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ABSTRACT 

A perturbation formulation is developed for the space-energy dependent 

burnup equations describing depletion and transmutation of nuclide densities 

in a coupled neutron-nuclide field, such as a reactor core. The formulation 

is developed in a form consistent with the computational methods used for 

depletion analysis. The analysis technique currently employed in most 

burnup calculations is first reviewed as a method for describing the non­

linear coupling between the flux and nuclide fields. It is shown that based 

on the present formulation three adjoint equations (for.flux shape, flux 

normalization, and nuclide density) are required to account for the coupled 

variations arising from variations in initial conditions and nuclear data. 

The adjoint equations are derived in detail using a variational principle, 

and an algorithm is suggested for solving the coupled equations backward 

through time. 

Perturbation expressions are used to define sensitivity coefficients 

for responses that depend on the coupled interaction between the neutron 

and nuclide fields. The relation between coupled and noncoupled sensi­

tivity theory is illustrated. Finally, two· analytic example problems are 

solved that determine the sensi ti vi ty of some final nuclide concentration 

to changes in initial conditions. Results obtained from direct calculation 

and from the coupled perturbation theory are compared. 



I. INTRODUCTION 

The area of nuclear engineering known as burnup analysis is 

concerned with predicting the long-term isotopic changes in the material 

composition of a reactor. Analysis of this type is essential in order 

to determine optimum fissile loading, efficient refueling schedules, 

and a variety of operational characteristics that must be known to 

ensure safe and economic reactor performance. Burnup physics is unique 

in that it is concerned not only with computing values for the neutron 

flux field within a reactor region, but also with computing the time­

dependent behavior of the nuclide-density field. In general the flux 

and nuclide fields are coupled nonlinearly,·and solving the so-called 

burnup equations is quite a formidable task which must be approached 

with approximate techniques. 

It is the purpose of this study to.develop a general perturbation 

theory for one of the common approximations used in burnup analysis. 

Based on such a technique, a sensitivity methodology will be established 

which seeks to estimate the change in various computed quantities when 

the input parameters to the burnup calculation are varied. A method 

of this type can be a very powerful analysis tool, applicable to several 

areas of practi~al interest. Two of the important areas are (a) in 

assessing the sensitivity of computed parameters to data uncertainties, 

and (b) in determining the effect of design changes at beginning-of-life 

on a parameter evaluated at some time in the future. 

Several previous studies have employed burnup sensitivity theories 

of one type or another. Gandini first suggested the application of 

perturbation theory to the zero-dimensional nuclide-field equation, 1 and 

Tondinelli 2 and Gandini 3 have applied his equations to the question of 

actinide buildup in a LMFBR. Williams and Weisbin have applied a similar 

equation to the question of plutonium production in a thermal reactor, 

with an emphasis on uncertainty analysis.~· However, these studies did 

not consider the nonlinear interaction between the neutron and nuclide 

fields. 
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Kallfelz, et al., 5 addressed this problem by linking the 

perturbation theory for the nuclide field with static generalized 

perturbation theory (GPT) for the flux field. This method has given 

good results, but has the disadvantage of requiring a separate GPT 

calculation for each cross section in the nuclide field equation. 

Harris and Becker have derived perturbation expressions for general 

nonlinear systems of equations, and have applied the technique to 

simple models for depletion to examine uncertainties in fuel cycle costs. 6 

At present, however, there exists a need for a unifying theory 

which starts from the general burnup equations and derives perturbation 

expressions applicable to prob1ems of arbitrary complexity. ln 

particular, the physical and mathematical consequences.of approximate 

treatments for the time-dependent coupling interaction between 

the nuclide and flux fields should be examined, and the role of 

perturbation theory in defining sensitivity coefficients for generic 

"responses" of the flux and nuclide fields should be clarified. This 

study attempts to provide a general theoretical framework for burnup 

sensitivity theory which is compatible with existing methods for treating 

the time dependence of the neutron field. 

From a theoretical viewpoint it is convenient to categorize burnup 

perturbation analysis into two types. In this text these types are 

called the uncoupled and the coupled formalisms. The distinction 

lies in how the interaction between the nuclide and neutron fields 1s 

treated. 

In the uncoupled perturbation method, it is assumed that a 

perturbation in the nuclide-field equation does not affect the flux 

field, and vice versa. In effect, the nonlinear coupling between the 

two field equations is ignored; or alternatively, one might say that 

for the depletion perturbation analysis, the flux field is treated as 

an input quantity, and not as a dependent variable. With this assumption, 

it is legitimate to consider the flux field as data, which can be varied 

independently along with the other data parameters. 
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In the coupled formalism, the nuclide and neutron ·fields c~nnot 

vary independently. Any data perturbation which changes one will also 

change the other, because the two fields are constrained to 11 move 11 

only in a fashion consistent with their coupled field equations. In 

developing a workable sensitivity theory for the case of coupled 

neutron/nuclide fields, one must immediately contend with the specific 

type of formulation assumed in obtaining solutions to the burnup 

equations--the perturbation expressions themselves should be based on the 

approximation equations rather than the actual burnup equations, since 

the only solutions that exist for practical purposes are the approximate 

solutions. 

The specific approximation addressed in this study wil 1 be the 

commonly used 11 quasi-statici 1 burnup equations, discussed in detail in 

the text. This is the form of the equations solved by the more sophis­

ticated burnup computer codes presently in use. The development in this 

study will assume the validity of this method as a hypothesis, and 

will find the associated perturbation expressions, which will then be 

related to depletion sensitivity analysis. 

II. THE NONLINEAR SYSTEM OF BURNUP EQUATIONS 

The purpose of this section is to review the burnup equations, 

expressing them in the operator form which will be followed throughout 

this study. We are interested in the interaction between the neutron 

flux field and the nuclide density field~ both of whir.h r.h~n~e with 

time and both of which influence the other. 

A material reactor region is completely described by its nuclide 

density vector, which is defined by 

( 1) 

where Ni(r,t) = atom density of nuclide i at position r and time t. 
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While in operation, the reactor volume will also contain a 

population of neutrons whose distribution is described by the neutron 

flux field ¢(p), where 

" " 
p =vector in the 7-dimensional phase space of (r, t, n, E). 

Note that the phase space over which N is defined is a subdomain of 

p-space. 

" 
Given an initial reactor conf1guratiu11 that is described by tlo(r) 

at t • O, and that is exposed to the neutron flux field for t ~ 0, all 

future reactor configurations, described by the nuclide t1eld !i(~,t), 

will obey the nuclide transmutation equation (Bateman equation)* 

" " " a ~ 

-atfi(r,t) = [¢(~).B,(cr)JE,n Ji(r,t) '. Q(A)]i{r,t) + ~{r,t) (2) 

where 

R is a cross section matrix whose elements are 
" 

a
1
j(r,E) = microscopic cross section and yield data for 

production of nuclide i by nuclide j, and 

crii .- -dai = absorption cross section for nuclide i 

Q is a decay matrix whose elements are 

" 

Aij =decay constant for decay of nuclide j to nuclide i, and 

A1. =-A.• total decay con$t~nt for nuclide i 
1 l 

~(r,t) is an external source of nuclides, accounting for 

refueling, control rod motion, etc. 

