
DEVELOPMENT OF CPANEL, AN UNSTRUCTURED PANEL CODE,

USING A MODIFIED TLS VELOCITY FORMULATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Christopher R. Satterwhite

August 2015

c© 2015

Christopher R. Satterwhite

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Development of CPanel, An Unstructured Panel Code,

Using a Modified TLS Velocity Formulation

AUTHOR: Christopher R. Satterwhite

DATE SUBMITTED: August 2015

COMMITTEE CHAIR: David D. Marshall, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER: Robert A. McDonald, Ph.D.

Professor of Aerospace Engineering

COMMITTEE MEMBER: Kim Shollenberger, Ph.D.

Professor of Mechanical Engineering

COMMITTEE MEMBER: Nicholas Brake, MS

Stork Aerospace

iii

ABSTRACT

Development of CPanel, an Unstructured Panel Code, Using a Modified TLS
Velocity Formulation

Christopher R. Satterwhite

The use of panel codes in the aerospace industry dates back many decades. Recent
advances in computer capability have allowed them to evolve, both in speed and
complexity, to provide very quick solutions to complex flow fields. By only requiring
surface discretization, panel codes offer a faster alternative to volume based methods,
delivering a solution in minutes, as opposed to hours or days. Despite their utility,
the availability of these codes is very limited due to either cost, or rights restrictions.

This work incorporates modern software development practices, such as unit level
testing and version control, into the development of an unstructured panel code,
CPanel, with an object-oriented approach in C++. CPanel utilizes constant source
and doublet panels to define the geometry and a vortex sheet wake representation. An
octree data structure is employed to enhance the speed of geometrical queries and lay
a framework for the application of a fast tree method. The challenge of accurately
calculating surface velocities on an unstructured discretization is addressed with a
constrained Hermite Taylor least-squares velocity formulation. Future enhancement
was anticipated throughout development, leaving a strong framework from which to
perform research on methods to more accurately predict the physical flow field with
a tool based in potential flow theory.

Program results are verified using the analytical solution for flow around an ellip-
soid, vortex lattice method solutions for simple planforms, as well an anchored panel
code, CBAERO. CPanel solutions show strong agreement with these methods and
programs. Additionally, aerodynamic coefficients calculated via surface integration
are consistent with those calculated from a Trefftz plane analysis in CPanel. This
consistency is not demonstrated in solutions from CBAERO, suggesting the CHTLS
velocity formulation is more accurate than more commonly used vortex core methods.

iv

ACKNOWLEDGMENTS

Throughout my time at Cal Poly, I have faced many new experiences and chal-
lenges, both intellectual and personal. Successful navigation of those challenges could
not have happened without the support and guidance of friends, family, and faculty.

My advisor, Dr. Marshall, sparked my interest in fluid dynamics in undergraduate
coursework, and added to that an intrigue in numerical methods through my graduate
coursework and research. He always ensured I understand the process by which a
solution is reached, and not just the solution itself. This teaching style resonated
with my desire for a comprehensive understanding, rather than just the end product.
The time spent in his office, both for this thesis and coursework, always left me with
enhanced knowledge both of fluid dynamics and a new genre of music.

A special thanks goes to Dr. McDonald, for both his help with this thesis and
passion for helping students enrolled in his courses. Although I’m sure there were
times I made him regret keeping his office open to students all day, he always was
willing to drop what he was doing and help out in any way he could. His knowledge
and past experience with panel codes proved invaluable to the success of this research.

Lastly, but surely not least, I owe an immense amount of gratitude to my friends
and family. My parents, Brian and Julie, continue to help me navigate through these
formative years by thinking objectively, with a long term outlook. Their unwavering
support is greatly appreciated. My girlfriend, Becca, has continually motivated me
to keep pushing towards completion, despite the occasional setbacks and frustration.
To my roommates during my time in San Luis Obispo, thanks for keeping balance in
my life, always being open to getting out and doing something on the weekends when
a break was needed. And lastly, a thanks to my dog, Posey, for walking the fine line
between being a nice break and an unwanted distraction. To all of those that helped
me get here, including those not mentioned, your contributions and support did not
go unnoticed, and for that I thank you.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

NOMENCLATURE .xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Approach . 3

1.3 Document Structure . 4

2 THEORY AND GENERAL NUMERICAL IMPLEMENTATION5

2.1 Laplace’s Equation .5

2.2 Derivation of the Boundary Integral Equation . 7

2.3 Singularity Elements . 12

2.4 Boundary Conditions . 14

2.4.1 Neumann Problem . 15

2.4.2 Dirichlet Problem . 16

2.4.3 Kutta Condition . 17

3 GENERAL NUMERICAL METHODS . 20

vi

3.1 Geometry Discretization . 21

3.2 Linear System of Equations . 24

3.2.1 Influence Coefficients .27

3.2.2 Kutta Condition Enforcement . 29

3.3 Post Processing . 33

3.3.1 Velocity Calculation . 34

3.3.2 Force and Moment Calculation . 37

3.3.3 Trefftz Plane Analysis .39

4 CPANEL IMPLEMENTATION . 42

4.1 Program Structure . 42

4.1.1 Octree Data Structure . 46

4.2 Kutta Condition Enforcement .50

4.3 Velocity Calculation . 53

4.3.1 CPanel Implementation of CHTLS Method .55

4.4 Streamlines . 60

4.4.1 On-Body Streamlines . 61

4.4.2 Off-Body Streamlines . 65

4.5 Stability Derivatives . 66

5 RESULTS AND VERIFICATION . 68

5.1 Verification Tools . 69

5.1.1 Analytical Solution . 70

vii

5.1.2 VLM Methods . 70

5.1.3 CBAERO . 71

5.2 Non Lifting Flow . 72

5.3 Lifting Flow . 81

5.4 SR22 Configuration . 89

6 CONCLUSION . 96

6.1 Summary . 96

6.2 Future Work . 97

BIBLIOGRAPHY . 99

APPENDICES

A CPANEL INPUT AND OUTPUT FILES . 104

A.1 Input File . 104

A.2 Mesh File Formats . 106

A.3 Output Files . 108

A.3.1 .CPout Summary File . 108

A.3.2 Visualization Files . 108

viii

LIST OF TABLES

Table Page

4.1 Surface Velocity Formulation in Existing Panel Codes .54

ix

LIST OF FIGURES

Figure Page

2.1 Boundaries used in BIE formulation1 . 8

2.2 Visual Depiction of the Kutta Condition2 . 18

2.3 Wake Vortex Sheet for Kutta Condition Enforcement2 . 18

3.1 Functional Diagram for Panel Code Implementation . 21

3.2 Wing Body Configuration Generated by PMARC3 . 22

3.3 Illustration of Influence Coefficient Notation . 26

3.4 Relaxation Method for Force-Free Wake2 . 32

3.5 Time Stepping Wake Approach used in PMARC . 33

3.6 Induced Velocity from Vortex Filament . 35

3.7 Velocity Induced by Vortex with Various Core Models . 36

3.8 Intersection of the Wake and the Trefftz Plane2 . 40

4.1 CPanel General Class Structure . 43

4.2 High Level Sequence Diagram of CPanel . 44

4.3 Generic Quadtree for Point Data4 . 47

4.4 Sequence Diagram for Construction of Octree . 48

4.5 Visual of Octree in CPanel . 49

4.6 Wake Lines used in Kutta Condition Enforcement . 51

x

4.7 Variables used in Wake Strength Interpolation . 52

4.8 Duplicate Observations in TLS Derivative Approximation57

4.9 Perturbation Potential along Wake-Body Intersection . 58

4.10 Constraints on Supporting Data in CHTLS Velocity Formulation 59

4.11 Streamline Starting Points on Surface without Sharp Trailing Edge 62

4.12 Activity Diagram for Creation of On Body Streamlines . 63

4.13 Off Body Streamlines over NACA4412 . 65

4.14 Streamline Penetration of Solid Surface . 66

5.1 Ellipsoid Geometry and Dimensions . 74

5.2 Velocity Potential on Ellipsoid Surface (α = 15◦, β = 10◦) 75

5.3 Average Error in Ellipsoid Solution on Successively Refined Discretizations . 76

5.4 Correlation of Pressure Coefficient Error with Error in Normal Vector 77

5.5 Normal Vector’s Effect on Error in Pressure Coefficient . 79

5.6 Variation in Suction Peak Pressure Coefficient Among Various Solution

Methods . 81

5.7 Solution to 2D Lifting Problem by Superposition2 . 83

5.8 Discretized NACA 4412 Finite Wing Used in Lifting Flow Verification 84

5.9 NACA 4412 CL vs α . 85

5.10 NACA 4412 CDi
vs α . 86

5.11 NACA 4412 Cm vs α . 87

5.12 NACA 4412 Drag Polar . 87

xi

5.13 Comparison of Lift Coefficient Based on Trefftz Plane and Surface

Integration . 89

5.14 Comparison of Drag Coefficient Based on Trefftz Plane and Surface

Integration . 90

5.15 Discretized SR22 . 90

5.16 Pressure Distribution over SR22 (α = 5◦, β = 0◦) . 91

5.17 SR22 CL vs α . 92

5.18 SR22 CDi
vs α . 93

5.19 SR22 Drag Polar . 93

5.20 Comparison of Lift Coefficient Based on Trefftz Plane and Surface

Integration for SR22 . 94

5.21 Comparison of Drag Coefficient Based on Trefftz Plane and Surface

Integration for SR22 . 95

xii

NOMENCLATURE

Acronyms

BEM Boundary Element Method

BIE Boundary Integral Equation

CFD Computation Fluid Dynamics

CHTLS Constrained Hermite Taylor Least-Squares

HTLS Hermite Taylor Least-Squares

TLS Taylor Least-Squares

VLM Vortex Lattice Method

English Symbols

A Doublet Influence Coefficient Matrix

a Doublet Panel Influence Coefficient

A Area of Panel

B Source Influence Coefficient Matrix

b Source Panel Influence Coefficient

bref Reference Span

C Wake Panel Influence Coefficient

CF Vector of Force Coefficients

xiii

CM Vector of Moment Coefficients

cref Reference Chord

CDi
Induced Drag Coefficient

CL Lift Coefficient

Cp Pressure Coefficient

d Vector from Streamline Point to Edge of Panel

F Force Vector

h Streamline Step Vector

l Length Vector of Vortex Filament

N Number of Panels in Geometry

n̂ Panel Unit Normal Vector

P Position Vector

p Pressure

r Relative Position Vector

r Relative Distance

RHS Right Hand Side Vector (= Bσ)

Sa Surface of Object in Potential Flow

S∞ Far Field Boundary of Domain

Sref Reference Area

Sw Wake Surface

V Velocity Vector

xiv

V Volume

Vind Vortex Induced Velocity

xcg Center of Gravity

Ȳ Interpolation Weight

Greek Symbols

α Angle of Attack

β Angle of Sideslip

∇ Del Operator

Γ Vortex Strength

µ Doublet Strength

µ Vector of Panel Doublet Strengths

Φ Velocity Potential

Φ Velocity Potential at all Collocation Points

ρ Density

σ Source Strength

σ Vector of Panel Source Strengths

ω Vorticity

Subscripts

cp Quantity at Collocation Point

xv

i Counter for Influenced Panels

j Counter for Influencing Panels

l Lower Trailing Edge Panel

p Point Along Streamline

u Upper Trailing Edge Panel

w Counter for Wake Panels

∞ Freestream Quantity

Superscripts

∗ Perturbed Quantity

xvi

Chapter 1

Introduction

1.1 Motivation

Since the 1960s, panel methods have been a continually evolving analysis method in

the field of fluid dynamics. Initially, due to computing resources, panel methods

stood as the only practical way of obtaining the flow solution for arbitrary

configurations. Under the larger umbrella of Boundary Element Methods (BEMs),

panel methods reduce the dimensionality of a problem by one, allowing a

three-dimensional problem to be solved using a two dimensional surface mesh. As

technology has evolved, computers have grown much more powerful, making

numerical methods such as the Finite Element Method (FEM) and Finite Difference

Method (FDM) much more feasible. While these methods offer higher fidelity, their

dimensionality is one order higher than BEMs, causing computation time to be

much higher. In addition to computation time, discretizing the entire volume can be

an arduous task, as the cell quality can have a significant impact on the solution.

The development of unstructured meshing algorithms has made the generation of

1

surface meshes much simpler, giving panel codes an advantage in their ease of use.

The ease of use, combined with their speed, make panel codes an ideal tool for

conceptual design, or any part of the design process in which rapid design iterations

take place. With the transition to unstructured algorithms, however, the widely

used method of calculating the surface velocities via finite difference approximations

is no longer possible. Most unstructured panel codes currently calculate the velocity

via influence functions governed by the Biot-Savart law and a viscous core model to

avoid issues with the singularity near panel edges. This research applies an

alternative method, in the form of an enhanced Taylor series approach, taking

advantage of the zero normal flow boundary condition on the surface.

