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Abstract Copper is one of the most interesting

elements for various biomedical applications. Copper

compounds show vast array of biological actions,

including anti-inflammatory, anti-proliferative, bio-

cidal and other. It also offers a selection of radioiso-

topes, suitable for nuclear imaging and radiotherapy.

Quick progress in nanotechnology opened new possi-

bilities for design of copper based drugs and medical

materials. To date, copper has not found many uses in

medicine, but number of ongoing research, as well as

preclinical and clinical studies, will most likely lead to

many novel applications of copper in the near future.

Keywords Copper � Nuclear medicine �
Nanotechnology � Drug development

Introduction

Copper (Cu) is a transition metal with atomic

number 29, known since ancient times. It is an

important trace element for most organisms in all

kingdoms. In humans, copper plays role as a

cofactor for numerous enzymes, such as Cu/Zn-

superoxide dismutase, cytochrome c oxidase,

tyrosinase, ceruloplasmin and other proteins, cru-

cial for respiration, iron transport and metabolism,

cell growth, hemostasis (Puig and Thiele 2002;

Bertini et al. 2010). With the progress in medical

sciences, copper has gained a lot of attention. The

number of publications concerning copper and its

compounds for potential medical applications,

have reached tens of thousands. There are several

reasons that render this element so attractive for

drug development. Generally, simple inorganic

salts of copper are toxic, but as a transition metal,

with unsaturated d shell, it forms a large number of

complexes. Coordination chemistry of copper is

well-studied and ‘‘straightforward’’ in comparison

to many other elements. From three known oxida-

tion states, ?1 and ?3 are mostly unstable in

biological systems, but on ?2 state, Cu forms

stable complexes with coordination number of 4, 5

or 6. Administration of copper in a form of

organometallic complexes can be done in order

to selectively deliver copper ions or radionuclides

to diseased tissues, or to modify pharmacokinetics

and/or pharmacodynamics of ligands. Moderate
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amounts of metal ions that could be liberated from

biological degradation or transchelation of Cu

complexes can be managed by organism, as copper

is an important microelement, in contrary to many

other transition metals, whose leakage from their

compounds can lead to accumulation and toxic

effects. Copper has several radioisotopes, five of

them are particularly interesting for radiotherapy

and imaging applications. Continuous progress of

nanotechnology made it possible to exploit novel

physicochemical properties of copper-containing

nanoparticles and molecules. This article reviews

current trends in various fields of medicine, in

development of copper based pharmaceuticals and

medical materials.

Biological activity of complexes of stable copper

isotopes

Inflammation

In folklore it is believed that wearing copper brace-

lets and jewellery can ease the pain in rheumatoid

arthritis. This belief had drawn attention to possible

anti-inflammatory properties of copper ions and

complexes. This issue was extensively researched

in past century by Sorenson (1976, 1982, 1987,

1989). Hostýnek et al. (2006) found that metallic

copper can indeed penetrate skin, after being oxi-

dized on air. Anti-inflammatory effect of Cu can be

linked with modulation of prostaglandin synthesis

(Sakuma et al. 1996; Franco and Doria 1997; Sakuma

et al. 1999), interleukin IL-2 expression (Hopkins

and Failla 1999), neutralization of reactive oxygen

radicals by Cu/Zn-superoxide dismutase and other.

Though copper deficiency is known to impair

immunity, the exact mechanism is unclear (Huang

and Failla 2000).

In the past decade, several authors reported

copper(II) complexes with potential anti-inflamma-

tory properties. For treatment of rheumatoid arthri-

tis, chelating agents that can facilitate transport of

Cu(II) ions to sites of inflammation were researched

(1–13).

Jackson et al. (2000) attempted to design linear

polyamine ligands that can mobilize copper in organism.

The complexes cannot be too stable, because they would

be quickly excreted with urine in unchanged form.

Ligands 1–4 formed neutral complexes only above pH

7.0 and were too labile for systemic administration, but

still could be used to facilitate dermal absorption of

copper. Complexes of 5–8, due to additional nitrogen

atom were significantly more stable (*2 log units), 6–8

were also more lipophilic, but the stability was still

suboptimal (Jackson et al. 2000). More promising results

for dermally absorbed Cu complexes were achieved for

ligands 9 and 10. The compounds show selectivity

towards copper ions, good stability at physiological pH

(formation constants at 25 �C in 0.15 M NaCl, for

unprotonated ligands: log b = 11.51 for 9 and 18.62 for

10), low renal clearance and water/octanol partitioning

indicating possible dermal absorption. An important

feature of 9 and 10 is that they form more labile

complexes with Ca2? and Zn2? ions (for 9 and 10

respectively: with zinc log b = 5.55 and 11.51, with

calcium log b = 3.24 and 3.92), which are main

competitors of copper in blood plasma. Simulations

showed that Cu complexes of the ligands are stable in

blood plasma, and effectively mobilize copper ions

without affecting significantly other metal ions levels

(Zvimba and Jackson 2007). Odisitse et al. (2007, 2009)

also reported dermally absorbed complexes of copper
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with 11–13 ligands. The compounds showed approxi-

mately 24 h biological half-life which is desired for

potential anti-inflammatory drugs. Simulation of behav-

ior of 13 in blood plasma indicated that Ca2? and Zn2?

ions concentration is sufficient to compete with Cu2?,

even though 13 is more selective towards cupric ions.

Therefore, the ligand can facilitate copper transport

through skin, then release Cu2? ions in bloodstream.

Copper-zinc-superoxide dismutase (SOD) is an

important enzyme protecting cells against oxidative

injury, scavenging and neutralizing reactive oxygen

species. It has been shown that SOD can signifi-

cantly reduce inflammation induced in laboratory

animals (Emerit et al. 1991; Zhang et al. 2002;

Garcia-González et al. 2009). Many complexes of

copper(II) have similar to SOD ability to neutralize

superoxides (14–27). These SOD-mimicking com-

plexes of copper were proposed as non-analgesic

anti-inflammatory drugs by various authors: Cu

complexes of aromatic acids (14–16) (Suksrichavalit

et al. 2008), saccharinate and pyridine derivates (17–

18) (Ferrer et al. 2010), tolfenamic acid (19)

(Kovala-Demertzi et al. 2004), 2-amino-2-thiazoline

and polyamines (20–25) (Pontiki et al. 2006),

o-vanillin (26) (González-Baró et al. 2010), oxap-

rozinate (27) (Dutta et al. 2004).
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However, there is one important hindrance, as both

SOD and SOD-like Cu-complexes can cleave cellular

DNA by reacting with hydrogen peroxide and gener-

ating hydroxyl radicals by Fenton-type reaction (Sang

and Yang 2005; Han et al. 2007; Seng et al. 2009;

Ghosh et al. 2010; Ibrahim et al. 2011). This aspect

requires thorough dose–response studies, before this

group of potential anti-inflammatory drugs can

emerge.