We wi 11 find it convenient to define a transmutation operator by 

*[ ] Y indicates integration over x,y, .... 
x' ' ... 
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Ji= Ji(¢(p), cr(r,E), A)= [¢(p)ji(cr)JE,n + Q(A) (3) 

Then the equation for the nuclide field vector becomes 

~ A A A 

at fi(r,t) = t1(¢,cr,A)fi(r,t) + ~(r,t) ( 4) 

The neutron flux field obeys the time-dependent transport equation 

expressed by 

l/v ~t ¢(p) + Q•V¢(p) + !i(~,t)•crt(~,E)¢(p) = 

fi(~,t)·[crs(~,E',n'~E,n) + (1 - 8) x1;) vcrf(E')¢(p)] E',n' 

+ \ x
0

.(E) A.d.(N) 
4 1 1 1 -
1 

(5) 

where 

crt is the total cross-section vector, whose components are the 

total microscopic cross sections corresponding to the 

components of Ji, 

and similarly defined are 

and 

~' as the differential scatter cross-section vector 

~°-f' as the fission-production cross-section vector, 

x(E) = prompt neutron fission spectrum 

x
0
i(E) =delayed neutron fission spectrum for precursor group i 

Ai ~ decay constant for precursor group i 

di(!i) = ith group precursor concentration, which is an effective 

average over various components of Ji. 
B· =yield of all precursors, per fission neutron. 

Defining the Saltzman operator in the indicated manner, B = B[fi(r,t), 

cr(r,E)], Eq. (5) becomes 
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l/v ~t cp(p) 
" 

= B(~,cr)cp(p) + L x0.(E)A.d.(N) 
. l l l -
l 

(6) 

Equations (4) and (6) are the desired field equations for the 

nuclide and neutron fields within the reactor. In addition to these 

conditions, there may also be external constraints placed on the system, 

such as minimum power peaking, or some specified power output from the 

reactor. In general these constraints are met by adjusting the nuclide 

so~rce £in Eq. (4), for example by moving a control rod. For this 

development we will consider only the constraint of constant power. 

prudut:tlu11: 

" " 
[~(r,t)·~f(r,E}cp(p)]P = P ( 7) 

In this study the system of coupled, nonlinear equations given by 

Eqs. (4), (6) and (7) are referred to as the burnup equations. The 

unknowns are the nuclide and neutron fields, and the nuclide control 

source which must be adjusted to maintain criticality. These equations 

are obviously quite difficult to solve; in reality some suitable approxi­

mation must be used. One common approximation assumes that the Boltzman 

operator can be replaced by the diffusion operator, thus reducing the 

dimension of p-space from 7 to 5. Even with the diffusion approximation, 

however, the system is still coupled nonlinearly. In the next section 

we will examine assumptions which will decouple Eqs. (4) and (6) at a 

given instant in time, but first let us consider an alternate formulation 

for the flux-field equation which is useful in numerical calculations. 

Suppose that cp(p) is slowly varying in time. Then at a given 

instnnt, the term l/v a/at¢ can be neglected. We will also assume 

that for the long exposure times encountered in burnup analysis, the 

fluctuations about critical arising from delayed neutron transients are 

unimportant (i.e., on the average the reactor is critical so that the 

precursors are at steady state). With these assumptions Eq. (6) can be 

approximated by 



.,, 

-· 

7 

B(_~)<I>(~) = 0 , (8) 

if the prompt fission spectrum in Eq. (5) is modified to (1 - S)x(E) 

+ l 8 · Xo · ( E) . 
l l 

Equation (8) is homogeneous and thus at any given time will have 

nontrivial solutions only for particular values (an infinite number) of 

N. To simulate the effect of control-rod motion, we will single out one 

of the components of N which will be designated the control nuclide N . - c 
Also we will express the B operator as the sum of a fission operator 

and a loss plus inscatter operator: 

B = L - A.F , 

so that Eq. (8) becomes 

where 

A. = - 1 ~ = instantaneous lambda mode eigenvalue. 
keff 

(9) 

( 10) 

The value for Nc is usually found indirectly by adjusting its magnitude 

until A.= 1. The concentration of the control nuclide is thus fixed 

by the eigenvalue equation and does not need t'o be considered as an 

unknown in the transmutation equation. 

An alternate method of solving Eq. (8) is to directly solve the 

lambda mode eigenvalue equation (given!!_, A. is sought from Eq. 10). In 

this case A. may or may not equal one. For both of these techniques, 

only the flux shape can be found from Eq. (10). The normalization is 

fixed by the power constraint in Eq. (7). 

It is important to realize that both of these methods are 

approximations, and that in general they will yield different values 

for the flux shape. The former case is usually closer to "reality" 
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(i.e., to the burnup equations) while the latter is usually faster to 

solve numerically. For many problems concerned only with nuclide densities, 

results are not extremely sensitive to the approximation used. 7
'

8 

III. THE QUASI-STATIC APPROXIMATION 

There are various methods to obtain numerical solutions to the 

space energy-dependent burnup equations. Nearly all approximations are 

based on decoupling the calculation for the flux and nuclide fields at 

a given instant in time. The simplest decouplirig method is to treat the 

flux as totally separable in time and the other phase space variab'les 

over the entire time domain of interest 

A A 

¢(p) = ¢(t)~ 0 (r,E,n) for 0 < t < tf , 

where¢ is a time-dependent normalization, and ~o is some shape 

function. 

( 11) 

The 11 shape function 11 
~o can be determined from a time-independent 

calculation at t = O using one of the eigenvalue equations discussed in 

the previous section. It is normalized such that 

A A 

[~o(r,E.nJE,n,v = 1 ( 12) 

Substituting Eq. (11) into Eq. (2), 

( 13) 

Equation (13) can be s1mplif·ieu by writing the f1rst term u11 tile RHS as 

A 

¢(t) Eo(a
0

) Ji(r,t) , ( 14) 

where Bo is a one-group cross-section matrix whose components have the 

form 
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A A A 

cr
0
{r) = [~ 0 {r,E,n)cr{r,E)]E,n ( 15) 

Thus the cross-section matrix is rigorously composed of space­

dependent, one-group microscopic data which can be evaluated once and 

for all at t = 0. In reality, detailed space-dependent depletion 

calculations are rarely performed due to prohibitive computing cost. 

Usually the Ji matrix is averaged over some limited number of spatial 

zones (for example, a core zone, a blanket zone, etc.); in this case of 

"block depletion" the solution to the transmutation equation approximates 

the average nuclide field over each spatial region. The cross-section 

elements of Ji for region z are given by 

( 16) 

where ~ 0 (z,E,n) 

which h~s a normalization 

Throughout the remainder of this paper we will not explicitly refer 

to this region-averaging procedure for the nuclide field equation. This 

should cause no confusion since the spatial variable 11 r 11 1n Eq. (13) 

can refer to either the region or spatial interval, depending on the 

case of interest. There is no coupling between the various r-points in 

the transmutation equation except through the flux-shape function, and 

therefore the equation for the region-averaged nuclide field appears 

the same as for the point-dependent field; only the cross-section 

averaging is different. 

The value for the flux normalization in Eq. (13) is computed from 

the power constraint in Eq. (7): 
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A A A 

¢(t) = P/[af(r,E) _fi(r,t)~ 0 (r,E,n)JE,V,n ( 17) 

For numerical calculations this normalization calculation is only done 

at discrete time intervals in the time domain, 

. 
where N. - fi(r,t,.) 

-1 
( 18-) 

and is then held constant over some "broad time interval" (ti' ti+l). 

One should realize that the broad time interval~ at which the flux 

calculation is performed do not usually correspond to the finer time 

intervals over which the nuclide field is computed. To avoid confusion 

on this point, we will continue to represent fi as an explicit function 

of time, rather than in its finite-difference form. 

