and Nicholls (1995), Bashford et al.

(1988), Bashford and Karplus (1990), Beroza et al. (1991),

Warwicker (1999), Baker et al. (2001), Li et al. (2005),

and Anandakrishnan et al. (2012)). This approach is indi-

cated in Fig. 3 on the top row, third picture from left to

right. The work of Warwicker & Watson came out about

1 year later after Warshel introduced the empirical valence

method (EVM) for fast pKas estimations (Warshel 1981).

These two theoretical methods (PB and EVM) were pro-

posed a few years later after the Nobel laureates Warshel &

Levitt published in 1976 the microscopic dielectric model

for proteins where the solvent and protein atoms were rep-

resented as an explicit grid of polarizable Langevin-type

dipoles (Warshel and Levitt 1976). This Langevin dipo-

lar (LD) model was combined with a quantum description

in an approach that is now known as “multiscale mod-

eling”. Taking a developmental route independent from

and in a way apart from the TK and the PB approaches,

the LD model has evolved in parallel in many other

(semi-)microscopic treatments resulting in the protein-

dipoles–Langevin-dipoles (PDLD) model family (Warshel

et al. 2006). In fact, Warshel made several contributions to

protein electrostatics and modeling of the biological func-

tion that can be appreciated in a recent review written by

himself (Warshel 2014).

The PB equation is obtained by the combination of

fundamental electrostatic equations, the Poisson and the

Boltzmann equations (a detailed and mathematically ori-

ented derivation can be found elsewhere (Holst 1993)). The

Poisson equation is used to calculate the three-dimensional

electric potential (φ) generated by a macromolecule lying in

an ionic solvent. This situation corresponds to a calculate φ

for a local electric charge density (ρe) in a dielectric medium

(assumed homogeneous and linear), (Reitz et al. 1986)

∇2φ = −
ρe

ǫsǫ0
(13)

where ǫ0 is the vacuum permittivity (ǫ0 = 8.854 × 10−12

C2/Nm2). To solve the Poisson’s equation, one must know

both ρe, which is supposed to be given by the Boltzmann’s

distribution and the boundary conditions. The Laplace

operator, ∇2, must be written in terms of an appropriate

coordinate system (rectangular, spherical, cylindrical, etc)

exploiting all the problem symmetries.

Let us consider the simpler case, where a positively

charged surface is surrounded by cations and anions. Any

of these ions apart from the surface experiences a potential

ψ that is a result from the average force acting on one par-

ticular ion from the interactions of both the surface and all

the other ions. Thus, ψ is a potential of mean force (Rus-

sel et al. 1989; McQuarrie 1976; Hill 1986) defined such

that the Boltzmann distribution for the cations and anions is

given by: (Shaw 1992)

nk = n0k exp

[

−zk e ψk

kBT

]

(14)

where kB (= 1.3807 × 10−23 J.mol−1.K−1) is the Boltz-

mann constant, e is the elementary charge (e = 1.602

10−19C), zk is the ion valency, nk is in units of particles

per volume (number density), and their density in the bulk
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solution is n0k . Consequently, the charge density ρe can be,

for a symmetric salt, written as:

ρe = z e (n+ − n−)

Eq.14

↓
= z e n0

(

exp

[

−z+ e ψ+

kBT

]

−exp

[

−z− e ψ−

kBT

])

(15)

where z = z+ = −z−. Since ρe in this case is the density of

the free mobile charges at this point, it is more appropriate

to call it ρf from now on.

Apparently, the expression above for ρf , together with

the boundary conditions, is all that we need to write the

PB equation. Nevertheless, the potential of mean force ψ

(used in Eq. 14) is not the mean electrostatic potential <

φ > (used in Eq. 13). The discrimination between these

potentials is pedagogically presented by Lyklema (1991).

As a first assumption, one can neglect ion–ion correlations,

which gives ψ = < φ >, using the type of approximation

that is called a mean-field approximation. Therefore, sub-

stituting Eqs. 15 in 13, and writing ψ = φ results in the

well-known PB equation for a two-component system at a

charged surface:

∇2φ = −
ρf

ǫ0 ǫs

ψ=φ

↓
≈

2 z e n0

ǫ0 ǫs

sinh

(

z e φ

kBT

)

(16)

This is a nonlinear equation partial differential of the

second order and its mathematical solution (analytical or

numerical) can be quite complex and tricky. Analytical solu-

tions are available only for very simple cases. One of these

special situations where an analytical solution is known is

the infinite charged planar surface case. This example is

given in detail in Refs. Russel et al. (1989), Evans and Wen-

nerström (1994), and Usui (1984), and is usually described

as the Gouy–Chapman case (Usui 1984). In many cases,

including the applications to biomolecules, numerical tech-

niques are required. Different methods are available. For

example, the “finite element method”, (Davis and McCam-

mon 1990; Project 1995; Harvey 1989; Orttung 1977; Terán

et al. 1989) the “finite difference method”, (Davis and

McCammon 1990; Project 1995; Harvey 1989; Warwicker

and Watson 1982; Holst 1993; Davis et al. 1991; Sakalli and

Knapp 2015) and the “boundary element method” (Davis

and McCammon 1990; Project 1995; Harvey 1989; Juf-

fer 1993, 1998; Juffer et al. 1991) are applied to solve

the PB equation for biomolecular systems. There are also

a number of generalized program packages available to

study biomolecular phenomena (Warwicker and Watson

1982; Holst 1993; Davis et al. 1991; Bashford and Ger-

wert 1992; Honig and Nicholls 1995; Juffer 1992) and

web-servers (Calixto 2010; Anandakrishnan et al. 2012;

Smith et al. 2012; Wang et al. 2016). A quite recent new

numerical implementation is the Gaussian-based dielectric

function description for the nonlinear PB (NLPB) (Wang

et al. 2015).

For multi-component systems with N ionic species, one

should recognize that ρf is equal to the local excess of ionic

charges: (Russel et al. 1989)

ρf =

N
∑

k=1

e zk nk (17)

where zk and nk are the valency and the number density

of charges of species k. The expression for nk is given by

Eq. 14, where n0k is the bulk density of species k. This

results in

∇2φ= −
1

ǫ0 ǫs

N
∑

k=1

e zk nk = −
1

ǫ0 ǫs

N
∑

k=1

e zk n0k exp

(

−ezkφ

kBT

)

(18)

which is a generalization of Eq. 16.

Due to the complexity of the non-linear equation, many

studies are still done with the linear form, i.e., within the

same statistical mechanical basis as the TK model involving

the DH approximation. This is apparently the most popu-

lar approach today. In fact, great enthusiasm for this method

is probably related to the fact that a dielectric interface can

be relatively easily included in the model and aids to tune

results to meet the experimental data. This turns out to be

an effective way to remedy and introduce possible effects

of conformational changes due to the variation of the pro-

tonation states, structural artifacts that might be induced

from the crystal symmetry imposed by the crystallization

process, low-quality homology built model, the lacking of

ion–ion correlation in the mean-field description, and any

other contribution missing in the model.

The superoxide dismutase (SOD), an enzyme that

strongly interacts with the negatively charged superoxide

radical (O−
2 ) and linked to Gehrig’s disease (Hurtley 2015),

was probably the system that opened up the claims that a

macromolecule should be treated as a body with low dielec-

tric permittivity within the continuum model approach.

Experimental data show an attraction between SOD and

O−
2 under certain conditions. However, both molecules have

paradoxically a negative net charge (SOD has a net charge

number of −4.), which according to Coulomb’s law should

result in a repulsion between them. Calculations with a uni-

form dielectric constant in the PB approach failed to explain

the experimental behavior, i.e., their attraction. Neverthe-

less, the assumption of a low dielectric constant for SOD

(ǫp = 2) completely changes the picture, revealing a region

of positive electrostatic potential around the active site,

where O−
2 should bind (Sharp et al. 1987). Conversely, this
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“SOD paradox” has also been studied by means of MC

simulations (Woodward and Svensson 1991; Bacquet et al.