In the last 20–30 years of 20th century, there was

a lot of interest in copper(II) complexes with

NSAIDs (Non-Steroidal Anti-Inflammatory Drugs),

such as acetylsalicylic acid, indomethacin, piroxi-

cam, ibuprofen, diclofenac, naproxen and others.

These complexes were reported to possess increased

activity and lower ulcerogenic effect than respective

NSAID and copper administered separately. How-

ever, none of the substances has been approved for

internal therapy of humans. Exhaustive review of the

subject was written by Weder et al. (2002) Cur-

rently, there are still a number of publications each

year on Cu-NSAIDs complexes, but mainly con-

cerning the structural and physicochemical aspects

of the compounds; structure–activity and biological

studies are sparse, therefore it can be assumed that

this group of potential drugs will not make any

impact on medicine in the nearest future.

It should be noted that copper-indomethacine

complex (28, Fig. 1) underwent some biological

evaluation, and is currently used in veterinary in

Australia, New Zealand and some other countries.

Similarly to other NSAID-Cu complexes, copper

indomethacinate retains parent drug anti-inflamma-

tory activity but have lower ulcerogenic effect,

probably due to free radical scavenging ability

(Bertrand et al. 1999). Cu-indomethacin-dimethyl-

formamide complex shows good solution stability

at pH 7.4 (\8 % decomposition after 3 days),

which can be further increased by micellar solu-

bilisation of the complex with Span 80 and

tetraglycol (Weder et al. 1999). In Australia, Cu-

salicylate was available until recently for external

use in humans, in a form of topical anti-inflamma-

tory gel.

Cancer

Since cisplatin was introduced for chemotherapy of

cancer, a search for other transition metal complexes

with anti-proliferative activity has started. Various

copper(II) complexes were found to be cytotoxic,

with the most common ligands being NSAIDs or

Schiff bases (29–38). As mentioned in above section,

many Cu(II) complexes possess catalytic activity

towards reactive oxygen species and can induce

breakage of DNA strand. This can explain cytotox-

icity of some of the compounds. 29 (Fig. 2) in

aqueous solution without presence of any external

reducing factors, forms bis-(1,10-phenantroline)cop-

per(I) which oxidatively degrades nucleic acids

(Barceló-Oliver et al. 2007). However, in many

cases, probably more sophisticated mechanisms are

involved.

Meloxicam (30) and piroxicam (31, Fig. 3)

form stable in physiological pH Cu complexes

(K = 3.2 9 109 and 9.8 9 109 M-2 respectively)

that are able to strongly bind with DNA, disrupting

its structure and stopping transcription as a result

(Roy et al. 2006; Cini et al. 2007). Copper N-(2-

hydroxyacetophenone) glycinate (32) is an interest-

ing immunomodulatory agent, capable of inducing

apoptosis in multidrug-resistant cancer cells by

stimulating production of cytokines, such as inter-

feron c or TNF-a (Tumor Necrosis Factor a)

(Mookerjee et al. 2006). Guo et al. (2010) suggested

that salicylaldehyde-amino acid Schiff base copper

chelates (33, 34) trigger cancer cell’s apoptosis by

downregulation of overexpressed mutant type P53

protein.
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Disulfiram, a drug used in alcoholism treatment,

forms in vivo a copper complex (35) which acts as a

proteasome inhibitor, and selectively induces apopto-

sis in breast tumors (Chen et al. 2006). Disulfiram and

copper gluconate are currently under phase I trials for

treatment of solid tumors with metastases in liver

(ClinicalTrials.gov 2012). Compound 36 shows high

in vitro and in vivo activity towards MCF-7, PC3 and

HEK293 cell lines. Its proposed mode of action is

multidirectional and includes apoptosis induction via

caspase pathway, DNA fragmentation and antioxidant

enzymes inhibition. 36 is more effective than cisplatin

in breast tumor models (about 20-fold lower IC50) and

shows minimal toxicity (Chakraborty et al. 2010).

Fig. 1 Copper-

indomethacine-N,N-

dimethylformamide

complex (Weder et al.

1999). Data from

Cambridge Crystallographic

Data Centre
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Other type Cu(II) complexes with both antimicrobial

and antitumor properties were reported by Singh et al.

(2009)(37,38).

Antimicrobial

Copper, both in metallic form and in many chemical

compounds, possess antimicrobial activity, which was

already used by ancients. Cupric ions exhibit non-

specific biocidal activity, although weaker than silver.

Copper-silver electrolytic ionization systems are used in

many hospitals to decrease number of Legionella

residing in hot water pipes. Metals and alloys used in

orthopedic implants can be doped with copper ions, in

order to reduce risk of infection after prosthetic surgery.

The tradeoff is reduced to some extent corrosion

resistance of the resulting materials, but still on a

Fig. 2 Crystal structure of Cu-o-iodohippurate-1,10-phenantroline complex(29) (Barceló-Oliver et al. 2007) Data from Cambridge

Crystallographic Data Centre

Fig. 3 Copper piroxicam-

DMF complex crystal

structure (Cini et al. 1990)

Data from Cambridge

Crystallographic Data

Centre
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reasonable level (Wan et al. 2007). Due to non-specific

toxicity, for the use of copper as an antibacterial

therapeutic, the metal should be administered in a form

of complex compounds, rather than simple inorganic

salts. Nature of chelating agent, however, plays very

important role, as there can be no simple correlation

between antibacterial activity and complex stability

(Azenha et al. 1995). Many various Cu(II) complexes

with different ligands were reported to possess antibac-

terial and antifungal activity (39–48) (Gölcü et al. 2005;

Shakir et al. 2006; Singh et al. 2008; Sreedaran et al.

