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INTRODUCTION 

The esta3lishment of existence of a minimizing solut ion i n  the calculus of 

var ia t ions  has been recognized as a challenging problem. For m a n y  problems 

which satis@ reasonable hypotheses, a minimizing so lu t ion  can be shown not 

t o  ex i s t .  I n  addition, f o r  some problems which have a minimizing solut ion,  

a sequence of approximations t h a t  approaches the  minimum solut ion pointwise 

need not have a l i m i t  which is  minimizing. 

I n  1937, these considerations resulted i n  the idea presented by L. C. Young 

(Reference 1) f o r  modifying the  problem t o  obtain a solut ion i n  a la rger  

c l a s s  of functions ca l led  generalized curves. This idea was extended by 

McShane (References 2, 3 and 41, who obtained an existence theorem f o r  the  

problem of Bolza, and arr ived at the  conditions necessary fo r  a generalized 

curve t o  be minimizing. 

r e s u l t s  on necessary and su f f i c i en t  conditions i n t o  controls language. This 

study included the Hamiltonian formulation which later became known as the  

maximum principle .  

I n  1949, Hestenes (Reference 5 )  t rans la ted  known 

Existence fo r  the l i n e a r  time-optimal control  problem with constant coeffi-  

c ien ts  w a s  t r e a t e d  by Bellman, Glicksberg, and Gross (Reference 6 ) ;  t he  case 

of time-varying coef f ic ien ts  was treated by La S a l l e  (References 7 and 81, 

Gamkrelidze (Reference 9) , and Meustadt (Reference 10). 

treated the  l i n e a r  case fo r  control  functions of minimum norm. Lee and 

Reid (Reference 11) 
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Marcus (Reference 12) and Roxin (Reference 13) obtained existence theorems 

f o r  the  non-linear time-optimal problem under r e s t r i c t i v e  hypotheses. 

I n  Russia, Filippov (Reference 14) treated the  existence problem somewhat 

d i f f e ren t ly  and observed t h a t ,  f o r  a spec ia l  case i n  which a minimum does 

not e x i s t ,  a minimizing sequence does e x i s t ,  although the  l i m i t  i s  not a 

solution. Filippov ca l led  such limits s l id ing  states. Gamkrelidze (Reference 

15), following Filippov, obtained an existence theorem and some necessary 

conditions f o r  s l id ing  states. 

181, by a construction qui te  l i k e  tha t  of Filippov, obtained s i m i l a r  thedrems 

f o r  what he ca l led  a relaxed problem. 

h i s  relaxed solut ions are generalized curves. 

Independently, Warga (References 16, 17 and 

He showed that  under cer ta in  hypotheses 

Most of t he  above papers on the  subject  of existence are non-constructive and 

use such too l s  as f ixed point  theorems and compactness of point sets. Such 

r e s u l t s  are in t e re s t ing  and important, but frequently the  hypotheses of a 

given theorem are d i f f i c u l t  t o  ver i fy .  

The purpose of t h i s  research was t o  inves t iga te  constructive type existence 

theorems f o r  optimal control  problems w i t h  the expectation t h a t  the  results 

obtained would shed l i g h t  on some of the  inherent d i f f i c u l t i e s  encountered 

i n  computation. 

tary control  problem; however, conditions on the  problem which assure 

A constructive existence theorem was  obtained f o r  an elemen- 
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t h a t  the underlying hypothesis is s a t i s f i e d  are not readi ly  obtainable. 

r e l a t ed  r e su l t s  were obtained which are of in t e re s t  i n  t h e i r  own r ight .  

are the approximation theorems contained i n  Section 1 and a computational 

algorithm contained i n  Section 3. 

Two 

These 

I n  Section 1, several  r e su l t s  of a topological nature are presented which 

relate t o  approximations of functions. These r e su l t s  are u t i l i z e d  i n  

Section 2 and Section 3 t o  study sequences of functions fo r  solving approxi- 

mate problems, An algorithm is  developed i n  Section 3 which is expected t o  

be useful i n  speeding up the convergence of gradient computational methods. 