1988; Barroso da Silva 1999). Contrary to previous PB stud-

ies, (Sharp et al. 1987) it was found that there was no clear

need to consider a low dielectric permittivity to the enzyme,

since the attraction found in these calculations was smaller

than 0.1 kBT units.

It is worth pointing out that the PB is likely to fail

at high electrostatic coupling regimes. This can be found

for example in the presence of multivalent ions, lowering

the temperature or the dielectric constant, and/or increas-

ing the charge of the macromolecular surface (Jönsson et al.

1996, 2007; Degrève et al. 1993). Thus, the validity of

the PB approach can be questionable in some biomolecu-

lar conditions. Some authors claimed that the PB approach

is valid for electrolyte solutions with concentrations that

do not exceed 1 M and surface potentials less than 200

mV (Russel et al. 1989). However, Outhwaite and Bhuiyan

argued that there is consensus only when the PB theory is

applied to 1:1 electrolytes (Outhwaite and Bhuiyan 1991).

Size ion–ion correlation can be included in the “modi-

fied Poisson–Boltzmann” version (Outhwaite and Bhuiyan

1991; Degrève et al. 1993). Other key assumptions and

limitations in the PB approach are discussed elsewhere (Bar-

roso da Silva 1999). There are also more refined statistical

mechanical theories that can be used to replace the DH

approximation (e.g., the hypernetted chain integral equation

González-Tovar and Lozada-Cassou (1989) and Terán et al.

(1989), the anisotropic reference hypernetted chain approx-

imation (Greberg and Kjellander 1994), and the density

functional theory (Lovett et al. 1976)). A more consistent

alternative is to perform MC calculations that does pro-

vide an “exact” answer (within statistical errors) for a given

physical model.

PB equation solvers are largely applied to predict pKa

for both proteins and nucleic acids systems (Sharp and

Honig 1990; Wang et al. 2015; Tang et al. 2007). Stan-

dard descriptors to measure the quality of the PB equation

results (or of any other theoretical method) in benchmark

studies is done employing the maximum absolute devia-

tion (MAX), the averaged absolute deviation (AAD), the

root-mean-square deviation (RMSD) and the linear correla-

tion coefficient (r) between the experimental and computed

pKas. The quality of the outcomes are often scrutinized by

means of a comparison with the so-called “NULL model”,

where site–site interactions are altogether neglected (Schutz

and Warshel 2001; Carstensen et al. 2011). This is equiva-

lent to assume that the pKa of a given titratable group at

any experimental condition is identical to its model com-

pounds given zero pKa shifts (ΔpKa = pKa − pK0 = 0).

Any good theoretical model should have a better predic-

tion than the “NULL model”, which is a task far from

trivial to be achieved (Borkovec et al. 2001), making such

comparison a real critical test in benchmark studies. Tests

done with PB solvers for several proteins resulted in an over-

all RMSD of ca. 0.8 (Wang et al. 2015). Buried residues

follows the typical trend to be predicted with more diffi-

culties (RMSD of 1.1 (Wang et al. 2015)) than superficial

groups. Nevertheless, as mentioned above, the choice of ǫp

has a drastic effect on the outcomes. Figure 5 illustrates how

these descriptors are sensitive to what value is assumed for

ǫp. The data is for lysozyme (PDB id 2LTZ) at 100 mM of

salt following the same simulation details as done by Bash-

ford & Karplus with ǫp = 4 (Bashford and Karplus 1990).

It can also be observed in this figure that any ǫp > 10 would

result in better predictions than the “NULL model”. Even

a uniform dielectric response (ǫp = ǫs) would give similar

results to the nonuniform dielectrics cases despite the fact

that there seems to be an optimal ǫp between 20 and 25

that gives the best values for these descriptors (2.0–2.1, 0.6,

0.8 and 0.97–0.98 for MAX, AAD, RMSD, and r , respec-

tively). It is worth mentioning that these results depend on

the choice of the force-field parameters for the charges used

to assign the protein and residues atomistic partial charges

(Calixto 2010). Depending on the chosen force field, the

optimal ǫp can be ǫs supporting the uniform dielectric

response for this class of methods. In general, PB solvers

using the finite differences method can improve the results

repeating the calculations for rotated protein coordinates

(e.g., ±5◦) (Madura et al. 1994). Conversely, improving

the molecular surface boundaries and using the finite ele-

ment method, Sakalli & Knapp impressively obtained the

smallest RMSD for lysozyme: 0.18. Multi approaches with

a good description of proton isomerism have also been

reported in the literature (Magalhães et al. 2017). In addi-

tion, a practical detailed information for the PB simulation

protocols is given in this paper, which may be useful to the

reader.

Titration schemes based on the Monte Carlo method

In terms of generic ion binding calculations by MC meth-

ods, the first paper that we are aware of is the work with

calcium-binding proteins done by Svensson, Woodward &

Jönsson (1990) in implicit solvent (Svensson et al. 1990),

after they have developed the modified Widom’s method

for non-uniform electrolyte solutions (Svensson and Wood-

ward 1988). Electrostatic free energies were obtained by

the employment of this perturbation technique. A similar

strategy was subsequently used by Barroso da Silva and co-

authors to study the titration of fatty acids solubilized in

cationic, nonionic, and anionic micelles (Barroso da Silva

et al. 2002). In short, the model assumed a uniform dielec-

tric response (ǫp = ǫs = 78.7 at 300 K), and removed

the mean-field description for the electrolyte solution that

was replaced by free explicit mobile ions (added salt and
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Fig. 5 Standard descriptors to measure the quality of calculated pKa

values by the PB equation as a function of the protein dielectric con-

stant ǫp . The “NULL model” predictions are given by the dashed gray

line. For these calculations, the pK0s were taken from ref. Bashford

and Karplus (1990) where simulation details are also described for

ǫp = 4. The PB calculations were carried out with the package MEAD

2.2.9. (Bashford 1997)

counter ions). These ions modeled by the restrictive prim-

itive model (Levesque et al. 1986) were introduced in the

simulation box instead of the DH/PB approximation. A rigid

protein (or micelle) made of a collection of small charged

hard-spheres of radius Ra (typically, Ra = 2 Å) and num-

ber charges (valences) za mimicking its atoms was placed

and kept fixed at the center of an electroneutral spherical

cell of radius Rcell (see the forth picture at the top row

in Fig. 3). This corresponds to the cell model (cm) (Hill

1956b; Jönsson 1981). The entire system is confined in this

closed spherical container. Particles only interact with other

particles that are present in this cell. There is neither repli-

cas nor nearest images. The particles cannot escape from

this container. A full atomistic representation for the protein

was followed with its atoms located according to the X-

ray structures provided by the Protein Data Bank (Berman

et al. 2000). No intramolecular degrees of freedom of the

protein were included in the model. The valency of each

atom was assigned based on their titratable characteristics

but they were not allowed to change during the simula-

tion run in these earliest works. Different charge schemes

were tested (Svensson et al. 1990; Teleman et al. 1991). It

was shown that partial charges on all protein atoms are not

necessary in order to obtain good agreement with exper-

iment. The crucial point is to have the appropriate net

charges in the ionized residues.

In this model, the interaction between any two particles i

and j is given by,

u(rij ) =

{

∞ , rij ≤ 2Ra
qi qj

4 π ǫ0 ǫs rij
, otherwise

(19)

where qi = zie and qj = zje denote the charges on particles

i and j , respectively, and rij their separation distance.