Note the discontinuity 

t = t:, ¢ = ¢. 
1

, while at t 
1 1 -

in ¢. at each of 
1 + 

= t.,<P=<P .. 
l l 

the time intervals: at 

There is no corresponding 

discontinuity in the nuclide field; i.e., 

·" + .... , 
N(r,t.) - N(r;t:) , 
- , - l 

but there is discontinuity in the derivative of~ at t;· 

With all the preceding assumptions, the nuclide-field equation 

becomes 

a ~ A A A 

at .fi(r,t) = ¢i~ .fi(r.t) + ~ _tlJr.t) + ~(r.t) , ( 19) 

for ti < t < ti+I with 

(20) 

as the initial condition of the broad time interval. 
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At a given value of r (either a region or a ~oint), Eq. (19) 

depends only on the time coordinate; i.e., it is an ordinary differ­

ential equation. The assumption of total separability in the time 

variable of the flux field has completely eliminated the need for solving 

the transport equation, except for the initial eigenvalue calcula~ion at 

t = 0 which was required to collapse the cross-section data. 

In summary, the calculation usually proceeds as follows: 

i) Solve Eq. (10) at t = 0 for flux shape 

~i) Integrate cross-section data using Eqs. (15) or (16) 

iii) Solve Eq. (18) for flux normalization at t = ti 

iv) Solve Eq. (19) for li(~,t) over the broad time interval 

ti < t < ti+ l 

v) Go to iii 

The quasi-static depletion approximation, as used in this 

investigation,* essentially consists of a series of the above type 

calculations. 9 Instead of assuming that the flux field is totally 

separable in time over the domain of interest, it is only required that 

~be constant over some finite interval (ti' ti+l). The flux-shape 

function for each broad time interval is obtained from an eigenvalue 

calculation at the "initial" state ti' 

(21) 

at t = t., ... , (i = 1, through number of time intervals) and the flux 
l I 

normalization is obtained from the power constraint at t =ti' 

~. [~.(p)N.af]E V n = P. , 
l l -1- ' ,H l 

(22) 

*Beware of difference in terminology from kinetics studies. 
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at t =ti' ... ,where i ranges from l to the number of broad time 

intervals. Thus the time-dependent flux is approximated by the 

stepwise continuous function 

A A 

¢(p) ~ ¢i~i(r,E,n) , (23) 

After each eigenvalue calculation, a new set of one-group cross 

sections can be generated using the new value of ~i' resulting in a 

new cross-section matrix 

(24) 

with components 

A A A 

cri(r) = [cr{r,E)~i(r,E,n)JE,n (25) 

The transmutation equation is then solved over the next time interval 

using the 11 constant 11 matrix E,i' 

3 "' . ~.. "'· " . 
'i:if !i(r,t) = <Pilii!{r,t) + J2!:!_(r,t) + f_(r·,tL 

Note that the time-dependent flux given in Eq. (23) is again 

discontinuous at the bou~daries of the broad time intervals, while 

(26) 

the nuclide field is continuous (1ts derivative is discontinuous). The 

basic procedure for the quasi-static approximation is as follows: 

i) solve flux eigenvalue equation for ~i at t 1 
ii) integrate cross-section data using Eq. (25) 

iii) solve Eq. (22) for normalization at ti 

iv) solve Eq. (26) between ti and ti+l 

v) go to ( i) 



13 

There are variations of this basic procedure presently in use. 

For example, some computer programs 10 iterate on the initial and final 

conditions of a broad time interval until the average power production 

over the interval (as opposed to the end-point values) meets some 

specified value; however, these refinements will not be considered in 

this study. 

In Eqs. (21), (22) and (24), we have developed the quasi-static 

burnup equations. The approximations that were made have reduced the 

original coupled nonlinear equations to a series of equations which 

appear linear at any given instant. In reality, of course, the equations 

still approximate·a nonlinear process, since a change in the value of 

wi is ultimately fed back as a perturbation in the Boltzman operator 

for the calculation of wi+l" It is this nonlinearity which will make 

the adjoint burnup equations derived shortly quite interesting. 

Having reviewed the approximations used in burnup analysis, we can 

now address the subject of interest, which is the development of a 

perturbation theory for the quasi-static equations. 

IV. SENSITIVITY THEORY FOR COUPLED NEUTRON/NUCLIDE FIELDS 

The desired end result of virtually all design calculations is 

an estimated value for some set of reactor performance parameters. 

Each such parameter will be called a "response" in this study. For 

the case of burnup analysis, the generic response will be an integral 

of the flux and nuclide fields; i.e., it is mathematically a functional 

of both fields, which in turn are coupled through the respective field 

equations. As an example, the desired response may be the final 239 Pu 

mass at shutdown (a pure nuclide response); it may be the time-integrated 

damage to some non-depleting structural component (a flux response); or 

it may be some macroscopic reaction rate (a nuclide and flux functional). 

These·functionals all take the general form of 

A A 

R = R(¢(p), _ti(r,t), b) , (27) 
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For future reference, we also note that the quasi-static formulation of 

Eq. (27) is 

(28) 

In these expressions h is a "realizat1on vector" which can h'1vc 

the form of a cross section or of some unit vector which determines the 

response of interest. A discussion of some explicit forms for response 

functionals and their associated realization vectors appears in ref. 4. 

It is the goal of sensitivity analysis to find the effect that 

varying some nuclear data parameter (e.g. a cross section, a decay 

constant, a branching ratio, etc.) will have on the response R. This 

will be accomplished by defining a "sensitivity coefficient" for the 

data in question, wh1ch will relate the percent change in R to the 

percent change in the data. 

For example, let ak be a nuclear data parameter contained in 

either or both the B and the !i operators. Then the sensitivity of 

R to ak is given by 

liR/R = [sk (~) ::k ( µ)] + second-order terms 

p 

(29) 

For 5mnll oak' we obtain the familiar 11near relation between 

oR/R and oak/ak' with Sk(p) serving as the sensitivity coefficient at 

position p in phase space. A change in the value of ak in general w111 

perturb both the nuc11de and flux fi~lds in !Orne complex manner, 

depending on the specific oak(p). 

Treating the response as an implicit function of ak' we can expand 

R in a first-order Taylor series about the unperturbed state (see 

Appendix I for explanation of vector derivative notation): 
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(31) 

From this expression it is evident that 

( ") _ (. aR aR dJi aR _Q1_) 
Sk P - a/R aak + aJi dak + acp dak ' (32) 

It is important to realize that the derivatives d!ifdak and d¢/dak are 

not independent, since they must be computed from the constraint 

conditions (i.e., the field equations) which are coupled in Ji and ¢.11 . 

In order that this statement is clear, consider the coupled field 

equations in Eqs. (4) and (8) (the time-continuous eigenvalue form of 

the flux equation is used for simplicity, and the power constraint is 

neglected for this illustration). Taking the derivative of both 

equations with respect to ak gives 

d [( - ;) ) ] [ a!:! ~ af:1. J . d dJi o -:r-- M--N = - +-N+(M--)-= 
uak = at - aq, ak aak - = dt dak 

(33) 

Writing in matrix form, we have 

as ~ as 
¢ aN dak aak 

= = Q(Ji,<ji, ak) (34) 
aM dN - att 

a(j) dak aak 
N 

' 
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The interdependence of the sought-after derivatives is apparent 

in these equations. In theory Eq. (34) can be solved simultaneously 

for the required values, but in practice it is more advantageous to 

solve the adjoint system, as will be shown in the next section, because 

in Eq. (34) the source Q must be computed for each individual ak. 

