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Development of deep learning algorithms for
predicting blastocyst formation and quality by
time-lapse monitoring
Qiuyue Liao 1,3, Qi Zhang2,3, Xue Feng1,3, Haibo Huang2,3, Haohao Xu2,3, Baoyuan Tian2, Jihao Liu2, Qihui Yu2,

Na Guo1, Qun Liu1, Bo Huang1, Ding Ma1, Jihui Ai 1,4✉, Shugong Xu 2,4✉ & Kezhen Li 1,4✉

Approaches to reliably predict the developmental potential of embryos and select suitable

embryos for blastocyst culture are needed. The development of time-lapse monitoring (TLM)

and artificial intelligence (AI) may help solve this problem. Here, we report deep learning

models that can accurately predict blastocyst formation and usable blastocysts using TLM

videos of the embryo’s first three days. The DenseNet201 network, focal loss, long short-term

memory (LSTM) network and gradient boosting classifier were mainly employed, and video

preparation algorithms, spatial stream and temporal stream models were developed into

ensemble prediction models called STEM and STEM+. STEM exhibited 78.2% accuracy and

0.82 AUC in predicting blastocyst formation, and STEM+ achieved 71.9% accuracy and 0.79

AUC in predicting usable blastocysts. We believe the models are beneficial for blastocyst

formation prediction and embryo selection in clinical practice, and our modeling methods will

provide valuable information for analyzing medical videos with continuous appearance

variation.
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I
mproving the efficacy of in vitro fertilization (IVF) has always
been a focused issue, in which embryo selection and transfer
are key procedures. Clinically, embryos are evaluated by

embryologists and transferred at cleavage stage on day 3 (D3) or
blastocyst stage on day 5 or 6 (D5/6) post-fertilization. Blastocyst
transfer allows self-selection of embryos with higher develop-
mental potential, thus can maximize the implantation rates and
live birth rate in fresh cycles1,2. However, it may lead to cycle
cancellation due to failure of embryo development to blastocyst
stage, causing mental stress to both patients and embryologists.
Therefore, selecting embryos suitable for extended culture can
help embryologists improve implantation rates, decrease transfer
cancellation rate, and reduce mental stress. In IVF clinics, mor-
phological features and development rate are key indicators for
embryo selection. Traditionally, embryos are moved out of the
incubators at several discontinuous time points and empirically
evaluated by embryologists3,4, which is subjective and unre-
viewable. More importantly, it may overlook some vital biological
information during the dynamic embryo development event.
Hence, traditional morphology assessment achieves a relatively
low IVF success rate, and the clinical pregnancy rate per transfer
is approximately 35%5. Time-lapse monitoring (TLM) is an
emerging, powerful tool for embryo assessment and selection,
where the embryos are cultured in incubators with built-in
microscopes to automatically obtain images every 5–20 min at a
certain focus and magnification. Thus, this technology can con-
tinuously monitor the dynamic development event without dis-
turbing the culture environment and provide reviewable and
stable video data for embryo selection6,7.

Although TLM may improve the success rate of embryo
selection, the surge of embryo data represents significant chal-
lenges in vision-based analysis. The FDA-approved software
EevaTM (Early Embryo Viability Assessment) is an embryo
selection algorithm (ESA) based on TLM data, which provides
blastocyst formation prediction by measuring cell division tim-
ings P2 (time between cytokinesis 1 and 2) and P3 (time between
cytokinesis 2 and 3)6. The adjunctive use of traditional D3
morphology evaluation plus EevaTM showed an evident
improvement in embryo selection compared with D3 morphol-
ogy evaluation alone8–10. However, compared to manual anno-
tation of the same embryo videos, EevaTM showed no superiority
for blastocyst prediction and embryo selection11. Various ESAs
have been published to link different parameters with blastocyst
formation, implantation, or pregnancy. However, Barrie et al.
applied six published ESAs to a large set of known implantation
embryos, and none of these ESAs surpassed an AUC (area under
the receiver operating characteristic (ROC) curve) of 0.65
(0.54–0.63), indicating poor diagnostic value12. Therefore, there is
a strong demand for a method to improve embryo selection using
the copious amount of available TLM data.