While much of the research in the field of Computational Fluid Dynamics

concerns the volume schemes such as the FEM and FDM, panel codes have seen

their own growth as well, expanding both their capability and speed. The

assumptions that govern a potential flow drive researchers to apply separate

methods to the potential flow solution to model more complex aspects of the flow

solution (i.e. compressibility or viscous effects). Additionally, while panel codes

already boast faster computation time than solvers requiring a volume grid,

acceleration algorithms such as the Fast Multipole Method have been an active area

of research to further reduce the computation time, namely for large cases. All of

these potential enhancements make a panel code a useful platform from which to

perform research into one of many areas. While a number of panel codes have

2

already been developed, the existing codes generally carry one drawback or another

that suggest the development of an in-house panel code at California Polytechnic

State University - San Luis Obispo, would be highly beneficial.

1.2 Approach

This research seeks to take advantage of an opportunity for Cal Poly, providing

both a useful tool for undergraduate students, and a platform on which graduate

students can perform research. Due to their discretized nature, a panel code

naturally lends itself to an object oriented language. For that reason, CPanel is

written in ANSI C++, using an object oriented approach, and also utilizes modern

software development practices, such as version control and unit level testing.

Maintaining and developing CPanel with the source code in a version control system

provides future developers with a history of the program as well as the opportunity

for parallel development among multiple graduate students, simplifying the

integration of new branches of research as they are performed. Along similar lines,

unit testing will provide stability in the development process as well. By testing the

software at the most basic level continuously through development, newly integrated

software that unintentionally changes the behavior of the system can be detected

and dealt with accordingly.5

3

1.3 Document Structure

The document is laid out in a manner that gives the reader a background in

potential flow in Chapter 2, followed by a step by step description of the major

aspects of a panel code in Chapter 3. Methods that are typically applied in these

aspects are also addressed in Chapter 3. Chapter 4 dives into the specifics of

CPanel’s implementation, focusing on areas that differ significantly from other panel

codes. Important aspects of the program design are communicated through UML

diagrams, in an effort to make future navigation and modification of the program

easier. Lastly, the results of CPanel are presented in Chapter 5, and verified using

results from other potential flow based programs.

4

Chapter 2

Theory and General Numerical Implementation

The following chapter will outline potential flow theory and how the boundary

element method can be applied to create a panel code. Boundary conditions will be

addressed in presenting the general procedure by which a numerical solution can be

computed.

2.1 Laplace’s Equation

In order to arrive at the governing equation for a potential flow, one may start with

the most basic of governing equations for fluid flow, the continuity equation.

∂ρ

∂t
+∇ · ρV = 0 (2.1)

Continuity states that the net flow of mass into the control volume is equal to the

time rate of change of mass in the control volume. For steady flows, the time rate of

change of mass is zero, leaving

∇ · ρV = 0 (2.2)

5

The dot product here can be expanded, separating Equation 2.2 into two terms.

V ·∇ρ+ ρ ·∇V = 0 (2.3)

Assuming that the fluid is incompressible, the first term disappears and the

continuity equation is simplified to

∇ ·V = 0 (2.4)

At this stage, a scalar function called the velocity potential, Φ is introduced

and defined as follows.

V = ∇Φ (2.5)

By defining the velocity potential such that the velocity is the gradient of the

velocity potential, another assumption is implied. The vorticity in a flow is defined

as the curl of the velocity vector, ω = ∇×V. Substituting the gradient of the

velocity potential for the velocity, the vorticity becomes

ω = ∇×∇Φ = 0 (2.6)

The curl of a gradient is a vector calculus identity and is always zero. Therefore, the

restriction that the flow is irrotational is necessary for a potential flow to exist. This

implies that the flow must be inviscid, as viscous effects introduce vorticity into the

6

flow.

Equation 2.5 can now be used in conjunction with Equation 2.4 to arrive at

Laplace’s Equation, the only governing equation needed to model a steady,

incompressible, and inviscid flow.

∇
2Φ = 0 (2.7)

It is important to note that because Laplace’s Equation is linear, the principle of

superposition applies, meaning that the combination of a number of individual

solutions is also a solution. The next section will summarize the general solution to

the potential flow problem, concluding with the two fundamental solutions that lay

the foundation for a panel code.

2.2 Derivation of the Boundary Integral Equation

Panel codes’ ability to compute the flow solution using only a surface discretization

is actually a specific case of a larger group of computational techniques for solving

PDEs, called Boundary Element Methods. The BEM is used in many different

engineering disciplines such as fluid dynamics, electrostatics, heat transfer and

structural problems.6 Boundary Element Methods can be split into two categories,

direct methods, and indirect methods. In direct methods, the formulation of the

Boundary Integral Equation (BIE) involves integrating the potential itself over the

7

surface. Indirect methods integrate discrete singularity elements over the surface,

using influence functions for each singularity to set the singularity strengths such

that they satisfy the applied boundary conditions on the surface. The following

summarizes the indirect formulation of the BIE described in Katz and Plotkin.2 For

a more detailed explanation, one can consult the text itself.

Figure 2.1: Boundaries used in BIE formulation1

Important to the derivation is a basic knowledge of Green’s theorems that will

provide a means of transforming volume integrals into surface integrals. Kellogg

provides a more detailed description of the identities that will be presented in the

8

following paragraphs.7 The boundaries referred to in the formulation are depicted in

Figure 2.1. Although the wake boundary, Sw, may not be a physical boundary, it

can be used to model a discontinuity in the velocity potential. This will be

important in modeling lifting flows and the enforcement of the Kutta condition.

In order to arrive at Green’s first identity, two scalar functions of position, U1

and U2 are defined in the volume of interest, V . U1 and U2 shall both be continuous

in V and have continuous second derivatives as well. If these constraints hold, the

divergence theorem can be written as

∫

V

U2∇
2U1dV +

∫

V

(∇U1 ·∇U2)dV =

∫

S

U2

∂U1

∂n̂
dS (2.8)

Green’s theorem states that if U is harmonic and continuously differentiable,

the integral of the normal derivative over the boundary of a closed region is zero.

This yields
∫

S

U2

∂U1

∂n̂
dS = 0 (2.9)

And conversely, if U1 and U2 are reversed

∫

S

U1

∂U2

∂n̂
dS = 0 (2.10)

9

Subtracting Equation 2.9 from Equation 2.10 leads to Greens second identity.

∫

V

(U1∇
2U2 − U2∇

2U1)dV =

∫

S

(U1

∂U2

∂n̂
− U2

∂U1

∂n̂
)dS = 0 (2.11)

U1 and U2, are now defined as follows. Both represent solutions to Laplace’s

Equation in the volume, V , shown in Figure 2.1.

U1 =
1

r

U2 = Φ

(2.12)

Due to the singularity created by U1, a small sphere of radius, δ, is included in

the surface integration and the boundary integral equation becomes,

∫

S+Sδ

[

1

r

∂Φ

∂n̂
− Φ

∂

∂n̂

(

1

r

)]

dS = 0 (2.13)

where S = S∞ + Sa + Sw. In order to formulate an expression for the potential at

any point, Φ (P), each surface’s integral will be addressed individually before

arriving at the final boundary integral equation.

A spherical coordinate system is used to perform the integration along Sδ,

yielding
∫

Sδ

[

1

r

∂Φ

∂n̂
− Φ

∂

∂n̂

(

1

r

)]

dS = −4πΦ(P) (2.14)

Rearranging Equation 2.13 now gives the potential at the arbitrary point P. The

10

coefficient, 1

4π
, is the Green’s function for a three dimensional unbounded flow.8

Φ(P) =
1

4π

∫

S

[

1

r

∂Φ

∂n̂
− Φ

∂

∂n̂

(

1

r

)]

dS (2.15)

In order to integrate across the surface, Sa, an inner potential, Φi, is defined for

an interior point, Pi. As Pi is outside the volume of interest, the potential at that

point is zero and the normal is pointed in the opposite direction.

0 = −
1

4π

∫

S

[

1

r

∂Φi

∂n̂
− Φi

∂

∂n̂

(

1

r

)]

dS (2.16)

The influence of the interior point can now be included by adding Equation 2.16 to

Equation 2.15, resulting in an expression for the potential due to integrating across

the surface Sa.

Φa(P) =
1

4π

∫

Sa

[

1

r

(

∂Φ

∂n̂
−

∂Φi

∂n̂

)

− (Φ− Φi)
∂

∂n̂

(

1

r

)]

dS (2.17)

The influence of the far field boundary is purely a function of the global

position, P, of the point of interest. This influence will be defined as

Φ∞(P) = V∞ ·P (2.18)

The only surface that still needs to be addressed is the wake. As stated earlier,

11

the wake can be used to model the discontinuity in the velocity potential that

occurs in a lifting case. While the potential is discontinuous across the wake, the

velocity is continuous, implying the that wake cannot bear any fluid dynamic loads.

This makes the first terms in the surface integral go to zero, leaving

Φw(P) = −
1

4π

∫

Sw

Φ
∂

∂n̂

(

1

r

)

dS (2.19)

With the influence of each individual surface, the total potential an arbitrary

point can now be determined by summing the influence of each surface.

Φ(P) =
1

4π

∫

Sa

[

1

r

(

∂Φ

∂n̂
−

∂Φi

∂n

)

− (Φ− Φi)
∂

∂n̂

(

1

r

)]

dS

−
1

4π

∫

Sw

Φ
∂

∂n̂

(

1

r

)

dS + Φ∞(P)

(2.20)

2.3 Singularity Elements

The final boundary integral equation (2.20) reveals that the potential at any point

in the volume of interest is a function of the potential and the normal derivative of

the potential at the boundaries. If these values can be found using the necessary

boundary conditions, then the flow solution throughout the domain can be

computed. Herein lies the value in the Boundary Element Method. Because these

two values are going to be recurring as the problem is constructed, they can be used

12

to define the strength of two fundamental elements, the source, σ and the doublet, µ.

µ = Φi − Φ (2.21)

σ =
∂Φi

∂n̂
−

∂Φ

∂n̂
(2.22)

Using these definitions, Equation 2.20 can be rewritten to include these two

singularity elements.

Φ(P) =
1

4π

∫

Sa

[

−
1

r
σ + µ

∂

∂n̂

(

1

r

)]

dS +
1

4π

∫

Sw

µ
∂

∂n̂

(

1

r

)

dS + Φ∞(P) (2.23)

This integral equation can also be written as the summation of Ns discrete

point source elements and Nd point doublet elements.

Φ(P) =
1

4π

[

Nd
∑

i=1

µi

∂

∂n̂

(

1

ri

)

−

Ns
∑

j=1

σj

rj

]

+ Φ∞(P) (2.24)

Looking at this form makes it easier to extract the influence of one individual

singularity. The most easily defined is the source element.

Φsource = −
σ

4πr
(2.25)

The doublet element requires more work in evaluating the partial derivative.

13

The detailed derivation can be seen in Katz and Plotkin,2 with the final result being

Φdoublet =
µ

4π

∂

∂n̂

(

1

r

)

= −
µ · r

4πr3
(2.26)

These two influences can be integrated over any geometry, a line, surface, or

volume, to generate influence functions for any type of discretization. The order of

the singularity strength over the element, as well as the order of the discretized

element are choices that must be made by the developer, based on the intended

application. Reasons for choosing lower or higher order methods will be discussed in

the following chapter.

2.4 Boundary Conditions

In order to solve for the strength of singularities distributed across the surface, a

decision must be made with regard to the type of boundary condition applied. The

far field boundary requires that

lim
r→∞

Φ∗ = 0 (2.27)

where Φ∗ is the perturbed velocity potential. This condition was satisfied in the

derivation of the singularity elements and therefore does not need to be addressed in

the numerical evaluation of the external potential flow problem. Boundary

conditions on the object submerged in a potential flow, however, need specification

in one of two forms.

14

2.4.1 Neumann Problem

The most intuitive means of imposing a wall boundary condition would be to

mathematically state that the velocity normal to the surface is zero.

V · n̂ = 0 (2.28)

In terms of the velocity potential, this can be written as

∇Φ · n̂ =
∂Φ

∂n̂
= 0 (2.29)

This boundary condition could also be used to specify a non-zero velocity, as is the

case with a mass flow boundary condition that could be used to model a jet or

surface transpiration. Specification of the function derivative at the surface is

referred to as a Neumann boundary condition, and in the case of panel codes, may

be called the direct implementation of the boundary condition. The enforcement of

a Neumann boundary condition requires the gradient of the influence functions in

Equations 2.25 and 2.26 to get the velocity induced at the point the boundary

condition is applied to, due to all the other singularity elements in the domain. The

15

boundary integral being solved for this type of problem becomes

∇Φ(P) · n̂ =
1

4π

∫

Sa

[

−
∂

∂n̂

1

r
σ + µ

∂2

∂n̂2

(

1

r

)]

dS

+
1

4π

∫

Sw

µ
∂2

∂n̂2

(

1

r

)

dS +
∂

∂n̂
Φ∞(P) = 0

(2.30)

2.4.2 Dirichlet Problem

The same physical condition can be applied in an indirect manner, using a Dirichlet

boundary condition. A Dirichlet boundary condition involves the specification of the

function value itself at the boundary. For any point enclosed by Sa in Figure 2.1, the

velocity is zero. This implies that the internal potential, Φi, must be constant, as

proven in Lamb.9 While this constant could be selected arbitrarily, stating that the

the internal potential must be equal to the free stream velocity potential, Φ∞, leads

to a simplification of the governing boundary integral equation in Equation 2.23.

