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Abstract: The controlled interaction of work material and cutting tool is responsible for the precise
outcome of machining activity. Any deviation in cutting parameters such as speed, feed, and depth
of cut causes a disturbance to the machining. This leads to the deterioration of a cutting edge and
unfinished work material. Recognition and description of tool failure are essential and must be
addressed using intelligent techniques. Deep learning is an efficient method that assists in dealing
with a large amount of dynamic data. The manufacturing industry generates momentous information
every day and has enormous scope for data analysis. Most intelligent systems have been applied
toward the prediction of tool conditions; however, they must be explored for descriptive analytics for
on-board pattern recognition. In an attempt to recognize the variation in milling operation leading to
tool faults, the development of a Deep Belief Network (DBN) is presented. The network intends to
classify in total six tool conditions (one healthy and five faulty) through image-based vibration signals
acquired in real time. The model was designed, trained, tested, and validated through datasets
collected considering diverse input parameters.

Keywords: deep belief network; tool faults recognition; face milling; fault diagnosis

1. Introduction

Multi-point cutting tools are used for various milling applications such as groove
milling, gear machining, shoulder milling, profile milling, face milling, chamfer milling,
parting off, holes and cavities/pocketing, etc. [1]. Milling can be further extended to
machining operations, drilling, reaming, and broaching by a cutter that rotates in a spindle
placed on the turret frame. Work is situated on the table [2]. Conventional machining uses
human control of the tools and/or parts to remove the material. Conventional milling tools
come in three types: vertical, horizontal, and universal. Conventional tools require skilled
operators and are helpful for machining tool room parts or carrying out customized jobs.
A Computer Numerical Control (CNC) milling center employs a computer and computer
programs to move the cutting tools and/or parts to perform the material removal. Today,
conventional machines are being replaced with CNC Vertical Milling Centers (VMCs) due
to a lack of skills for high-precision operations [3]. In the manufacturing industry, state of
the art technologies are used to ensure that these operations are carried out with as much
efficiency as possible [4]. In milling operations, the material is removed when the workpiece
is fed against a spinning multi-point cutting tool, and its geometry is essential given the
operation dynamics considered [5]. Milling cutters operate using higher feeds possessing a
minor entry angle facilitating improved Material Removal Rates (MRRs) owing to gradual
entry during the cut. This assists in the protection of the cutting tip due to a decrease in
radial pressure and is thus used for machining milling steel and cast iron. A significant
benefit from it is achieving high MRRs owing to more extensive DOCs and offering very
light cutting, thus producing quality chips [6].
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Milling is essentially an interrupted process as it involves a multi-edged cutter that
causes the temperature at the cutting edge to fluctuate [7]. However, vibration is considered
to be very sensitive to tool conditions. In machining, the tool, tool holder, and spindle
vibrate at a controlled natural frequency. The assembly simultaneously vibrates at more
than one such natural frequency owing to intermittent cutting [8]. The vibration exerts
a wave on the machined surface at the tool edge. The waviness causes a variable load
to be experienced by the next cutting edge. After this, the unknown factors disturb the
vibration already in place, worsening it [9]. Excessive vibration may be generated during
the machining process. The excessive vibrations affect the total material removal rate
and, consequently, the machining time [10]. They result in an unacceptable machining
finish, and may or may not hold dimensions. For cutting tools, there could be wear or tip
failure. Various factors cause this vibration, concerning job material, geometry, and how it
is held in the chuck/fixture-excessive overhang, wrong tool material and tool geometry,
wrong cutting speed, depth of cut, and feed rates [11]. The reasons could be because of
a single factor or a combination. The vibrations can be reduced by balancing rotatory
elements, decreasing the clearance in guide-ways, securing support for the job, the proper
relief in sharp tools, good cutting velocity for the cutter and workpiece, using the proper
coolant/cutting lubricant, cutting at higher speeds with smaller cutters or using solid
carbide cutters with randomized flutes, etc. [12].

A brief review is presented here and incorporates research on various methodologies
used for condition monitoring, considering sensors, signal processing, and classification
techniques. For these operations to work efficiently, it is necessary to ensure that the
tool’s condition is normal (healthy) [13]. With this motivation, the concept of developing
a Tool Condition Monitoring (TCM) system has evolved. A significant goal of TCM is to
recognize the deterioration of the cutting edge, which subsequently improves the value
of the job [14,15]. TCM generally aims at monitoring the behavior of the cutting tool in
terms of machining datasets collected through various sensors such as microphones [16],
dynamometers [17], accelerometers [18], etc.