An external potential vex(ri) is used to impose a hard

wall that defines the spherical cell,

vex(ri) =

{

0 , ri ≤ Rcell

∞ , otherwise
. (20)

The size of the cell is determined by the macroparticle

concentration. That is the only way that macroparticle–

macroparticle interactions enter in the model. Therefore,

this potential permits the definition of a protein concen-

tration for the system instead of the common periodic

box conditions (pbc) frequently used in molecular simula-

tion (Allen and Tildesley 1989). Obviously, one is partly

neglecting correlations between macroparticles. This is not
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a crucial simplification, when the electrolyte solution is

1 : 1. That is because in this case there is often a strong

repulsion between two identical macroparticles. For multi-

valent free ions, some care should be taken, since at some

conditions these two identically charged macroparticles can

attract each other (Linse and Lobaskin 1999). A compari-

son between the cm and the pbc applied to micellar systems

has been performed by Linse and Jönsson (1983). They

concluded that the cm accurately predicts thermodynamics

properties at low micellar concentration (Linse and Jönsson

1983). However, it should be noted that for dilute con-

centrations of the macromolecule and relatively high con-

centration of added salt, the number of particles necessary

in the simulation becomes prohibitively high. Therefore,

one always tries to work with smaller systems (increasing

the macromolecular concentration). In this case, runs with

different numbers of particles and cell sizes within the com-

putational available resources are carried out to check any

inappropriate boundary effect. The cm has the additional

benefit that all electrostatic interactions within the cell can

be exactly treated in the sense that no cutoff scheme (like the

Ewald summation (Hünenberger and McCammon 1999)) or

potential truncation need to be included.

The total energy of the system for a given configuration

is then,

U =

Nmob
∑

i=1

vex(ri) +
1

2

N
∑

i=1

N
∑

j=1

u(rij ) (21)

Nmob = Nc + Ns is the total number of mobile particles

comprising Nc counterions and Ns added salt ions. N =

Nmob +Np is the total number of particles including the Np

protein atoms.

Another intermediate model combining the TK’s idea

to display the ionizable charged groups within the protein

with MC movements was proposed by Linse and co-authors

and applied to investigate protein self-association, protein–

polymer complexation and protein adsorption to charged

surfaces (Carlsson et al. 2001a, b, 2004). Titratable sites

could carry either a positive charge, a negative charge, or no

charge based on their individual experimental pKas (Carls-

son et al. 2004). These charges were kept unmodified during

the MC run.

Later, the fixed charge model was replaced by a proper

proton titration scheme (Kesvatera et al. 1996, 1999, 2001)

leading to the first CpH MC method in implicit solvent

(with explicit mobile ions). Simulations were performed

in a semi-grand canonical ensemble. The total number of

particles is constant, but their charges can vary during the

protonation process (i.e., they change their identities). A

proton bath was coupled at the simulation cell in order to

establish a constant pH in the system. After every tenth

attempted move of the free mobile ions, an attempt was

made to delete/insert protons on the ionizable groups. The

acceptance/rejection of an attempt to change the protonation

state of a residue was based on the trial energy,

ΔUt itra = ΔUc ± kBT ln 10(pH − pK0) (22)

where ΔUc is the corresponding change in Coulomb energy

that gives the deviations from the ideal behavior (e.g. inter-

action with other charged amino acids, counter-ions, added

salt, etc.), and pK0 is the dissociation constant of the model

compound. These values were taken from experiments per-

formed by Nozaki and Tanford (1967). Corrections to this

titration model were proposed later (Labbez and Jönsson

2007).

Other models in the same lines with improved features

were developed by Stoll and collaborators (Stoll 2014;

Carnal et al. 2015). An interesting characteristic of their CG

model is the inclusion of some internal degrees of freedom

of the protein allowing this computer model to explore the

pH effects on the macromolecular (flexible) chain. Doing so,

they could observe extended and folded conformations as a

function of the solution pH (Stoll 2014; Carnal et al. 2015).

The use of the phenomenological description for the

acid-base equilibrium by the second term [kBT ln 10(pH −

pK0)] introduces pH as a simple input parameter in the cal-

culation (covalent bonds cannot be broken in such models).

This second term in Eq. 22 accounts for the (electrostatic)

free energy change of the (de)protonation process for a

titratable group, not affected by the presence of any other

site nor by the interaction with any other mobile charged

(added salt and counter-ions). Only the differences in free

energy between the residue in the macromolecule chain

and the corresponding reference protonation state for which

the pKa was originally obtained are taken into account.

It is assumed that the electrostatic interactions are pre-

dominantly responsible for the shifts in ionization process.

Other interactions as solvation effects are assumed to be

the same in both microenvironments. This approximation,

common in all numerical schemes that invoke a phenomeno-

logical approach, results in a drawback for this class of

models. It is clear that the microenvironment of a ioniz-

able group free in an aqueous solution is quite different

from the situation where the same group is deeply buried

in a macromolecular interior (even if no other charges are

present!). This could already be seen when we discussed

the PB’s RMSD for buried amino acids above. As a mat-

ter of fact, a compilation of experimental pKas values of

the ionizable groups of proteins done by Pace and co-

authors (Thurlkill et al. 2006) demonstrated that the pKas

are quite sensitive to the microenvironment conditions (tem-

perature, ionic strength, and short peptide used to measure

the pKas of a given compounds). For example, the exper-

imental pK0 for the α-Carboxyl can vary from 3.0 to 4.3

depending on small variations of these conditions (Thurlkill
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et al. 2006). Nozaki & Tanford quoted 3.8 for this group

(Nozaki and Tanford 1967). Fortunately, most of the titrat-

able groups of biomolecules are close to the surface, and

this approximation is expected to have a minor effect on

the majority of interesting cases. Warshel and collaborators

(Warshel et al. 1984; Warshel and Åqvist 1991; Warshel

and Papazyan 1998; Schutz and Warshel 2001) proposed

an elaborative alternative to the deal with buried ionizable

groups by means of intermediate approaches such as the

dipole-lattice model (Warshel et al. 2006; Warshel 2014)

already mentioned above.

From an experimental point of view, for the interpreta-

tion of pK0, we can also argue in a similar manner based

on the colloidal literature. In truth, this discussion is simi-

lar to proton association/dissociation from/to a amphiphilic

molecule of a micelle. The classical works of Mukerjee and

Banerjee (1964) and Fernández and Fromherz (1977) sug-

gested a relative simple equation to measure ΔpK based

only on the electrostatic interactions and neglecting non-

electrostatic interactions. They also left for debate a fun-

damental problem: the correct measurement of pK0 (the

reference dissociation constant). For micelles, the problem

has sometimes been circumvented by assuming that pK0

would be equivalent to the pK value obtained in pure water.

However, there are studies that have indicated that this is

not always the case. Instead, experiments with nonionic

micelles are usually performed and believed to give better

estimates of pK0 which is unfortunately not available for

proteins and nucleic acids. Even for micelles, the choice of

the reference pK is still an unsolved problem (Barroso da

Silva et al. 2002).

An explicit mobile ion description as followed by this

CpH MC method offers the possibility to properly describe

ion–ion correlation and anisotropic–salt interactions in titra-

tion studies. Nevertheless, it resulted in poor acceptance

ratios when this titration model is applied to biomolecu-

lar interaction studies (e.g. protein–protein complexation).