Recently, artificial intelligence (AI) techniques, especially deep
learning models, have made significant advance in big data fea-
ture learning. Human expert-level or even better achievements of
deep learning have been reported in the screening and diagnosis
of diseases with medical images13–16. To date, several studies have
employed deep learning algorithms for embryo quality grading or
development stage classification based on static images from
TLM17–21. However, few studies have explored deep learning
methods for directly analyzing TLM videos. To the best of our
knowledge, one deep learning model (IVY) studied whole embryo
videos to provide predictions of pregnancy22, but the modeling
methods were vaguely described. Although video analysis has
been a highly active topic in AI, the study of embryo videos still
faces significant difficulties due to the appearance variation and
occlusion in cell division, which changes continuously and is
difficult to track. Various attempts are required to efficiently

incorporate deep learning algorithms and TLM videos to provide
reliable methods for embryologists to select good-quality
embryos, and thus to help improve the success rate of IVF.

Based on these insights, we aim to establish a model based on
TLM videos and deep learning algorithms for accurately pre-
dicting blastocyst formation and blastocyst quality on D3. We
believe this model will provide valuable information for clinical
decisions about blastocyst culture and embryo selection.

Results
Datasets and procedures. The procedure of video selection is
shown in Fig. 1a. A total of 26,113 embryos from 2594 IVF and
intracytoplasmic sperm injection (ICSI) cycles were cultured in
TLM incubators from February 2014 to December 2017, and the
women’s age at the retrieval cycles ranged from 20 to 50 years old
(30.56 ± 5.03 years). After the D3 transferred/cryopreserved/dis-
carded embryos elimination and the initial quality review, 12,912
videos were retained. Then, 1319 videos were randomly selected
and labeled for video preparation algorithms. The remaining
11,593 videos were screened by video length (frames longer than
750 were retained) and pronuclei fading (PNF) recognition (e.g.,
indecipherable or obscured were eliminated). Ultimately 10,432
videos were retained for further analysis.

To develop the prediction models, as shown in Fig. 1b, 577
videos were randomly chosen from the 1319 embryos to build the
cell-counting mode. Videos for prediction model analysis were
divided into training (n= 8346) and validation datasets (n=
2086) to build the spatial stream model and the temporal stream
model. Finally, the spatial–temporal ensemble model (STEM) was
developed by weight average and then compared with embryol-
ogists. To improve the clinical application of our algorithm, a
model STEM+ that predicted usable blastocyst formation was
further developed based on the spatial–temporal ensemble
procedures. The clinical pregnancy outcomes of predicted
embryos were calculated to evaluate the efficacy of our model.

Video preparation algorithms and PNF recognition. Both
standard IVF- and ICSI-fertilized embryos were included in our
study. Previous studies have shown a statistically significant dif-
ference in cleavage time between IVF and ICSI embryos, and the
use of PNF rather than insemination as the starting time point
can minimize the variations in recording timings, thus enabling
simultaneous analysis of the IVF and ICSI embryos23–25.
Therefore, 1-cell recognition, pronuclei (PN) estimation, and
PNF recognition algorithms were developed to unify the start
time of IVF and ICSI embryo videos.

Figure 2a shows the male PN and a female PN before the first
cleavage. The 1-cell recognition algorithm to distinguish 1-cell
stage with multicell stage achieved an accuracy of 99.4% in the
264 videos (Supplementary Table 1). Then, the accuracy of PN
estimation algorithm to recognize PN in 1-cell stage was 92.9%
(Fig. 2b). After removing the noisy segment by a correction
mechanism, the PN estimation model achieved an accuracy of
93.4% with 94.8% sensitivity and 90.9% specificity (Supplemen-
tary Table 2).

PNF, which is the fading of PN, occurs when the male and
female PN fuse (Fig. 2a). Of the 264 embryos, 126 were IVF-
fertilized, and the PNF mainly ranged from 150 to 300 frames
(mean: 235), while 138 were ICSI-fertilized, and most PNF frames
ranged from 200 to 350 frames (mean: 271) (Fig. 2c). The PNF
recognition algorithm obtained an accuracy of 97.7% in these
embryos (Fig. 2d).