The algorithm depends upon replacing t h e  or ig ina l  problem by a new problem 

which is  easier t o  solve. 
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1. SOME APPROXIMATION AND DENSITY THEOREMS* 

The following sequence of lemmas and theorems are useful  i n  the development of 

Section 2 as w e l l  as being of i n t e r e s t  i n  t he i r  own r igh t .  

Lemmaa,l. If €1 is  a loca l ly  convex separablespace,  let  D be an open - --31-11-.11----- I_ I_ 

connected subset of H and (a } a seguence of po in ts  i n  D -- that  is - i -- --"---I - 
dense i n  D. Then there e x i s t s  anopen  subset U c D such t h a t  

__.-- - -___. 

ii) U is  homeomorphic t o  H 

iii) D - U is  nowhere dense i n  D. 

k 
If u a We enclose al i n  a small b a l l  i n  D. has  been enclosed i n  a set Ck 

i k  
homeomorphic t o  the unit bal l  i n  H so  t h a t  U a C I n t  Ck, let  Pk+l be a 

1 i  

polygonal path from 

i n t e r i o r  k+l 

so t h a t  Ck+l - C is homeomorphic t o  t h e  closed region between two concentric 

spheres. There is then a homeoxnorphism between H and U = Ck. So t h e  lemma 

follows * 

t o  a symmetric b a l l  i n  Ck. We enclose Ck i n  the 

of a l a rge r  copy C of the uni t  b a l l  by "swelling" Pk+l and Ck 
--11 

OD 
k 

From now on H denotes a Hilbert space. 

--__I. 

This s e c t i o n G s  co-authored by P. H. Doyle, Mathematics Department, Michigan 

State University and w i l l  appear under t h e  same t i t l e  i n  "Proceedings of the 

In%ernational Symposium on Topology and Its Applications ." 
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nt i s  J u s t  t h a t  of (Reference 19) pp. 44-46 except that in placing 

A md 13 s i m L l w l y  the t ion 2 above i e  forced i n  the induction. 

1. h(A) = I3 

2.  

3. p(x,h(x)) < E. 

hfEn - U = I 

Le5 h, : U -+ li be the borne ism given by h , ( x )  = ibe h, is t h e  

n 2)  s a t i s f i e d  

t i t y  otherwise . 
omorplilsmof‘ Lama 1.2,carr;vSng hi ( A )  

x - hlx) * x - - 1 -  
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where 6 is  a vector depending on x w i t h  the property that IS 1 < ~ / 3 .  From X X 

t h i s  equation we have t h a t  

- 
Here a) establ ishes  the continuity of h on U - U, and b )  shows condition 2 

is satisfied. 

Corollary. __. L e t  I? be a topological - --_11_.---. n-manifold (Reference 191, U C  # 

an open set  while A & B are countable dense subsets of U. Then there  ex i s t s  a 

homeomorphism h I of M" _c onto M" such t h a t  h(R) = B, h{# - U is  the  

=, p(x,h(x))  < E for E: > 0. 

If U, is a component of U, then by construction in Reference 19 , U, = En U R where 

En i s  topologically En, R is  a closed subset of U, of dimension a t  most n-1 

and (A u B) ll U, c En. 

i s  t r u e  f o r  n = 1. 

of closed, f l a t  n-cells u Bi such t h a t  Bi+l -B. is  the product of a sphere and 
1 1 

an i n t e rva l  while f o r  each i ,  the  boundary of B 

I n  case n = 1, R = (b and E" = E' = U , ,  so t h a t  theorem 

For n > I, we note t h a t  En i s  a s t r i c t l y  increasing union 
a0 

Bd Bi fI ( A  u B) = (b. i, 

--- 
Each closed annular region Bi+l - Bi can be s p l i t  i n t o  two closed n-cells so 

t h a t  nei ther  meets A U B on i t s  boundary and each n-cell meets the other only 

on i ts  boundary. By the  preceeding lemma, there  ex i s t s  a homeomorphism of 
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- 
Ai+l - Bi+l 

A * Ai+l i 

a homeomorphism of U, onto U, t h a t  can be extended t o  one on Mn by the  iden- 

- Bi onto itself t h a t  is the  ident i ty  on i t s  boundary, carries 

onto B ll Ai+l and moves no point more than E say. Thus there ex i s t s  

t i t y  map. Hence the h of t h e  above corollary ex is t s .  