The so-called "direct method" for sensitivity analysis consists 

of explicitly varying the data appearing in the burnup equations and 

estimating dR/da with a finite difference scheme. For simple reactor 

models, this method can be effectively utilized (for example, see 

ref. 12). However, the procedure can be very laborious and expensive 

for more complex problems; therefore we are motivated to establish some 

sort of perturbation theory for burnup analysis, analogous to the 

generalized perturbation theory employed in static calculations. The 

method is founded on the development of an appropriate adjoint system 

for the burnup equations, which allows one to estimate the sensitivity 

coefficient independent of the specific data perturbation. These 

equations will obviously depend on the particular approximation assumed 

in solving the forward burnup system. The next section will derive the 

adjoint equations for the quasi-static approx1mat1on. 

V. ADJOINT EQUATIONS FOR THE QUASI-STATIC BURNUP EQUATIONS 

Before attempting to derive adjoint quasi-static equations, it 

will be instructive to consider the simpler case of point-depletion. 

Point-depletion corresponds to the first apptoximat1on describ~d in 

Section III, with all space dependence of the nuclide field equat1on 
11 averaged out, 11 i.e., it is a zero-dimensional approximation. 

Gandini has previously addressed this problem under the further 

restriction that there be no variation in the flux field when the data ----- ------
is altered. This excludes perturbations both in flux shape at the 

initial condition and in normalization. Williams and Weisbin later 

showed that this amounts to neglecting a first-order error, 4 but one 

which may be small for many cases of interest. 
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The assumption of point-depletion with no flux perturbation 

simplifies Eq. (32) in two ways. First, the derivative d¢/dak vanishes 

in the equation for Sk; and second, the derivative d!i.fdak can be found 

independent of d¢/dak [i.e., it also eliminates the d¢/dak term in 

Eq. (34)]. It was shown in ref. 4 that under these restrictions, Eq. (32) 

is equivalent to 

~
a aM ) 

S ( t) = _!_ £.!L + N* T .....::_ N . , 
k R aa - aa -

k· k 
(35) 

where N* is the "uncoupled nuclide adjoint" obeying the final value 

equation 

a aR 
- at!!* - aN ' for 0 < t < tf (36) 

(37) 

For the special. case where R is a delta function in time at tf 

(as assumed by Gandini), Eqs. (36) and (37) are equivalent to 

a - - N* at -

N*(t ) = EB_ 
- f uN 

(38) 

(39) 

These are the original "adjoint burnup equations" derived by 

Gandini, and are valid if the effect of flux perturbation on the response 

is small. The method of sensitivity theory for the noncoupled, point­

depletion equations has been successfully applied in several studies; 2 '~ 

however, the assumption of small flux var1at1on warrants further 

investigation. 

Note that even if the response is not an explicit function of¢ 

(such as for a nuclide density response), there will still be a change 
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in R arising from o~, since this term will appear in Eq. (34). A priori, 

this indirect effect of the flux variation is difficult to evaluate. 

Studies by Kallfelz, et al. 5 [using a combination of static generalized 

perturbation theory for the flux field, and using Eq. (38) for the 

nuclide field], seem to indicate that for many responses the effect 

of changes in flux shape may be small, wh11e the effec.;t of changes in 

normalization may be significant. It was this apparent deficiency in 

the uncoupled adjoint equations which motivated development of 

a quasi-static perturbation theory in which the coupling in the burnup 

equations is explicitly treated (albeit Cipproximately). Therefore let 

us now focus attention on obtaining the appropriate adjoint equations 

for the second approximation described in Section III. 

For the derivation, we will use a variational technique described 

by Pomraningl3 and Stacy.14 With this method, the quasi-static burnup 

equations in (21), (22), (26), and (12) are treated as constraints on the 

response defined in Eq. (28), and as such are appended to the response 

functional using Lagrange multipliers. We will specifically examine 

the case in which the shape function is obtained by solving the lambda 

mode eigenvalue equation, rather than the case 'in which iJi is obtained 

from a control variable ("Ne") search. 

the only difference being a 11 k-reset. 11 

mathematical consequence of the reset.) 

functional 

K[_N, ljJ., <I>., a.,>.., h] = R[N, 1/J., <I>., h] , , - , , 

T 
+ l 

i =l 

The two cases are quite similar, 

{Eq. (54b) illustrates the 

Let us cons i de·r the fo 11 owing 

+ Q - ~t)~{~,t) + ~1dt 
.. v 
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T = number of broad time intervals in the quasi-static 

calculation, 
" 

lii = li(r,ti)' and 

. * " * * 
li (r,t), ri(p), Pi are the Lagrange multipliers. 

* * If Pi and ri are set to zero and space dependence ignored, then the 

functional in Eq. (40) reduces to the same one discussed in ref. 4, 

which was used to derive the uncoupled, point-depletion adjoint equation 

in Eq. ( 36) . 

. Note that if li' ~i' and ¢i are exact solutions to the quasi-static 

burnup equations,. then 

K = R. (41) 

In general, an alteration in some data parameter a will result in 

(42) 

where the prime variables refer to their perturbed values. Again, if 

li', ~i' ¢i are exact solutions to the perturbed quasi-static equations, 

K' = R' • (43) 

Expanding K' about the unperturbed state, and neglecting second-order 

terms, 

+~oA·)] ClA. l 
l 

(44) 

If we can force the quantities aK/ali, aK/a~., aK/3¢., aK/aA. to vanish, 
l l l 

then using Eqs. (41), (43) ~ and (44), 
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[
aK aK l 

oR = aa. oa. + a!!_ o!!_J P ' (45} 

or 

oR/R = [~ (aK + aR ab) oa.] . 
R .~~ ah ~a a 

- p 
(46) 

From Eq. (46), it is obvious that the sensitivity coefficient for a. is 

simply 

(4/) 

ThP. partial derivatives in Eq. (47} are trivial to evaluate, and 

therefore the problem of sensitivity analysis for the quasi-static burnup 

equations reduces to finding the appropriate stationary conditions on 

the K-functional. We will now set upon determining the required Euler 

equations, which will correspond to the adjoint field equations. 

Consider first the functiundl derivative with respect to ~ 1 (see 

Appendix I for functional derivative notation): 

aK = EB_+ 
a<P. <H>. , , (48) 

In order for th1s expression to van1sht we should choo~e 

(1+1 
t: * , 

p = --------------
1 

[ * J aR !!. [ifi;RJn,E !!. v dt + <H'i 

(49) 

Now examine the term aK/a~i' employing the commutativity property of 

adjoint operators, 



21 

~,~ = I ~.~ -(L * ( N . ) - "!, . F * ( N . )) r ~ - P ~ <I> • crf N ~ + <I> • 
Oljll• Oljl • -1 1 -1 1 1 1 - -1 1 

1 . J
ti+l N* 

Ji N. dt - al 
t"': ~ 

1 
(50) 

* * with L , F = adjoint operators to L and F, respectively. The vanishing 

of this term implies that (assuming the "standard" adjoint boundary conditions) 

where 

I * * I*,.. * L (!4__
1
.) - A.F (N.) r.(p) = Q. , 

1 -1 1 1 

* A A * 
-N (r,t) __ R(cr) _N(r,t)dt - <I>.P. crf N. 

1 1 - -1 

(51) 

- a 

(52) 

At this point it should be noted that Eqs. (51) and (21) demand that 

the flux shape function be orthogonal to the adjoint source; i.e., 

From Eqs. (52) and (49) it is eas1ly shown that this condition requires 

(53) 

which fixes the value of "a". For most cases of practiGal interest, this 

term is zero. For example if R is bilinear in $i and ~i' or is a bilinear 

ratio, then 11 a 11 will vanish. 