2008; Kumar and Arunachalam 2009; Suksrichavalit

et al. 2009). Singh et al. (2008) utilized an approach to

use ligands which already have antimicrobial activity

and enhance it by complexation with copper (39–41).

Antihypertensive drug pindolol, when complexed with

Cu (41) (complex stability constant log b = 11.28 in

water-dioxan 40:60 at 25 �C), exhibits notable antimi-

crobial activity towards some bacterial and fungal strains

(Gölcü et al. 2005). Water soluble, polymeric complex

47 shows good antimicrobial activity and is also capable

of binding DNA (Kumar and Arunachalam 2009).

The complexes (39–48) were only screened for antibi-

otic properties, and to the best of our knowledge no

further evaluations for medical applicability were per-

formed.
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Other uses

Copper (I)-Cl-(nicotinic acid)2 (polymeric) is able to

notably reduce gastrointestinal mucosa lesion caused

by NSAIDs such as acetylsalicylic acid. The complex

shows antioxidative, antiapoptotic, secretolytic and

antihemorrhagic activity and can be a good alternative

for currently used anti-ulcer drugs, proton pump

inhibitors, which increase gastrin level (Tuorkey and

Abdul-Aziz 2009). It is also a rare example of

Cu(I) compound proposed for medical use. Toyota

et al. (2005) described a series of copper and iron

complexes acting as thrombin inhibitors. One of these

compounds, Cu(II) complex with 4-formyl-3-hydro-

xybenzamidine and D-tryptophane (49), had the high-

est inhibitory activity (Ki value 2.7 9 10-8 M),

comparable to registered anticoagulant drug, argatro-

ban (Ki 1.9 9 10-8 M) (Toyota et al. 2005). Tian et al.

(2009) suggested copper-taurine as possible com-

pound able to facilitate wounds healing by stimulating

process of tissue regeneration and by preventing

infections.

Fig. 4 Crystal structure of

51 (Lemoine et al. 2002)

Data from Cambridge

Crystallographic Data

Centre
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Work by Sylla-Iyarreta Veitı́a et al. (2009) is a good

example, how complexation with copper of clinically

used drug, valproic acid in that case, can lead to novel,

more potent compound. Bis-valproinato(1,10-phenan-

throline)copper(II) (50) was found to be very effective

in preventing Minimal Clonic seizures (ED50 8 lmol/kg).

1,10-phenantroline and salicylate Cu complex (51,

Fig. 4) and bis(1,10-phenanthroline)-l-bis(salicyla-

to)dicopper(II) with anticonvulsant activity effective

against MES (maximal electroshock) induced sei-

zures, were reported earlier by Lemoine et al. (2002).

Despite different structure in solid state, both com-

plexes showed similar anticonvulsant activity, prob-

ably due to formation of the same species in the dilute

solutions. The compounds lose salicylate and one

phenantroline ligand in dilute N,N-dimethylformam-

ide (DMF) solution to form [Cu(1,10-phenantro-

line)DMF4]2?. The results can only be interpolated

to biological systems, since both complexes are

insoluble in water.

Copper palmitate may be useful in preventing skin

photosensitivity induced by porphyrins in patients

who underwent photodynamic therapy. Liposomal

topical cream with Cu-palmitate effectively prevented

skin inflammation in photosensitized rats exposed to

light (Bilgin et al. 2005). Taggar et al. (2006)

successfully prepared liposomal form of anticancer

drugs, topotecan and irinotecan. Copper(II) sulphate

loaded liposomes accumulated and retained drug

molecules due to formation of copper complex inside

the liposome. The authors also reported improved

therapeutic activity of this drug formulation (Taggar

et al. 2006). Sreedhara et al. (2000) reported

Cu-aminoglycosides complexes (of neamine and

kanamycin A) as efficient deoxyribonucleases with

reaction kinetics similar to enzymes. Notably, the

DNA cleavage was achieved by hydrolytic pathway,

without generation of free radicals (Sreedhara et al.

2000). Copper-L-histidine complex (52) is in phase II

clinical trials for treatment of Menkes disease, a

genetic disorder in Cu transport, leading to copper

deficiency (ClinicalTrials.gov 2012).

Copper radioisotopes in nuclear medicine

Natural copper comprises two stable isotopes:
63Cu (69.17 %) and 65Cu (30.83 %). Of 27 known

copper radioisotopes, five are particularly interest-

ing for nuclear medicine: 60Cu, 61Cu, 62Cu, 67Cu,

Table 1 Decay properties

of medically important Cu

radioisotopes

Values taken from National

Nuclear Data Center

(Brookhaven National

Laboratory 2012)

b-, b?, c—electron,

positron and gamma emission

respectively, EC-electron

capture

Isotope T1/2 b- (MeV) b? (MeV) EC (%) c (MeV)

60Cu 23.7 min – 1.91 (11.6 %)

1.98 (49 %)

2.95 (15 %)

3.77 (5 %)

7.2 0.511 (185 %)

0.826 (21.7 %)

1.33 (88 %)

1.79 (45.4 %)

3.12 (4.8 %)
61Cu 3.33 h – 0.932 (5.5 %)

1.22 (51 %)

36 0.283 (12.2 %)

0.373 (2.1 %)

0.511 (123 %)

0.656 (10.8 %)

1.19 (3.7 %)
62Cu 9.67 min – 2.93 (97.2 %) 2 0.511 (195 %)
64Cu 12.7 h 0.579 (38.5 %) 0.653 (17.6 %) 40 0.511 (35.2 %)

1.35 (0.5 %)
67Cu 61.83 h 0.377 (57 %)

0.468 (22 %)

0.562 (20 %)

– – 0.093 (16.1 %)

0.185 (48.7 %)

0.3 (0.8 %)
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and especially 64Cu. Their nuclear characteristics are

given in Table 1.