Ozel and Nadgir [19] used neural networks for fault diagnosis and flank wear was
analyzed considering multiple machining factors. Forces acting on a cutting tool pertaining
to a typical cutting condition were measured using a piezoelectric-based dynamometer.
Fang et al. [20] transformed signals with the combination of discrete wavelet transform
and fast Fourier transform for analyzing the vibrations corresponding to the wear of the
tool edge. In addition to this, principal component analysis was employed to analyze
cutting force variation during the machining. Elangovan et al. [21] advocated an intelligent
data-driven method for examining tool condition based on vibrations produced during
interaction of cutting tool and workpiece. These vibrations were then analyzed using
statistical features as well as histogram plots followed by categorization of tool faults
using a Bayesian approach. In order to estimate remaining useful life, Satishkumar and
Sugumaran [22] demonstrated the suitability of a nested dichotomy algorithm trained
through statistical features of vibration signal. Signal transformation and its representation
play a vital role in signal processing. For vibration-based analysis, time, frequency, and
time–frequency domains are usually considered [23]. White light interferometry was
utilized for measurement of crater wear on a number of replaceable cutting inserts [24].
Abu-Zahra and Yu [25] suggested applicability of discrete wave transform for measurement
of deterioration of a cutting edge of replaceable cutting tool tips for ultrasound waves.
Further, a multi-layer perceptron (MLP) was trained and correlations were found with
the help of wavelet packets. The comparative study of neural nets and hidden Markov
models was provided by Scheffer et al. [26] while developing a regression model for
prediction of tool condition. Liu and Jolley [27] obtained an index by employing three axis
cutting forces. The index was analyzed using the counter-propagative neural net. Recently,
Patange et al. [28] suggested an ML approach to diagnose the condition of a milling cutter.
Relevant features were selected from a decision tree and for several tool conditions and
classified using a random forest tree algorithm. The use of the Bayes net, naïve Bayes,
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and tree family classifiers for classification between healthy and defective tools has been
demonstrated [29–31]. Statistical features from the vibrational data were extracted and
dimensionality reduction was undertaken using the J48 classifier [32,33].

To retain the quality of the cutting tool throughout its lifecycle, the deep learning
approach is thus advocated to make the model robust for noisy environments and cross-
domain conditions. It creates new learning to monitor cutting tools. The current investi-
gation exclusively describes a method to identify different tool wear states using a deep
learning-based scheme. The model uses vibration signals of the spindle frame to detect
the deterioration of the cutting edge from a rigorous experimental investigation. The DBN
model is designed to classify different wear states instead of a simple tool that is worn
and not worn through a binary classification, as illustrated in Figure 1. This investigation
supports the ongoing revolution of industry that demands the adoption of self-monitoring
of machines.
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2. Experiments and Signal Acquisition

In order to undertake real-time signal acquisition, the machining experiments were
performed on a CNC milling tool. The investigation based on Bayes algorithms and
metaheuristic algorithm driven SVM was carried out using same experimental setup
with numeric vibration data [29,30]. The setup is shown in Figure 2 which consists of
a machine tool, a cutting tool mounted inside the spindle, a work material, a sensor—
piezoelectric accelerometer—and a data logger. The job material was mild steel which
was face milled with a cutter consisting of four tips and depth of cut of 0.2 mm, speed
of 1000 revolutions per minute, and feed of 48 mm/min were selected. The machining
was carried out considering six tool conditions in total. The single-axial piezoelectric
accelerometer was selected. Vibration signatures developed throughout machining pass
on to the spindle holder sensitively and thus when recording tool faults, any variation in
spindle motion can be detected if the sensor is located near to it. For vertical milling, the
component of vibration in the Z-direction is the most sensitive to tool faults rather than
X and Y, so the sensor was directly attached to a spindle block in the vertical direction. A
data logger was engaged to collect a time-domain response. With respect to the formula
given by Nyquist, a sampling was undertaken at 24 kHz. Here, in total 240 samples were
collected which means each tool label is represented by 40 samples. For testing robustness
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of the trained model, a separate dataset was acquired independently and served in the
model as a blind dataset. While acquiring this dataset, different CNC trainers of the same
model were utilized. The experimentation was carried out considering speed, feed, and
depth of cut as mentioned earlier till the cutting tool failed.
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3. Signal Representation and Data Preparation through STFT

