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1 1 1 1 ---- IntroductionIntroductionIntroductionIntroduction        38 

A driving cycle can be considered as a part of a standardized procedure aimed to evaluate vehicle 39 
performance in a reproducible way under controlled or laboratory conditions, such as simulation 40 
environment, power–adsorbing chassis dynamometer, testbed and sometimes road track. It has to 41 
include a time–vehicle speed signal as main input data, but a large set of boundary conditions can be also 42 
defined: dynamometer settings, gear shifting points, reference atmospherics conditions, vehicle 43 
conditions (tyre pressure, lighting, oil viscosity, transported mass..), “cold start” conditions (critical, for 44 
different reasons, both for ICE and EV vehicles) and any other parameter influencing the performances of 45 
the product under test.  46 

According to the large differences in terms of driving habitudes, user needs, road characteristics and 47 
others it is known that the exact duty cycle to be satisfied during the life of a certain vehicle is not fully 48 
predictable. It is therefore probable that a single “driving cycle” cannot represent all the possible 49 
conditions on which the vehicle could be used during its life, but that some kind of compromises are 50 
needed. Despite of the fact that the research and the standardization process started in the early ‘70s, the 51 
definition of driving cycles is still a topic under development in scientific and technical literature.  52 

The aim of the activity presented in this paper is to propose a group of driving cycles which are suitable 53 
for EVs; the study includes the definition of a procedure for driving cycle definition and the description of 54 
its application on a case-study. The document is structured as follows: section 1 introduces the topic, 55 
proposes a brief review of literature information and recalls state-of-the-art experiences; section 2 deals 56 
with the definition of a procedure for data analysis and cycle synthesis; section 3 describes the tailored 57 
approach developed and its application to a real case study, including data acquisition on the city of 58 
Florence (Italy); results and conclusions are then presented. 59 



1.1 1.1 1.1 1.1 ---- Driving cyclesDriving cyclesDriving cyclesDriving cycles    60 

In the legislative context, type approval procedures include scheduled tests over standardized driving 61 
cycles. The assessed parameters are mainly related to the evaluation of the environmental impact of the 62 
vehicle; in case of ICE ones, in fact, since the early 1970 years the attention has been focused on air 63 
pollutants and, recently, on GHG emissions, according to Regulation EC No 443/2009. Currently a very 64 
large number of driving cycles are used worldwide for homologation: e.g. EU cycles, US cycles, Japanese 65 
cycles and many others (Barlow et al., 2009). Legislative ones also differ on the basis of the class of the 66 
vehicle to be tested; main procedures have been defined for M-class passenger cars, light or heavy duty 67 
N-class vans or trucks, L-class vehicles such as quadricycles (distinguishing between low and full power 68 
ones) and motorcycles. These cycles often include more subphases which are aimed to represent low 69 
and high speed sequences, or, from another point of view, different driving areas such as urban, rural or 70 
motorway roads.  71 

As explained since the presentation of early research articles on the topic, Driving Cycles are built on the 72 
basis of the processing of real-world measurements (Kenworthy et al., 1992; Lyons et al., 1986; Newman 73 
et al., 1992). Depending on the resolution used to describe the synthetic cycle, the driving sequences can 74 
include or not the irregularities in speed which are typical of real-world driving by the users; as an 75 
extreme, smoothing and decimation of the curves can result in driving sequences composed by straight 76 
lines on the time-speed charts, thus corresponding to constant or zero acceleration phases. The widely 77 
used NEDC cycle is one example of such approach, even if, according to recent trends, the newly defined 78 
WLTC cycle (UNECE, 2015) is going to be used for type approval on next years, improving the 79 

representativeness of tailpipe emissions and fuel consumption assessments. Recent literature papers on 80 
the topic agree on the opportunity of such introduction (Demuynck et al., 2012; Sileghem et al., 2014; 81 
Weiss et al., 2012). 82 

In general, a large number of factors are acting on vehicle energy consumption and on the related 83 
emissions, including driver capabilities, driving context, traffic conditions, ambient temperature etc.: such 84 
variability is the reason determining the need for extensive testing on the road of any kind of vehicle 85 
during its final development phase. Using appropriate parameters to evaluate the characteristics of 86 

driving cycles, the evidence explained in literature is that local or regional conditions can differentiate 87 
driving patterns depending on the area under examination (Lin and Niemeier, 2003; Wang et al., 2008). 88 