Decay characteristics of copper radionuclides make

them suitable for numerous medical applications, such

as Positron Emission Tomography(PET) imaging,

radioimmunological tracing and radiotherapy of can-

cer. For widespread use in medicine of any radioiso-

tope, two factors are essential: availability of the

isotope and effective modes of binding with an

appropriate chemical carrier. Efficient production of

copper isotopes was extensively researched over past

20–30 years, and also many potential chelators were

developed during that time. Methods of production,

applications in nuclear medicine and chelating agents

for copper radioisotopes were reviewed by Blower

et al. (1996), Williams et al. (2005), Rowshanfarzad

et al. (2006), Hao et al. (2009), Wadas et al. (2010),

and Ding et al. (2011).

60Cu

PET is a three dimensional imaging technique which

utilizes simultaneous detection of two oppositely

moving photons, resulting from annihilation of posi-

tron with electron. Positron comes from decay of a

radioisotope incorporated into targeting molecule

which can selectively accumulate in desired tissues,

organs or tumors. The most popular PET tracer is 18F

in a form of 2-deoxy-2-(18F)fluoro-D-glucose. Metallic

radioisotopes have advantage over fluorine-18, as they

can be easily introduced into a targeting molecule by

forming a coordination compound with it. 60Cu is a b?

emitter with decay properties making it possible

candidate for PET tracer. 60Cu can be produced using

small cyclotrons at relatively low costs from 60Ni

target (McCarthy et al. 1999). Relatively high energy

positron and gamma emissions, compared to 62Cu, are

the most important disadvantages of 60Cu isotope as

PET imaging agent.

Copper bis-thiosemicarbazones complexes,

mainly 60/61/62/64Cu-diacetyl-bis(N4-methylthiosemic-

arbazone) (60/61/62/64Cu-ATSM 53), 60/61/62/64Cu-pyr-

uvaldehyde-bis(N4-methylthiosemicarbazone) (60/61/62/64

Cu-PTSM 54) and 60/61/62/64Cu-ethylglyoxal bis(thio-

semicarbazone) (60/61/62/64Cu-ETS 55), are the most

widely studied copper radioisotopes compounds for

use in PET. 60/61/62/64Cu-ATSM and 60/61/62/64Cu-ETS,

due to their specific redox properties, can be useful for

detection and imaging of hypoxic tumor cells. Mech-

anism of action of copper-thiosemicarbazones in

broad outline is as follows: the complex enters cell

where it is spontaneously reduced from Cu(II) to

Cu(I) state, then it can either be reoxidized by

molecular oxygen and diffuse from the cell, or in

hypoxic conditions, it irreversibly decomposes and

stays trapped within cell (Dearling and Packard 2010).

It should be noted that nonradioactive Cu-ATSM has

been recently found to be neuroprotective agent, and

can be used for Parkinson’s disease treatment (Hung

et al. 2012).
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60Cu-ATSM was clinically studied for monitoring

tumor hypoxia in lung and cervical cancer, and found

to be feasible for prediction of tumor response to

therapy (Dehdashti et al. 2003; 2008). Analogous pilot

clinical study for rectal cancer was carried by Dietz

et al. (2008), and also confirmed possible applicability

of 60Cu-ATSM. Chao et al. (2001) suggested that PET

images obtained with 60Cu-ATSM can be used for

intensity-modulated radiation therapy of head and

neck cancer. Since hypoxia of the tumor makes it

resistant to radiotherapy, localization with 60Cu-

ATSM can be used to accurately deliver higher

radiation doses needed for destroying cancer cells

(Chao et al. 2001).

61Cu

61Cu isotope can be produced from zinc, nickel or

cobalt targets. Necessity of highly enriched Ni and Zn

targets or high energy particle beams limited accessi-

bility of 61Cu for biomedical use, until more economic

production methods from natural Zn or Co were

developed (Rowshanfarzad et al. 2006; Hao et al.

2009; Das et al. 2012). Longer half-life than that of
60Cu and 62Cu makes 61Cu better choice for prolonged

imaging of processes with slower kinetics. This isotope,

however, is much less popular in today’s biomedical

studies than the other copper radioisotopes.
61Cu-APTS (2-acetylpyridine thiosemicarbazone)

complex (56), for PET imaging of cancer, was

proposed by Jalilian et al. (2006) Using pyridine

thiosemicarbazone as a ligand, can give additional

antiproliferative activity to the compound, which was

previously observed by other authors (Belicchi-Ferrari

et al. 2005). Hao et al. (2009) found 61Cu-1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)–

human serum albumin to be good blood pool imaging

agent and suggested its application in antiangiogenic

therapy monitoring. Novel approach for therapy of

multinodular goitre, using human chorionic gonado-

tropin (hCG) directly labeled with ionic 61Cu (or some

other b? emitters) was proposed by Maiti et al. (2011)

Initial studies indicates that copper-hCG complex

half-life is shorter than that of a hCG –TSH (thyroid-

stimulating hormone) receptor complex, thus

hyperactive thyroid cells can be destroyed before

internalization of the receptor occurs. More in vitro

and in vivo studies are required to assess usefulness of

this therapy.

62Cu

62Cu has unique properties being almost pure b?

emitter(97.2 %) with short half-life of 9,67 min. It is

easily obtainable from 62Zn/62Cu generators (Fukum-

ura et al. 2006; El-Azony 2011), however relatively

short half-life of parent 62Zn makes these generators

operable for not more than three days. This isotope is

currently the most intensively studied copper radio-

isotope besides 64Cu. 62Cu-PTSM is extensively

researched 62Cu radiopharmaceutical that can be used

for monitoring renal, myocardial and cerebral perfu-

sion. Mathias et al. (1995) observed high species

dependent variability in binding 62Cu-PTSM and
62Cu-ATSM by serum albumin. This can render

problems when predicting behavior of copper thio-

semicarbazones in human system, basing on animal

data. 62Cu-ETS (55) complex is proposed as an

alternative to 60/61/62/64Cu-PTSM for PET perfusion

imaging (Mathias et al. 1995; Green et al. 2007;

Basken et al. 2008). 62Cu-PTSM can be used together

with 62Cu-ATSM to obtain complementary data on

tumor hypoxia and blood circulation in a single PET

session (Black et al. 2008; Wong et al. 2008). 62Cu-

ATSM complex is widely researched for PET imaging

of tumor hypoxia (Laforest et al. 2005; Wong et al.

2008; Minagawa et al. 2011), myocardial (Takahashi

et al. 2001) and cerebral ischaemia (Isozaki et al.

2011).