Variation in vibration levels is acquired primarily in the time domain directly from the
sensors used to measure its acceleration, velocity, and displacement by connecting them
to the vibration DAQs. For very basic investigation, a simple vibration meter shows the
intensity of vibrations with a linear measurement dependent on time such as mm/sec. Some
spring mass mechanisms are used for conversion of change in motion into an electrical
signal. When dynamic and random vibrations are considered, there is need for some
systematic signal processing using sophisticated techniques. Conventionally, a vibration
consultant or maintenance engineer used to observe vibration patterns and a decision would
be undertaken regarding fault diagnosis with their experience. These specialists used to
recognize signatures through their knowledge, but the assessment was very subjective.
A very well-known method of transforming time-domain signal into frequency-domain
signal is Fast Fourier Transform (FFT). Basically, Fourier Transform (FT) is used when
there is need for non-periodic signals to be transformed into infinite harmonics of distinct
frequencies and corresponding amplitudes. Usually, FT employs signal processing to
recognize either time or frequency domains. However, important information about
vibration patterns from the time domain disappears as FT converts non-periodic signals
to infinite harmonics of distinct frequencies and corresponding amplitudes. To tackle
this problem, the adoption of Short-Time Fourier Transform (STFT) is desired because it
retains frequency components of local time intervals of fixed duration [34,35]. However,
vibrations with fast transients (i.e., high-frequency content for a short duration) need to
be analyzed using Wavelet Transform (WT). The duration of this ‘short time’ in Fourier
transform serves as an important factor in comparison of STFT and wavelet as it changes in
wavelet transform, thus the time window of the signal is adaptive [36]. As the frequency of
signal increases, the duration of the window shortens and at the same time the frequency
spectrum expands. For low-frequency signals, the window extends in time and shortens in
frequency. The duration of the window for the STFT is fixed in both time and frequency.
Different shades in an STFT spectrogram are an indicator of the uneven resolution of
time–frequency. The window type and length determine the energy blurriness across time
and frequency and time and frequency resolution in the STFT spectrogram [37]. For a larger
window owing to greater blurring across time, there is a decrement in energy blurring
across the range of frequencies. Conversely, a narrower window decreases blurring across
time owing to greater blurring across the range of frequencies. Figure 3a–f depict the
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vibration signal in the form of an STFT spectrogram for six tool conditions in total (one
healthy and five faulty).
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The machining time was 20 s in total for each tool condition. The disturbance in the
STFT spectrogram for healthy tools is less as compared to the faulty ones which shows
the coarse time–frequency resolution. For operations Figure 3b–e, the characteristics of
vibration are varied in terms of fogginess in the STFT spectrogram as compared to healthy
tools as shown in Figure 3a. For operation Figure 3f, the characteristics of vibration are
completely foggy in the STFT spectrogram as compared to other tool conditions. The STFT
spectrogram graph portrays the behavior of signals conforming to the sudden effect of
faults. This kind of distinctive nature of signals is essential for the algorithm to understand.
Various tool conditions consisted in operations imitating the distinct variation in real-time
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signals captured. In order to recognize these conditions, a deep belief network is designed,
trained, and tested, and is explained in the next section.

4. Deep Belief Network (DBN)

The deep learning approach is used for stacking shallow architectures and achieving
robust results due to increasing depth of the model. The deep belief networks are composed
of Restricted Boltzmann Machines (RBMs). In deep networks, in place of using a single
layer of RBM, they are stacked on top of each other, called a DBN as shown in Figure 4 [38].
The term ‘belief’ in mathematics might create confusion. Commonly, a belief is something
that one has faith in, such as a deity, or science, or trusting astrology, etc. However, in
DBNs, the term ‘belief’ expresses the knowledge that one may have a flawed subjective
conclusion about the objective indication [39]. A DBN is also a type of deep learning-based
deterministic neural net and chooses weights in a smart way according to the activation
functions as shown in Figure 5.
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The primary motivation behind the use of deep learning is to gain a hierarchical
representation of the data for a particular problem, such as classification, regression, clus-
tering, and ranking. Of course, a DBN is one such approach to the implementation of
deep learning architectures. However, at the time of its development, it was challenging to
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make it work. In the case of the Bayesian network, links project probabilistic dependence,
however, in a neural net, there is a neuron association [40]. The layers of a DBN learn a
hierarchical representation and are driven by restricted Boltzmann machines stacked on
top of one another [41]. To put it in simple words, a restricted Boltzmann machine is found
at every level of the DBN as per its characteristic. Usually, an unsupervised approach is
used to train a DBN level by level. Once the first RDM is trained, another one is stacked
on top, and the procedure is iterated. The assembly of RBMs to design a DBN is the same
as assembling auto-encoders to train a stacked auto-encoder. Since DBNs are generative
probabilistic models, they are designed by generation of the latent representation at the
present level by consuming the one from the preceding level as its input, making them
competent for dynamic data distributions [42].