Cell-counting algorithm and cell number identification. Mor-
phokinetic parameters, such as duration of cytokinesis and
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temporality of various cell stages, are closely related to the
development or pregnancy potential of embryos26; however, it is
difficult for AI to automatically measure the morphokinetic
parameters due to appearance variation in cell division (e.g.,
number of cells increases, cell shape deforms). To solve this
problem, we established a cell-counting model to enable the
automated classification of cell stages; hence, the morphokinetic
parameters could be obtained by analyzing the changes of cell
stages in consecutive frames.

As shown in Fig. 3a, the cell-counting algorithm learned the
frames of five cell stages in 463 embryos, including 1-cell stage, 2-
cell stage, 3-cell stage, 4-cell stage, and ≥5-cell stage (Fig. 3a).
Then, this model was validated in an independent dataset
comprised of 114 labeled videos. A total of 80,300 frames were
obtained, and the percentage of frames were 42%, 16%, 6%, 18%,
and 18% for the 1-cell, 2-cell, 3-cell, 4-cell, and ≥5-cell stages,
respectively (Fig. 3b). The cell-counting model achieved an
overall accuracy (fraction of correct frames) of 94.6% with
sensitivity values of 97.2%, 88.3%, 89.7%, 92.8%, and 97.5% for 1-
cell, 2-cell, 3-cell, 4-cell, and ≥5-cell stages, respectively (Fig. 3c
and Supplementary Table 3).

Temporal stream model and performance verification. The
established cell-counting algorithm was combined with the the
long short-term memory (LSTM) network to develop a temporal
stream model, which converted cleavage information into
numerical information and then learned the duration and
dynamic of cell numbers, thus predicting blastocyst formation
based on morphokinetic parameters. In the videos for prediction
model analysis (n= 10432), 600 frames ranging from PNF-100 to
PNF+499 were extracted from each video to train the temporal
stream model, and the accuracy of blastocyst formation predic-
tion was 76.9%, and the AUC was 0.77 (Fig. 4a and Supple-
mentary Table 4).

Spatial stream model and performance verification. Morpho-
logical assessment has long been the primary method used to
distinguish embryo quality and development potential. In clinics,
several timings of observation are required for the morphological
assessment, including fertilization check, syngamy check, early
cleavage check, day-2, day-3, day-4, and day-5 assessments3. We
choose the five observation points in the first 3 days of embryo
development and extracted seven frames at each point for mod-
eling, including from PNF-75 to PNF-69 (fertilization check),
PNF±3 (syngamy check), from PNF+33 to PNF+39 (early
cleavage check), from PNF+249 to PNF+255 (D2 assessment),
and from PNF+493 to PNF+499 (D3 assessment). After training
the dataset (n= 8346) allocated from videos for prediction model
analysis, we obtained 70.0% accuracy and 0.76 AUC for the
prediction of blastocyst formation in the validation dataset (n=
2086) (Fig. 4a and Supplementary Table 4).

Ensemble model and performance verification. It is important
to take into account that morphokinetic parameters and mor-
phological features are two complementary markers for embryo
selection and blastocyst prediction, so we integrated the spatial
and temporal information to accurately predict blastocyst for-
mation. A weighted average was used by traversing the weight
between 0 and 1 at 0.01 intervals, and the optimal result was
obtained by giving the weight of 0.66 in the temporal model and
0.34 in the spatial model (Fig. 4b). The final ensemble model
STEM achieved 78.2% accuracy for prediction of blastocyst for-
mation in the validation dataset (n= 2086) with 85.9% sensitivity
and 66.3% specificity (Supplementary Table 4). The AUC of our
STEM model was 0.82 (Fig. 4a).

Embryologist prediction process and performance comparison.
To examine the performance of STEM, four embryologists were
separately asked to provide blastocyst formation predictions in

Fig. 1 The workflow of video selection and video utilization. a The workflow of video preparation for the prediction models. b The workflow of video

analysis in the prediction models. Green boxes represent the reserved videos after each procession, red represents the discarded videos, and yellow

represents the randomly separated videos. B blastocyst, NB nonblastocyst, UB usable blastocyst, Un unusable embryos.
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the validation dataset (n= 2086). The accuracies of the four
embryologists were 67.8%, 64.5%, 65.5%, and 64.9%, separately
(Supplementary Table 5).