The term aK/a>.. is evaluated to be 
1 

(54a) 

which forces r~(~) to be orthogonal to the fission source at t =ti. 
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* This condition requires that ri contain no fundamental mode from the 

* homogeneous solution. More specifically, if r is a solution to· 
* * * p 

Eq. (51) and rp 1 ¢H' where XH is ~he fundamental solution to the 

homogeneous equation, then rp + b¢H is also a solution for all*b. * 

However, Eq. (54) fixes the value of 11 b11 to be zero, so that ri = rp. 

However, this is true 2.!!.1..l_ for the case in which there is no k-reset 

(i.e., A is allowed to change with data perturbations). For the case in 

which A is made invariaQt by adjusting a control variable Ne' it is 

easily shown that the propet orthogonality condition is 

(54b} 

Now the value of 11b 11 is not zero, but is given by 

Thus the effect of adjust1ng a c:nntrol vari~ble is to "rotate" 
* ri so that it will have some fundamental component. The specific 

* projection along ¢ depends on the specific control variable. 

The Euler condition corresponding tu a variation in !!_(r,t) is 

slightly more complex than for the other var1ables. Rather than simply 

taking the partial functional derivative, it will be more instructive 

to consider the differential (variation} of K with respect to 6!!_ (see 

Appe11d ·ix I ) 



oK[ oJiJ = [~~ , oJi J 
- p 

T Jti+l 
·+ l 

i=l t: 
1 
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T * * I [(Ji,·~1 oJi-,·+1 - N.+ ~N.+)Jv 
i=l -1 -1 

T 
- l 

i=l [
oN. 
-1 

T 
- ' P~ <P. [oN. [iµ. crfJn E] , 

l 1 1 -1 1 - ~~' v i=l 
(55) 

*- *(A - * * 
where Jii+l =Ji' r,ti+l)' etc.; and E, =transpose E,, Q =transpose Q 
(i.e., E,* and Q* are the adjoint operators to E, and Q). 

This variation will be stationary if the following conditions are 

met. The first two expressions on the RHS of Eq. (55) will vanish if. 

which can be written 

* * * M.N. + C. = 

where 

(56) 

(57) 

(58) 
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This equation is valid for the open interval (t., t.+1). But the 
* A 1 1 

question of the behavior of N {r,t) at the time boundaries t. has not 
- 1 

yet been answered. The remaining terms in Eq. (55) will provide the 

necessary boundary conditions for each broad time interval. These 

terms may be written as 

~ [ oN · l N~+ -.l -1 -1 
1 =l 

[r~ a&; (L - AF)¢;] - ~; P~[~; crfJn,E I -
0.. F. 

*-] oH.;+ lH.;+ l v 

(59) 

where we have employed the continuity condition on the nutl1de f1eld, 

N. = N.- = N.+ . 
~1 -1 -1 

Expanding the summation, we get 

[o!!., 1~ -[r: ~~ (L - AF)l/10 + p: $0 1/10 -"f lQ,E! 

I 6.ti1 (N;+ - N;-) · lr; all (L - AF)l/11 + p~ Tl 1/11 at] 
0., E 

(GU) 

By allowing a discontinuity in the nuclide adjoint field we can 

make all the terms containing oN. vanish, except at the end points t = O 
-1 * 

and t = tf. Therefore we assert the following property of H_ (r,t) at 

the time boundaries, 



where 
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* A + * * 
= !i (r,t

1
.} - [r. B· + P. IT.Jn E , 

1 -1 1 -1 a, 

A. F(N. }) 1/1. 
1 -1 1 

(61} 

IT • = <P • df 1/1 . 
-1 1 - 1 

. (62} 

The second term on the RHS of Eq. (61} represents a "jump condition" 
* on !i at t =ti; its value depends on the magnitude of the other adjoint 

* * * * variables r. and P .. Essentially, r. s. and P. rr. are sensitivity 
1 1 1 -1 1 -1 

coefficients to changes in N .. 
-1 

The term in Eq.*(60} containing o!if will vanish if we fix the 

final condition of N to be 

(63} 

(For responses which are delta functions in time, the final condition 

will be inhomogeneous--see next section.} 

* With all .these restrictions placed on !i, the summation in Eq. (60} 

reduces to a single expression, 

From this equation we can define a sensitivity coefficient for the 

initial condition of nuclide m to be 

(64} 

(65} 



26 

For no change in the initial condition of the nuclide field, Eq. (64) 

will also vanish. To be general, however, we will not make this 

assumption, and will retain the expression in Eq. (65) as part of the 

sensitivity coefficient. 

This rather involved development has provided the adjoint field 

equations for the quasi-static approximation. We have found that there 

exist adjoint equations corresponding to the nuclide transmutation 

equation, to the flux-shape equation (transport equation), and to the 

power-constraint equation. In additiont w~ have found thctL it is 

convenient to ascribe additional restrictions on the adjoint fields--
A. - - • . .. * 

namely, that r. be orthogonal to the fission source and that N be 
l -

discontinuous at each time boundary. The adjoint field equations are 

coupled, linear equations which contain the unperturbed forward values . 
for ,ti. ~i' and¢;· These .equations are repeated below: 

Adjoint flux-shape equation 

I L*(,t!
1
.) - >.. ~*(N.) Ir:= Q; 

l -1 l l 

at t =ti. 

Adjoint fl ux-norma 1 i zation equation: 

J+

ti+ 1 

[!!* [l/Ji.BJO,E NJ dt ·I ~~-. 
t v l 

A. ·1 
p. = --------------
, r~i ~f !!iJn,E,V 

Adjoint transmutation equation: 

at t = t. 
l 

(66) 

(ol} 
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* A * A + * * !i (r,t-
1
.) = N (r,t.) - [r. s. + P. rr.J~ E , at t = t

1
., i ~ f (69) 

- l l -1 l -1 ~G' 

* A A 

!i (r,tf) = ~f(r) = 0 , at t = tf (70) 

In the limit, as the length of the broad time-step goes to zero, 

the flux becomes a continuous function of time and there is no jump 

condition on the nuclide adjoint. For this case, if the fundamental 

mode approximation is made for the spatial shape of the flux, the energy 

dependence expressed in few-group formalism, and the components of !i 
limited to a few isotopes important to thermal reactor analysis, then 

the equations reduce to a form similar to those derived by Harris.12 

These equations are in fact simply the adjoint system to Eq. (34), with 

an appropriate adjoint source. 11 

The adjoint,field equations previously derived were for an arbitrary 

response which satisfies the orthogonality requirement in Eq. (53). A 

specific type of response which is often of interest .is some nuclide 

density evaluated at a specified time. This is the type of response 

origina.lly considered by Gandini in his derivation of the uncoupled. 

point-depletion nuclide adjoint equation, and was briefly discussed in 

Section V. Under this assumption, 

A 

R = R[!i_f,_b_J = R[!i_(r,t) cS(t - tf)' !l] (71) 

i.e., the response is a delta function in time at t = tf. In this case, 

the adjoint source is equivalent to a fixed final condition, and the 

adjoint field equations will simplify by 

* A 

£ (r,t) = 0 

N* = £.!L 
-f a!i_f 

EB_= 1!L = 0 
a<I>.. atjJ. 

l l 

for t < tf 

at t = tf 

at t = t. 
l 

(72) 

. ( 73) 

(74) 
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* If the values for the variables P. and 
i 

* ri are also small (i.e., the 

effect of flux perturbation is negligible), then the discontinuity in 
* Ii at ti will be small, and the nuclide adjoint equation reduces to the 

uncoupled form in Eqs. (38) and (39). 