5. Design of DBN

The design of a deep belief network is presented in this section which has a total of
240 inputs from each tool condition and has to recognize 6 classes. The network has to learn
from the STFT spectrogram of tool conditions and would classify the recognized pattern
into one of the six classes. The DBN assists in prognostic-based categorization activities
owing to its capability of feature engineering, including detection and extraction [43]. The
DBN classifier comprises a topmost layer association memory, an RBM classifier that allows
training of the top level to produce labels of class conforming to the input STFT images.
The classification through the DBN requires the tags of observation at the time of training
the topmost layer, so it carried out the training of the bottommost layer first, propagates the
images via the trained RBM, and later uses transformed images as a training dataset for the
training of subsequent RBMs. This continues till the whole dataset propagates via the latest
trained RBMs, and the tags are concatenated with transformed images and employed for
training of the topmost layer association memory [44]. Learning is accomplished via both
approaches, i.e., unsupervised and supervised. The unsupervised process starts when the
dataset propagates from the bottommost to the topmost layer and vice versa [45,46]. The
decisive step in the training of the DBN is hyperparameter tuning. The hyperparameters are
the count of epochs, batch sizing, dropout, count of hidden layers, and learning rate. They
play a vital role as they control the learning and training procedures, which significantly
influence the capabilities of the architecture under consideration. The values chosen for the
training of the DBN model are shown in Table 1.

Table 1. Hyperparameters chosen.

Parameter Epochs Batch Learning
Rate Dropout Number of

Nodes

RBM 60 256 0.05 NA 500

DBN 400 NA 0.1 0.2 NA

In total, 240 STFT spectrograms representing 6 classes, i.e., 40 STFT spectrograms per
class, were considered to be the complete dataset. This STFT spectrogram dataset was
divided into a training dataset and testing dataset with a split of 80/20, respectively. The
validation was undertaken considering separate blind data. Along with this, the model
was trained using a 10-fold cross-validation approach.

6. Results and Discussion

The recognition and classification are the decisive steps in DL-based predictive an-
alytics. They involve training and testing algorithms with the set of STFT spectrograms.
Designing or training is defined as a process of learning from the labeled dataset. The
training problem can be either unsupervised or supervised. Unsupervised training is used
to classify unlabeled datasets and clustering is carried out. In the current investigation, the
condition for which vibration data was collected is known. Thus, the supervised approach
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is employed to design and train the classifiers. On the other hand, testing is defined as a
process of inspecting a trained model of the classifier with unseen instances with labels.
However, testing is considered for checking the trained model. First, the models are con-
structed considering the k-fold cross-validation mode. The cross-validation test mode with
k = 10, i.e., ten folds of equal size, was created amongst a complete dataset of 240 samples.
A single fold out of ten folds was reserved as the authenticating data to test the classifier,
and the leftover nine folds were employed for training. The procedure has to be repeated
for ten intervals such that every fold is explored as test data one by one. The averaged
estimation was then determined from the ‘k’ results. The classification and evaluated are
represented with the help of the confusion matrix. The name ‘confusion’ reflects which sort
of confusion occurs in the prediction of a class. The shape of a confusion matrix is a square
matrix specified by ‘N×N’, where ‘N’ is rows and columns which are decided with respect
to the number of classes involved in training. In this study, a multi-class ‘6 × 6′ matrix is
formed using the 6 classes.

The samples placed in each row indicate the true class and samples placed in each
column indicate the predicted class. All correctly classified instances are placed in the
major diagonal (highlighted in bold), and values outside the diagonal represent incorrectly
classified instances.