1

4π

∫

Sa

[

−
1

r
σ + µ

∂

∂n̂

(

1

r

)]

dS +
1

4π

∫

Sw

µ
∂

∂n̂

(

1

r

)

dS = 0 (2.31)

Equation 2.31 can be implemented numerically by satisfying

1

4π

[

Nd
∑

i=1

µi

∂

∂n̂

(

1

ri

)

−
Ns
∑

j=1

σj

rj

]

= 0 (2.32)

at control points placed just interior to the surface at each influencing singularity

element.

16

Equation 2.32 does not yield a unique solution when using both source and

doublet elements, as there are at least 2N unknowns and only N equations, with

more than 2N unknowns coming from the wake panels in a lifting flow. Typically,

the source strengths are prescribed based on the free stream velocity,

σ = n̂ ·V∞ (2.33)

reducing the problem to determining the doublet strengths distributed on the body.

In the case of a lifting problem, the wake surface contains additional doublet

singularities, as shown in Equation 2.19. As the wake is not a solid boundary, the

boundary conditions are not applied on this surface, leaving more unknowns than

control points. This can be addressed by writing the wake doublet strengths in

terms of the elements that shed them.

2.4.3 Kutta Condition

In a flow around a body with sharp trailing edges, the fluid traveling over the upper

and lower edges will merge at the trailing edges. This phenomenon is better known

as the Kutta condition, which states that ”a body with a sharp trailing edge in

motion through a fluid creates about itself a circulation of sufficient strength to hold

the rear stagnation point at the trailing edge”.10 If the circulation, Γ, is not specified

around the body, the velocity across the sharp trailing edge becomes infinite due to

17

Figure 2.2: Visual Depiction of the Kutta Condition2

a discontinuous jump in pressure, as shown in Fig. 2.2a. If the circulation is fixed so

that the stagnation point is at the trailing edge, one can see in Fig. 2.2b that the

streamlines transition smoothly, as would be expected in an attached, lifting flow.

There are a number of methods used to implement this condition numerically

in a BEM. The most commonly implemented method is to model the wake using a

vortex sheet that is shed from the trailing edge. The difference in vorticity between

Figure 2.3: Wake Vortex Sheet for Kutta Condition Enforcement2

18

the upper and lower trailing edge panels, µu and µl respectively, is transferred into

the wake panel such that

µw = µu − µl (2.34)

This ensures that the vorticity along the trailing edge segment, shared by all three

panels, is zero, satisfying the Kutta condition. An illustration of how this is

implemented is shown in Figure 2.3. The vortex sheet method also allows for a

number of enhancements to the wake model that will be discussed in the following

chapter.

19

Chapter 3

General Numerical Methods

This chapter will outline the numerical approach to solving the Boundary Integral

Equation discussed in Chapter 2. Functional decomposition will be used in order to

convey the solution process. By starting with a high level view of a typical panel

code structure, each general area can be broken down into more detailed

components, providing clarity to the program development process and design

decisions that the developer faces. Functional decomposition also is important in

the development process, as it inherently draws attention to areas in which the same

function is performed, limiting the amount of redundant code and making the

software easier to maintain and debug.5 In each decomposition, methods

implemented in existing panel codes will be presented, giving insight into the

history of panel code development and advances being made in current research.

The top level decomposition of a general panel code can be seen in Figure 3.1.

20

Figure 3.1: Functional Diagram for Panel Code Implementation

3.1 Geometry Discretization

In the early stages of panel code research and development, the discretization of the

surface was included as a part of the panel code. The early codes required all

information necessary for a simulation to be formatted input, making the

discretization process complex and time consuming. This restricted solutions to

those of relatively simple geometries, such as that of Figure 3.2. More recently,

research into automating the discretization has resulted in software packages made

specifically for that purpose.

While advances have been made in automating both unstructured and

structured meshing processes, the term automation can take on a different meaning

21

Figure 3.2: Wing Body Configuration Generated by PMARC3

for each type of topology. Structured meshes no longer have to be generated using

formatted input, but still require the definition of hexahedral blocks that resemble

the domain to control the number of elements at the intersection of surfaces. For

complex geometries, the blocking process can require a significant amount of time

and experience. Due to the fact that a given node can be shared by any number of

cells in an unstructured mesh, the blocking process is bypassed and a mesh can be

generated with less experience and time.11 Structured meshes do offer advantages

over unstructured meshes. The alignment of the cells in the direction of the vector

field introduces less numerical error into the solution for the same number of cells.

For example, a structured mesh can have a high density of cells in the chord wise

direction for flow over a wing without also increasing the density in the spanwise

22

direction where gradients are not as large. Additionally, taking derivatives in a

structured mesh can be done using finite differences, while an unstructured mesh

calls for more complex methods. The value of unstructured meshes lies in the ease

of their generation. The speed in generating them can be traded against the added

resources required by the higher cell count required. By reducing the dimensionality

of the problem by one, panel codes reduce the impact on computing resources that

is associated with choosing an unstructured over structured mesh. This, combined

with their simplicity in generation, makes unstructured meshes an ideal candidate

for panel codes where turn around time is a priority. Due to the extensive research

in this area, panel codes now tend to focus on the solver itself and the post

processing capabilities, leaving the discretization to software developed solely for

that purpose.

A number of commercial packages are available that can be used to generate an

unstructured surface mesh from a CAD model. For the work of this thesis,

OpenVSP was used due to it’s open framework, rapid geometric modeling and

automated mesh generation. The software can be downloaded from

www.openvsp.org and information regarding the meshing capability can be found on

the wiki accessible from the home page.

23

3.2 Linear System of Equations

As discussed in Chapter 2, the governing Boundary Integral Equation can be

written is summation form for a system of discrete singularity elements. No matter

what form the singularity element takes on, an analytical function can be derived

for the influence of a unit strength element at any point in the domain. These are

referred to as influence coefficients. Satisfying the given boundary condition at

every collocation point in the domain results in a linear system of equations,

Aµ−Bσ +Φ∞ = Φcp (3.1)

where

A =

























a11 a12 . . . a1NB

a21 a22 . . . a2NB

...
...

. . .
...

aNB1 aNB2 . . . aNBNB

























,

24

B =

























b11 b12 . . . b1NB

b21 b22 . . . b2NB

...
...

. . .
...

bNB1 bNB2 . . . bNBNB

























,

µ =

























µ1

µ2

...

µNB

























, σ =

























σ1

σ2

...

σNB

























,

Φ∞ =

























V∞ · p1

V∞ · p2

...

V∞ · pNB

























and Φcp =

























Φcp1

Φcp2

...

ΦcpNB

























The components, aij and bij, of the matrices A and B refer to the velocity

potential influence at the ith collocation point due to a unit strength source and

doublet, respectively, located at the jth singularity element. A visual representation

of this is presented in Figure 3.3. Once the influence coefficient formulation is

derived, the matrices can be constructed in a double loop through the Nb body

25

elements.

Figure 3.3: Illustration of Influence Coefficient Notation

As discussed earlier, the potential at the collocation points, Φcp, just interior to

the surface can be specified as equal to the free stream potential, Φ∞. This

simplifies Equation 3.1 to become

Aµ = Bσ (3.2)

Physically, every line of Equation 3.2 is satisfying a zero normal flow boundary

condition in Dirichlet form at each of the collocation points. At this stage, µ and σ

must be solved for, leaving an underdetermined system with 2NB unknowns and

only NB equations. The source strengths can be set according to Equation 2.33,

26

accounting for the oncoming free stream flow.

RHS =

























b11 b12 . . . b1NB

b21 b22 . . . b2NB

...
...

. . .
...

bNB1 bNB2 . . . bNBNB

















































V∞ · n̂cp1

V∞ · n̂cp2

...

V∞ · n̂cpNB

























(3.3)

And the linear system,

Aµ = RHS (3.4)

has a unique solution and can be solved using the developer’s choice of linear

algebra techniques. In constructing the matrices of influence coefficients, A and B, a

couple of choices must be made by the developer in deriving the influence functions.

3.2.1 Influence Coefficients

The velocity potential at an arbitrary point due to a singularity element can be

derived by integrating a point singularity over the surface of the panel. The generic

form of this calculation is

aij = −

∫

S

(

n̂j · rij

4π |rij|
3

)

dS (3.5)

bij = −

∫

S

(

1

4π |rij|

)

dS (3.6)

27

for a doublet and source element, respectively, based on the results of Equations

2.25 and 2.26. The integration can be done either analytically or numerically,

depending on the complexity. The influence coefficient derivation is dependent upon

two choices that must be made by the developer: the order of the discretization and

the order of the singularity distribution across the discretized surface.

The earliest panel codes in the 1960s, such as the Hess Code, began with flat

panels and constant strength singularities. Gradually, higher order singularity

distributions were adopted, before a transition back to lower order methods. In the

early 1980s, the second version of the Hess Code, Hess II, used second order

singularity distributions over parabolic panels. The advantages in this method lie in

the ability to more accurately capture the flow physics with a coarser discretization,

especially over regions of high curvature. Given that the discretization was done as

formatted input, this provided a significant advantage. Early research also found

that a continuous singularity distribution is required to reduce numerical

instabilities that occur in a supersonic potential flow.12 More recently, however,

faster independent methods, such as those applied in CBAERO, have been

developed to handle supersonic flow regions.13 The higher order methods do come

with a penalty, however, in the large increase in the number of equations being

solved, as more boundary conditions must be applied at the panel edges in order to

ensure the singularity strength is continuous between neighboring panels.

Additionally, the derivation of the influence coefficient for that method is much

28

more involved.

Due to the increasingly automated discretization process, the benefits of using

higher order methods are diminished, as increased accuracy can be obtained simply

by generating a finer surface mesh. For this reason, CPanel applies a constant

strength singularity distribution for both sources and doublets. The derivation for

such a singularity was first done by Hess and Smith in the 1960s.14,15 This early

formulation, and the reformulation in Katz and Plotkin, requires that each influence

coefficient calculation is performed in a local panel reference frame, and then

transformed back into a global reference frame. Maskew developed a formulation

that utilizes vector products to avoid the coordinate transformation and simplify

the calculation.16 The solution also utilizes the fact that a constant strength

doublet element is equivalent to a vortex ring.2 This allows the calculation to be

reduced to a summation of the contribution from each of the edges of any polygon.

The details of the formulation can be found in Maskew.

3.2.2 Kutta Condition Enforcement

For lifting flows, the matrix of influence coefficients must be modified such that the

Kutta condition of Section 2.4.3 is satisfied. In a most basic sense, any method by

which this is done specifies the circulation around the body such that the stagnation

point is located at the trailing edge. This can be done in a number of ways with

varying complexity and accuracy. At the root of each of these methods is the need

29

to model the discontinuous potential jump through the wake boundary. As a

doublet represents a change in the velocity potential, these methods use some form

of the doublet singularity element to model the wake.

The simplest form of a wake model consists of semi-infinite doublet panels, also

known as horseshoe vortices, extending infinitely downstream from the trailing edge.

The influence of such panels is well understood, as they stem from another potential

flow analysis method, lifting line theory. This type of a wake model is pictured in

Figure 2.3.

The velocity potential influence of each vortex sheet, just as the panels, can be

written as the product of the influence coefficient and the strength of the element.

The wake, however, is not a solid surface and a wall boundary condition cannot be

applied on the wake panels. This adds the unknown wake strength to the system of

equations without adding an equation. Equation 2.34 can be applied to eliminate

the unknown wake strength and yield

Φiw = Ciwµw = Ciw (µu − µl) (3.7)

where w is a counter for all of the wake vortex sheets, and i is counter for all of the

collocation points where either a Neumann or Dirichlet boundary condition is

enforced. This requires the influence of the upper and lower panels to be modified in

30

the matrix of influence coefficients of Equation 3.2.

aij = aij ± Ciw (3.8)

The influence of the wake panel is either added or subtracted from the influence of

the surface panel, depending on whether the surface panel is above or below the

wake panel, respectively.

While results from horseshoe vortex wake models demonstrate sufficient

accuracy for most steady cases, the physical requirement that the wake is a

force-free shear layer is not satisfied by this method. Enhancements to the wake

model aim to satisfy this condition either by iteratively changing the shape of the

wake, or allowing the wake to develop over a finite number of discrete time steps.

In the first of these methods, a number of wake grid planes are used

perpendicular to the free stream, at varying distances downstream, to divide the

wake into quadrilateral panels. When the solution is computed, the corners of the

wake panels are convected in the direction of the perturbation velocity in the plane

perpendicular to the free stream velocity. The solution is then recomputed and the

process repeats itself until the movement of the wake nodes reaches some tolerance.