Theorem 1.4. 

A g~g I3 are dense countable sets i n  U gn-tLe-re ex i s t s  a homes- 

morphism h of H 9- H such tha t  f o r  E > 0, 

If U iss-_o_zn-subset -oL-aAix&-gace  H while 

i i )  h ( A )  = B 

iii) hlH - U = I. 

If U, is a component of U then byLenma l . l , U l  fl ( A  U B) l i es  i n  an open copy 

of Hilbert space i n  U, and the  argument proceeds as i n  the preceeding Corollary. 

Theorem 1.2. Le;t f ka - . con t inu .us  function from a Hilbert space 

H, i n t o  another H, while A =  H, is  a dense set i n  H, . -- Thengiven 

any open set  U in H, 
f ,  t o  f such that  - 

t h a t  contains f-' ( 0 )  , -- there is  an &-approximati= 

i) f;'(o) n A  is dense i n  f;'(o) 

ii) f , l H ,  - U = f l H ,  - U. 
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I n  contrast  t o  Theorem 1.2, we prove an approximation theorem f o r  a ra ther  

general domain. 1/2 E' is t he  closed half-l ine.  

Theorem 1.3. 

dense subset. 

L e t  X be a perfect ly  m a l  space and D c  X is a -- - 
If f : X -+ 1 /2  E' is  a map there e x i s t s  a map - I- 

If f- '(o) fl  D = f-'(o) there  is nothing t o  prove. 

f-'([o,$]) ~ f - ' ( o ) .  

car r ied  by f i n t o  [o,~]. 

C t o  Eo,:] such t h a t  f i l (o )  = K and f ,  (2)= f ($, define g : x - 112 E' by 

Otherwise, consider 

E L e t  K = f - ' ( [o , t ] ) .  The closed set C = f - ' ( [o ,z l )  is 
E But by (Reference 21, p.1481, there  is a map f ,  of 

- 1  -1  E 

g I P-'[o,$] = f, 

g ] f rz,"I = f. 
- 1  E 
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m 
L e t  I be a lower semi-continuous ( l sc )  function from L, [a ,b] ,  t he  set of 

m-dimensional square integrable functions on the in t e rva l  [a ,b]  t o  t h e  real 

l i n e ,  and l e t  K be a compact subset of Em. 

subset of Lf [a ,b]  with the  property t h a t  fo r  u i n  21, u ( t )  is i n  K for t i n  

[a,b], 

symbolically 

Let be a closed and bounded 

We w i l l  fu r ther  assume tha t  ?l. is equal t o  the closure of i ts  in t e r io r  

W e  consider t h e  problem 

min I (U)  

(2) U€U 

L e t  S be the set of s tep  functions i n  'It with discont inui t ies  at k(b-a)/2", n 
k = l ,  * * *  ,2"-1. Then S =3 S for k>g and S=uS i s  dense i n  u as a consequence 

k j  n 

of (1). We can replace (1) by the condition tha t  S is dense i n  '& The 

approximate problem 

(3)  
min I(U) 
U€Sn 

has a solut ion un f o r  each n since on S 

number of variables and K is  compact. Clearly 

I is  a lsc function of a f i n i t e  n' 

9 



i 
Again, because i s  bounded the sequence I ( u  has a l i m i t .  The function n 

u , ( t )  = inf un(t> 

belongs t o  u and has the  property tha t  

I(u,)  5 inf  I (u )  
U€S 

Hence u,, is a solut ion of (2)  and w e  have shown 

Lemma 2.1. There e x i s t s 5 f u n c t i o n  uo & 'h --- s a t i s q a  

~ ( u , )  = min I (u )  

U€U 

The sequence u determined by ( 3 )  =Loximates uo i n  the  sense t h a t  -----.e- n- - 

l i m  I(u,) = I (u , )  . 
In  the  proof of Lemma 2 .1  we have used the fac t  that has a dense subset S. 