Other than imaging clinical application of 62Cu was

proposed by Chan et al. (2000) Balloons filled with
62Cu solution have been found effective for intravas-

cular treatment preventing coronary restenosis in

porcine model.

64Cu

The most versatile isotope, 64Cu has found its

application in: in vivo studies of copper metabolism,

radiotracing biodistribution of potential therapeutics,

PET imaging, cancer diagnosing and radiother-

apy(preclinical and clinical trials). Although there

are many methods of 64Cu production, the most

important are those which do not require high energy

beams, unattainable for typical small medical cyclo-

trons (Obata et al. 2003; Szajek et al. 2005; Le et al.

2009). However, such methods need enriched targets,

which increase overall costs. Using natural zinc as

a starting material, 64Cu can be produced with
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reasonable purity, but many highly radioactive

byproducts of the reaction need to be removed and

handled properly (Bonardi et al. 2003). 64Cu half-life

allows it to be transported to locations remote of the

production site, and currently this isotope is commer-

cially available from several producers around the

world.

Similarly to 60Cu, 61Cu and 62Cu isotopes, 64Cu-

ATSM is subject to many ongoing research as

selective tumor hypoxia imaging agent. It is in phase

II clinical trials for PET/CT monitoring of therapeutic

progress in patients with cervical cancer (Clinical-

Trials.gov 2012). Similar compound, 64Cu-ATSE

(Cu-diacetyl-bis(N4-ethylthiosemicarbazone)) (57),

has wider tissue-oxygenation level specificity than
64Cu-ATSM. Increased uptake of 64Cu-ATSM by cell

cultures occurs between oxygen concentration

0.1–0.5 %, while for the 64Cu-ATSE it happens

between 0.1 and 5 %, which can make it more suitable

imaging agent for less extreme hypoxias in myocardial

and nervous tissues (McQuade et al. 2005). Because
64Cu is also b- emitter, 64Cu-bis-thiosemicarbazones

can be used for radiotherapy. Yoshii et al. (2011)

showed that 64Cu-ATSM administration reduces vol-

ume and metastatic abilities of Colon-26 tumor in

mice. Advantage of this treatment over other cancer

therapies comes from the fact that 64Cu-ATSM

reduced number of CD133? (prominin-1 positive)

cells within tumor. CD133? cells contributes to

ineffectiveness of cancer therapies, being chemo-

and radioresistant, and also highly tumorigenic. 64Cu-

ATSM decreases number of CD133? cells not by

specific interactions, but rather by accumulating

within regions of tumor with high abundance of

CD133? cells, which results in higher doses of

radiation in that areas (Yoshii et al. 2011). To increase

cytotoxic effectiveness of 64Cu-ATSM, Aft et al. 2003

administered it together with 2-deoxy-D-glucose to

mice bearing EMT-6 mammary carcinoma cell line.

2-deoxyglucose accumulates in tumor cells and

potentiate effects of radiation therapy. In the study,

pretreatment with 2-deoxyglucose increased tumor

uptake of 64Cu-ATSM. Continuing daily administra-

tion (2 mg/g) of 2-deoxyglucose after single dose of
64Cu-ATSM increased survival time of the animals

(Aft et al. 2003). Other than thiosemicarbazone

ligands for 64Cu, based on 2-nitroimidazole (another

hypoxia-selective compound), were evaluated in vivo

by Engelhardt et al. (2002) and were found suitable for

imaging of tumor hypoxia. More recently, Bonnitcha

et al. (2010) explored an idea to conjugate thiosemi-

carbazones with nitroimidazoles, since these com-

pounds have the same biological targets. Copper

complexes of the ligands (58) synthesized by the

authors showed excellent selectivity for hypoxic

EMT-6 cells.
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PET and SPECT (Single-Photon Emission Computed

Tomography) techniques are used in mapping brain

activity in behavioral studies on animals and humans.

Many social behaviors cannot be monitored in immobi-

lized test subjects. Compounds containing long living b?

emitters, such as 64Cu-PTSM, are suitable for monitoring

cerebral perfusion in freely moving subjects (Holschne-

ider and Maarek 2004). 5,13-dioximino-6,9,9,12-tetra-

methyl-7,11-diazaheptadeca-6,11-diene complex of

copper-64 (59) synthesized by Packard et al. (2002) can

be potentially used as myocardial perfusion imaging

agent, and also for multidrug resistance screening. The

complex shows tumor uptake similar to 99mTc-MIBI

(hexakis(2-methoxy-2-methylpropylisonitrile) techne-

tium (99mTc)), a compound used for predicting drug

resistance of tumors associated with P-glycoprotein

expression (Packard et al. 2002).
64Cu labeled peptides for targeted cancer therapy/

imaging are one of the largest group of copper

radiopharmaceuticals currently researched. They are

built of a targeting peptide such as bombesin or

octreotide analogue, a linker, and a bifunctional chelator

(BFC), commonly tetraazamacrocycle derivate, like

TETA or DOTA (Fig. 5). The peptide binds to a specific

receptor expressed by cancer cells while copper isotope-

BFC moiety allows localization of the tumor by positron

emission detection. b- radiation of 64Cu can also be

exploited for selective irradiation of malignant cells.

Attractiveness of peptides for targeted radiotherapy, in

comparison to monoclonal antibodies, comes from their

good tissue distribution, fast clearance, low immuno-

genicity, and inexpensive, automated production. By

modifying amino acid composition of a peptide, one can

adjust hydrophobicity, pKa, resistance to proteolysis,

and other parameters of the peptide to form a suitable

diagnostic agent. Table 2 lists the most popular peptides

which were modified to be used with 64Cu for cancer

imaging and therapy.

Zhang et al. approached other than oncological use

of such type of compounds. They designed a 64Cu-

labeled peptide targeting neutrophils that can be used

for non-invasive detection of acute, neutrophilic

inflammation (Zhang et al. 2007c).