The performances of embryologists were compared with STEM.
Figure 4c shows the prediction outcomes of 2086 videos from the
model and embryologists. The sensitivity/1-specificity points of
embryologists trended below the ROC of STEM (Fig. 4d).

Usable blastocyst prediction and performance evaluation.
Clinically, embryos cultured to D5/6 are graded by embryologists,
and usable blastocysts are chosen to transfer or vitrification. To
help embryologists select embryos that can be transferred or
vitrified on D5/6, we further attempted to predict usable blas-
tocyst formation using our modeling procedures. Videos for
prediction model analysis (n= 10,432) were labeled anew as
usable or unusable by three experienced embryologists, then 8346
(usable: 2922, unusable: 5424) were allocated into the training
dataset and 2086 (usable: 730, unusable: 1356) into the validation
dataset. In the training dataset, temporal stream and spatial
stream information was separately learned as mentioned above,
and the accuracies in validation dataset achieved 71.8% in

temporal and 68.6% in spatial model. Ensemble model STEM+

was obtained by giving the weight of 0.63 in the temporal model
and 0.37 in the spatial model, which reached 71.9% accuracy and
0.79 AUC in predicting usable and unusable blastocysts forma-
tion in validation dataset (Fig. 5a and Supplementary Table 6).

As usable blastocysts can be transferred to achieve pregnancy,
we followed the clinical pregnancy outcomes of the transferred
blastocysts in the validation dataset. Among the 730 usable
blastocysts, only 209 blastocysts had known implantation
outcomes (number of gestational sacs matched the number of
transferred embryos). A total of 160 embryos were predicted as
usable blastocysts by STEM+, of which 81 implanted and 79
failed. Another 49 embryos were predicted as unusable blastocysts
by STEM+, and among them 21 implanted and 28 failed (Fig. 5b).
The evidently higher implantation rate in predicted usable group
(50.6% vs. 42.9%) indicated that STEM+ may help embryologists
select embryos with higher development potential.

Discussion
In this study, we report deep learning models that can predict
blastocyst formation (STEM) and usable blastocyst (STEM+)

Fig. 2 Performance of the PN estimation algorithm and PNF recognition in 264 videos. a An example of PN and PNF in an embryo video. The arrows

indicate the PN. The numbers in the right corner in each frame represent the frame number (start from the recording time). b Accuracy of the PN

estimation model before the correction mechanism using a filtering algorithm. Accuracy is plotted against the training step during the length of 70 training

steps. c The frames of PNF labeled by embryologists. d The correlation of frames between PNF labeled by embryologists and PNF estimated by AI. The red

lines represent the boundary of 10 deviation PNF frames between AI and embryologists.
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using videos from the first 3 days of an embryo acquired by TLM.
The AUCs are 0.82 of STEM and 0.79 of STEM+, which are likely
to be superior to previous ESAs. To the best of our knowledge,
this study takes the lead in addressing medical videos with con-
tinuous appearance variation using deep learning algorithms.

To date, several studies have used AI methods for embryo
assessment or blastocyst grading. The published AI models that
aimed to offer a prediction of embryo outcome utilized either
TLM images17,21 or videos22 of D5/6 blastocysts to predict
pregnancy or live birth, so the course and endpoints are different
with our study. In consideration of the fact that a successful
pregnancy or live birth is a combined consequence of embryo
potential, transfer time, and maternal conditions27, our study
chose blastocyst as an endpoint, which not only aims to predict
the developmental potential of embryos but also reduce con-
founding factors from maternal conditions and other external
factors28. Hence, by utilizing a large amount of TLM videos, an
objective and automatic approach was developed for predicting
the developmental potential of embryos, which may represent a
great breakthrough in employing deep learning in TLM video
assessment.