To extend t h i s  r e su l t  

not in te rsec t  S. We consider the problem 

l e t  v be a closed and bounded subset of ?.L which need 

(4  min I ( U )  . 
U€tf 

We w i l l  fu r ther  assume that  I has the property tha t  i f  u and v are sequences 

i n  ?L fo r  which 

n n 

(5 a) 

* 
inf applying t o  each comnonent. 
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Let \ be a nested sequence ai' c losed and bounded sets ,  which satisfy (1) and 

such t h a t  

Each of the problems 

( 6 )  min z ( u )  

has R solution wk by Lemma 2 a 1 and 

Hence the sequence I(wk) has a l i m i t .  

determined by 

For each k l e t  vk be a function i n  Y 

11 



Then s ince Uk + v, 

hence by ( 5  

L e t  

Then c lear ly  

Further,  vu 

vo(t)  = i n f  v k ( t )  

vOcv and 

l i m  l(wk) = ~ ( v , )  . 

s a solut ion of (4) since i f  there  was a v&?fsuc,, t h a t  

I(?) c I(v,) 

then f o r  k su f f i c i en t ly  large 

Since '& => If, t h i s  would contradict  t he  f a c t  t h a t  wk is  a solut ion of ( 6 ) .  

Hence we have proved 
n 

---- Lemma 2.2. -I_- There exis ts  a function -.- vo inysstisfying 

~(v,) = xdin I ( V )  . 
V E V  

12 



The sequence w determined by (6)--9~roximates -._.-I. vo i n  the---that -- k 

l i m  l(wk) = I ( V ~ )  . 

We can now apply these results t o  the linear isoperimetric optimal control 

problem. Let 

( 7 )  

b 

Ja = I f a ( t , u ( t ) ) d t  azo, 1, * * * ,  p. 

a 

We consider t h e  problem of 

subdect to  

Ja(u) = 0 

J,(u) 5 0 

a = 1, e * * ,  p' 

a = p' + 1, e * * ,  p,  

where the function8 u ( t )  are i n  a subset Y of Lf [a,b] with values i n  a 

compact set  K. Let 

Clearly w is  a closed subset of the closed and bounded set yI 
w eatirf'ies (l), 

becones 

Suppose that 

Then we can take u - and the  approximation problem (4) 
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f ( t ,u d t  
"S* i=o 

subject  t o  

f a ( t , u )d t  0 a = p' + 1, * * * ¶  P 
i-0 

where 

i (b-a)  
2n a = a +  i 

i+l , i = 0, a * * ,  2"-1 . bi = a 

Theorem 2.1. E W  satisfy (1). There e x i s t s  -%--- uo inv 
satis- 
c3- 

14 



and 

Ja(uo) = 0 

Ja(uo 1 L, 0 

a = 1, * * * )  p' 

a = p's 1, * * * )  p. 

- The sequence un d e t e r ~ ~ e ~ - ~ ~ O ) - ~ r - ? ~ ~ ~ ~ t ~ l ~ o n v e r ~ e s  t o  uo i n  the. 

sense t h a t  
IIu.-.-- 

and 

This  is  an immediate consequence of Lema, 2.1. 

I n  the event t h a t  kf does not satisfy (1) there are two possibi l i t ies .  We can 

obtain the sequence of set8 un specified i n  Lemma 2.2 ei ther  by modifying t h e  

functions fa (a = 1, * * *  The first 

alternative is  aosured of success i n  t h a t  by Theorem 1.3 of Section 1, there 

exists a sequence of functions fn(t,u) such tha t  re t t ing  

p) or  by modifying the constraints (8b).  

fb 
(11 1 

J a  

?L - {u(t)e y : u satisfies (8b)) (12 1 n 
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the  sets Un satisfy the hypotheses of Lemma 2.2. 

essures the existence of the seque . The construction is  c l ea r  and is 

currently under investigation. 

ex i s t s  a sequence J 

w i t h  the  resu l t ing  sets 

of Lema 2.2. 