The setup for this method can be seen in Figure 3.4. VSAERO, as well as other

panel codes, employs this method.16

The other method of generating a force free wake follows a similar principle,

31

Figure 3.4: Relaxation Method for Force-Free Wake2

but the wake panels are instead generated by convecting the trailing edge nodes

with the local velocity, not restricted to any plane, at each discrete time step. For

each time step, a new row of wake panels is generated and the Kutta condition is

enforced for that row. This method, illustrated in Figure 3.5, is advantageous

compared to the relaxation method for two reasons. By creating wake panels purely

based on the local velocity, fewer computations are needed than starting with all the

wake panels already established.17 The time stepping approach also expands the

panel codes capability to model unsteady flows.

While both these methods do generate a more accurate wake shape, they both

add significantly to the time needed to compute the solution. Additionally, as the

wake nodes are moved in discrete time steps, a non-physical situation can occur if

the wake panels intersect themselves or a solid body downstream.

Vortex particle wakes have emerged more recently as a method of generating a

32

(a) t = 5∆t (b) t = 25∆t (c) t = 50∆t

Figure 3.5: Time Stepping Wake Approach used in PMARC

force free wake without the concern of tracking the connectivity of the wake nodes.

The solution process follows one similar to the time stepping approach, and

therefore is more computationally expensive for steady cases than a fixed wake.

Acceleration methods being applied to the standard solver are also being

implemented with this wake model to make the method more feasible. The vortex

partical method also has been used to capture propeller airframe interactions

without requiring detailed information regarding the propeller.18

3.3 Post Processing

With known source and doublet strengths on the surface, the potential at each

collocation point is known and the post processing can begin. Panel codes are a

continually evolving analysis method and a number of independent theories and

methods have been applied to the basic panel code to further enhance the post

processing capability. This section will cover the basic post processing steps. The

opportunity for additional enhancements will be discussed later as possible future

33

work.

3.3.1 Velocity Calculation

Once the singularity strengths are known, the velocity tangent to the surface at

each collocation point is computed by computing the gradient of the potential. This

stems directly from the definition given in Equation 2.5. Although simple in theory,

the practical calculation of the gradient becomes more challenging, specifically on

an unstructured surface discretization.

On a structured discretization, as the early panel codes tend to be, finite

differences could be applied in the streamwise and spanwise directions. This method

is described in detail in Maskew, outlining the process in general, as well as

addressing special cases when the panel is on a sharp edge or at the edge of a

patch.16 Off-body velocity calculations can be done by taking the sum of the

velocity influences from each panel at the desired point. The velocity influence can

be calculated directly by taking the gradient of the potential influence functions in

Equations 2.25 and 2.26 for a point singularity, or the influence function that results

from integrating over a panel for a panel singularity. As an example, a constant

strength doublet panel can be represented by a vortex ring and the velocity

influence can be calculated as the sum of the influence of the N sides of the panel.2

The velocity induced by the side of a panel, or vortex filament, follows the

34

Biot-Savart Law.

Vind (x, y, z) =
−µ

4π

∫

l

r× dl

|r|3
(3.9)

For a straight line segment, the integration yields

Vind (x, y, z) =
µ

4π

(|r1|+ |r2|) (r1 × r2)

|r1| |r2| (|r1| |r2|+ r1 · r2)
(3.10)

The variables used in Equation 3.10 are illustrated in Figure 3.6.

Figure 3.6: Induced Velocity from Vortex Filament

Typically, if the finite difference approach cannot be used, as is the case with

an unstructured discretization, the surface velocity is computed by the same means

as the off-body velocities are computed. Issues with this method arise from the

singularity that occurs near a vortex filament, as is shown in Figure 3.7. Various

core methods have been applied to create a more physical representation of the

influencing vortex. The simplest of these is a Rankine vortex, in which the motion

within the core radius is simulated by a rigid body and the induced velocity is

35

proportional to the distance from the vortex. Other methods, referred to as viscous

core methods, allow the velocity to decay smoothly to zero as the radius decreases.

The viscous core regularization shown in Figure 3.7 is drawn from the work of van

Garrel.19 These viscous core methods remain an active area of research. For a more

Figure 3.7: Velocity Induced by Vortex with Various Core Models

detailed explanation of various regularization techniques, one can look at the work

of Winckelmans.20 Early codes, such as PMARC, that employed vortex core models

typically depended upon a user input of the core radius. Although they are not well

documented, modern unstructured codes, such as CBAERO and FastAero, have

managed to apply core methods that do not require user input.13,21 These methods

appear to be more robust and accurate, but still can cause a nonphysical velocity

influence and adversely affect the accuracy of the solution. This will be shown and

36

discussed in the results section of Chapter 5.

The work of this thesis aims to avoid the issues outlined above by employing a

constrained Hermite Taylor series least squares (CHTLS) method of computing the

surface derivatives. Applying a least squares approach to the Taylor series

representation of scattered function values is a well understood method of obtaining

partial derivatives in unstructured and meshless solution methods. With only a

surface discretization, however, the problem is ill posed without additional

information. Including known directional derivatives solves this problem with very

accurate results, as shown by McDonald and Ramos.22 The method’s specific

implementation in CPanel will be further discussed in the following chapter.

3.3.2 Force and Moment Calculation

With the known local velocity at each collocation point, the pressure coefficient can

be calculated for the associated panel. The pressure coefficient at the ith panel is

defined as

Cpi =
pi − p∞

1

2
ρ∞ |V∞|2

(3.11)

and can be simplified for an incompressible flow to be

Cpi = 1−

(

|Vi|

|V∞|

)2

(3.12)

Each panel’s contribution to the force coefficients can be calculated using the

37

following equation.

CFi
=

−CpiAin̂i

Sref

(3.13)

Similarly, the panel’s contribution to the moments about the center of gravity, xcg

can be calculated.

CMi
=

(xi − xcg)×CFi

lref
(3.14)

The reference length, lref is either the reference chord for the pitching moment, or

the reference span for the yawing and rolling moments. The total force and moment

coefficients for the entire body can then be found by taking the sum of the

individual contributions. For lift and drag coefficients, a coordinate transformation

is required from body to wind axes. This method of calculating the lift and drag,

however, can yield very inaccurate results, specifically in the induced drag

coefficient. The combination of high curvature at the leading edge and large

gradients in pressure combine to demand very high resolution of the surface near

the leading edge in order to obtain satisfactory results.23 While there are methods

to obtain accurate lift and drag coefficients without high resolution near the leading

edge, the moment calculations remain dependent on this method and therefore

require a fine discretization for acceptable results.

38

3.3.3 Trefftz Plane Analysis

An alternative to the surface integration method for obtaining lift and drag

coefficients involves the application of the integral form of the momentum equation,

applied to a control volume surrounding the body. For a steady potential flow, this

reduces to
∫

S

ρ∞V (V · n̂) dS = F−

∫

S

pn̂dS (3.15)

If the control volume is large, the perturbations on the boundaries, other than

the one intersecting the wake, disappear as this was one of the conditions in the

derivation of the boundary integral equation in Section 2.2. The divergence theorem

can be used to convert the remaining surface integral into a line integral along the

intersection of the wake and Trefftz plane, as shown in Figure 3.8. The resulting

integrals for the lift and drag coefficients are

CL =
2

|V∞|Sref

∫ b

2

−
b

2

Γ (y) dy (3.16)

CDi
=

1

|V∞|2 Sref

∫ b

2

−
b

2

Γ (y)w (y) dy (3.17)

The detailed derivation of the lift and drag expressions can be found in Katz and

Plotkin.2

As for the numerical implementation of a Trefftz plane analysis, there a couple

options that are very different from each other, each holding advantages and

39

Figure 3.8: Intersection of the Wake and the Trefftz Plane2

disadvantages. The first method, described by Lundry, involves a series

representation of the lift distribution, fit through points of known circulation. The

terms of the series are then used in the induced drag calculation.24 The advantages

of this method lie in the speed of the computation, as well as the independence of

the wake shape downstream. When previously discussed methods of generating a

force-free wake, such as time stepping and relaxation, are employed, the difficulty of

evaluating the integrals in Equations 3.16 and 3.17 remains unchanged.

Additionally, the elimination of the induced downwash term, w, that can be seen in

Equation 3.17, eliminates issues with the singular velocity induced by nearby wake

vortex filaments. The primary issue with this method, however, is the requirement

of knowledge of the local chord length at each span location where the circulation is

40

specified. From a numerical implementation perspective, this would either limit the

application to simple planforms, or require additional computational work to find

the local chord length from the given geometry.

An alternative is to prescribe a certain number of spanwise points at the

intersection of the wake and Trefftz plane. The circulation, Γ, at these points can be

interpolated from the known circulation of the nearest wake panels, and the induced

downwash can be calculated either from a velocity influence routine employing a

vortex core method, or numerical derivative of the potential at points extending

perpendicular to the wake. The latter is employed in CPanel, with a cloud of points

generated just above the wake in the Trefftz plane. A taylor series least squares

method is then used to calculate the induced downwash from the known velocity

potential at the cloud of points.

41

Chapter 4

CPanel Implementation

With the general numerical methods applied in panel methods discussed, the

specifics of CPanel will be covered in the following sections. Only methods that

differ significantly from those covered in Chapter 3 will be addressed, with results

specific to those portions of the program verified in the next chapter.

4.1 Program Structure

As is the case with other numerical methods in engineering analysis, Boundary

Element Methods naturally lend themselves to an object oriented approach in their

development. The decomposition of the geometry into physical subcomponents

provides a framework from which class definitions can be abstracted. Once the

classes are defined, the data they contain and the methods that operate on that

data are locked and hidden from future development. This allows for future

expansion of program capabilities without having to learn all the intricacies of the

program and its data structures. The abstraction of classes also restricts the

42

potential ripple effect of future changes made in the implementation, provided that

the class interface remains the same.25

Written in ANSI C++, CPanel utilizes an object oriented approach in the

design of the program. The abstraction of objects was primarily made from physical

components of a discretized geometry. Figure 4.1 illustrates the relationship of the

primary components of the program. Subclasses are shown by a solid arrow pointing

from the base class to the derived, as is the case with the panel and wakePanel

classes. Connections without arrows indicate a relationship, but not inheritance.

Figure 4.1: CPanel General Class Structure

The separation of the actual cases from the geometry is representative of how

the solution process is divided. Figure 4.2 shows the need to create the geometry

and calculate all the influence coefficients only once for all of the flow conditions

43

specified in the input file. The influence coefficients are only dependent on their

spatial relationship to each other, and the change in flow conditions is reflected in

the setting of source strengths using Equation 2.33. This separation allows the user

to run a number of different solutions, while performing the most computationally

expensive portion of the program only once. Additionally, if the option is turned on,

CPanel will write the influence coefficient matrices to a text file for future use of the

same geometry.

Figure 4.2: High Level Sequence Diagram of CPanel

To minimize memory requirements, while maintaining the ability of various

classes to operate on commonly shared data, pointers are used heavily. The

ownership of all instances under the geometry class is given to geometry, and the

further abstracted objects contain pointers to those objects below it. For instance,

geometry owns all of the edge instances, but panel contains pointers to the

associated edge instances, and surface contains pointers to all the bodyPanel

instances related to it.

44

Differentiation between panels that make up a physical boundary, bodyPanels,

and those that model the discontinuous wake, wakePanels, stems from the

distribution of both source and doublet singularities over the physical boundary,

and just doublet singularities over the wake surface. Methods that are performed in

the same way for both types of panels are defined in the parent class, panel, and

those that are specific to one type of panel are defined in the corresponding derived

class. The complete separation of the surfaces from the wakes immediately shows

the advantages of object oriented development. With modification of the Kutta

condition enforcement method being a planned enhancement to CPanel, the

developer of that portion of the code only requires knowledge of the wake’s interface

with geometry in order to implement the new method, without worrying about

adverse effects throughout the rest of the software.

In order to ensure that the interface of the classes remains the same through

future development, a practice called unit level testing is employed. Unit level

testing is a practice that helps in the maintenance and debugging of software

throughout the entire development process. Unit tests are written without requiring

the knowledge of implementation details within a class or a method, and are

therefore sometimes referred to as ”black box” testing methods. Maintenance of the

software is made easier by the use of these tests to ensure that the class interfaces

remain unchanged amidst changes to the internal implementation, especially when

multiple developers may be contributing.26 While they do not guarantee the proper

45

operation of the system as a whole, they direct the developer to small portions of

code where an error is occurring, and reduce the time required to debug following

changes to a unit’s implementation.

4.1.1 Octree Data Structure

In addition to the structure discussed above, connecting the physical components to

higher level components to which they are related, an octree data structure is

employed to relate the physical location of individual panels. The primary

motivation for this structure is looking forward to future enhancement of CPanel

with the implementation of a fast tree method. Before discussion of that

opportunity, the basics of an octree and how it is coded in CPanel are covered.

Octrees, or more generally tree-based data structures, are a type of spatial data

structure that stores data in a hierarchal manner, allowing for faster queries

regarding spatial relationships. These data structures are used in a number of

different fields, including computer graphics, image processing, and even database

management. They have also proven very useful in various CFD applications, such

as cartesian grid generation, multi-grid solution methods, and fast tree methods in

modern panel codes. The formulation of the tree is based on the recursive division

of a node into child nodes. This division results in each node containing four

children in 2D, and eight children in 3D, hence the name, octree. To make the

concept more clear, a quadtree is shown if Figure 4.3, with the left side showing the

46

actual decomposition of the domain, and the right side showing the tree structure

that results from the decomposition.