To develop such an approach, first, we built 1-cell recognition
and PN estimation algorithms using DenseNet201 network to
recognize PN and PNF. DenseNet network is an excellent
architecture among different convolutional neural networks
(CNNs), offering several compelling advantages, including
strengthened feature propagation, encouraged feature reuse, and
reduced parameter number29. Several studies that employed the
DenseNet network to recognize medical images have obtained
state-of-the-art achievements30–32. In our study, algorithms based
on the DenseNet201 network also achieved high performance.
After implementing these algorithms for video preparation,
videos that were longer than 750 frames and contained recog-
nizable PNF were retained for prediction model analysis. The
same amount of frames were extracted based on PNF from each
video, which not only eliminated the cleavage time difference

between IVF and ICSI embryos but also provided unified feature
length for the LSTM network and spatial network.

Using the cell-counting algorithm, we classified the video
frames into five stages according to the cleavage characteristics,
including 1-cell, 2-cell, 3-cell, 4-cell, and ≥5-cell stages, and these
time points and durations are statistically associated with embryo
quality and pregnancy rate26. Focal loss was applied to the
foundation of the Densenet201 network to build this algorithm,
which can focus learning on hard examples and reduce the weight
of easy negatives in dealing with class imblance33. When com-
pared with other published human embryonic cell-counting fra-
meworks based on CNN, our algorithm showed remarkably
increased efficacy in recognizing 3-cell and 4-cell stages but lower
performance for the 2-cell stage. We found that 8.8% of 2-cell
frames were recognized as 3-cell frames by our model. This
finding may be because the proportion of 3-cell stage frames
(only 6%) is much lower than other cell stages. This low number
was inadequate for AI to learn its characteristics; hence, the
system mistakenly classified the 2-cell stage as the 3-cell stage.
Nevertheless, the approach achieved an overall accuracy of 94.6%,
which is comparable to the results of other published
frameworks18,34,35.

On the basis of the cell-counting algorithm, the LSTM network
was used to develop the temporal stream model. The LSTM
network is a special type of recurrent neural network (RNN) that
is capable of learning the forward and backward dependencies
among the frames in time series data36. In the field of medical
science, this network has demonstrated its superiority in dealing
with temporal information. Here, we employed the LSTM to
learn the cell stage information output from cell-counting model
in consecutive frames, and the morphokinetic parameters of
embryo development were subsequently obtained. The ensemble
of the cell-counting algorithm and LSTM network was a bright
spot in our modeling process, yielding significant improvements
than exclusively using LSTM to directly learn the features from
the CNN network (our own experimental data in STEM: accuracy

Fig. 3 Performance of the cell-counting algorithm in 114 videos. a An example of five cell stages in an embryo video. The number in the right corner in

each frame represents the frame number (start from the recording time). b The proportions of frames in different cell stages labeled by embryologists. c

The confusion matrix of the cell-counting algorithm for classifying frames into different cell stages. The matrices contain values of the model-labeled

frames against true labeled frames and are colored based on the relative value for each cell stage.
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Fig. 4 Performance of STEM in 2086 videos. a Receiver operator characteristic (ROC) curves and area under the receiver operating characteristic curve

(AUC) for spatial stream model (AUC= 0.76), temporal stream model (AUC= 0.77), and ensemble model STEM (AUC= 0.82). b Weighted average for

combining the spatial stream and temporal stream models. The weight was obtained when the ensemble model achieved the highest accuracy. c The

prediction outcomes of 2086 embryos obtained from STEM and embryologists. d The model’s ROC curve and the sensitivity/1-specificity points of the

embryologists.

Fig. 5 Performance of STEM+ in 2086 videos. a Receiver operator characteristic (ROC) curves and area under the receiver operating characteristic curve

(AUC) for spatial stream model (AUC= 0.76), temporal stream model (AUC= 0.78), and ensemble model STEM+ (AUC= 0.79). b The implantation

outcomes of the transferred blastocysts in the validation dataset. A total of 160 embryos were predicted as usable blastocysts by STEM+ (green), and

another 49 embryos were predicted as unusable blastocysts by STEM+ (orange). I implanted, F failed.
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76.9% vs. 61%, sensitivity 84.7% vs. 85%, specificity 64.7%
vs. 24%).