However, Theorem 1.1 only 

Likewise, Theorem 1.3 assures t h a t  there  

(u) obtained by modifying the functions J (u) di rec t ly  na cr 
defined as i n  (12) a lso  sa t i s fy ing  the conditions n 

A method which suggests i tsel f  i s  t o  choose a sequence of 

vectors E = (EA, * * * , E P ) ,  En j 0, j = 1, * * * ,  p, converging t o  the zero n n 
vector and consider the  sequence of problems with (8b) replaced by 

The question of when the  sets un defined by 

n =: (u(t)E: : u ( t )  s a t i s f i e s  (13)) 

satisfies (1) i s  also under investigation. 

A problem which can be cast i n  t h e  form ( 8 )  is t h e  l i n e a r  optimal control 

problem. Let 

(14 
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be a system of different ia l  equations i n  vector form where x is a q-dimensional 

vector. 

wish t o  minimize (88) subject t o  (14) and a condition on the controls u ( t ) .  

Let @(t) be the fundamental solution matrix of 

For convenience, we assume tha t  A ( t )  and g( t ,u)  

Then (14.) can be rewritten aa 

x ( t )  = @ ( t ) u  + 4(t)@"'(s) g(s,u)ds 1: 
and i n  particular at t = b 

Then setting f = uth component of the vector 
Q 

we me that  (14) can be wri t ten as 

fa(t,u)dt = 0 t u = 1, *'*, q * 

A case of psr t icu ls r  intereat  is tha t  where 

17 



where B ( t )  is an q x m matrix and the controls u ( t )  are required t o  satisfsr 

L e t  Ube the set of controls satisf'ying (15) and (17) with g as i n  (16). 

Let u ( t )  and v ( t )  be i n  u, c 2 0, d 2 0 and c + d = 1. 

satisfies (17 ). Also 

Clearly cu( t )  i dv( t )  

@(b)@"(s)B(s)(cu(s) + dv(s))ds + @(b)a - B l 
@(b)@-'(s)B(s)v(s)ds + @(b)a - B = 0 I 

so u is  convex. Hence i f  has a non-empty in te r ior ,  it satisfies (1). If 

the dimension m of u is one and more than one control satisfying (17) also 

sa t i s f i e s  (15) ,  then the conditions of Lema 2.1 are satisfied. 
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3. A COMPUTATIONAL ALGORITHM 

In  attempting t o  extend the  ideas i n  Section 2 t o  non-linear control problems, 

a variety of transformations were investigated. 

proved completely successful fo r  t h i s  purpose, one appears t o  have the 

possibi l i ty  of speeding the convergence of gradient-type computortional 

methods. This transformation, due t o  M. €3. Hestenes (Reference 22), was used 

by him t o  f a c i l i t a t e  proofs of necessary conditions. 

Although none have yet 

The motivation for  such transformations is simple: 

problem is also a solution of many other problems and among these, one is 

chosen which is computationally simpler. 

a solution t o  the given 

Suppose we are given functions f i ( t ,x ,u)  , i = 0, * * *  , q defined on a region 

R in(1 + q  + m)-dimensional euclidean space. We desire t o  minimize 

I(x) = fo( t ,x ,u)dt  i”. 
x *i = f i ( t , X , U ) ,  

19 



To incorporate addi t ional  cons t ra in ts ,  it may also be required t h a t  

( t , x ( t ) , u ( t ) )  l i e  i n  a subset R, of R f o r  a - -  < t < b and ( x ( t ) , u ( t ) )  a 

so lu t ion  of (2). 

In many computational schemes, the first step i s  t o  l i nea r i ze  the  problem 

by replacing (1) and (2a) by 
* 

(1'1 

and 

k where fixj, f k w e  p a r t i a l  der ivat ives  of f w i t h  respect t o  x j ,  u 

respectively.  
i u  i 

Here it would be convenient f o r  computation i f  the coef f ic ien ts  of 6x 3 

vanished. 

i n  the  large, but it can be done d o n g  any given solut ion t o  ( 2 ) .  