The confusion matrix from Figure 6 shows that for class ‘ADF’ all 40 STFT spectrograms
are correctly classified thus there is no misclassification. For class ‘FL’, only 36 STFT
spectrograms are correctly classified whereas 1 and 3 were misclassified as ‘ADF’ and ‘NS’,
respectively. For class ‘NS’, only 38 STFT spectrograms are correctly classified whereas an
STFT spectrogram was misclassified as ‘FL’ and ‘NT’ each. Further, for class ‘NT’, only 38
STFT spectrograms are correctly classified whereas 2 STFT spectrograms were misclassified
as ‘AD’. For class ‘CT’, only 39 STFT spectrograms are correctly classified whereas 1 STFT
spectrogram was misclassified as ‘FL’. Lastly, for class ‘AD’, only 32 STFT spectrograms are
correctly classified whereas 7 and 1 STFT spectrograms were misclassified as ‘NS’ and ‘NT’.
Therefore, as shown in Table 2, 223 out of 240 STFT spectrograms are correctly classified,
hence the classification accuracy is 92.91%. Table 3 shows various performance indicators of
classification considering cross-validation mode such as ROC, MCC, F-measure, Precision,
TP rate, Recall, FP rate, PRC, etc.
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Table 2. Classification results summary considering cross-validation mode.

Classification Report

Total number of samples utilized for training 240
Number of samples accurately classified by trained model 223
Percentage accuracy of classification 92.91
Number of samples wrongly classified by trained model 17
Percentage misclassification 7.083

Table 3. Performance indicators of classification considering cross-validation mode.

ROC MCC F-Measure Precision TP Rate Recall FP Rate PRC Tool State

100 98.5 98.8 97.6 100 100 0.5 100 ADF

99.5 90.9 92.3 94.7 90.0 90.0 1.0 96.7 FL

99.1 91.2 92.7 90.5 95.0 95.0 2.0 97.5 NS

98.9 86.2 88.4 82.6 95.0 95.0 4.0 95.0 NT

100 98.5 98.7 100 97.5 97.5 0.0 100 CT

98.9 84.4 86.5 94.1 80.0 80.0 1.0 94.3 AD

The confusion matrix was generated using the DBN classifier considering the training
dataset as presented in Figure 7. For class ‘ADF’, all 32 STFT spectrograms are correctly
classified, thus there is no misclassification. For class ‘FL’, all 32 STFT spectrograms
are correctly classified, thus there is no misclassification. For class ‘NS’, all 32 STFT
spectrograms are correctly classified, thus there is no misclassification. Further, for class
‘NT’, all 32 STFT spectrograms are correctly classified, thus there is no misclassification. For
class ‘CT’, all 32 STFT spectrograms are correctly classified, thus there is no misclassification.
Lastly, for class ‘AD’, only 28 STFT spectrograms are correctly classified whereas 4 STFT
spectrograms were misclassified as ‘NT’. Therefore, as shown in Table 4, 188 out of 192 STFT
spectrograms are correctly classified, hence the classification accuracy is 97.91%. Table 5
shows various performance indicators of classification considering the training dataset
such as ROC, MCC, F-measure, Precision, TP rate, Recall, FP rate, PRC, etc.
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Table 4. Classification results summary considering training dataset.

Classification

Total number of samples utilized for training 192
Number of samples accurately classified by trained model 188
Percentage accuracy of classification 97.91
Number of samples wrongly classified by trained model 4
Percentage misclassification 2.083

Table 5. Performance indicators of classification considering training dataset.

ROC MCC F-Measure Precision TP Rate Recall FP Rate PRC Tool State

100 100 100 100 100 100 00 100 ADF

100 100 100 100 100 100 00 100 FL

100 100 100 100 100 100 00 100 NS

99.5 93.1 94.1 88.9 100 100 2.5 96.9 NT

100 100 100 100 100 100 00 100 CT

99.5 92.4 93.3 100 87.5 87.5 00 97.5 AD

The confusion matrix was generated using the DBN classifier considering the test
dataset as presented in Figure 8.
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For class ‘ADF’, all eight STFT spectrograms are correctly classified, thus there is
no misclassification. For class ‘FL’, only seven STFT spectrograms are correctly classified
whereas one was misclassified as ‘ADF’. For class ‘NS’, all eight STFT spectrograms are
correctly classified, thus there is no misclassification. Further, for class ‘NT’, all eight STFT
spectrograms are correctly classified, thus there is no misclassification. For class ‘CT’,
only seven STFT spectrograms are correctly classified whereas one STFT spectrogram was
misclassified as ‘FL’. Lastly, for class ‘AD’, only seven STFT spectrograms are correctly
classified whereas one STFT spectrogram was misclassified as ‘NS’. Therefore, as shown
in Table 6, 45 out of 48 STFT spectrograms are correctly classified, hence the classification
accuracy is 93.75%. Table 7 shows various performance indicators of classification consid-
ering the test dataset such as ROC, MCC, F-measure, Precision, TP rate, Recall, FP rate,
PRC, etc.
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Table 6. Classification results summary considering test dataset.