The spatial stream model based on the gradient boosting
classifier was developed to learn the morphological features of the
embryos. The gradient boosting classifier is a machine learning
algorithm that has shown highly predictive performance in a wide
range of practical applications and can identify the shortcomings
of weak learners to optimize the model37. Studies have indicated
that the gradient boosting classifier performs best among several
machine learning algorithms in diagnosing epithelial ovarian
cancer based on blood biomarkers38, characterizing the risk of
type 2 diabetes mellitus39 and predicting vestibular dysfunction40.
In our modeling process, the gradient boosting classifier also
achieved higher performance than other tested machine learning
algorithms with an accuracy of 70.0% in STEM.

The two-stream spatial–temporal network is a newly developed
framework for video recognition in the field of deep learning that
can capture both the object appearances from each frame and
their motions along multiple frames in a video, thus seamlessly
integrating object appearances with their motions for action
recognition41. Methods that made use of the two-stream
spatial–temporal network demonstrated state-of-the-art perfor-
mances in video tasks, such as emotion recognition and action
recognition41–44. In our study, the two-stream spatial–temporal
ensemble predictive models STEM and STEM+ yielded higher
predictive efficacy than other published TLM-based ESAs.
EevaTM test, an FDA-approved algorithm, achieved an AUC of
0.728 for evaluating blastocyst formation as reported by Aparicio-
Ruiz et al.10, and a sensitivity of 58.8% and specificity of 84.2% in
predicting usable blastocysts formation as reported by Conaghan
et al.9. Cetinkaya et al. found that the cleavage synchronicity from
2 to 8 cells was the best predictor for blastocyst formation and
quality with an AUC of 0.786, sensitivity of 83.43%, and speci-
ficity of 62.46%45. A prediction model based on the time to 2-cell
stage, 3-cell stage, and 5-cell stage proposed by Milewski et al.
obtained an AUC of 0.813 (sensitivity 75.4%, specificity 74.1%) in
271 embryos46. Our models were validated in a relatively large
dataset (n= 2086) and showed higher superiority and reliability.

Compared with human embryologists, our models also
achieved evidently higher performance either in predicting blas-
tocyst formation or selecting high development potential blas-
tocyst. STEM provided information on the feasibility of extended
culture, thus helping embryologists to make evidence-based
decisions and improve the success of IVF. STEM+ predicted the
usability of blastocysts, which added references for embryologists
in selecting embryos with high development and implantation
potentials. It is important to note that our models still have some
limitations. First, they were trained on data obtained from single
type of TLM in a single center, and the applicability to other TLMs
and other centers remains unknown. However, our study employs
a relatively large scale of embryos that have heterogeneous patient
characteristics, which may compensate the single data source to
some extent. But it is still necessary to execute multicentric studies
to explore the universality. Second, we did not take clinical
characteristics (e.g., parents’ age and infertility reason) into
account, so the influences of these factors on embryo development
were ignored. A more accurate prediction model that incorporates
clinical characteristics with video analysis should be established.
Third, three-dimensional embryos were captured as two-
dimensional images by TLM with only one focal depth, which
made it difficult for AI to track the distorted or overlapped cells
and then make a correct recognition or classification.

Taken together, our study develops a deep learning approach
that can automatically and accurately predict blastocyst formation
and quality based on videos of the first 3 days of an embryo using
TLM. By developing the prediction models, we move a huge step

forward toward making use of deep learning for analyzing
medical videos with continuous appearance variation, providing
valuable information to facilitate further studies on similar con-
ditions. We believe this model is quite beneficial in clinics. Fur-
ther application of this model can help select suitable embryos for
extended culture and high potential blastocysts for transfer, while
improving the efficacy of IVF. Further prospective studies are
needed to extend this approach to clinics.

Methods
Data source. This retrospective cohort study collected TLM videos and outcomes of
embryos that were fertilized and cultured at Tongji hospital from February 2014 to
December 2017. All couples who had embryos placed in TLM incubators (Primo
Vision; Vitrolife) and further cultured to D5/6 were included regardless of the parents’
age, infertility reason, ovarian stimulation protocol, and fertilization procedure.