Fig. 5 DOTA and TETA, the two most common bifunctional

chelators used for labeling biomolecules

Table 2 Targeting peptides for 64Cu PET tracers

Peptide Properties Cancer type Reference

Bombesin Amphibian homologue of mammalian

gastrin-releasing peptide (GRP)

Prostate (PC-3)

Lung

Breast (T-47D)

Yang et al. (2006), Hoffman and Smith (2009),

Prasanphanich et al. (2009), and Lane et al. (2010)

Tyr3-octreotide Somatostatin analog Neuroendocrine

tumors

Sprague et al. (2004) and Eiblmaier et al. (2007)

Arg-Gly-Asp

(RGD)

peptides

Ligands for avb3 integrin, expressed

during angiogenesis

Metastatic

cancers

Chen et al. (2004), Wei et al. (2009), Galibert et al.

(2010), and Jin et al. (2011)

VIP Vasoactive intestinal peptide Breast

Colorectal

Prostate

Thakur et al. (2004) and Zhang et al. (2007a)

PACAP Pituitary adenylate cyclase activating

peptide

Breast cancer Zhang et al. (2007a)

a-MSH Melanocyte stimulating hormone Melanoma Cheng et al. (2007) and Wei et al. (2007)

Ac-Cys-

ZEGFR:1907

Affibody for epidermal growth factor

receptor

Various types (Miao et al. (2010)
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Monoclonal antibodies (mAbs) are vast group of

biotechnologically produced proteins, with constantly

rising number of applications in immunotherapy,

targeted drug delivery, and in vivo/in vitro diagnostics.

In this compounds group, we can distinguish intact

immunoglobulins (murine, chimeric, humanized and

human) and fragments of heavy chain antibodies

(nanobodies, domain-deleted mAbs, hypervariable

domain region peptides, minibodies, affibodies and

other). Transforming mAbs into radiopharmaceuticals

is relatively simple. When using radioisotopes such as

iodine-131 or fluorine-18, small molecule labeled with

atom/atoms of the isotope, coupled with a linker is

attached to amino acids residues (mostly randomly) of

the antibody. Similarly, if using metallic radioisotopes,

a bifunctional chelator with linker is coupled to the

antibody, then solution of the radioisotope salt is added

to form a complex. In most cases, mAbs for radiother-

apy can be formulated in a convenient form of kits, for

preparation of the radiopharmaceutical right before

administration to a patient (Reilly 2010). Examples of
64Cu-labeled antibodies for PET imaging are trast-

uzumab (breast cancers expressing human epidermal

growth factor receptor 2 or HER2, in clinical trials)

(Sampath et al. 2010; ClinicalTrials.gov 2012), 12A8

(c-kit expressing tumors) (Yoshida et al. 2011),

etaracizumab (antibody against human avb3 integrin)

(Cai et al. 2006), cetuximab (targeting EGFR-epider-

mal growth-factor receptor expressing tumors) (Li et al.

2008).

67Cu

67Cu is the longest living copper radioisotope and also

one of the most difficult to produce, since it requires

fast neutron flux reactor or high-energy proton beams

and costly 68Zn target (Katabuchi et al. 2008). This

isotope of copper, owning to interesting decay prop-

erties, is widely acknowledged as potentially useful

for radioimmunotherapy, but due to limited availabil-

ity, the number of research that actually use this

isotope is low, compared to other Cu isotopes.

Dynamic growth of radioimmunotherapy, can

increase demand for this isotope. Medvedev et al.

(2012) reported an attempt to produce 67Cu in a larger

scale, which gives perspectives for wider commercial

availability of the isotope in the near future.

The possibility to change imaging agents into thera-

peutics is very attractive in copper radiopharmaceuticals.

This can be achieved by replacing positron emitting

nuclides of 60/61/62/64Cu with electron emitting 67Cu,

without changing pharmacokinetics of the com-

pounds. Since biodistribution of 60/61/62/64Cu-labeled

substances can be monitored using PET, the data can

be directly translated to 67Cu compounds (Cai et al.

2006). 67Cu is one of the best suited isotopes for

radioimmunotherapy, because of its half-life long

enough to allow good biodistribution within tumor

(similar to biological half-life of many mAbs),

relatively low gamma radiation abundance (lower

whole body dose for patient and safer for medical

personnel), higher tumor uptake (compared to iodine-

131) and simple radiolabeling procedure (Carrel et al.

1997; Delaloye et al. 1997; DeNardo et al. 2000;

Novak-Hofer and Schubiger 2002). Examples of
67Cu-labelled mAbs are chCE7, an anti-L1-cell adhe-

sion molecule antibody for neuroblastoma, ovarian,

and some renal carcinoma therapy (Zimmermann

et al. 1999; Zimmermann et al. 2003; Knogler et al.

2007), Lym-1 for non-Hodgkin’s lymphoma (De-

Nardo et al. 1999; Mirick et al. 1999; DeNardo et al.

2000), C595 an anti-MUC1 mucin antibody for

bladder cancer treatment (Hughes et al. 2000).

Possible applications of 67Cu are not limited to

radiotherapy; gamma radiation of the isotope can be

used for Single-Photon Emission Computed Tomog-

raphy (SPECT) (Engelhardt et al. 2002).

To date, no radiopharmaceutical containing copper

isotope is approved for use in humans. Although many

promising results were obtained during studies on Cu

radiopharmaceuticals, several problems also emerged.

Therefore current research have to focus on overcom-

ing these obstacles.

• Of five discussed isotopes, only 62Cu can be obtained

from generator. 64Cu and 67Cu have half-life long

enough to be transported from remote locations, but
60Cu and 61Cu require cyclotron access. Therefore,

availability of copper radioisotopes is still the main

limitation for their wider application.

• High energy of emitted positrons of 60/61/62Cu in

relative to standard PET imaging radionuclide 18F,

is cause of the loss of spatial resolution of the

resulting image. Recovery of three-dimensional

data, when imaging with high-resolution PET

camera, requires development of dedicated anal-

ysis algorithms (Ruangma et al. 2006; Liu et al.

2009).
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• Burgman et al. (2005) found that 64Cu-ATSM

shows cell line dependent pharmacokinetics,

therefore obtained imaging data in some cases

can be irrelevant to tumor hypoxia.

• Theoretical calculations made by O’Donoghue

et al. (1995) indicate that tumors 2–3 mm in

diameter are optimal for effective treatment with
67Cu. Thus, usefulness of this isotope in cancer

therapy is limited only to small tumors.