Figure 4.3: Generic Quadtree for Point Data4

Beginning with a bounding box containing all the data points, each node is

divided into four if it contains more than one data point. This process is performed

on each node until each child is a leaf node, meaning it has as many or fewer than

the prescribed data points within its boundary. The process is exactly the same for

an octree, simply with one added dimension. The process of building an octree, as it

is done in CPanel, is shown in the sequence diagram in Figure 4.4. The

implementation in CPanel is done in a templated base class, meaning that the

octree can be used to store any object that the user specifies. The class cannot be

used directly. A user specified method for determining the reference point of the

object must be provided. In the case of panels, the centroid of the panel is used.

This generalized implementation allows easy application of the octree structure to a

vortex particle wake, as is used in FastAero.27

47

For readability, the creation of an octree of only three levels is shown in Figure

4.4, with the root node, one child, and a leaf node. In actuality, the number of

children, or successive subdivisions of the domain, is dependent upon the size of the

data and the maximum number of members allowed in a node.

Figure 4.4: Sequence Diagram for Construction of Octree

Figure 4.5 shows the octree generated around a generic aircraft geometry made

up of just over 11,000 panels. For this case, the maximum panels per node is set to

ten, and the result is an eight level octree.

In the early stages of development, prior to the implementation of a

node-edge-panel structure, the octree data structure was used to find panel

48

(a) Front (b) Side

(c) Top (d) Isometric

Figure 4.5: Visual of Octree in CPanel

49

neighbors that would be used in the velocity calculation. Neighbors can be found by

descending the tree to find the panel of interest, checking the other panels in the

leaf node to see if they share an edge, and if necessary, checking the panels in the

neighboring nodes as well. The method reduces the speed of the neighbor search

from O(N), for a linear search, to O(3n+ F), where N is the number of panels in

the dataset, n is the levels of refinement in the octree, and F is the number of

panels per node.28 While the speed gained from the tree is significant, the adoption

of the node-edge-panel structure offered significantly better performance.

Despite the modified neighbor searching algorithm, the octree still will prove

useful in the future development of CPanel, specifically with the application of

multipole methods and spatial queries outside of the neighbor search.

4.2 Kutta Condition Enforcement

After all edges are scanned to set each panel’s neighbors, those edges that contain

two surface panels and one wake panel can be flagged as trailing edges. From the

midpoint of each trailing edge, a line of constant vorticity is created to be used in

the calculation of each wake panel’s strength. These lines are shown on a simple

wing geometry in Figure 4.6. The strength of each wake line is that of the edge from

which it is shed, corresponding to the difference in the strength of the upper and

lower surface panels. This is consistent with Equation 2.34.

To enforce the Kutta condition, the influence of each wake panel must be

50

Figure 4.6: Wake Lines used in Kutta Condition Enforcement

incorporated into the influence coefficient matrix, A, of Equation 3.1. In order to

avoid introducing additional unknowns to the system of equations, their strength

must be represented as a function of the related surface panel strengths. Figure 4.7

defines the variables used in the following equations for the influence of the wake

panel of interest. The wake strength for any panel can be calculated with a linear

interpolation of the wake lines by which it’s collocation point is bound

µw = µ1 + (µ2 − µ1) Ȳ (4.1)

51

where Ȳ is the interpolation weight.

Ȳ =
yw − y1

y2 − y1
(4.2)

Figure 4.7: Variables used in Wake Strength Interpolation

The influence of the wake panel on the ith surface panel is written as the

product of the influence coefficient and the panel’s strength.

Φiw = Ciwµw (4.3)

Combining Equations 4.1 and 4.3 with the definitions of the wake line strengths

shown in Figure 4.7, the influence of the wake panel on any panel, i, can be written

as

Φiw = Ciw

[(

1− Ȳ
)

µu1 + (Ȳ − 1)µl1 + Ȳ µu2 − Ȳ µl2

]

(4.4)

The Kutta condition is satisfied by adding the coefficients to the column of A

52

that corresponds to the correct upper or lower surface panel. Once this is done, the

linear system of equations is solved using a GMRES algorithm included in the Eigen

library. The resulting doublet strengths at each panel give the perturbation

potential across the surface and the post processing can begin.

4.3 Velocity Calculation

Arguably one of the more important aspects of a panel code is how the velocity on

the surface is calculated once the singularity strengths are known. The importance

stems from the rippling effect it has on the results, affecting the pressure distribution

and therefore the integrated forces and moments. Despite the value it holds, it is an

area that is not often covered in great detail in the program’s documentation. Prior

to the growth of automatic mesh generation and unstructured potential flow

programs, the method was consistent, as the structured discretization lent itself to

finite differences to approximate the gradient of the potential. Unstructured meshes

drive the developer to explore different methods. As can be seen from Table 4.1,

documentation of these methods is often nonexistent, or not very specific, but it is

assumed that generally some type of viscous core method is utilized.

The list in Table 4.1 is by no means exhaustive, but it highlights some of the

documented panel codes from the last few decades. A couple of the programs, such

as VSAERO and APAME, were originally developed for a structured discretization,

and therefore their outdated documentation cites a finite difference approach for the

53

Table 4.1: Surface Velocity Formulation in Existing Panel Codes

Program Year Discretization Velocity Formulation

VSAERO16 1987 Structured Finite Difference
PAN AIR29 1990 Structured (Subpanels) Spline
PMARC3 1992 Structured Finite Difference and Viscous Core
FPA30 1996 Unstructured Viscous Core

FastAero31 2000 Unstructured Higher Order Singularities
DWFS32 2003 Unstructured Not Documented

CBAERO13 2004 Unstructured Not Documented
APAME33 2008 Unstructured Not Documented

velocity formulation. More recent versions of these codes demonstrate compatibility

with unstructured meshes but new documentation is not available. PMARC

employs a finite difference method on the physical boundaries, and a fixed viscous

core method in the time stepping wake and off body streamlines. The core radius is

set by the user, adding a potential additional source of error. The nonphysical

velocity created, even with the viscous core, is made clear by an additional routine

included in PMARC. When calculating off body streamlines, an algorithm to check

for the streamline crossing through a physical boundary is needed when it

approaches the surface.3 FastAero uses higher order singularity distributions across

the panels, allowing surface derivatives to be calculated directly, at the cost of

increasing the number of equations being solved in the linear system.31 CBAERO

has demonstrated an ability to produce satisfactory results with constant strength

singularities, although the method used is not documented and results show

nonphysical dampening of the vortex influences. These results will be discussed in

the following chapter.

54

CPanel differs greatly from other recent panel codes in its unique approach to

the velocity formulation. The work of McDonald and Ramos offers a modified

Taylor series approach, allowing the velocity to be calculated from the knowledge of

the velocity potential at the collocation points, and the zero normal flow condition

imposed at the boundary. The method incorporates knowledge of directional

derivatives to create a Hermite Taylor Least Squares (HTLS) problem, and the

exact specification of the directional derivative at the point of interest in a

Constrained Hermite Taylor Least Squares (CHTLS) problem.22 The Taylor Least

Squares (TLS) method has already been used in CFD applications, primarily in

volume based methods using unstructured meshes. However, with only data on the

surface, the TLS problem is ill-posed. The inclusion of directional derivatives, which

are readily available in a boundary element problem, solves this problem, providing

an opportunity for unstructured panel codes that has yet to be employed.

4.3.1 CPanel Implementation of CHTLS Method

The inclusion of the CHTLS method into CPanel required special treatment for

some special cases that will be discussed. Results of the method, and a method of

increasing the accuracy of the approximation, will be discussed in the following

chapter. Details of the method itself can be found in the work of McDonald and

Ramos.22

The implementation of the method itself remained consistent with the

55

documentation, allowing for the approximation of derivatives of any order, r, of a

function of any number of variables, N . The number of observations, t, required for

the problem to be well posed is calculated as follows.

t =
(r +N)!

N !r!
− 1 (4.5)

For a three dimensional problem (N = 3) carried out to a third order Taylor

series (r = 3), as is typically the case in CPanel, this results in nineteen observations

required. In the hermite type problem, a panel provides two observations, specifying

both the function value, as well as the directional derivative at the collocation point.

Special treatment is required, however, in areas near a discontinuity, or areas with a

large number of coplanar panels.

If two collocation points align with each other through the point of interest,

they do not provide a unique function observation. Figure 4.8 illustrates this

scenario in a two dimensional sense. The two aligned points do not provide unique

information for computing the derivative in the x direction, and therefore only

provide one observation towards the required number, t, in the TLS problem. The

result is a singular matrix that can be fixed by including more observations, or

reduction in the order or dimensionality of the problem. The most likely scenario in

a panel code in which this will arise is in a flat portion of a surface, where

supporting panels are coplanar with the panel of interest. CPanel will first try to

avoid the issue by including additional observations above the required amount. In

56

addition to increased robustness, this inclusion allows the least squares method to

smooth possible errors resulting from the iterative solution to the linear system of

equations.22

Figure 4.8: Duplicate Observations in TLS Derivative Approximation

If a singular matrix still arises, a two dimensional approximation of the

derivatives is performed in the panel of interest’s local reference frame. If the matrix

remains singular, the velocity is approximated according to Equation 4.6, presented

by Kinney.13

V = (n̂×V∞)× n̂ (4.6)

In regions near the wake, special care is taken in gathering the supporting data,

as data on opposing sides of the wake will cause nonphysical velocities normal to the

wake surface. This comes from the instantaneous jump in potential across the wake

surface, as shown in Figure 4.9. One option to deal with the discontinuity, utilized

by Ramos, is to use an adjusted potential value that accounts for the wake strength

57

Figure 4.9: Perturbation Potential along Wake-Body Intersection

at that spanwise location.1 CPanel addresses the issue simply by rejecting panels on

the other side of the discontinuity. These cases arise near the trailing edge of the

lifting surface, or on a downstream body intersecting the wake, such as the fuselage.

Both of these are illustrated in Figure 4.10.

Despite being upstream of the discontinuous wake, velocity calculations on the

wing tip patches were inconsistent when using supporting data from either the

upper or lower surfaces, especially in aft panels near the trailing edge. CPanel

therefore uses a flag to mark panels located on a tip patch, and performs a two

dimensional CHTLS in the local reference frame with only supporting panels that

also reside on the patch.

58

(a)

(b) No Constraints (c) Wing Tip (d) Near Wake (e) Trailing Edge

Figure 4.10: Constraints on Supporting Data in CHTLS Velocity Formu-
lation

59

4.4 Streamlines

It is often helpful in the design process to visualize the flow field to see exactly what

is happening in a region of interest. This is often done through the use of pathlines,

streaklines, or streamlines, depending on the desired flow phenomenon. For a steady

flow, all three of these lines coincide with each other. As CPanel is currently limited

to steady cases, differentiation between these lines is not required and they will be

referred to as streamlines in this document. Should CPanel be expanded to handle

unsteady simulations, differentiation will be required and corresponding algorithms

should be developed.

In addition to their utility in flow visualization, streamlines can be used in a

panel code to provide a viscous approximation in an otherwise inviscid flow field.

The algorithm presented lays the groundwork for further enhancement of CPanel to

include viscous forces. In order to do so, a seeding algorithm will need to be

developed that generates even coverage of the surface, and an integral boundary

layer method can be applied along each of the streamlines.

Off body streamlines are also presented, although they encounter issues when

they approach closely to a surface. Due to the singularity created by the

Biot-Savart law in the velocity calculation, the flow field is not divergence free and

it is possible for streamlines to cross a solid surface. This is an issue that must be

addressed when a vortex particle wake is implemented, and therefore was deemed

outside the scope of this work. The following section will cover the basic algorithm

60

used in generating streamlines. Examples of the aforementioned improvement

opportunities will also be pointed out.

4.4.1 On-Body Streamlines

A streamline is created by inserting a massless particle at a specified location, and

tracking the position as it convects through the flow field. Mathematically, the

streamline can be found by integrating the following differential equation.

dxp

dt
= vp (xp, t) (4.7)

The decisions the developer must make is where to start the streamlines, how

to perform the integration, and what criteria dictates the end of streamline. Each of

these three decisions will be discussed for the on-body case.

CPanel begins streamline tracing by locating all of the rear stagnation points

on the geometry. The integration is then done in reverse until a forward stagnation

point is reaches, following the method of Kinney.13 This is done separately for each

surface in the geometry, with lifting surfaces being treated differently from non

lifting surfaces.

On lifting surfaces, the Kutta condition guarantees that the stagnation point is

at the trailing edge. Therefore, CPanel starts a streamline on both the upper and

lower surfaces at the midpoint of a sharp trailing edge. On a non lifting surface, the

streamlines will converge at a single rear stagnation point. According the the

61

definition of the velocity potential, a stagnation point will occur where the gradient

of the potential is zero, meaning there is a local maximum (rear stagnation point) or

minimum (forward stagnation point) of the potential. However, due to the error

that arises from the discretization, the collocation point of the panel with a

maximum velocity potential is likely close to, but not the actual stagnation point.