Very often a hard-core overlap with these charged particles

happens when translating and/or rotating a macromolecule

in a MC trial displacement movement. Moreover, since

the CPU costs are roughly proportional to the square of

the number of interacting sites, high ionic strength con-

ditions resulted in prohibitive CPU costs. For the sake

of convenience, theoretical studies of the macromolecular

complexation have a tendency to be repeatedly carried out

at very dilute salt conditions (Barroso da Silva et al. 2006;

Jönsson et al. 2007; Barroso da Silva and Jönsson 2009). On

the top of that, highly attractive or repulsive systems are nat-

urally harder to sample due to their typical higher energetic

barriers (Barroso da Silva et al. 2006).

The fast proton titration scheme—FPTS Aimed to devel-

oped a faster proton titration protocol for macromolecular

systems with multi titrating objects each containing sev-

eral ionizable sites with an implicit salt description, the TK

model (Tanford and Kirkwood 1957; Barroso da Silva et al.

2001) was called out to inspire a new simplified titration

scheme where salt is treated at the DH level. Following

a coarse-grained (CG) description of the macromolecular

system (Noid 2013) in implicit solvent and a phenomeno-

logical physical chemical approach, the FPTS for proteins

was proposed (Teixeira et al. 2010) successfully reducing

the computation time and also efficiently boosting sam-

pling for applications in protein complexation studies (e.g.,

Teixeira et al. (2010), Persson et al. (2010), Kurut et al.

(2015), Delboni and Barroso da Silva (2016), and Barroso

da Silva et al. (2016)). This is clearly the main differ-

ential of this titration method that forward biomolecular

applications on the large-scale scenario for protein–protein,

protein–RNA/DNA, protein–polyelectrolyte and protein–

nanoparticle interactions. Quite recently, the model was

extended to nucleic acids (Barroso da Silva et al. 2017a).

Details of the new scheme are given in Refs. Teixeira

et al. (2010), Barroso da Silva et al. (2017a), and Barroso

da Silva and MacKernan (2017b) where the reader is refer

to. In short, the main difference between the two MC titra-

tion models (with explicit mobile ions and the FPTS) is the

replacement of Eq. 22 by

wT K =
e2

4πǫ0 ǫs

⎡

⎣

Np
∑

i>j

zizj

rij
−

Z2
pκc

2(1 + κcb)

⎤

⎦

+λ(pH − pKa)ln10 (23)

where Zp =
∑Np

i zi , λ equals either −1 (deprotonation)

or +1 (protonation), κc is the modified Debye parameter as

suggested by Beresford-Smith and co-workers, (Beresford-

Smith and Chan 1983) and b is assumed to be equal to

the radius of a sphere that inscribes the macromolecule

(Teixeira et al. 2010). The titration process as given by

this equation was obtained from basic physical chemical

arguments and is converted into a simple but efficient MC

protocol (Teixeira et al. 2010). See Ref. (Barroso da Silva

and MacKernan 2017b) for more details, and where its

approximations and possible limitations are also discussed.

Invoking a DH treatment for the salt implies that such

semi-empirical model assumed a mean-field approxima-

tion and neglected ion–ion correlation effects. However,

despite this similarity with the PB approach and contrary

to it, the FPTS is based on a MC process for protona-

tion/deprotonation and incorporates aspects neglected by

other methods (e.g., the chemical potential contribution

between the two possible titratable states—see Ref. Barroso

da Silva and MacKernan (2017b)). Such different aspects

gave new features to the FPTS, widening its potential scope

of application to include the modeling of systems with mul-

tiple ionizable in several experimental conditions (pH, salt,
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temperature, etc.) especially where charge fluctuations are

important, at very lower CPU costs.

Surprisingly, despite all approximations, predicted pKa

values obtained by the FPTS are in general at least within

the range of values given by different theoretical models

(Stanton and Houk 2008; Chen et al. 2013; Barroso da Silva

and MacKernan 2017b). A recent benchmark study demon-

strated that in fact even atomistic-level molecular dynamics

simulations at constant pH do not obtain better results

than FPTS for some protein systems. In general, they are

often poorer, and orders of magnitude more computationally

expensive. In comparison with experimental measurements

for proteins with a diversity of structural features, calcu-

lated pKa values by the FPTS have the average, maximum

absolute, and root-mean-square deviations of [0.4 − 0.9],

[1.0 − 5.2], and [0.5 − 1.2] pH units, respectively, (Bar-

roso da Silva and MacKernan 2017b). Recall that the overall

RMSD for PB predictions is ca. 0.8. (Wang et al. 2015).

For some protein systems, such as the binding domain of 2-

oxoglutarate dehydrogenase multi-enzyme complex (PDB

id 1W4H), the α-lactalbumin (PDB id 1F6S) and the turkey

ovomucoid third domain (PDB id 1OMU), the predicted

pKa are closer to experimental results than any other mod-

ern theoretical methods. Similar or even better outcomes

were observed for RNA systems at much lower computa-

tional costs (Barroso da Silva et al. 2017a). Predictions were

in the large majority of the studied protein and RNA cases

more accurate than the NULL model (Barroso da Silva et al.

2017a; Barroso da Silva and MacKernan 2017b).

Typical calculated titration plots by the FPTS for pro-

tein ionizable acid amino acids are shown in Fig. 6. Such

graphics measure the degree of protonation, and are equiva-

lent to the unprotonated fractions plots commonly reported

in the literature (Wallace and Shen 2009). The data are for

the turkey ovomucoid third domain (OMTKY3) at 10 mM.

All these residues ASP-7, ASP-27, GLU-10, GLU-19, and

GLU-43 behavior are well reproduced by the FPTS, as seen

in Table 2. In this table, experimental and computed pKa

values by the hybrid nonequilibrium molecular dynamics–

Monte Carlo (neMD−MC), (Chen and Roux 2015) PropKa,

(Olsson et al. 2011) the NULL model and FPTS are shown.

The smallest MAX (0.85), AAD (0.49), and RMSD (0.57)

are obtained by the FPTS. The best linear correlation (r)

between experimental and computed pKas are also given

by this method (r = 0.98). In terms of RMSD, FPTS is fol-

lowed by PropKa, which gives deviations at an intermediate

level (RMSD = 0.92) in comparison with other theoretical

schemes. These data confirm that FPTS is able to reproduce

experimental pKa shifts even better than more sophisti-

cated and expensive methods for some systems regardless of

the model approximations adopted to speed up calculations.

The higher RMSD is observed for the hybrid neMD−MC

method (RMSD = 0.97). This is also the only theoretical

method whose maximum absolute deviation is worse than

the NULL model. From this result, apparently, the numer-

ical convergence was probably not reached by the hybrid

neMD−MC method for this specific protein system. Longer

simulations might be necessary to properly sample the sys-

tem due to its characteristically slow convergence. This

indicates the extremely high CPU costs and infeasibility of

such detailed schemes to be applied on the investigation of

molecular complexation mechanisms.

For practical use, the general protonation trends are the

results that matter the most, that is if the model suggests

protonation for an amino acid that is actually found proto-

nated in a given structure, and vice versa. This is indicated in

the table by use of bold numbers for the cases where exper-

imental and theoretical data have pKa shifts in opposite

directions (e.g., pKa,exp − pK0 > 0 and pKa,theoretical −

pK0 < 0, or the contrary). Comparing the theoretical

methods, only one fault is noticed for FPTS and propKa

while two are observed for the hybrid neMD−MC. This

is useful to demonstrate that the FPTS is able to correctly

predict the protonation states with chemical and biological

significance.

Other protein systems were benchmarked before (Bar-

roso da Silva and MacKernan 2017b) revealing that there

is a slight tendency for the FPTS outcomes to be closer to

the experimental measurements. From a comparison with 81

available points, (Barroso da Silva and MacKernan 2017b)

the MAX, AAD, RMSD, and r are respectively, 3.4, 0.6,

0.9, and 0.68 for FPTS, and 4.9, 1.0, 1.4, and 0.51, for

PropKa. Outcomes for RNA systems obtained by the FPTS

are even slightly more accurate (Barroso da Silva et al.