VI. SOLUTION ALGORITHM FOR TllE ADJOINT 
QUASI-STATIC EQUATIONS 

As for the forward quasi-static equations, the practical utility 

of the adjoint equations depends on their ease of solution numerically. 

It turns out that the calculational flow for the adjoint solution is 

quite similar to that for the forward solution, except 1t proceeds 

backward in time. Therefore one would expect the computation requirements 

to be similar also. As an example of an algorithm for solving the adjoint 

quasi-static equations, we will consider the particular case d·lscus~~d 

at the end of the previous section; i.e., the case in which the response 

is a nuclide functional at some final time tf. Before outlining a 

computational flow chart, it may be helpful to make some preliminary 

observations. 

* First, it is shown 1rl E4. (52) th11t the flw< adjoint source s
1 

rit 
* . t. depends on an integral of N over the future time interval (t., t.+

1
)--i - i i 

this fact is strong incentive for solving the adjoint equations backwards 

in time. We wil I not dwell on the difriculties encountered in solving 

the flux adjoint equation, other than to point out that the operator 

on the LHS of Eq. (51) is singular (hence the requirement that the fixed 

source be orthogonal to the fundamental forward eigenfunction).. A 

discussion of the numerical methods required to solve these "generalized 

adjoint" equations can be found in ref. 15. 

Second, notice that over any given time interval, (ti' ti+l)' 

Eq. (57) for the coupled nuclide adjoint is identical to Eq. (36) for 

the uncoupled case; i.e., it is a final-value equation with constant 

coefficients. A method for solving this equation is described in 

ref. 4. 

* Finally, we see from Eq. (61) that the final value of N at the 

end of each time interval is fixed by the 11 jump 11 condition. Its 
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magnitude depends not only on the future behavior of N*, but also on 
* * -r and p at the final time of the interval. 

In summary, the adjoint quasi-static equations are coupled in the 

following manner: 

* * a) the variables N and p appear in the source term of the 

* equation for r , 
* * b) the variable !i appears in the defining equation for p , 
* * * c) the variables r and p appear in the "jump condition" for fi . 

With these conditions in mind, we will now attempt to establish a 

suitable computational algorithm for numerical solution of the adjoint 

quasi-static equations. Toward this end, consider the following flow 

chart: 

i) Starting with the Tth time interval (i.e., the last interval), 

solve Eq. (681 for the value of fi* between (t;_
1

, t.f).· The 

final value !if is fixed*by Eq. (73). 

ii) Compute t~e value for pT-l at tT-l from Eq. (67) 

iii) Compute·QT-l using E~. (52) 

iv) Solve Eq. (66) for rT-l at tT-l 
* * * + 

v) With the known values for p , r , and N at tT-l' compute 

the value for !i* at tT-l from Eq. (69) 
* vi) Using this new value for the final condition of N , solve 

. * + ~ 
Eq. (68) for the behavior of !i between (tT_2, tT-l) 

vii) etc. 

This marching procedure is followed backward through all the 

time intervals until the values at t = O are obtained, at which time 

the adjoint calculation is complete. When all the adjoint values have 

been obtained, the sensitivity coefficient for data variations is 

computed with Eq. (47), and fqr initial value variations with Eq. (65). 

As an example of a data sensitivity coefficient, consider the 

hypotheticai data a(r,E). The sensitivity coefficient for a [using 

Eqs. (47) and (40)] is 
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S (r,E) 
CL = aa(r,E) + 

I
ti+1 

+ l 
i t: . 

1 

* A a A 

Ji (r,t) aa(r,E) !ii Ji(r,t)dt 

where the operators !i and B [Eqs. (3) and (9)] were used to simplify 

notation. After computing the sensitivity coefficients for all important 

data, these are folded with data covariance files to find the response 

variance. (See ref. 4 for more details concerning time-dependent 

uncertainty analysis.) 

In describing the flow charts for the depletion calculations, we 

have made no reference to the specific numerical procedures to be employed 

in solving the derived adjoint equations. It has been assumed that the 

solution techniques used for solving the forward equations (multi-group, 

finite differenc.ing, etc.) are a·lso app.licable to the adjoint equations. 

In the next section we will consider the application of quasi-static 

sensitivity theory to two simplistic examples in which the adequacy of 

the method can be examined. 

VII. EXAMPLE CALCULATIONS 

As an illustrative applicatitin of the adjoint quasi-static equations, 

we will first consider the simplest possible case of an infinite, 

single-nuclide medium in which the energy behavior of the flux is 

described by one energy group and will assume that the quasi-static 

calculation is to be performed in a single time step (thus technically 

this is a point-depletion calculation). Let us further assume that 

the purpose of the calculation is to determine the sensitivity of the 

nuclide concentration at time Tf to changes in the initial condition . 

at time zero. 
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The burnup equations for this example are 

l/J N 4> crf = P 
0 0 0 

N(o) :: N 
0 

(flux shape equation) 

(flux normalization equation) 

(transmutation equation) 

(initial condition) 

Because of the simplistic nature of this problem, the lambda 

eigenvalue is found independently of N or l/J, 

and does not vary with time. 

(75) 

(76) 

( 77) 

(78) 

(79) 

Equation (75), which is to be solved for the flux-shape function, 

is actually satisfied by~ constant; however, from the normalization 

constraint, the value for l/!
0 

is fixed to be unity. 

The flux magnitude is easily computed from Eq. (76): 

and the time-dependent nuclide concentrat1on 1s found to be 

N(t) ( 81 ) 
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For this example the response has been defined as the concentration 

of nuclide Nat some specified time Tf (a 11 final-time nuclide response 11
), 

(82) 

Now observe the consequences of perturbing the initial condition 

by N
0 

-+ N
0 

+ t:.N
0 

a) from Eq. (80), 

b) from Eq. ( 81) , 

N(t) -+ N(t) + t:.N(t) 

c::) from Eq. (82) ~ 

-a ¢ T -cr t:.¢ T 
R ~ R + ~K = (N + L'.lN )(e a o f}(e a o f) 

0 0 
(83) 

The expression in (c) corresponds to the 11 exact 11 perturbed response, 

accurate within the limitations of the quasi-static formulation. Note 

that if the flux and nuclide fields were assumed to be uncoupled (as 

discussed. ~t the beqinninq of Section V), a pP.rturhiltinn in N
0 

wottld 

not affect ¢0 (i.e., t:.¢ = 0). Equation (82) then reduces to 
---- 0 

and the response would be perturbed by 
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(84) 

Therefore the initial-condition sensitivity coefficient for the uncoupled 

case is 1. 

The effect of the flux perturbation in Eq. (82) can be approximated 

in the following manner: using the fact that 6¢
0 
~ -¢

0 
6N

0
/N

0 
(accurate 

to second order), Eq. (83) can be written as 

(85) 

Expanding the last exponential in a Maclaurin series, and neglecting 

all but first order terms, 

6R = ~N e a 0 f + T a ¢ e a 0 f I 
-a ¢ T -a ¢ T 

o f a o 
(86) 

This implies that 

(87) 

with the term in brackets serving as the sensitivity coefficient. 

Comparing the sensitivity coefficients for the coupled [Eq. (87)] and 

uncoupled [Eq. (84)] cases, we conclude that the term Tfaa¢o arises 

from the coupling between the flux and nuclide fields. 