Classification

Total number of samples utilized for training 48
Number of samples accurately classified by trained model 45
Percentage accuracy of classification 93.75
Number of samples wrongly classified by trained model 3
Percentage misclassification 6.25

Table 7. Performance indicators of classification considering test dataset.

ROC MCC F-Measure Precision TP Rate Recall FP Rate PRC Tool State

100 93.1 94.1 88.9 100 100 2.5 100 ADF

99.8 85.0 87.5 87.5 97.5 97.5 2.5 98.6 FL

100 93.1 94.1 88.9 100 100 2.5 100 NS

100 100 100 100 100 100 0.0 100 NT

99.8 92.4 93.3 100 87.5 87.5 0.0 98.6 CT

99.8 92.4 93.3 100 87.5 87.5 0.0 89.9 AD

The confusion matrix from Figure 9 shows that for class ‘ADF’, only 37 STFT spectro-
grams are correctly classified whereas 3 were misclassified as ‘FL’. For class ‘FL’, only 33
STFT spectrograms are correctly classified whereas 4, 2, and 1 were misclassified as ‘ADF’
‘NS’, and ‘CT’, respectively.
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For class ‘NS’, only 36 STFT spectrograms are correctly classified whereas 2 STFT
spectrograms were misclassified as ‘FL’ and ‘NT’ each. Further, for class ‘NT’, only 39 STFT
spectrograms are correctly classified whereas 1 STFT spectrogram was misclassified as
‘AD’. For class ‘CT’, only 36 STFT spectrograms are correctly classified whereas 1 STFT
spectrogram was misclassified as ‘FL’, ‘NS’, and ‘AD’ each. Lastly, for class ‘AD’, only 37
STFT spectrograms are correctly classified whereas 1 STFT spectrogram was misclassified
as ‘FL’, ‘NS’ and ‘NT’ each. Therefore, 218 out of 240 STFT spectrograms are correctly
classified, hence the classification accuracy is 90.83% as shown in Table 8. Table 9 shows
various performance indicators of classification considering the blind dataset.
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Table 8. Classification results summary considering blind dataset.

Classification

Total number of samples utilized for training 240
Number of samples accurately classified by trained model 218

Percentage accuracy of classification 90.83
Number of samples wrongly classified by trained model 22

Percentage misclassification 9.17

Table 9. Performance indicators of classification considering blind dataset.

ROC MCC F-Measure Precision TP Rate Recall FP Rate PRC Tool State

99.7 89.6 91.4 90.2 92.5 92.5 2.0 98.4 ADF

98.7 79.0 82.5 82.5 82.5 82.5 3.5 94.2 FL

99.3 88.0 90.0 90.0 90.0 90.0 2.0 97.2 NS

99.4 92.8 94.0 90.7 97.5 97.5 2.0 95.7 NT

99.8 92.4 93.5 97.3 90.0 90.0 0.5 99.2 CT

99.8 92.4 93.7 94.9 92.5 92.5 1.0 99.0 AD

7. Conclusions

A deep belief network was successfully developed in this paper and is able to recog-
nize the variation in milling operation leading to tool faults. The network is capable of
classifying six tool conditions in total (one healthy and five faulty) through image-based vi-
bration signals represented using STFT spectrograms. The model was effectively designed,
appropriately trained, aptly tested, and properly validated. Two hundred and twenty-
three out of two hundred and forty STFT spectrograms were correctly classified, hence
the classification accuracy is 92.91% considering cross-validation mode. For classification
considering the training dataset, 188 out of 192 STFT spectrograms are correctly classified,
hence the classification accuracy is 97.91%. Forty-five out of forty-eight STFT spectrograms
are correctly classified, hence the classification accuracy is 93.75% considering the test
dataset. For classification considering the blind dataset, 218 out of 240 STFT spectrograms
are correctly classified, hence the classification accuracy is 90.83%. This makes application
of STFT spectrograms based on vibration signals suitable for tool faults diagnosis. This
trained model of classification shall be considered for data from other machines and is pos-
sibly to be encouraged for further deployment for cross-domain data distribution. Further,
the investigation could be extended considering fusion of vibration and sound signal using
adversarial training, domain adaptation, transfer learning, etc.
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