2017a). Figure 7 shows calculated titration plots by the

FPTS for RNA nucleotides. Data are for the domain 5 from

Azotobacter vinelandii Intron 5 (Avd5) at 60 mM of salt.

This is a more elongated molecule that increases the pre-

dictive difficulties of the FPTS. Nevertheless, the previous

benchmark study confirmed that pKa values calculated by

FPTS give an AAA and MAX of 0.69 and 1.67 pH units

in comparison to the experimental results (Pechlaner et al.

2015), which are virtually the same given by other theo-

retical methods. Moreover, the fast convergence properties

of the FPTS is a real achievement that will make possi-

ble the studies of protein–RNA complexation mechanisms

in several different experimental conditions due to its low

CPU cost (without a significant loss of accuracy) (Barroso

da Silva et al. 2017a).

Convergence properties of the FPTS is another specially

positive feature of this titration scheme (Barroso da Silva

et al. 2017a; Barroso da Silva and MacKernan 2017b). A

typical production run for a single macromolecule at a given

solution pH and salt concentration converges within 105 MC

steps and takes ca. 10 s in a personal notebook (Intel i7-

3630QM and 2.40 GHz – running ubuntu 12.04): (a) 1 s
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Fig. 6 Computed titration plots of the acid amino acid residues ARG

(a), ASP (b), GLU (c), HIS (d), LYS (e), and TYR (f) of turkey ovo-

mucoid third domain at 10 mM salt concentration. The dashed gray

lines indicate the half of the protonated states, which is used to pre-

dict the theoretical pKa . Data are from the titration simulations with

the FPTS (Teixeira et al. 2010). The intrinsic pK0 values of the amino

acid model compounds are 4.0, 4.4, 6.3, 9.6, 10.4, and 12.0, respec-

tively, for ASP, GLU, HIS, TYR, LYS, and ARG (Nozaki and Tanford

1967). Simulation parameters are chosen as in Ref. Barroso da Silva

and MacKernan (2017b).

for the lead-dependent ribozyme (PDB id 1LDZ), (b) 3 s

for the thermostable actin binding 36-residue subdomain of

chicken villin headpiece (PDB id 1VII), (c) 4 s for both the

45-residue binding domain of 2-oxoglutarate dehydroge-

nase multi-enzyme complex (PDB id 1W4H) and OMTKY3

(PDB id 1OMU), (d) 9 s for lysozymes (PDB ids 2LZT and

1AKI), (e) 10 s for the 124-residue ribonuclease A (PDB

id 7RSA), (f) 12 s for the 122-residue α-lactalbumin (PDB

id 1F6S), and (g) 13 s for the 135-residue staphylococcal

nuclease (PDB ids 3D6C, 2RKS and 2SNM) (Barroso da

Silva et al. 2017a; Barroso da Silva and MacKernan 2017b).

For larger proteins, such as 6-phosphogluconate dehydroge-

nase (PDB id 2ZYG), the simulation time increases to 96

s. This performance is very fast when compared to other
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Table 2 Calculated and

experimental pKa values of

turkey ovomucoid third domain

Residue Experimenta hybrid neMD−MCb PropKa FPTS NULL

Arg21 12.47 13.71(7) 12.0

His52 6.23 6.34(4) 6.3

Lys13 10.50 11.79(10) 10.4

Lys29 10.86 12.12(9) 10.4

Lys34 11.01 11.62(11) 10.4

Lys55 10.75 11.46(8) 10.4

Tyr11 10.13 10.12(13) 9.6

Tyr20 10.04 9.38(5) 9.6

Tyr31 10.81 9.57(7) 9.6

Asp7 2.7 3.43 3.43 3.34(7) 4.0

Asp27 2.3 4.27 3.69 3.15(10) 4.0

Glu10 4.1 4.04 5.03 3.98(6) 4.4

Glu19 3.2 3.53 4.14 3.38(9) 4.4

Glu43 4.8 4.39 4.64 4.12(3) 4.4

MAX 1.97 1.35 0.85 1.7

AAD 0.70 0.83 0.49 0.98

RMSD 0.97 0.92 0.57 1.12

r 0.44 0.86 0.98 0.82

Salt concentration is 10 mM. Simulation details for FPTS and PropKa are given in Ref. Barroso da Silva

and MacKernan (2017b). The mean and standard deviations of the calculated FPTS pKa values for turkey

ovomucoid third domain were obtained from the results of all 50 NMR structures available in the PDB

coordinates (PDB id 1OMU) as done in Ref. Tang et al. (2007). Only amino acids with available experimental

data and predicted by the hybrid nonequilibrium molecular dynamics–Monte Carlo simulation method (Chen

and Roux 2015) were used to calculate MAX, AAD, and RMSDa Experimental data from Ref. Schaller and

Robertson (1995)b The theoretical data for the hybrid neMD−MCb was taken from Ref. Chen and Roux

(2015) based on the averaged result for seven simulations

theoretical methods. For instance, using a PB solver, Wang

and co-authors reported 9,185.2 s for the energy runtime in a

single AMD Opteron 2356 processor (8 cores and 2.3 GHz)

for the same system, (Wang et al. 2015) i.e., ca. 102 slower

than the FPTS calculation.

The macromolecular flexibility in the simplified schemes

To fully understand the function of biomolecules, it is nec-

essary to consider both their structure and dynamics and

their coupling with the protonation process. Macromolecu-

lar conformational changes are expected to happen due to
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Fig. 7 Computed titration plots of the nucleotides adenosines (left

panel) and cytosines (right panel) of the A. vinelandii domain 5 (AvD5)

structure (PDB id 2m57) in 60 mM NaCl. The dashed gray lines

indicate half of the protonated states, which is used to predict the

theoretical pKa . Data are from MC simulations with the FPTS. Simu-

lation parameters are chosen as in Ref. Barroso da Silva et al. (2017a).

The intrinsic pK0 values of the nucleotides model compounds are 3.5

and 4.2, respectively, for A and C (Thaplyal and Bevilacqua 2014)
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the protonation. In its turn, protonation is also affected by

the change in the surrounded microenvironment after con-

formational changes. This dynamicaly and strongly coupled

process is necessary for a complete understanding of the

biomolecular processes. Nevertheless, as discussed so far,

for computational reasons, it is often convenient to assume

a static macromolecular structure.

The discussion on how conformational flexibility of pro-

teins should be best accounted for started in the early days of

the PB studies (You and Bashford 1995; Antonsiewicz et al.

1996; Alexov and Gunner 1997). A common agreement was

that a single static conformation may be an inadequate rep-

resentation of the strong coupling conformation-titration.

Moreover, both the resolution and quality of the crystal

structures, the main source of input for these simulations,

could be questionable. Antosiewicz and co-authors pointed

out that the average conformation of the protein in the

crystal could be different from its solution behavior (You

and Bashford 1995). Improvements in the computed pKas

were noticed when the conformational flexibility was used

(You and Bashford 1995; Antonsiewicz et al. 1996; Alexov

and Gunner 1997). Ensembles with all available low-energy

NMR solution structures with equal weights have been used

to overcome this problem, when possible (Tang et al. 2007).

Alternatively, clustered structures obtained from classical

MD trajectories (with fixed charges) are also used to par-

tially explore the macromolecular conformational effects

in rigid models (Barroso da Silva et al. 2016, 2017a). The

standard protocol is to repeat the titration studies with the

ensemble of clustered conformations and average out the

results. These are all attempts to remedy the problem or

at maximum to access the possible magnitude of the con-

formational effects on the ionization process. Any of these

macromolecular ensembles only reflect the behavior of a

single pH solution.