* 
Now consider the adjoint system for this example. The value for 

f 0, the shape function adjoint, is obviously zero from the orthogonality 

condition in Eq. (54). The equation for the nuclide adjoint is 

(88) 



with 

3ll, 

t = T 
f 

This final-value problem has the solution 

The value for the normalization adjoint at t - O i5 given by 

Eq. (67), with aR/a'l>; == O: 

* p = 

Tf 

l N*(-aa)Ndt 

- -
crfNo 

and the value for rr in Eq. (62) is 

Substituting Eqs. (92), (91), and (90) into Eq. (65) for the 

sensitivity coefficient gives, after simplification 

(89) 

(90) 

(91) 

(92) 

(93) 

which is the same value as in Eq. (87). Thus we see that the coupled 

adjoint equations provide a first-order estimate of the effect of the· 
nonlinear coupling between the flux and nuclide fields, which does not 

appear in the uncoupled case. Of course, if the nuclide/flux coupling 
* were ignored, then p would be zero; and the sensitivity coefficient 

in Eq. (93) would reduce to the uncoupled value of 1. 

This example was obviously a very simple case, and yet it has 
* provided some very important insight into the physical role of p --the 
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normalization adjoint corresponds to the importance of the flux 

normalization to the response. In ref. 4, the nuclide adjoint 
* N was shown to play the role of "nuclide importance" for the noncoupled, 

point-depletion equation; and it can be shown to have a similar 

interpretation for the coupled quasi-static equations. Therefore, one 
* might expect that r represents the importance of the flux shape (in 

both space and energy) to the response. The next example will focus 
* on computing r . 

For a second example, we will consider a problem described by two 

energy groups, and an infinite homogeneous medium composed of one fuel 

nuclide and one poison nuclide (the infinite-medium restriction can be 

relaxed if the flux is separable in space, and if the buckling term 

corresponding to the finite system is added to the absorption cross 

section in the flux equation). For simplicity we again only consider 

one time step. The response considered is the concentration of the 

fuel nuclide after 600 days of exposure. In this example the following 

notation will be employed: 

k 
crxj =micro-cross-section of type x; for nuclide k, group j. 

Ni( t) = 

N2(t) = 

dt) = 

~ = 

Cross-section types are indicated by r for removal, a 

for absorption, c for capture, f for fission, and s 

for scatter 

atom density of fuel nuclide 

atom density of poison nuclide 

N2(t)/N1(t) 

initial condition = (6)x 10
24 atoms/cm 3 

The burnup equations describing the system are assumed to be the 

foll owing: 
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Flux-shape equation 

(

Ni(t) 

-Ni( t) 

al 
rl 

l 
0 s,l-2 

which can be written 

rl 
0 

( 

0
1 

-u~,1-2 s( t) 

,)f~1)-A (o vof~ (~1). = 
0 

crc2 ~' \o O } ~1 

where 

Flux normalization equation 

© = __ P __ 

Nuclide transmutation equation 

y =yield of nuclide 2 from f1ss1on, 

A = decay constant of nuclide 2 

(94) 

(95) 

(96) 
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It is a straightforward, though somewhat laborious task, to obtain 

closed form solutions to Eqs. (95), (96), and (97). For the general 

case of several time-steps in the quasi-static calculation, the 

expressions are very involved; however, if we stay with our original 

assumption and use only a single time-step, the resulting expressions 

are more manageable. The solutions are summarized below: 

;\ = 
cr~ 1 (cr~ 2 + ~(t) cr~ 2 ) 

(98) 

(vcrf2)(cr~, 1 _ 2 ) 

1j1i/1j12 = 
(cr~ 2 + ~(t) cr~ 2 ) 

(99) 
l 

0 s,l-2 

cp = 
p 

( l 00) 
N1 crf-2 1j12 

Ni ( t) = Ni ( o) e -a 11 t ( l 01) 

N1 (o) a 
[e-a11t _ e-a22t] N2(t) = N2(o)e-a22t + 21 

a22 - a11 
( l 02) 

where aij refers to the elements of the matrix in Eq. (97). · 

The nuclide adjoint equation is obtained by simply transposing the 

matrix in Eq. (97). The resulting nuclide adjoint solutions are 

= N~(Tf)e-a11(Tf-t) 

N~(t) = N~(Tf)e-a22(Tf-t) 

where a .. again refers to the matrix elements in Eq. (97). 
lJ 

( l 03) 
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The value for the flux normalization adjoint is given by 

Tf 

f {N7(t)a11N1(t) + N:(t)a21N1(t) + N;(t)a22N2(t)}dt 

p* = _o~~~~~~~~~~~~~~~~~~~~~-

( l 04) 

which can be integrated analytically. 

The equation for the shape adjoint function is obtained by · 

transposing Eq. (95), and setting the result equal to the adjoint source 

* defined in Eq. (52). For an infinite, homogeneous medium, in which r 

is orthogonal to th~ fission source the fission term can be ignored (see 
* Appendix II), which makes the equation for r particularly simple: 

where 

(

0
1 

rl 

0 

Tf 

~I dtN~(t)(-0~1)N1(t) 
0 

( l 05) 

( l 06) 

These expressions can be evaluated analyt1ca11y using the terms i11 

Eqs. (100), (101), and (102). For this example the various data values 

were assumed to be those given in Table 1. These values are not 
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Table 1. Assumed values for nuclear data in example 2 

Parameter Value 

l . 
0
rl 

9 barns 

cr l 
cl 3 b 

cr l 
1 '1-2 

6 b 

1 
0 c2 1 b 

cr l 
a2 2b 

l 
crf2 lb 

µ 2b 

cr2 
c2 

lOb 

X1 1 

X2 0 

y .5 

p 2.0 x 1014 fissions 

sec-cm 3 

/\. 4.0 x 10-9 sec- 1 
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particularly realistic, and were chosen arbitrarily to illustrate the 

technique. Using this data, the values for ~' ~ and fi were computed 
11 semi-analytically 11 (i.e., a computer program was written to evaluate 

the analytic expressions and couple the results), and are listed in 

Column l of Table 2. 

The response considered in this particular example was the 

concentration of nuclide l after 600 days of exposure. Therefore, the 

appropriate final condition for the nuclide adjoint is 

* Ni{600) = ·1 

w 
Ni{600) = 0 

The results of the adjoint calculations for this response are given 

in Table 3. 

Now consider the change in the final concentration of the fuel 

nuclide, due to varying the initial concentration of the poison nuclide. 

A change in the _concentration of nuclide 2 does not directly affect 

nuclide l, since nuclide l is not produced by nuclide 2 (note that 

* N2(t) = 0). The poison nuclide was also assumed to have a zero fission 

cross section, and hence does not affect the flux normalization directly. 

Therefore the only mechanism by which a change in the concentration of 

nuclide 2 will affect the final concentration of nuclide l is through 

a change in the flux spectrum. 

Column 2 of Table 2 shows the results of the perturbed calculation, 

for a change in the initial condition of the poison nuclide equal to 

.1 x 1024 atoms/cm 3
• As one would expect, the addition of the poison 

nuclide hardens the spectrum, which increases the rate of depletion of 

nuclide l, because nuclide l was assumed to have a hiqher absorption 

cross section in group l than in group 2. Consequently, after 600 days 

exposure the concentration of nuclide (i.e., the response) is slightly 

lower for the perturbed case than for the reference case. The amount 

of the response perturbation is -.52%. 