• In vivo studies of first generation of Cu-radioiso-

tope labeled peptides showed poor stability of

these compounds and liberation of copper from the

complexes (Mirick et al. 1999; Bass et al. 2000;

Boswell et al. 2004; Sprague et al. 2006). Mon-

ocycylic tetraazamacrocycle based BFCs, such as

TETA or DOTA, are not sufficiently inert in blood

serum and should not be considered in designing

new copper radiopharmaceuticals. Cross-bridged

macrocycles are currently replacing other type

chelating agents (Ma et al. 2002; Boswell et al.

2004; Anderson et al. 2008).

• Radiolabeled peptides and antibodies show high

retention in kidneys which receive larger dose of

radiation than other organs. To prevent kidneys

damage, either dose of the radiopharmaceuticals

has to be reduced, which can lead to ineffective-

ness of the therapy, or additional substances

reducing renal uptake need to be administered

simultaneously (Vegt et al. 2010).

• Main problem of radioimmunotherapy with intact

mAbs is their heterogenous biodistribution within

solid tumors, resulting in insufficient dose delivered

to some of the malignant cells. Therefore, it is

necessary to develop other strategies for use of

monoclonal antibodies in cancer radiotherapy, such

as pretargeting techniques, reduction of the size of

the antibody or increasing capillary permeability

(Tempero et al. 2000; Goldenberg and Sharkey

2006; Reilly 2006; Thurber et al. 2008).

Copper in nanomedicine

Past ten to twenty years are the time of rapid progress

in nanotechnology and nanomedicine. Term nano-

technology generally refers to chemistry and physics

of 1–100 nm sized particles, however, the term has

become overused for synthesis and rational design of

large molecule compounds, polymeric and colloidal

materials. Reduction of size has opened new possibil-

ities for use of metallic elements and their compounds

in medicine. Metal nanosized particles or quantum

dots (colloidal metal chalcogenides, consisting of core

and external shell), exhibit novel physicochemical

properties that cannot be observed in macroscale.

Cations of metal can be complexed with multi-part

macromolecular ligands, so the resulting chemical

constructs can overcome limitations in distribution,

bioavailability and binding specificity of simple

compounds (Balogh et al. 2007; Studer et al. 2010;

Gunawan et al. 2011; Webster 2011).

Biocidal properties of copper and its compounds

have been known since ancient times and include

antibacterial, antifungal, molluscicidal, nematocidal,

antiviral and other (Borkow and Gabbay 2005).

Mechanism of antimicrobial action of copper is

complex and not fully understood; Cu2? ions disrupt

permeability of cell’s membrane, cause lipid perox-

idation and proteins inactivation (Ohsumi et al. 1988;

Nan et al. 2008; Raffi et al. 2010; Wu et al. 2011).

Antibacterial properties of nanometer sized copper

particles come mainly from ions liberation, however,

the size plays important role in adsorption on

bacterial cell surface (Raffi et al. 2010). It is possible

to construct polymers doped with metallic or ionic

copper. Such polymers can be used to make dressings,

sutures, bandages and other medical materials with

anti-infection, anti-inflammatory and healing-accel-

erating properties (Zhang et al. 2007b; Borkow et al.

2009; Grace et al. 2009; Sheikh et al. 2011). Similarly

to copper nanoparticles, copper oxide nanoparticles

are known to be nonspecifically cytotoxic. The

activity comes from intracellular, amino acids med-

iated liberation of copper ions, which form com-

plexes inducing formation of reactive oxygen species

(Studer et al. 2010; Gunawan et al. 2011). Socks

impregnated with copper oxide are effective in

treatment of tinea pedis (fungal infection caused by

Trichophyton genus) (Zatcoff et al. 2008). The socks

can also be used for preventing so called hand and

foot syndrome in capecitabine treated patients; rele-

vant clinical studies have started (ClinicalTrials.gov

2012). Respiratory face masks with CuO offer very

good protection against human influenza virus H1N1

(Borkow et al. 2010). A number of copper containing

textiles and materials are already commercially

available.
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Most of today’s contraceptive intrauterine devices

(IUDs) contain metallic copper in a form of sheet or

wire. Rapid release of cupric ions in the first few days

after implantation of IUD can cause adverse effects

such as pelvic inflammatory disease, bleeding and

expulsion (Timonen 1976; Farley et al. 1992; Mora

et al. 2002). Low density polyethylene-copper nano-

particles composites show sustained, zero-order

kinetic of copper ions release, therefore can be used

to replace conventional IUDs (Cai et al. 2005).

Bhattacharya et al. (2006) suggested that metal

nanoparticles can be used for selective precipitation

and conformational alterations in proteins. They found

that copper nanoparticles clusters precipitate with

human hemoglobin mutant HbE, and can serve as a

screening agent for hemoglobinopathies such as

b-thalassemia (Bhattacharya et al. 2006). Photother-

mal ablation is one of the newest methods of cancer

treatment. Microscopic spheres, built of dielectric core

and metal shell, accumulate passively or actively

(after functionalization with antibodies) in tumors, and

destroy them with heat which the particles emit when

excited by near infrared light. Modified gold nano-

particles are commonly researched for this purpose

(Cai et al. 2008; Chen et al. 2010; Choi et al. 2011). As

an alternative to costly gold, Li et al. (2010) proposed

copper sulfide nanoparticles which have very good

optical properties, minimal cytotoxicity and low

production costs.

Quantum dots (QDs) are nanoparticles that have

received much attention in medicine as tumor detec-

tion and imaging agents (Zhang et al. 2008). Coating

QDs with amphiphilic polymers and functionalizing

their surface with antibodies, peptides, oligonucleo-

tides or small-molecule drugs can be done in order to

facilitate targeted delivery and to reduce non-specific

binding of these nanoparticles (Gao et al. 2005). To

achieve quantitative imaging of tumor vasculature in

deep tissues, Chen et al. (2008) successfully developed

dual optical/PET tracer by functionalizing QDs with
64Cu-DOTA. There is little known, however, about

QDs toxicity, which is an important matter, since most

of QDs contain hazardous elements such as cadmium,

selenium, tellurium and arsenic (Rzigalinski and

Strobl 2009). Oxidation of CdSe cores and liberation

of Cd2? ions take place even in coated QDs (Derfus

et al. 2004). Development of cadmium-free QDs could

be a solution to this problem. Using copper-indium

sulfide based QDs, Yong et al. (2010) achieved very

promising results for novel, non-toxic, highly sensitive

cancer imaging agent.