Other common constant pH simulation methods

A parallel route has being taken by other research groups

after the introduction of MD simulations to simple liq-

uids (Alder and Wainwright 1959; Verlet 1967) and later

to biomolecules (Levitt and Lifson 1969; Karplus et al.

1977; Karplus and McCammon 1979; Berendsen et al.

1981). In Fig. 3, these theoretical methods that can explore

macromolecular conformations were presented as “flexible

models in explicit solvent”. They started with conventional

MD simulations where solution pH only entered the model

at the initial setup when the user makes a choice between

neutral or protonated amino acids (or nucleotides) to assign

atomistic partial charges for the titratable sites as a function

of pH. This approach is represented by the left picture at

Fig. 3, middle row. Any of the previously cited rigid titration

models presented above could be used to assign these

charges being the Poisson–Boltzmann (PB) solvers (Bash-

ford 1997; Baker et al. 2001; Anandakrishnan et al. 2012)

or the empirical methods (Li et al. 2005; Olsson et al. 2011;

Krieger et al. 2006) more frequently used for this purpose.

During the simulation run, these atomistic partial charges

are kept unchanged, ignoring the possible transformations

in their microenvironment (exposure of the titratable side

chains to water, interactions with other titratable groups or

any charged species, salt and free counter-ions in the solu-

tion) that can induce alterations in their protonation states,

and, reciprocally, could also cause the macromolecule chain

to adopt a different conformation.

Such strong protonation–conformation coupling started

to be better described only much later through the combina-

tion of classical MD simulations with protonation numerical

schemes (Baptista et al. 1997). This was the beginning of

a new era of CpH simulation methods still under intense

development for biological systems (Baptista et al. 1997;

Wallace and Shen 2012; Dashti et al. 2012; Goh et al. 2013a;

Chen et al. 2013, 2014; Chen and Roux 2015; Socher and

Stich 2016; Donnini et al. 2016). Several new simulation

schemes that allow pH-coupled MD have emerged follow-

ing either the Baptista’s hybrid MD/PB approach (Baptista

et al. 1997) or are rooted in the “λ”’s dynamics method

(Kong and Brooks 1996). Very often there are merely sub-

tle technical details to differ among the various available

methods found in the literature.

The Baptista hybrid MD/PB CpH scheme is for the titra-

tion part based on a continuum modeling of the solvent and

a mean-field description of the electrolyte solution given by

the linear PB equation. Periodically, instantaneous macro-

molecular coordinates generated by the MD run (in an

explicit solvent model) are passed to a PB solver (MEAD

(Bashford 1988)) that will update the protonation states

(in an implicit solvent model) and return the new partial

atomistic charges to the MD engine. These new charged

states should somehow access the changes in the local

microenvironment. Although this periodic switch on/off

in the protonation states may introduce discontinuities in

forces, this pH-coupled MD scheme is by far the faster strat-

egy. Later developments improved more the initial ideas

(Baptista et al. 2002; Machuqueiro and Baptista 2007).

The latest version of the method is implemented in the

GROMACS simulation package (Machuqueiro and Bap-

tista 2007). Benchmarking pKas for lysozyme (PDB id

4LZT) resulted in good values for RMSDs [0.70 (for the

GROMOS 43A1 force field) and 0.79 (for the GROMOS

53A6 force field)]. These calculations could also demon-

strate the dependence of the force fields on the computed

pKas. As observed in many other calculations (Barroso da

Silva and MacKernan 2017b), the proton donor amino acid

Glu-35 in the catalytic site of lysozyme is a case that is



718 Biophys Rev (2017) 9:699–728

very difficult to be properly described (Machuqueiro and

Baptista 2011). The results obtained for their studies in a

diversity of biomolecular systems reveal the vast possibil-

ities of the method. Examples include investigation on the

pH-dependent conformational states of the analgesic dipep-

tide kyotorphin (L-Tyr-L-Arg) (Machuqueiro and Baptista

2007), the possibility of a trigged pH action on the mis-

folding of the prion protein into a pathogenic β-rich form

(Campos et al. 2010), the pH effects on the reversibility of

prion misfolding (Vila-Viçosa et al. 2012), a pH titration of

all constituent lipids of a 25% DMPA/DMPC bilayer mem-

brane model (Santos et al. 2015), and the tight coupling

between protonation and conformation for cytochrome c

oxidase (Oliveira et al. 2016).

In 2004, Mongan, Case, and McCammon proposed a

CpH MD in Generalized Born (GB) implicit solvent (Mon-

gan et al. 2004). This is one method that was implemented

with AMBER 9 (Case et al. 2006) and contributes to pop-

ularize the use of CpH methods among simulation users.

Their pKa predictions for lysozyme structures (PDB ids

1AKI, 1LSA, 3LZT, and 4LYT) resulted in a small RMSD

of 0.82 (average for all the four structures) relative to exper-

imental values. These different structures were chosen for

maximum diversity of crystal characteristics to access the

effect of the protein conformation on the calculated pKas.

The outcomes (RMSDs equals to 0.86, 0.77, 0.88, and 0.95,

respectively, for PDB ids 1AKI, 1LSA, 3LZT, and 4LYT)

confirm the dependence on the conformation and the need

of a dynamics-based method (Mongan et al. 2004). Latest

uses for the method comprehend the investigation of the

conformational characteristics of the molten globule state

of human α-lactalbumin (Bhattacharjee et al. 2013) and

the study of HIV protease flaps dynamics in different pHs

(Soares et al. 2016).

The “λ”’s dynamics started with the work developed by

Brooks and co-authors (Kong and Brooks 1996; Lee et al.

2004). The idea is that the dynamics of an artificial titra-

tion coordinate “λ” should be given by forces between

the protonated and deprotonated states. Various versions of

this method are available including a tautomeric state titra-

tion model (tstm) that allows simultaneous titration at two

competing titratable sites (Khandogin and Brooks 2005).

The price to pay in this class of methods is the slow con-

vergence. Attempts to deal with the high computational

costs started with the replacement of the PB description

by closely related analytical theories such as the general-

ized Born theory Lee et al. (2004). Nevertheless, the use

of implicit solvent models did not help too much to over-

come this difficulty. It takes ca. 500 ps to achieve pKa

convergence (Chen et al. 2014). Characteristics AADs are

found around 0.6–1.0 pKa units. For instance, computed

pKa for OMTKY3 and ribonuclease A – RNaseA (PDB

id 7RSA) yielded AADs equal to 1.0 and 0.6, respectively

(Khandogin and Brooks 2005). These numbers are not as

good as the ones obtained by much simpler and faster

models as the ones using static protein structures. PB

data for the same systems and experimental conditions

reported AADs of 0.6 (Forsyth et al. 1998) and 0.8, (Anton-

siewicz et al. 1996) respectively, for OMTKY3 and RNaseA

(ǫp = 20). PropKa gives better predictions for OMTKY3

(AADOMT KY3 = 0.83) (Barroso da Silva and MacKernan

2017b). Conversely, the best results for these two protein

systems were obtained by the FPTS (AADOMT KY3 = 0.57

and AADRNaseA = 0.4) (Barroso da Silva and MacKernan

2017b). Moreover, the tstm result is almost identical (and

slightly inferior) to the value obtained by the NULL model

(AADOMT KY3 = 0.98 (Barroso da Silva and MacKernan

2017b)) that has virtually no CPU costs.

With the increase of computer power, it became doable

to replace the implicit solvent model by full atomistic rep-

resentations (Wallace and Shen 2012; Dashti et al. 2012;

Chen et al. 2013, 2014; Goh et al. 2013a, b; Lee et al.