For this reason, CPanel starts a streamline at this collocation point and propagates

forward until the stagnation point is reached. A cloud of points is then generated

around the stagnation point, and projected on to the neighboring panels, creating

the starting points for that surface.

Figure 4.11: Streamline Starting Points on Surface without Sharp Trailing
Edge

Once the starting points are found, the Euler method is used to propagate the

62

streamline backward until a forward stagnation point is reached. The logic behind

the tracing of an on body streamline is shown in Figure 4.12.

Figure 4.12: Activity Diagram for Creation of On Body Streamlines

The step size is set by a number of points per panel and the distance from the

point to the next edge. The step vector is calculate with Equation 4.8

h =
d

N − i
(4.8)

where d is the vector from the current point to the point where the velocity vector

63

and edge intersect, N is the points per panel, and i is the number of points already

on the current panel.

With this methodology, as opposed to a fixed time step, keeping track of which

panel the streamline is currently crossing is simple, allowing the use of the CHTLS

method to calculate the velocity constrained to the surface. Additionally, assuming

that a properly constructed mesh is more resolved in areas of large gradients of

velocity, the streamlines will also be more resolved in those areas, providing

smoother results.

The branch shown in Figure 4.12 that addresses the case when no intersecting

edge can be found is in place to deal with premature termination of the streamline

when the streamline is close to tangent to an edge. In this case, it is possible for a

streamline to cross a panel to an edge, and then remain on that panel and traverse

to another edge.

The algorithm currently in place is robust in the creation of individual

streamlines. Due to the physics of the problem, however, streamlines will converge

on each other in certain regions of the flow, leaving some parts of the surface bare,

and others very densely covered. This does not affect the users ability to visualize

the flow, but would produce poor results if the streamlines were used to calculate

viscous forces. Prior to this capability being added to CPanel, the seeding and

termination criteria need to be adapted to account for the proximity of nearby

streamlines, as is done by Kinney.34

64

4.4.2 Off Body Streamlines

For off body analysis, a higher order Runge-Kutta method provides an advantage

over lower order methods in that it will smooth regions with large gradients in the

velocity. Additionally, methods such as the Runge-Kutta-Fehlberg (RKF) utilizes an

adaptive step size to further smooth the integration. This smoothing becomes most

important when an off body streamline is approaching a surface, limiting the chance

that too large of a time step is taken and the boundary condition of zero normal flow

on the surface is violated. In the interest of computation time, the velocity influence

formulation is used for points not located on the body. If the TLS method were to

be used, the potential at an entire cloud of points would need to be calculated in

order to find the velocity at each point on the streamline. The resulting streamlines

using the velocity influence formulation can be seen in Figure 4.13.

Figure 4.13: Off Body Streamlines over NACA 4412

As discussed previously, a divergence free velocity field is difficult to guarantee

with vortex core models. The effect of the non physical velocity field is easily

visualized by looking closer at the streamlines. Figure 4.14 shows the streamline

65

entering the body near the trailing edge on the lower surface. The solution to this

problem will be similar to that used in the vortex particle wake implementation, as

the guarantee of a divergence free field is the biggest challenge in using vortex

particles.18 It was therefore deemed outside the scope of this work, but the

framework for the streamline creation is in place.

Figure 4.14: Streamline Penetration of Solid Surface

One suggested strategy, outside of a more complex viscous core model, would be

to use the velocity influence method when the particle is a certain distance from the

surface, and switch to a HTLS method when the particle is inside of that distance.

The existing octree data structure can be used for those spatial queries as well.

4.5 Stability Derivatives

If the option is specified in the input file, CPanel will calculate the static stability

derivatives for each case. This involves running two perturbed cases, one for angle

of attack and one for angle of sideslip. Once the cases are run, the calculation of the

derivatives is approximated with a simple first order difference. For example, the

66

derivative of the pitching moment with respect to angle of attack would be

calculated as follows,

dCm

dα
= Cmα

=
C∗

m − Cm

α∗ − α
(4.9)

where C∗

m and α∗ represent the perturbed value. CPanel perturbs each angle by half

of a degree so as to avoid excessive influence of numerical error that could arise if a

very small angle were used.

Dynamic stability derivatives are not currently included in CPanel. Due to the

increase in cases that must be run for each stability derivative, addition of this

feature would be most beneficial once the code is sped up with a fast tree method.

The process by which those derivatives are calculate, however, is a modification of

source strengths at each panel to simulate a free stream flow representative of the

standard free stream velocity combined with a rolling motion about the prescribed

axis. Once the source strengths are modified, the solution progresses in the same

fashion as a standard case.

67

Chapter 5

Results and Verification

The software development process involves two processes that are intended to

ensure the software meets requirements and the products satisfy their intended

needs. The processes, verification and validation, typically are performed together

and are more generally referred to V and V. Verification provides evidence for

whether the software meets objectives as they relate to correctness and

completeness. Validation provides evidence the whether the software is solving the

right problem and correctly modeling physical laws.35

In the case of a panel code, their long history and use in the aerospace industry

has taken them through extensive validation, and their strengths, as well as

constraints, are well understood. Any new software, though, even if it is meeting a

need that other programs have met, must undergo extensive verification to ensure

that the results are reliable. For this reason, the results presented will be in the

context of verification, with comparisons to existing potential flow programs that

are widely accepted in the industry. The validation portion of the V and V,

68

consisting of comparisons to experimental flow data, can be found in a number of

other reports, primarily from earlier panel codes’ documentation.

This chapter will first introduce the tools used in the verification process,

followed by results and the verification itself. The chronology will follow the natural

progression of the program, beginning with non lifting flows, then lifting flows on a

simple wing configuration, and finally geometries more representative of a complete

aircraft. In addition to the verification, an interesting result of the CHTLS method

is presented with recommendations for discretization software that can increase the

accuracy of the surface gradients.

5.1 Verification Tools

The existence of a potential flow allows for the application of a number of different

solution methods, depending on the geometry. A number of these solution methods

are used in verifying the results provided by CPanel, each providing insights to the

accuracy of a specific aspect of the software. These comparisons allowed for

verification of the general solution process, as well as verification of implementation

methods unique to CPanel, such as the Kutta condition enforcement and velocity

formulation. Each solution method or program is listed below with a brief

description.

69

5.1.1 Analytical Solution

While the need for panel codes and numerical techniques stems from the lack of an

analytical solution for complex, arbitrary configurations, exact solutions exist for

specific geometries. In three dimensions, the solution exists for an ellipsoid

submersed in a potential flow. The work of Munk provides the solution in terms of

the semi-principal axes of an ellipsoid at any orientation to the free stream flow.36

The solution allows for verification of the panel code solution via comparison of

the velocity potential at the collocation points on a discretized ellipsoid.

Additionally, as the solution for the potential exists in an analytical form, the

analytical derivative provides the exact velocity at a given point. This provides the

best way of verifying the CHTLS velocity formulation and investigating the sources

of error that exist.

5.1.2 VLM Methods

Two different Vortex Lattice Methods are used in the verification process. For

simple planforms, Athena Vortex Lattice is used. Developed by Mark Drela at MIT,

AVL is used heavily in the design of planforms, especially when they are rapidly

changing. The vortex lattice method provides good approximation for the

characteristics of lifting surfaces. The main benefit is the very fast solution time,

allowing for large design spaces to be explored, whether in a trade study or

optimization problem. The deficiencies in the method lie in inability to capture the

70

thickness portion of the problem, which will have minimal effect on the lift and drag

coefficients, but a significant effect on the pitching moment coefficient. In this

verification process, AVL is used to ensure that the Kutta condition enforcement

method is functioning properly in a simple lifting problem.

Another VLM became available more recently and is included in the OpenVSP

distribution. Developed by Dave Kinney at NASA, VSPAERO is built off the same

principles as AVL, but benefits from the use of a direct adaptation of the VSP

model. Using the degenerate geometry, VSP creates a model of zero thickness

surfaces representative of the actual model that can be used in a VLM. This allowed

the SR22 configuration to be run through a VLM to compare to the panel code

results from both CPanel and CBAERO.

5.1.3 CBAERO

CBAERO is an unstructured panel code also developed by Dave Kinney for NASA.

The program has extensive capabilities in both subsonic and supersonic flows,

providing viscous approximations, surface heating, and fluid-structural interaction

as well. For the subsonic solver, the solution method utilizes a fast tree method

based on first order singularities on flat panels. The singularity and discretization

order are exactly the same as CPanel, providing nearly a one to one comparison.

Differences arise in the tree method and the velocity formulation. Dave Kinney

states that the velocity is calculated using analytical influence functions, and a hard

71

cutoff is implemented to avoid issues with the singularity. Additionally, empirical

correlations between mach number and pressure coefficient are used to trim extreme

pressure coefficient values to what is considered realistic (Dave Kinney, personal

communication, August 21, 2015). As the approach of CBAERO is the closest of

these methods to that of CPanel, it provides a means of comparing results on

general configurations. Differences in the results are rather significant on the SR22

configuration and possible reasons for the discrepancy will be addressed.

5.2 Non Lifting Flow

Munk’s solution for the velocity potential around an ellipsoid provides the first

opportunity in the development of a panel code to check the solution process as a

whole.

The velocity potential, valid for any point on the surface of an ellipsoid is given

by

Φ (x, y, z) = |V|

[(

α

2− α
+ 1

)

x+

(

β

2− β
+ 1

)

y +

(

γ

2− γ
+ 1

)

z

]

(5.1)

where

α = abc

∫

∞

0

dt

(a2 + t)
√

(a2 + t) + (b2 + t) + (c2 + t)

β = abc

∫

∞

0

dt

(b2 + t)
√

(a2 + t) + (b2 + t) + (c2 + t)

72

γ = abc

∫

∞

0

dt

(c2 + t)
√

(a2 + t) + (b2 + t) + (c2 + t)

and a, b, and c represent the principle axis of the ellipsoid.

For the discretization, a MATLAB program called DistMesh is used due to

VSP’s inability to generate a perfect ellipsoid. DistMesh is developed by two faculty

members at UC Berkeley and uses a signed distance function for the initial node

generation, making it well suited for simple geometric shapes. For an ellipsoid, the

signed distance function is

d(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1 (5.2)

The dimensions used in this validation are shown in Figure 5.1. The ellipsoid is

set at an angle of attack and sideslip of 15◦ and 10◦, respectively, so as to avoid an

axis aligned velocity. A nominal mesh is shown with just over 5,000 panels. To

verify the order of accuracy of the CPanel solution, a set of meshes ranging from

2,000 to 11,000 panels were used.

The resulting velocity potential on the surface is shown in Figure 5.2. The

solution shown is computed on a surface made up of approximately 11,000 panels.

Due to the first order discretization and singularity strengths used in CPanel,

the error, when plotted on a log scale, should show first order behavior on

73

Figure 5.1: Ellipsoid Geometry and Dimensions

successively refined meshes, as is seen in Figure 5.3.

As mentioned previously, an exact solution for the potential also provides an

exact solution for the velocity, and therefore the pressure coefficient. This provides

an opportunity to look at the error in the CHTLS velocity formulation and

investigate methods to mitigate that error. The most noticeable trend in the error is

that the regions of high curvature show much more error in the pressure coefficient

than the areas that are relatively flat. This can be attributed to the error between

the normal vector based on the panel’s geometry and the normal vector based on

the underlying surface. The normal vector at any point on an ellipsoid is fairly

straight forward to compute. Taking the gradient of the equation of an ellipsoid and

74

(a) CPanel Solution

(b) Exact Solution

Figure 5.2: Velocity Potential on Ellipsoid Surface (α = 15◦, β = 10◦)

normalizing it yields the normal vector as a function of position.

n̂ =
∇F

|∇F |
=

[

2x
a2
, 2y
b2
, 2z
c2

]

√

(

2x
a2

)2
+
(

2y

b2

)2
+
(

2z
c2

)2
(5.3)

75

Figure 5.3: Average Error in Ellipsoid Solution on Successively Refined
Discretizations

The magnitude of difference between the vector normal to the panel itself and

the normal vector calculating using Equation 5.3 at the panel centroid is shown in

Figure 5.2. The correlation is clear, with both the error in the pressure coefficient

and the error in the normal vectors being largest along the highly curved portions of

the ellipsoid.

To mitigate this source of error, CPanel was modified to accept a modified

geometry file that includes normals calculated based on the bezier surface

underlying the discretization. The file appends the normal vectors to the standard

Cart3d format following the ID tags of the panels. Both the standard Cart3d (.tri)

and the modified (.tricp) formats can be seen in Appendix A. While the use of the

76

(a) Error in Pressure Coefficient

(b) Magnitude of Error in Normal Vector

Figure 5.4: Correlation of Pressure Coefficient Error with Error in Normal
Vector

surface based normal vectors reduces the error that arises in the CHTLS method,

they cannot be used to reduce the error in the velocity potential. In fact, use of

them in constructing the linear system of equation will result in a system that

cannot be solved. This is due to the fact that the influence coefficients are a

77

function of the edge geometry on each panel. The normal vector used in setting the

boundary condition must be normal to the surface made by those edges, and

therefore cannot be the normal vector based on the bezier surface. The CHTLS

method, however, is purely based on scattered sampling of the velocity potential at

points on the surface, completely independent of the edges of each panel.