,• 
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Table 2. Results of forward calculation in example 2 

Reference case Perturbed case (~N2 = • l) 

t = a t = 6aO days t = a t = 6aa days 

N1 l.a x l a21+ .96937 x l a21+ l.a x l a21+ .96436 x l a21+ 

N2 a.a . 17533 x l a2 3 . la x 102
1+ .95125 x l a2 3 

<P• \jJ l .6667 x l a11+ .74992 x l a11+ . l aaa x l a1 s .10323 x la l 5 

<P. l/J2 .2aaa x l a1 s .2a632 x l a1 s .2aaa x 101 s .2a739 x l a1 s 

keff l. 5ao l. 380 l .Oaa l. aa5 

Table 3. Results of adjoint calculationa in example 2 

t = a t = 6aa 

* N1 .96937 l.a 

* N2 o.a a.o 

* r1 5.al64 x l 01 7 

* l az 1 r2 Q.7aas )( 

* p l.5a76 x l a0 

a.For a response of R = N1 (60a days) 
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We would now like to predict the response change using perturbation 

theory, and compare with the direct calculation. For the perturbation 

of 

LiN = (. ~ ) x l O 2 4 
, 

Eq. (64) reduces to 

- . l x l 02 
4 ( * 2 ) 

liR/R = ----- r2 ac2 w2 = 
.96937;..: 1024 

.52% 

From this result we see that the perturbation method is very accurate 

tor thii example. 

Both of the preceding examples have considered the sensitivity of 

some final nuclide concentration to changes in various initial conditions. 

It should be stated that the perturbation technique has also been applied 

in Example 2 to estimate the change in the response due to changes in 

cross sections and the decay constant of nuclide 2. Equally satisfactory 

results were obtained for these cases. 

Because the example problems were relatively s1mp1e, the true power 

of the quasi-static perturbation method was not fully realized--it was 

actually an easy task to recompute the perturbed response analytically. 

However, such is not the case in rea1istic problems! The reader should 

be aware that with perturbation theory, a change in some response (for 

these examples, a nuclide concentration) due to a change in the initial 

condition or in any nuclear data can be estimated (to first order 

accuracy) W1thout regu1riny a new 1.Jurnup L.alculation. When one con5idcr~ 

the cost of many burnup calculations, the power of burnup perturbation 

theory is evident. 
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CONCLUSION 

Sensitivity theory expressions have been derived for functionals 

dependent upon coupled neutron and nuclide fields, as encountered in 

burn-up analysis. Equations for the adjoi~t functions appearing in the 

sensitivity coefficients were developed, based on a common approximation 

(called the quasi-static" formulation in this study) used in such com­

puter codes as CITATION and VENTURE-BURNER. 

After obtaining sensitivity coefficients, changes in a specified 

response due to changes in nuclear data or in the initial reactor 

configuration can be easily estimated without requiring new burn-up 

calculations. The numerical algorithm for solving the adjoint system of 

equations appears to require a comparable amount of computation as a 

single forward calculation. The method appears to have the greatest po­

tential for application in the areas of uncertainty analysis and design 

scoping studies. 
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Appendix I 

It is assumed that the reader has an elementary understanding of 

vector and functional analysis, or at least a knowledge of the basic 

definitions. This appendix will simply describe the mathematical , 
notation employed in the text, Without dwe111ng uri dllY Lheoretical 

aspects. 

A.1.1. Vector Notation. For this study, vector fields are denoted by 
" 

underlininq the var1ab1e, such as !(r,t)~ Vectors denoting points 

in a phase space (1.e., 1ndepl::!mhmL vdr·ial.Jles) are denoted with u 
" 

caret, such as r = (x,y,z). Matrices are denoted with two 

underlines, such as!:!· 

A.1.2. Inner Product of Vectors and Functions. All vector~~ltiplication 

used in this work refers to the inner product operation. For 

example, 

AB= A1B1 + A2B2 + ... +AB . - - - n n 
If we think of a function as being an infinite dimensional vector, 

the inner product of two functions is defined analogously: 

[ g , x , • f ( x ) ] x ==- J g ( x , • t ( x , dx . 

A.1.3. Vector Derivative (gradient). The derivative of a scalar 

function with respect to a vector is defined by 

~f (af af . af ) 
aA (~) = aA ' aA2. ' .. · ' M 

- i n 
(A.1-1) 

This operation maps a scalar into a vector (note that if A is a 

position vector, the vector derivative is the familiar gradient 

operator). 
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A.1.4. Functional Derivative (gradient). This is a generalization of 

the concept of a vector derivative. If one considers a function 

to be an infinite dimensional vector, the generalization follows 

quite naturally--this operator transforms a functional (a scalar) 

into a function (a vector). If K[f(x)] is a functional defined by 

K = [F[f(x)]]x' where Fis some composite function of f(x), then 

we have (see ref. 16 for details) 

aK 
af (x) 

aF 
= ___,a f ........ ( x ........ ) (A.1-2) 

A.1.5. Functional Variation (differential). A functional variation is 

a generalization of the concept of a differential (which of course 

is closely related to a directional derivative) in finite dimensional 

vector analysis. It is defined by 

oK[f(x)J = [aK • ilfl = f aF • ilfl . 
~f Jx [af Jx 

(A.1-3) 

In this expression it is assumed that ilf is small, such that 

second-order terms can be ignored. A functional is called 

stationary at some function·f
0

(x) if the functional gradient (and 

hence the variation) vanishes there. At such a point, K will 

either have an extremum or an inflection point. 

A.1.6. Functional Taylor Series. Using the definitions in A.l .4 and 

A.1.5, a Taylor series expansion of a functional is defined 

completely analogously to a Taylor series for a function of a 

finite dimensional vector: 

(A.1-4) 
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Appendix II 

The purpose of this appendix is to prove that for an infinite 
* homogeneous medium the value for r (E), which is orthogonal to the 

forward fission source, is given by the first term in a Neumann series 
* expansion; i.e., r (E) can be found from a fixed-source calculation 

without considering any multiplication. This proof was suggested to 

the author by R. L. Childs.17 

The equation for the shape adjoint function, as derived in the 

text. is given for an infinite homogeneous medium by 

* * w w w 
L r (~) - AF r (E) - Q (E) (A.2-1) 

along with the constraint conditions 

00 ! ;(E)Q*(E)dE = 0 , (A.2-2) 

and 

00 

(A.2-3) 

lhe forward equation for the flux shape is 

L~(E) - AF~(E) = 0 (A.2-4) 

The adjoint shape function can be expressed as a Neumann series by 

* * * r (E)::: ro(E) + r1(E) + ... , (A.2-5) 

where the terms in the infinite series are found from 

* * * L ro(E) = Q (A.2-6) 

(A. 2-7) 

-, 
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* Multiply Eq. (A.2-4) by r 0 , and Eq. (A.2-6) by~' integrate both 

over energy and subtract: 

00 00 

A f r:(E)F~(E)dE = f ~(E)Q*(E)dE 
0 0 

Therefore, from Eq. (A.2-2) we see that 

00 00 

J (r:F~)dE = o = f ~(E)vEf(E)dE • J x(E~)r:(E~)dE~ 
0 0 

* This equation shows that r (E) 1 x(E), since 

00 

f x(E~)r:(E~)dE~ = 0 

0 

Now consider the term on the RHS of Eq. (A.2-7): 

00 

·A' 

(A.2-8) 

(A.2-9) 

(A.2-10) 

(A.2-11) 

by Eq. (A.2-10). Since L is a ·nonsingular operator, we conclude that 
* r1(E) = 0. This argument is easily extended to the higher iterates, 

and the result is that 

* * r (E) = ro(E), (A.2-12) 

* where r 0 is the solution to Eq. (A.2-6). 
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