Superparamagnetic iron oxide nanoparticles are

another type of nanostructures that can be function-

alized in a similar manner to quantum dots. Their

magnetic properties can be used for magnetic reso-

nance imaging (MRI) of cancer. Several authors have

exploited the idea of dual MRI/PET tracing to obtain

complementary data on tumor localization, using
64Cu-DOTA labeled iron oxide particles (Jarrett

et al. 2008; Lee et al. 2008).

Carbon nanotubes (CNTs) have been successfully

applied in various areas of science, technology and in

medicine. CNTs are very promising as multifunctional

platforms for targeted therapy and imaging. A good

example of such CNT construct was synthesized and

tested in vivo by Liu et al. (2007). The authors used

single walled CNTs coated by phospholipids-poly-

ethyleneglycol for water solubility, functionalized

with RGD peptide for targeted delivery and labeled

with 64Cu-DOTA for PET imaging. The resulting

construct showed good biodistribution and selectivity

towards avb3-positive cancer (Liu et al. 2007). CNTs

do not cause acute toxicity, but there is no sufficient

knowledge yet about long term exposure and distant

effects on human health (Liu et al. 2008; Firme and

Bandaru 2010).

Medical sensing devices are very helpful for

diagnosing and for monitoring patient’s pharmaco-

therapy. Various authors have prepared copper nano-

particles-based electrodes for determination of

glucose and other carbohydrates (Male et al. 2004;

Xu et al. 2006; Jiang and Zhang 2010), drugs such as

sotalol or acetaminophen (Boopathi et al. 2004; Heli

et al. 2009) and amino acids (Zen et al. 2004; Dong

et al. 2010). Cai et al. (2003) demonstrated that gold

covered copper nanoparticles, functionalized with

oligonucleotides can be used for electrochemical

detection of characteristic DNA sequences present in

pathogenic microorganisms or mutated genes. Nano-

crystals of CuS conjoined with immunoglobulin, was a

part of multiple protein detection system, developed

by Liu et al. (2004) The system allows sensitive,

simultaneous, electrochemical detection of proteins,

and can be used to construct novel diagnosing devices.

Advances in modern polymer sciences have opened

new horizons for targeted drug delivery systems and

diagnostic tools development. One of the most prom-

ising and extensively studied groups of compounds are
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dendrimers. Dendrimers are globular shaped,

branched polymers with fixed molecular weight that

can be modified with various functional groups on

their surface. Moreover, there are empty spaces

between polymer branches that can be fitted with

small molecules. There has been a lot of interest in

dendrimers as potential drug carriers and artificial

enzymes (Kofoed and Reymond 2005). By utilizing

the ‘click chemistry’, dendrimers can be easily

synthesized and functionalized. Dijkgraaf et al.

(2007) used this approach to synthesize dendrimers

conjoined with RGD peptides and DOTA, for use in

tumor imaging after complexation with radionuclides

such as 111In or 64Cu. Some dendritic copper com-

plexes were tested for antimicrobial activity by Refat

et al. (2009) and showed moderate strength of action

on selected microorganisms. Poly(amidoamine)-

Schiff base dendrimers synthesized by Zhao et al.

(2010) form multinuclear complexes with CuCl2,

which show good antiproliferative activity against

MOLT-4 leukemia and cisplatin resistant MCF-7

breast cancer cells.

There are known several dendritic copper com-

plexes that exhibit catalytic properties ranging from

Lewis acid catalyzed addition reactions to free radical

induced hydrolysis (Yang et al. 2003; Fujita et al.

2006; Kao et al. 2011). One particular example is

nuclease activity of copper(II) complexes of a pyri-

dine-modified poly(amidoamine) dendrimers. These

compounds have ability to induce formation of oxygen

radicals leading to cleavage of nucleic acid strand

(Kao et al. 2011). Artificial nucleases can be used as

anticancer drugs or for sequencing DNA and RNA. On

the other hand, natural recombined nucleases, such as

dornase alpha, are used in lung diseases (cystic

fibrosis, chronic bronchitis), reducing viscosity of

mucus in respiratory tract. An unexplored to date

possibility is the use of dendritic deoxyribonucleases

as potential therapeutics in aforementioned diseases.

Dendrimers can be also used as protective colloids,

acting as templates, in the synthesis of copper nano-

particles with regular shape and size (Jin et al. 2008).

Another type of polymeric nanoparticles are aggre-

gates formed by controlled self assembly of diblock

amphiphilic copolymers. Many shapes can be achieved,

such as spheres, rods, discs, helices, tubes, but the

spheres are generally the easiest to attain and are also the

most versatile. These structures can be stabilized by

cross-linking and variously functionalized (O’Reilly

et al. 2006). Rossin et al. (2005) synthesized shell cross-

linked nanoparticles with folic acid and 64Cu-TETA

moieties attached on the surface which can be used for

early diagnosing and therapy of tumors overexpressing

folate receptor.

Binding copper(II) with small peptides in some

cases can induce formation of nanoaggregates of

resulting complexes (Yang et al. 2008; Ren et al. 2008;

Li et al. 2011). Complexing with metal ions can

reinforce the biological activity of various peptides

because such complexes have more rigid structure,

and therefore less possible conformations (Tian and

Bartlett 1996; Taraszka et al. 2000; Salvati et al.

2008). Li et al. (2011) synthesized four Cu(II)-RGD-

octapeptides and found that these compounds have

significantly higher anti-thrombotic activity in vivo

than free RGD-octapeptides. Similar results are

reported in the paper by Ren et al.(2008), in which

several tripeptide-Cu(II) complexes were found to

have increased thrombolytic activity both in vivo and

in vitro, along with additional vasodilatation effect.

Conclusion

Versatility of copper and its compounds has given it a

strong position in development of new pharmaceuticals.

Although currently there are only a few applications of

Cu in medicine, numerous ongoing studies will most

likely result in novel uses in the future. Copper

radiopharmaceuticals will be probably the first to be

approved for clinical use. Cu-containing materials and

nanomaterials also hold a great promise and should soon

find many applications in various fields of medicine.
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