The benefit provided by the use of normals from the bezier surface is very

significant, as can be seen in Figure 5.5. The error on a coarse discretization of

2,000 panels can be reduced to less than the error on a fine discretization of 11,000

panels just by using the surface based normal vectors. An interesting result of the

CHTLS velocity formulation is seen in comparing the 3rd order and 2nd order

formulations. In estimating first derivatives of the velocity potential, a 2nd order

CHTLS should show first order accuracy, as is seen in Figure 5.5. The 3rd order

CHTLS shows less than first order behavior, and an explanation for this could not

be found. Because the CHTLS is based on velocity potential values with first order

accuracy, an increase in the order of CHTLS should only be as accurate as the data

it is based on. Therefore, it would be expected that the 3rd order CHTLS would

show first order accuracy as well. Figure 5.5 shows that the 3rd order CHTLS

appears to be converging to a non zero error, indicating an error. In an effort to find

this bug, the output at each step from the CPanel implementation of the CHTLS

method was compared to the code generated by McDonald in MATLAB. Quantities

between the two implementations showed agreement, leaving the explanation for the

78

behavior requiring further investigation. Based on these results however, a 2nd

order CHTLS is preferred. An added benefit of this finding is the requirement for

fewer supporting panels to be found for use in the velocity calculation.

Figure 5.5: Normal Vector’s Effect on Error in Pressure Coefficient

In order to take advantage of the increased accuracy when using Bezier based

normal vectors, the software used for mesh generation must be capable of writing

the normals from the underlying bezier surfaces to a file. The open nature of VSP

makes this possible with a small amount of knowledge of the code. Bezier surfaces

are navigated using u and w coordinates, similar to the way you can navigate along

a line using a parameter, t. Therefore, the position on the surface in u and w

coordinates that is closest to the center of the triangle, in x,y, and z coordinates,

79

must be located. The bezier normal vector can then be calculated at that point. The

center of a triangle is not uniquely defined, and it should be noted that the centroid,

Pcentroid =
P1 +P2 +P3

3
(5.4)

is used in CPanel, where P1, P2, and P3 are the node locations. Once this is

calculated for each panel, VSP already has routines to perform the remaining steps.

For any user working with VSP and CPanel in conjunction, this is a recommended

modification, and a possible modification for future releases of VSP itself.

In order to be consistent in the rest of the verification process, CBAERO was

also run for the ellipsoid geometry to anchor the results against a known analytical

solution. The surface pressures revealed that CBAERO predicts a weaker suction

peak than the exact solution and the solution from CPanel. This is shown in Figure

5.6.

The exact solution predicts a minimum pressure coefficient of -0.62 so the limits

were set to -0.5 and -0.65 to show more contrast. The weaker suction predicted by

CBAERO could be attributed either to the cutoff method used in the velocity

calculation, or due to the trimming that is done based on empirical correlations.

The implications of this inaccuracy become more pronounced with the other

geometries used in verification. Results show significant support for the CHTLS

method when compared to other methods.

80

(a) Exact (b) CBAERO

(c) CPanel (d) CPanel with Bezier Normals

Figure 5.6: Variation in Suction Peak Pressure Coefficient Among Various
Solution Methods

5.3 Lifting Flow

In order to validate the enforcement of the Kutta condition, a simple lifting

geometry is used. This allows verification using three sources sources, CBAERO,

AVL, and lifting line theory. The results also provide additional support for the

CHTLS velocity formulation.

81

Differences between panel codes and VLMs in the predicted lift and induced

drag coefficients are small, while differences in the pitching moment coefficient are

more noticeable. This should be expected, and is explained with an analogy to a 2D

case of the lifting problem.

The superposition principle can be used to show that this problem can be

solved by solving three simpler problems: a thick airfoil at zero angle of attack, a

flat plate at an angle of attack, and a cambered airfoil with zero thickness at zero

angle of attack. This is illustrated in Figure 5.7. The only two problems that will

induce vorticity into the flow are the latter two, both of which are captured in a

VLM. The thickness portion of the problem will modify the pressure distribution,

and therefore will affect the moment coefficients the most. With this in mind, the

CPanel results for lift and drag coefficients should show a strong correlation with

the AVL and lifting line theory.

The geometry used in this verification is shown in Figure 5.8. The airfoil is a

NACA 4412 and the wing has a span of six and chord length of one. The mesh was

created using OpenVSP and consists of 10,342 surface panels, with an additional

868 panels making up the wake surface that is not shown. Clustering of panels is

concentrated near the leading edge, wing tips, and trailing edge in order to resolve

the areas of high curvature and large gradients. The solution was computed using

panel based normal vectors and does not reflect the improvement from using bezier

surface based normal vectors. In comparing Trefftz and surface integrated

82

Figure 5.7: Solution to 2D Lifting Problem by Superposition2

coefficients, however, a solution using Bezier based normal vectors is shown for

comparison.

The resulting lift, drag, and pitching moment coefficients are plotted in the

figures below, alongside predictions from lifting line theory, AVL, and CBAERO.

The lifting line theory results are based on fifteen spanwise vortices and are adjusted

in order to reflect the zero lift angle of attack for a NACA 4412 airfoil of -4◦.37

Beginning with the lift curve in Figure 5.9, the best agreement is shown

between CPanel, AVL, and lifting line theory. CBAERO predicts consistently lower

lift coefficient. The plots report the Trefftz plane lift coefficient and therefore

83

Figure 5.8: Discretized NACA 4412 Finite Wing Used in Lifting Flow
Verification

differences cannot be attributed to the difference in velocity formulation between

CBAERO and CPanel. The most likely cause, assuming that the fast tree method

implemented in CBAERO showed agreement with the standard, fully dense,

method, is the differences in implementation of the wake and enforcement of the

Kutta condition. Kinney is not very specific in his documentation of how the Kutta

condition is enforced, and therefore more detailed hypothesis for the source of the

error cannot be explored. For this simple geometry, however, lifting line theory and

the vortex lattice method employed in AVL provide very accurate predictions and

the agreement between CPanel and those solution methods suggests that the Kutta

condition enforcement in CPanel yields satisfactory results.

The induced drag shows a similar trend in Figure 5.10. The lower prediction of

84

Figure 5.9: NACA 4412 CL vs α

induced drag by CBAERO follows logically as the induced drag coefficient is

proportional to the square of the lift coefficient. Another potential contributor to

this discrepancy could be the manner in which the downwash is calculated. The

numerical implementation of the Trefftz plane integration in CBAERO is not

documented. However, assuming the implementation is similar to the CPanel

method discussed in Section 3.3.3, the induced velocity normal to the wake, w,

could be artificially decreased, resulting in a lower induced drag. This theory is

supported later in Figures 5.13 and 5.14 as well.

The pitching moment, shown in Figure 5.11 is purely based on the integrated

surface pressures, and therefore lends further insight into the differences in the

velocity formulations. For this geometry, the center of gravity was computed in VSP

85

Figure 5.10: NACA 4412 CDi
vs α

to be at a location of [0.416, 0, 0.03]. The largest contributor to the pitching

moment is the suction peak that occurs in the region just aft of the leading edge. As

was shown with the ellipsoid, artificial dampening of the vortex induced velocity

would lower the velocity in this region and weaken the suction peak, thus decreasing

the pitching moment. The impact would be most significant when the circulation is

large, which occurs at higher angles of attack. This explains the difference in slope

of the pitching moment curve between CBAERO and both the other solution from

CPanel and AVL. The lower slope indicates dampening of the higher circulation at

larger angles of attack in the CBAERO solution.

As a final check, the drag polar for the finite wing in Figure 5.12 shows very

strong agreement between each of the methods.

86

Figure 5.11: NACA 4412 Cm vs α

Figure 5.12: NACA 4412 Drag Polar

87

By comparing the predicted lift and induced drag coefficients using both

surface and Trefftz plane integration, similar conclusions can be drawn regarding

the effects of velocity survey methods. Figures 5.13 and 5.14 show both the methods

of computing the coefficients for both CBAERO and CPanel. Theoretically, as the

grid is refined to infinitely small panels, both methods should converge onto each

other. CPanel demonstrates much stronger agreement between the two methods

than CBAERO does, providing support for the CHTLS velocity formulation. The

surface integrated lift coefficient from CBAERO is close, but slightly lower than the

Trefftz plane solution. The artificial lowering of the surface velocities seen in the

ellipsoid solution will result in higher pressures near the stagnation region on the

leading edge, increasing the induced drag that is computed by surface integration.

This is made most evident in the error of the induced drag calculation in CBAERO.

The strong agreement between the surface integrated coefficients and the

Trefftz plane coefficients in CPanel demonstrates the increased accuracy obtained

from the use of the CHTLS method, and that accuracy results in more accurate

prediction of the moment coefficients and any variable requiring the use of the

surface velocities. The method is enhanced using Bezier based normal vectors as

well, as can be seen by the stronger agreement between the integrated and Trefftz

plane coefficients using those exact normal vectors. In general, the agreement

between CPanel and the other potential flow solution methods on a simple lifting

geometry verifies the accuracy of the CPanel solution process, specifically the Kutta

88

Figure 5.13: Comparison of Lift Coefficient Based on Trefftz Plane and
Surface Integration

condition enforcement and velocity calculation.

5.4 SR22 Configuration

In order to ensure that CPanel operates properly with a generic aircraft

configuration, results were generated for a Cirrus SR22 aircraft and compared to

solutions from both CBAERO and VSPAERO. The SR22 model was obtained from

the VSP Hangar and was created by Mark Moore. To minimize the mesh size, the

landing gear struts, as well as the propeller have been removed from the model. The

discretization, shown in Figure 5.15, consists of 22,500 panels. The mesh used in

CPanel’s analysis was drawn from a modified version of VSP and did include Bezier

89

Figure 5.14: Comparison of Drag Coefficient Based on Trefftz Plane and
Surface Integration

based normal vectors.

Figure 5.15: Discretized SR22

90

The resulting pressure distribution from CPanel is shown in Figure 5.16. A

qualitative check shows that the pressure distribution is smooth, ensuring all the

special cases for the CHTLS formulation are properly addressed. Additionally, the

streamlines behave as expected and confirm the current algorithm is working

properly with respect to seeding and termination of the streamlines.

Figure 5.16: Pressure Distribution over SR22 (α = 5◦, β = 0◦)

The lift and drag curves, as well as the drag polar are shown below in Figures

5.17-5.19. The differences between the CPanel and CBAERO results are similar,

but more pronounced than those seen in the NACA 4412 analysis. CBAERO is

consistently predicting lower lift and drag coefficients.

In the case of the SR22, the difference in the induced drag coefficient is rather

significant. Based on the explanation that velocity calculation method could be

causing a nonphysical dampening of the induced velocity from the panel edges, one

91

Figure 5.17: SR22 CL vs α

would expect that with larger vortex strengths, the dampening would be more

pronounced. This would explain the growing difference in induced drag with angle of

attack, as higher angles of attack generate greater circulation and stronger vortices.

The results of CPanel do, however, match more closely with VSPAERO results. As

mentioned previously, this should be expected for the lift and drag coefficients.

Figures 5.20 and 5.21 show a comparison of the coefficients from integrating the

surface pressures and from a Trefftz plane analysis. The results show a similar result

to that of the NACA 4412, with CPanel demonstrating much stronger agreement

between the two methods, especially in induced drag. This adds more support for

the proposed explanation of the discrepancy in the results, and strengthens the case

that the CHTLS method provides for more accurate surface velocities. In this case,

92

Figure 5.18: SR22 CDi
vs α

Figure 5.19: SR22 Drag Polar

93

the solution using Bezier based normal vectors is further from the Trefftz plane

coefficients. One possible reason for this could be the lack of resolution in the

leading and trailing edge due to restrictions on the mesh size. One would expect

that with a better mesh, results would be more in line with what was seen on the

NACA 4412 geometry.

Figure 5.20: Comparison of Lift Coefficient Based on Trefftz Plane and
Surface Integration for SR22

94

Figure 5.21: Comparison of Drag Coefficient Based on Trefftz Plane and
Surface Integration for SR22

95

Chapter 6

Conclusion

6.1 Summary

A program was successfully developed that predicts the flow solution about

arbitrary geometries in a potential flow. The program uses an unstructured surface

discretization, saving the engineer significant time in the preprocessing phase of the

analysis. The program was developed with ease of use and future development in

mind, creating the potential for a longstanding project in the Cal Poly graduate

program that will benefit undergraduate students with minimal required training to

operate the program.

Both the open source nature of the project, as well as the application of a new

velocity formulation separate CPanel from existing unstructured panel codes.

Results compared to an exact solution showed an opportunity for improvement of

the solution’s accuracy without refinement of the discretization by use of normal

vectors from the underlying bezier surface. This opportunity is purely a result of the

CHTLS velocity formulation and would not be present in other unstructured panel

96

codes that use a viscous core model. The lifting flow results also reveal that the

CHTLS velocity formulation generates surface forces that are more consistent with a

Trefftz plane analysis. The agreement between the two solutions is greater than that

seen in unstructured codes using a viscous core velocity influence formulation, such

as CBAERO. This suggests that the results based purely on surface integration,

such as moment coefficients and stability derivatives, are more accurate as well.