In standard IVF cycles, fertilization was assessed 16–18 h after insemination,
and normally fertilized oocytes with two PN were placed into the TLM. In the ICSI
groups, the oocytes were placed in the TLM immediately after ICSI. The TLM
captured images of embryos every 5 min until D3, after which approximately
750–800 images were obtained from each embryo and composed a video
containing 750–800 frames. On D3, all embryos were moved out of the TLM
incubators. Some embryos were chosen for transfer or cryopreservation. Extremely
poor-quality embryos were discarded, while the remaining embryos were selected
for culture until D5/6 to obtain blastocysts. This study recruited all the embryos
cultured to D5/6, and these embryo videos were downloaded from the TLM.

This study was approved by the Ethical Committee of Tongji Hospital, Tongji
Medical College, Huazhong University of Science and Technology (TJ-
IRB20190317). In this retrospective study, we only obtained videos of embryos
from clinical center, there were no situations of donation. And there was no
identifiable information of patients. Informed consent was not required by the
ethical committee.

Video preparation. To develop our model, we used python as program language.
The frameworks were Keras and Scikit-learn, and the optimizer was Adam.

To unify the start time and video length for modeling, as shown in
Supplementary Fig. 1a, we developed a 1-cell classification algorithm, a PN
estimation algorithm, and a PNF recognition algorithm to preprocess the videos. In
total, 1319 embryo videos were randomly selected for the video preparation
process. Three embryologists with at least 5 years’ experience evaluated the videos
and labeled the PN and cleavage stages of embryo development in the videos (the
label was assigned until at least two embryologists reached a consensus). In total,
80% of these videos were allocated to the training dataset, and 20% were allocated
to the validation dataset.

1-Cell recognition algorithm. DenseNet201 network29 was used to recognize the
first cleavage in training data, and every frame was classified as 1-cell stage or
multicell stage (Supplementary Fig. 1a). The efficacy of recognizing the 1-cell stage
was tested in validation dataset.

PN estimation algorithm. DenseNet201 trained the frames in the 1-cell stage to
learn the presence or absence of PN (Supplementary Fig. 1b). Then, a sequence
containing 1 and 0 were generated from each video, where 1 represented the
presence of PN and 0 the absence of PN. To improve the accuracy, the segment
whose value was different from its neighborhood segments with consecutive same
value was defined as a noisy segment, and a correction mechanism via a filtering
algorithm was used to suppress the noisy segment in the output sequences.

For i = 1 : k
Count the length of the noisy segment as num
IF num==i

Count the length of the segments with a consecutive same value at both
ends of this noisy segment as j_left and j_right

IF (j_left >= i and j_right>= i+1) or (j_right >=i and j_left >= i+1)
Correct the value of noisy segment to the corresponding value of its

left and right segments

Here: k= 6, and the result after the current (i-th) correction is the starting data for
the next (i+1-th) correction.

This process was repeated until all the detectable disordered sequences were
removed. After adjustment, the efficacy of the PN estimation model was measured
in the validation dataset.

PNF recognition algorithm. The frame of PNF was computed by locating the last 1
in each output sequence from the PN model (Supplementary Fig. 1b). As PN fades

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01937-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:415 | https://doi.org/10.1038/s42003-021-01937-1 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


gradually, it was considered as a correct recognition if the deviation between the
estimated value and labeled value was not greater than 10 frames.

Video analysis. We developed a model STEM to predict blastocyst formation and
a model STEM+ to predict usable blastocyst, the modeling datasets and procedures
were the same between these two models. In total, 10,432 videos were labeled with
outcomes by three embryologists with at least 5 years of experience, then they were
divided into the training dataset (80%) and validation dataset (20%). Temporal and
stream information of embryo videos was separately learned then combined as an
ensemble prediction model. For STEM, the label of a video was blastocyst or
nonblastocyst based on the Gardner’s scoring system47. Specifically, embryos with
blastocoel cavity formation were considered as blastocysts; otherwise, embryos
were regarded as nonblastocysts (did not develop into blastocysts). For STEM+, the
label of a video was usable blastocyst or unusable blastocyst. Usable blastocyst was
defined as the degree of expansion grade ≥3 and inner cell mass (ICM) and
trophectoderm (TE) grading ≥BC or ≥CB according to the Gardner’s scoring
system. Embryos that did not develop into blastocysts or poor-quality blastocysts
were defined as unusable blastocysts.