2015, 2016; Donnini et al. 2016). Brooks’s lab was the first

to extend the CpH MD to nucleic acids in explicit TIP3P

water molecules (Goh et al. 2013a, b). From this point on,

the hydrophobic effects and the dielectric response of the

medium could in principle be better described by explicit

water models. Another advantage was a more detailed

understanding of proton translocation between the macro-

molecular titratable sites and the solvent. Processes such as

the solvent-mediated proton transfer in close compartments

could be fully described. Works carried out by Wallace

and Shen (2011) and Swails et al. (2014) demonstrated

that the RMSD can decrease, respectively, from 0.93 to

0.84 and 1.32 to 0.92 when replacing the implicit sol-

vent by an explicit description. The study was done with

hen egg white lysozyme (PDB ids were 2LZT and 3LZT,

respectively). However, although this new class of mod-

els incorporated more realism, the outcomes do not show

real significant progress. With more details in the model,

the sampling difficulties increased. Much more computa-

tionally expensive simulations are necessary for conver-

gence (10 ns as reported by Shen and collaborators, (Chen

et al. 2013) or 40 ns for a simple dipeptide as quanti-

fied by Chen and Roux (2015)). Outcomes are not worse

because the computers are faster and new advanced sam-

pling techniques are employed. The combination of limited

conformational and titration sampling may be why more

empirical methods such as PROPKA (at negligible CPU

time) or simplified rigid models such as FPTS (orders

of magnitude faster) seem to obtain similar outcomes

for pKa predictions. This slow convergence might also

indicate an insufficient modeling of the charge fluctua-

tions, which would affect the proper description of all

molecular mechanisms responsible for the macromolecular

complexation.
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Other research groups are working in this class of meth-

ods. For example, Grubmüller and collaborators have one

version in explicit solvent implemented in GROMACS

(Donnini et al. 2011). In a further study, a three-states

model was suggested for an accurate description of chem-

ically coupled titrating sites (Dobrev et al. 2017). These

authors also introduced a kind of “hydronium ion” at the sol-

vent. However, the accuracy of the method was tested only

against titration curves of single amino acids and a dipep-

tide. A benchmark study with sets of proteins and nucleic

acids remains to be done. Moreover, since the hydronium

ion is created by introducing an extra charge on the conven-

tional SPC water model (a water model whose parametriza-

tion is known to be quite sensitive to the assigned partial

charge), solvent properties might become less reliable. The

complexity of the recombination of hydronium and hydrox-

ide ions in water can be seen in Ref. Hassanali et al.

(2011).

A recent step to improve further the physical realism

was the introduction of a titratable water model in the pH-

coupled MD by Shen and collaborators (Chen et al. 2013).

This type of model was applied to predict the proton titra-

tion in cationic micelle and bilayer environments (Eike et al.

2014). It is not clear how this approach affects the solvent

structure and dynamics. Any artifact can also have an effect,

perhaps in the wrong direction, on the macromolecular con-

formation, the diffusion of mobile charged species (added

salt and counter-ions), and all their interplay. In terms of its

predictions, results are similar to the ones obtained by other

theoretical methods at much higher CPU costs.

Being an area of intense research activity, many laborato-

ries have also contributed to the development of other coex-

isting methods. The differences between the ones already

presented are often seen in small technical details. For the

sake of completeness, we should cite the work with coarse-

grained models done by Delle Site (for peptides) (Enciso

et al. 2013), the Donnini’s version (Donnini et al. 2016) of

the “λ”’s dynamics for the MARTINI force field applied

to study oleic acid aggregates (Bennett et al. 2013), and

the initiatives with the empirical “λ” dynamics method

of Börjesson & Hünenberger (for amines) (Börjesson and

Hünenberger 2001; Baptista 2002), and the classical MD

method coupled with quantum mechanically derived pro-

ton hopping (Q-HOP) method of Lill & Helms (applied

on small molecules and protein) (Lill and Helms 2001; De

Groot et al. 2003; Gu et al. 2007).

Comparison between the different theoretical
methods

These different classical CpH techniques mostly differ in the

way the macromolecule (atomistic level versus all possible

coarse-grained descriptions), solvent (explicit or continuum

solvent model) and salt particles (explicit or DH treatments)

are modeled together with the method used to include and

modify the protonation states. The choice of the ideal CpH

method depends on the characteristics of the studied system

together with the usual compromise between (a) the prop-

erty or quantity of interest, (b) the required accuracy, (c)

the number of systems and/or different experimental condi-

tions to be simultaneously investigated, and (d) the available

computing power (van Gunsteren and Berendsen 1990). As

observed for a few examples given above, the inclusion of

more details in the computer model does not guarantee bet-

ter predictions and the CPU time can be prohibitive. In

reality, a detailed model can result in poor predictions due

to their slow convergence and poor sampling. In Table 3, we

compared the main classes of theoretical methods available

today. This might offer to the reader some updated practi-

cal guide to choose among the options based on the present

discussions. An old and less detailed comparison was pub-

lished before (Chen et al. 2014). Note that a special chapter

for pKa calculations is related with membrane proteins (not

covered in this review).

In general, predictions by different techniques are rel-

atively similar to the others as already pointed out by an

early benchmark study with a large set of biomolecules

(Stanton and Houk 2008). Xiao & Yu showed that even

QM/MM methods can have comparable results with PropKa

and PB solvers (Xiao and Yu 2016). There are some gen-

eral trends that can be noticed. For pKa predictions in the

absence of any additional external potential (i.e., for only

a single protein in an electrolyte solution), PropKa is the

faster method. Results are in general even more precise than

popular PB solvers (Davies et al. 2006). With the present

computer power, CpH MD methods with λ dynamics seem

suitable only for small molecules. This picture might be

different in the near future due to the intense efforts to

solve the sampling issues (Williams et al. 2010; Chen and

Roux 2015; Radak and Roux 2016; Socher and Stich 2016;

Donnini et al. 2016; Chen et al. 2016). Macromolecules

with several titratable groups might be better simulated

today with schemes like Baptista’s approach (Baptista et al.

1997, 2002). This class provides slightly faster sampling

and could better access the protonation–conformation cou-

pling. Buried titratable groups might require an explicit

solvent and hybrid approaches. The Stern’s hybrid method

that was applied as a proof of concept to an acetic acid in

aqueous solution with an explicit representation of water

molecules shows this trend (Stern 2007). For complexation

studies where more than one macromolecule is present, all

these more sophisticated techniques will suffer from the

slow convergence (Chen et al. 2016). The interplay of so

many titratable sites of several ionizable objects will slow

down even more the already difficult sampling. The best
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Table 3 Comparison between

the different classes of

theoretical methods

METHOD CLASS CPU COSTS PROS CONS

Empiricala very low • fast • it does not provide charge

• easy to use fluctuations

• good accuracy • it cannot respond to

external electrical fields

• protein is treated as a

rigid body

Poisson-Boltzmannb low to medium • simple to use • it does not provide charge

• accuracy can be tuned fluctuations

by means of the use of • protein is treated as a

nonuniform dielectrics rigid body

• ion-ion correlations are neglected

• high memory consuming

Monte Carlo schemesc very low • fast (for the FPTS) • protein is treated as

(for the FPTS) • good accuracy a rigid body

medium • ion-ion correlations • it does not provide dynamical

(in general) are taken into account properties

(for the explicit ions version) • not suitable for buried

• very suitable for protein titratable groups

complexation applications

Molecular dynamics medium to high • protonation-conformation • possible simulation time

coupled with coupling is included might be not enough to fully

titrationd describe this coupling

• the switch on/off in the

protonation state my result in

in conformational and energetic

instabilities

Molecular dynamics high • protonation-conformation • slow convergence is an issue

with λ dynamics coupling is included • still prohibitive for protein

and other methodse • possibility to include complexation applications

titratable water models • needs advanced sampling

techniques

Ab initio MDf very high • it does not need • very slow convergence

parametrization of the • only suitable for amino acids

intermolecular and and few water molecules (< 100)

intramolecular potentials • requires large computational

• the protonation-conformation resources and advanced sampling

coupling is naturally included techniques

aSee Li et al. (2005), Krieger et al. (2006), Burger and Ayers (2011), and Olsson et al. (2011)
bSee Bashford (1997), Baker et al. (2001), Anandakrishnan et al. (2012), Wang et al. (2015), and Sakalli and