6.2 Future Work

While the theory of panel codes is well understood and documented, the nature of

their restriction to potential flows drives developers to employ creative ways of

obtaining a more accurate solution. This leaves the door wide open for future

expansion of CPanel’s capabilities. Currently, work is being done to employ a wake

model made up of vortex particles, as is done in FastAero.21 Additional

enhancements include expansion to supersonic flows, transient simulations, and the

development of a viscous solution method using an integral boundary layer along

surface streamlines. In order for the viscous solution to be done properly,

enhancement of the seeding method used in the current surface streamline algorithm

will be required to ensure complete coverage of the surface.

In addition to capabilities, CPanel will benefit from some method of speeding

up the generation of the linear system of equations. Most current panel codes use

some fast tree method that represents entire portions of the domain, far from the

97

point of interest, as one element, resulting in a sparse matrix as opposed to the

dense matrix that is currently constructed in CPanel. The result is reduction of

both the memory requirements and solution time from O (n2) to O (n log n). An

octree data structure is required for many of the speed up methods and therefore

was employed early in the development of CPanel. Speed up would benefit all future

developers working on CPanel and therefore should be placed near the top of the

priority lists. As a final note, continued expansion of the program will likely call for

a rigorous profiling of the code to identify areas where memory and computation

time can be reduced.

98

BIBLIOGRAPHY

[1] Ramos, A., Development of a Meshless Method to Solve Compressible Potential

Flows , Master’s thesis, California Polytechnic State University, 2010.

[2] Katz, J. and Plotkin, A., Low-Speed Aerodynamics , Cambridge University

Press, 2001.

[3] Ashby, D., Dudley, M., Iguchi, S., Browne, L., and Katz, J., Potential Flow

Theory and Operation Guide for the Panel Code PMARC 12 , NASA Ames

Research Center, December 1992.

[4] Winder, R., “The Kinetic PR Quadtree,” Tech. rep., University of Maryland,

2000.

[5] Marshall, D. and Mehiel, E., “Intoduction of Software Development Practices

into Aerospace Engineering Curriculum,” 46th AIAA Aerospace Sciences

Meeting and Exhibit , No. 2008-496, January, 2008.

[6] Katsikadelis, J., Boundary Elements: Theory and Applications , Elsevier Science

Ltd, 2002.

99

[7] Kellogg, O. D., Foundations of Potential Theory , Dover, 1929.

[8] Winckelmans, G., Cocle, R., Dufresne, L., and Capart, R., “Vortex Methods

and their Application to Trailing Wake Vortex Simulation,” Comptes Rendus

Physique, Vol. 6, 2005, pp. 467–486.

[9] Lamb, H., Hydrodynamics , Cambridge University Press, 1895.

[10] Xu, C., “Kutta Condition for sharp edge flows,” Mechanics Research

Communications , Vol. 25, No. 4, 1998, pp. 415–420.

[11] Malcevic, I., “Automated Blocking for Structured CFD Gridding with an

Application to Turbomachinery Secondary Flows,” 20th AIAA Computational

Fluid Dynamics Conference, No. 2011-3049, 2011.

[12] Erickson, L., “Panel Methods–An Introduction,” Tech. Rep. 2995, NASA, 1990.

[13] Kinney, D., “Aero-Thermodynamics for Conceptual Design,” 42nd AIAA

Aerospace Sciences Meeting , No. 2004-31, 2004.

[14] Hess, J. and Smith, A., “Calculation of Non-Lifting Potential Flow about

Arbitrary Three-Dimensional Bodies,” Tech. rep., Douglas Aircraft Division,

1962.

[15] Hess, J., “Calculation of Potential Flow about Arbitrary Three-Dimensional

Lifting Bodies,” Tech. rep., Department of the Navy, 1972.

100

[16] Maskew, B., “Program VSAERO Theory Document,” Tech. Rep. 4023, NASA,

1987.

[17] Bramesfeld, G., A Higher Order Vortex-Lattice Method with a Force-Free

Wake, Ph.D. thesis, Pennsylvania State University, 2006.

[18] Calabretta, J., A Three Dimensional Vortex Partical-Panel Code for Modeling

Propeller-Airframe Interaction, Master’s thesis, California Polytechnic State

University, 2010.

[19] van Garrel, A., “Development of a Wind Turbine Aerodynamics Simulation

Module,” Tech. rep., Netherlands Agency for Energy and the Environment,

2003.

[20] Winckelmans, G., Topics in Vortex Methods for the Computation of Three and

Two Dimensional Incompressible Unsteady Flows , Ph.D. thesis, California

Institute of Technology, 1989.

[21] Moore, J., An Arbitrarily High-Order, Unstructured, Free-Wake Panel Solver ,

Master’s thesis, Massachusetts Institute of Technology, 2013.

[22] McDonald, R. and Ramos, A., “Constrained Hermite Interpolation for

Mesh-Free Derivative Estimation Near and on Boundaries,” AIAA Journal ,

Vol. 49, No. 10, 2011.

101

[23] Smith, S., “A Computational and Experimental Study of Nonlinear Aspects of

Induced Drag,” Tech. Rep. 3598, NASA, 1996.

[24] Lundry, J., “Calculation of Lift and Induced Drag from Sparse Span Loading

Data,” Journal of Aircraft , Vol. 14, No. 3, 1977.

[25] Archer, G., Object-Oriented Finite Element Analysis , Ph.D. thesis, University

of California at Berkeley, 1996.

[26] Baker, P., Dai, Z., Grabowski, J., Haugen, O., Schieferdecker, I., and Williams,

C., Model-Driven Testing , Springer, 2008.

[27] Willis, D., Peraire, J., and White, J., “A combined pFFT-multipole tree code,

unsteady panel method with vortex particle wakes,” International Journal for

Numerical Methods in Fluids , 2000.

[28] Samet, H., Foundations of Multidimensional and Metric Data Structures ,

Morgan Kaufmann, 2006.

[29] Epton, M. and Magnus, A., “PAN AIR - A Computer Program for Predicting

Subsonic or Supersonic Linear Potential Flows about Arbitrary Configuration

Using a Higher Order Panel Method,” Tech. Rep. 3253, NASA, 1990.

[30] Boschitsch, A., Curbishley, T., Quackenbush, T., and Teske, M., “A Fast Panel

Method for Potential Flows about Complex Geometries,” Tech. rep.,

Conintuum Dynmaics, Inc., 1996.

102

[31] Willis, D., An Unsteady, Accelerated, High Order Panel Method with Vortex

Particle Wakes , Ph.D. thesis, Massachusetts Institute of Technology, 2006.

[32] Eller, D. and Carlsson, M., “An efficient aerodynamic boundary element

method for aeroelastic simulations and its experimental validation,” Aerospace

Science and Technology , Vol. 7, No. 7, 2003, pp. 532–539.

[33] Filkovic, D., Graduate Work , Master’s thesis, University of Zagreb, 2008.

[34] Kinney, D., Garcia, J., and Huynh, L., “Predicted Convective and Radiative

Aerothermodynamic Environments for Various Reentry Vehicles Using

CBAERO,” 44th AIAA Aerospace Sciences Meeting and Exhibit , No. 2006-659,

2006.

[35] “1012-2012 - IEEE Standard for System and Software Verification and

Validation,” .

[36] Munk, M., “Remarks on the Pressure Distribution Over the Surface of an

Ellipsoid, Moving Translationally through a Perfect Fluid,” Tech. rep.,

National Advisory Committee for Aeronautics, 1924.

[37] W.H.Mason, “Simple Lifting Line Theory for Unswept Trapezoidal Wings,”

Tech. rep., Virginia Polytechnic Institute and State University, 1971.

103

APPENDICES

Appendix A

CPanel Input and Output Files

The following sections will give brief descriptions of the file formats used in

CPanel. Usage of the program requires only the input file, with the command below

issued from the command line.

$ CPanel InputFile.CPin

Prior to running CPanel, the location of the executable should be added to the

$PATH variable with the following command

$ PATH=$PATH:/path/to/the/executable

A.1 Input File

An example of a CPanel input file is shown below. Upon running, the input file

and all associated files will be placed in a new subfolder with the name of the

geometry. The geometry file should be listed as a relative path to the input file, or

an absolute path. At this stage, CPanel accepts two geometry file formats, .tri and

104

.tricp, which will be described in the following section. The names of each variable

should appear exactly as they do here or they will not be read properly.

Additionally, there must be a space in between the variable, the equal sign, and its

value for the line to be parsed correctly. Comments can be added, preceded by a %,

and will be skipped when reading the file. At this stage, CPanel is for only subsonic

flows and therefore Mach numbers greater than one will cause the program to fail.

Due to limitation of the Prandtl Glauert correction, it is not recommended to use

Mach numbers over 0.6, as the linear approximation begins to break down.

%% CPanel Input File %%

% Reference Geometry %

GeomFile = SR22.tricp

S ref = 144.889

b ref = 38.556

c ref = 3.94

X cg = 2.603

Y cg = 0.0

Z cg = 0.106

% Cases %

Velocity (ft/s)

1

100.0

Angle of Attack (degrees)

11

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

105

10.0

Angle of Sideslip (degrees)

3

0.0

2.0

4.0

Mach Number

2

0.1

0.3

% Solver Options (0 = OFF, 1 = ON) %

Surface Streamlines

0

Stability Derivatives

1

Write Influence Coefficients

0

It should be noted that turning any of the solver options on will increase

computation time significantly. Surface streamlines can be run on a coarser mesh to

save time, without losing too much accuracy in the visualization. In order to

calculate the stability derivatives, two perturbed cases are run, one for both α and

β. Writing the influence coefficient matrix to a file is recommended if the mesh size

is under 10,000 cells and numerous additional runs are anticipated. The time to

write and read the file becomes quite significant and the file size approaches 1 GB as

the mesh size rises above 10,000 cells.

A.2 Mesh File Formats

CPanel currently accepts two file formats for the mesh, .tri and .tricp. the TRI

file format is described in the Cart3D documentation. A brief description follows

106

below. More information can be found at

http://people.nas.nasa.gov/aftosmis/cart3d/cart3dTriangulations.html.

nVertsnTris

x 1 y 1 z 1

x 2 y 2 z 2

x 3 y 3 z 3

.

.

.

x nVerts y nVerts z nVerts

v1 t1 v2 t1 v3 t1

v1 t2 v2 t2 v3 t2

v1 t3 v2 t3 v3 t3

.

.

.

v1 nTris v2 nTris v3 nTris

surfID 1

surfID 2

surfID 3

.

.

.

surfID nTris

The .tricp format is simply a modified .tri format that is appended with bezier

based normal vectors taken from the centroid of each panel. The appended normals

appear after the surface IDs and are formatted as follows.

nx 1 ny 1 nz 1

nx 2 ny 2 nz 2

nx 3 ny 3 nz 3

.

.

.

nx nTris ny nTris nz nTris

107

http://people.nas.nasa.gov/aftosmis/cart3d/cart3dTriangulations.html

A.3 Output Files

Following completion of running CPanel, all output files will be placed in a

subdirectory with the name of the geometry file. For example, a geometry file

named Cessna.tri will result in file being placed in /currentDirectory/Cessna. The

files printed by CPanel are a summary file and files containing the surface data for

visualization.

A.3.1 .CPout Summary File

The summary file will echo the inputs for the simulation first, followed by the

results for each combination of velocity, angle of attack, angle of sideslip and Mach

number. For each case, the Trefftz plane lift and drag coefficients are printed. The

integrated forces in both body and wind axes are printed as well. Moment

coefficients follow the integrated forces, and if the stability coefficient option is

turned on, these will be printed last.

A.3.2 Visualization Files

All data needed for visualization of the results is written to .vtu files, the VTK

file format for data on an unstructured grid. This file type can be read by a number

of third party visualization tools. For the work of this thesis, Paraview was used.

The details of the VTU file can be found at

http://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf.

108

http://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Approach
	Document Structure

	Theory and General Numerical Implementation
	Laplace's Equation
	Derivation of the Boundary Integral Equation
	Singularity Elements
	Boundary Conditions
	Neumann Problem
	Dirichlet Problem
	Kutta Condition

	General Numerical Methods
	Geometry Discretization
	Linear System of Equations
	Influence Coefficients
	Kutta Condition Enforcement

	Post Processing
	Velocity Calculation
	Force and Moment Calculation
	Trefftz Plane Analysis

	CPanel Implementation
	Program Structure
	Octree Data Structure

	Kutta Condition Enforcement
	Velocity Calculation
	CPanel Implementation of CHTLS Method

	Streamlines
	On-Body Streamlines
	Off Body Streamlines

	Stability Derivatives

	Results and Verification
	Verification Tools
	Analytical Solution
	VLM Methods
	CBAERO

	Non Lifting Flow
	Lifting Flow
	SR22 Configuration

	Conclusion
	Summary
	Future Work

	CPanel Input and Output Files
	Input File
	Mesh File Formats
	Output Files
	.CPout Summary File
	Visualization Files