One cannot hope i n  general  t o  modify t h e  problem so that t h i s  occurs 

Suppose that (xn ( t ) ,  u n ( t ) )  i s  a solut ion t o  (2). 

by the symbol xn and w i l l  perform a transformation so tha t  along xn, the 6x 

We designate t h i s  solut ion 

i 

coef f ic ien ts  vanish. To this  end, l e t  

* Repeated indices  are summed i n  a l l  equations. 
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and 

(3c) 

Let 

( 4 )  
rb 

where r is a q-dimensional vector function t o  be chosen. For any r, 

and s ince  only a constant has been added t o  I, a minimum of I also is a 

minimum of Jo. Now we set 

Then along xn we have that  

(7) 

21 



Then (7) vanishes i f  r ( t )  satisfies the  d i f f e r e n t i a l  equation 

I n  th i s  event 

(9) J (xn)  = I (xn)  - ri(b)Bi 

and i n  particular i f  xn minimizes I,  it minimizes J,. 

Next, l e t  Z ( t )  be the q x q - matrix solut ion of 

where 6 is  the d e l t a  function. L e t  
i j  

and 

Gi - - ai - zij(b)B j , i = 1, * * a ,  q. 

Then s e t t i n g  
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(13) 

Hence since Z(b) is non-singular, we have that any solution of (2a) with 

x(a)  = u satisfies x ( b )  = 6 if and only if 

Further, Fi ha8 the property tha t  

Hence we CM replace the original problem by the transformed problem 

Jo(x) = min 

J,(x) m 0 i 0 1, * '*,  Q 

The rug4jested computational algorithm is then M follows: 

I )  

ii) 

iii) Compute r ( t )  using (8) .  

moose any 6oLUtion ( x ,  ( t ) ,  u, ( t ) )  of (21, 

Cmpute the matrices A, and B, using (3) with n 10 
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i v )  

v) 

v i )  

Compute the so lu t ion  Z of (10). 

Determine J , (x ) ,  J l ( x )  * * * ,  Jq(x) using (4)  and (12). 

Minimize J,,(x) subject  t o  J i (x)  = 0, i =I 1, * * * ,  q t o  obtain 

a new so lu t ion  (x,( t )  , u , ( t ) )  using any computational technique 

which p r o f i t s  from the f a c t  t h a t  

v i i )  Repeat i i )  through v i )  with n = 2, e tc .  

Although addi t ional  computation is required, both (8) and (10) are l i n e a r  

equations w i t h  f ixed  i n i t i a l  conditions. It is  expected tha t  t h e  addi t ional  

time fo r  t h i s  computation w i l l  be more than made up i n  the s implif icat ion of 

the computation i n  s t ep  v i )  of the algorithm. The extension t o  var iable  end 

point problems is qui te  s t ra ight  forward and w i l l  not be ca r r i ed  out here. 

Further details, including modification of problems w i t h  addi t ional  

cons t ra in ts ,  may be found i n  Chapter 6 of (Reference 22). 
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4, SUGGESTED FURTHER RESEARCH 

The approximation theorems contained i n  Section 1 are existence theorems, 

I n  a sense, the problem of construction of 

ferred t o  the somewhat more direct  problem 

mations presented i n  Theorems 1.2 and 1.3. 

optimal controls has been trans- 

of construction of the approxi- 

Construction of these approxima- 

tions is interesting and should have important applications. 

The question of what conditions i n  the problem assure tha t  t h e  set U i n  

Section 2 has the property 

remedns open. 

certainly even more so i n  the  non-linear case. 

above question, constructive existence theorems with easily verifiable hypo- 

theses appear very d i f f i cu l t  t o  obtain, 

research e f for t  should be devoted t o  a deeper study of t h i s  problem. 

This fact  causes diff icul ty  i n  studying the  l i nea r  case and 

Without 8n answer t o  the 

Thus a large par t  of the  future 

Lartly, the extension of t h e  results of Section 2 t o  t h e  non-linesr problem 

remains open, Transformations of the type considered in Sectioq 3 seem t o  

offer pora ib i l i t i es  of application. 
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