Cell-counting model. First, a cell-counting model was built to provide cleavage
information for the temporal stream model. In total, 577 videos (randomly chosen
from the 1319 embryos for video preparation) were divided into the training
dataset (80%) and validation dataset (20%). Then, the DenseNet201 network and
focal loss33 were combined to learn the 1-cell, 2-cell, 3-cell, 4-cell, and ≥5-cell
stages in the training dataset (Supplementary Fig. 1c), and every frame was output
as a tag value that was composed of frame number and cell stage. The efficacy of
this model was tested in the validation dataset.

Temporal stream model. A temporal stream model was built to learn the cleavage
timing information of embryo development. A total of 10,432 embryo videos were
used. Training data were input into the cell-counting model, and tag values
composed of frame number and cell stage were obtained. Then, the LSTM
network36 was employed to learn both the tag values in temporal sequence and the
relevant outcomes of embryos on D5 (Supplementary Fig. 1d). A temporal stream
network was thus developed, and the prediction performance was obtained using
validation dataset.

Spatial stream model. A spatial stream model was developed to capture the mor-
phological features of the embryos. The training and validation datasets were the
same as the temporal stream network. In total, 35 frames were extracted from each
video based on the timings of embryo observations in the clinic, i.e., from PNF-75
to PNF-69 (fertilization check), PNF±3 (syngamy check), from PNF+33 to PNF
+39 (early cleavage check), from PNF+249 to PNF+255 (D2 assessment), and
from PNF+493 to PNF+499 (D3 assessment)3. Only 35 frames were chosen to
avoid model overfitting. The DenseNet201 network extracted 1000-dimension
spatial features of each frame under the order of observation timings. By orderly
entering the 35 × 1000 features and the corresponding embryo’s outcome on D5
into the gradient boosting classifier (Supplementary Fig. 1e)37, a spatial stream
model was established, and the accuracy for predicting blastocyst formation was
analyzed by the validation dataset.

Ensemble model. Finally, an ensemble model was developed by integrating spatial
and temporal networks to capture both morphology and cleavage information48. A
weighted average was used to obtain an ensemble prediction value in 2086 videos
(the validation dataset of spatial and temporal stream models) by multiplying the
output prediction value of the spatial and temporal stream models by their weight
and then adding these values. We traversed the weight of the temporal stream
model between 0 and 1 at 0.01 intervals and defined the optimal weights when the
accuracy of the ensemble prediction value reached the top. The performance of the
ensemble model was evaluated in the 2086 videos (Supplementary Fig. 1f).

Statistics and reproducibility. To evaluate the performance of our algorithms,
sensitivity (true-positive rate), specificity (true-negative rate), PPV (positive pre-
dictive value), NPV (negative predictive value), and accuracy values were measured
in the validation datasets.

Sensitivity = True positive/Real positive
Specificity = True negative/Real negative
PPV = True positive/Predictive positive
NPV = True negative/Predictive negative
Accuracy = (True positive + True negative)/Total
ROC curves were generated by plotting the sensitivity against 1-specificity at

various threshold settings. AUC was defined by calculating the area under the
ROC curve.

Embryologist validation. Four experienced embryologists (engaged in this field for
more than 10 years) from our center were asked to predict blastocyst formation for
the validation dataset containing 2086 videos. Every embryologist reviewed the
videos and provided an outcome for every embryo, blastocyst, or nonblastocyst.
Sensitivity and specificity values of each embryologist were calculated.

Implantation calculation. The implantation outcomes of transferred embryos in
the validation dataset containing 2086 videos were followed and calculated. After
5–6 weeks of transfer, the clinical pregnancy was determined by the presence of
gestational sac with fetal heartbeat, and the implantation outcome of each blas-
tocyst was calculated when the number of gestational sacs matches the number of
transferred embryos. We compared the implantation rates between predicted
usable blastocysts and unusable blastocysts by STEM+ to evaluate the model’s
applicability.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The data underlying the findings of this study are available within the Supplementary

Information and Supplementary Data 1. The videos for training and test sets used in this

study were obtained with permission, stored in Mobile Hard disk belongs to our center,

and are not publicly available.

Code availability
The core codes used to train and evaluate the models are available from Github (https://

github.com/bmelab2021/STEM).
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