Knapp (2015)
cSee Svensson et al. (1990), Kesvatera et al. (1996, 1999, 2001), Teixeira et al. (2010), Carnal et al. (2015),

Barroso da Silva et al. (2017a), and Barroso da Silva and MacKernan (2017b)
dSee Baptista et al. (1997, 2002), Baptista and Soares (2001), Machuqueiro and Baptista (2007), and Santos

et al. (2015)
eSee Lee et al. (2004), Wallace and Shen (2009), Dashti et al. (2012), Goh et al. (2013a), Chen et al. (2013,

2014, 2016), Chen and Roux (2015), Socher and Stich (2016), and Donnini et al. (2016)
fSee Tummanapelli and Vasudevan (2015), Kamerlin et al. (2009), and Li et al. (2002)
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alternative in this case is the MC titration schemes, par-

ticularly the FPTS. From this mesoscopic scheme, other

intermediate models can also be derived in order to improve

accuracy for specific tasks at higher CPU expenses.

Simplified models applications in biomolecular
systems

Protein association introduces a next level of difficulty

for constant-pH simulation methods due to the increase in

the number of interacting titratable objects, the coupling

between them, and the multi-macromolecular conforma-

tional changes. The driving force for macromolecular com-

plexation is often charge–charge interactions, charge–dipole

interactions, dipole–dipole interactions, and van der Waals

interactions. Changes in the hydration may also play an

important role. Less emphasized is the importance of meso-

scopic electrostatic attraction forces resulting from proton

fluctuations (Kirkwood and Shumaker 1952). This attrac-

tion is a result of the mutual rearrangements of the distribu-

tions of the charged groups due to the acid-base equilibrium

as analytically predicted by the KS theory (Kirkwood and

Shumaker 1952; Lund and Jönsson 2013; Barroso da Silva

2013). Such phenomena can only be properly described in

a constant-pH simulation that has converged. This starts

to place more constraints for the model choice for macro-

molecular complexation studies. On top of that, the need to

explore a vast number of possible orientations and separa-

tion distances between the pairs of molecules to estimate the

interaction free energy requires simplified models. Often, it

is also necessary to repeat the calculations on a great num-

ber of different experimental conditions (e.g., different pHs,

ionic strengths, macromolecular concentration, mutations,

etc.).

This scenario is far from complicate for CpH MD

approaches in explicit solvent. These methods can still not

reach the desired scales to probe complexation mechanisms

at so many conditions in computer simulations. The CpH

MC schemes in implicit solvents discussed above meet

well all these requirements. They have been intensively and

successfully applied in several biomolecular systems: (a)

protein–protein interactions (Lund and Jönsson 2003, 2005;

Jönsson et al. 2007; Persson et al. 2010; Kurut et al. 2012,

2015; Delboni and Barroso da Silva 2016; Barroso da Silva

et al. 2016), (b) protein–polyelectrolyte interactions (Bar-

roso da Silva et al. 2006; Jönsson et al. 2007; Barroso da

Silva and Jönsson 2009; Barroso da Silva 2013; Srivastava

et al. 2017), (c) protein–peptide interactions (André et al.

2004; Jönsson et al. 2007), (d) protein–surface interactions

(Nylander et al. 2017; Hyltegren and Skepö 2017), and (e)

protein–nanoparticle interactions (Barroso da Silva et al.

2014; Carnal et al. 2015). There is also ongoing work on

protein–RNA interactions at our laboratory together with

Profs. Pasquali and Derreumaux as an application of the new

RNA titration scheme (Barroso da Silva et al. 2017a, c).

Based on these studies, different driven forces were iden-

tified for biomolecular systems. For instance, Coulomb

charge–charge interactions dominate the association of the

whey proteins α-LA–β-LG, α-LA–LF and β-LG–LF (Del-

boni and Barroso da Silva 2016). Another example is the

self-association of LF, which is also driven by a high charge

complementarity across the contact surface of the proteins

(Persson et al. 2010). Conversely, in a process trigged by

pH, multipolar interactions drive the self-association of

spidroins (Barroso da Silva et al. 2016).

Simplified CG models were used as well to demon-

strate the significance of the charge regulation mechanism

on complexation mechanisms (Barroso da Silva et al. 2006,

2017c; Jönsson et al. 2007; Barroso da Silva and Jönsson

2009; Lund and Jönsson 2013; Barroso da Silva 2013). An

important lesson learned from these sets of biomolecular

applications is that the simply use of fixed charges assigned

at the beginning of the simulations as a function of pH does

not let the complete description of all electrostatic mech-

anisms. The analysis of different criteria to assign partial

charges for LYZ in a protein–polyelectrolyte complexation

study without doubts indicates that charge fluctuations due

to the acid-base equilibrium are a must to fully explore

all physical mechanisms (Barroso da Silva et al. 2006).

This can only be done by means of well-converged CpH

simulations. Such an observation for LYZ might indicate

a promising way to shed light on the understanding of

the apparent paradox involved in the LYZ self-association

(Shukla et al. 2008).

Conclusions

The development of constant-pH simulation methods is

a formidable scientific problem, a quite hectic and key

challenging research field. Different theoretical models

are already available and routinely used to study the

biomolecular phenomena. There is yet no perfect model for

all desired applications. Good models are strongly depen-

dent on the studied system, desired accuracy, number of

different experimental conditions to be studied and com-

pared, and accessible computational resources. The lack of

use of a CpH technique can lead to an uncompleted physical

description.

Toward accurate prediction of the protonation equilib-

rium of biomolecules, two directions are currently being

largely explored. In the first one, efforts are dedicated to

improve the accuracy of computed pKas by means of

both more detailed models coupling ionization and confor-

mational changes and developing new enhanced sampling
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techniques. In the other direction, assuming that the most

important model feature is to let the biological process

be rationalized (i.e., the proper prediction of the protona-

tion state under a given set of experimental conditions),

fast coarse-grained models that can well describe the pH

effects on the large-scale scenario for systems with several

macromolecules are a real need.

A new class of simplified Monte Carlo schemes has

emerged during the last years. Surprisingly, the outcomes

were equivalent or even better than more sophisticated

methods that are more computationally costly. Such promis-

ing results indicate that schemes like the FPTS can con-

tribute in both directions. On one side, the FPTS can be

refined to improve pKa predictions. On another side, the

FPTS is robust enough to be applied on the multi-titrating

objects, each containing several ionizable sites. Ongoing

studies at our laboratory associated with other collabora-

tors indicate that the FPTS can be both refined and coupled

with MD engines making such scheme a powerful tool for

studying molecular mechanisms that govern a wide variety

of important biological processes.

Acknowledgements This work was supported in part by the
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Degrève L, Barroso da Silva FL (1999a) Large ionic clusters in

concentrated aqueous NaCl solution. J Chem Phys 111:5150–5156

Degrève L, Barroso da Silva FL (1999b) Structure of concentrated

aqueous NaCl solution: a Monte Carlo study. J Chem Phys

110(6):3070–3078
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