Therefore, in addition to the standardized cycles used for type approval, experiences in applied research 89 
show a wide variety of data which are aimed to improve the representativeness of emissions 90 
assessments and, in some cases, are directly used during product development. In order to reduce the 91 
cost of such critical phase, virtual and testbed testing procedures are performed, and in this controlled 92 
contexts a representative driving cycle is needed as input. The cycles can be defined depending on: 93 

• load patterns (including continuous or transient speed phases) 94 
• context of applicability (urban, extra urban, motorway)  95 



• expected vehicle mission profile (e.g. private passenger use, freight delivery, bus service, etc.).  96 

Car manufacturers usually perform activities on driver and cycle characterization in order to improve their 97 
own knowledge on representative test sequences, both using methods for driving cycle synthesis after 98 
acquisition on real-world use (Borgarello et al., 2010; Ma and Andreasson, 2007) and experimental test 99 
using professional drivers on controlled track conditions (Capitani et al., 2003). Tailored driving cycles 100 
have also been prepared to consider special applications for which general cycles are not suitable (Han 101 
et al., 2012) or to assess the behavior of a particular vehicle category on a known path, e.g. motorcycles 102 
on typical home-work routes (Saleh et al., 2009).  103 

1.2 1.2 1.2 1.2 ---- Use patterns and cycles for EUse patterns and cycles for EUse patterns and cycles for EUse patterns and cycles for Ellllectriectriectriectric Vc Vc Vc Vehiclesehiclesehiclesehicles    104 

In most recent formulation of homologation procedure (see UNECE Regulation 101), the procedures to 105 
evaluate the performances of FEVs have been introduced, e.g. through the use of weighting formulae for 106 
the assessment of electric energy and combined fuel consumption in case of HEVs. However, FEVs 107 
introduce new parameters for the evaluation of their performances and are affected by specific criticalities 108 
in comparison to conventional vehicles. A brief list of such new factors includes: 109 

• the possibility of energy recovery during braking, which could induce the drivers to modify their 110 
style in order to optimize the energy consumption according to this feature, e.g. reducing as much 111 
as possible the use of mechanical brakes on “smooth” deceleration; regenerative braking, in 112 
particular, has been identified as a key element for the overall EV efficiency, especially in certain 113 
driving contexts (Travesset-Baro et al., 2015)  114 

• the range is usually below a value of about 150km on optimal conditions for most EVs currently 115 
on the market; the limitation could induce drivers to particularly smooth, benign driving style 116 
under specific conditions as occasionally high daily distance driven or unavailability of charging 117 
points; such boundaries can also determine the so–called “range anxiety” phenomena (Neubauer 118 

and Wood, 2014) 119 
• a different perception of vehicle performances, due to different acoustic sensations, throttle 120 

feeling, and torque availability from the powertrain in comparison with conventional ICE vehicles 121 
• a different sensitiveness of the vehicle to the use of auxiliary systems, which could reduce the 122 

range up to 50% (Geringer and Tober, 2012) . 123 

A particular cycle developed for Electric Vehicles is available in literature (Alessandrini and Orecchini, 124 
2003); the same study also highlighted that the characteristics of electric vehicles can induce a driving 125 
pattern somehow different from those adopted on conventional vehicles by the same users, such as: 126 

• the frequent occurrence of moderately strong accelerations, especially at low speed, even for 127 
non–aggressive drivers; this can happen due to human perceptions in terms of reduced noise, 128 
that is typical of electric traction systems 129 

• the low peak power reduces aggressiveness on moderate or high speed; this occurrence could 130 
be related to the vehicle used in the cited study. For latest N1 or M1 class EVs maximum power 131 



is usually comparable with similar conventional vehicle; this observation, however, can still be 132 
appropriate for low powered vehicle such as electric quadricycles. 133 

The cycle has been reported to be almost unique at least until 2011 (Chaudhari and Thring, 2011), while 134 
even recent works, which are aimed to assess the applicability of real world cycles on EVs, have been 135 
using time-series data acquired from conventional ones (Ozdemir et al., 2014).   136 

Recent works on EVs are also aimed to characterize the users on the basis of their needs and habitudes 137 

in order to verify the suitability of EVs for general purpose use; in particular, the characterization of so-138 
called “trip chains” (Primerano et al., 2008) has been studied both in Europe (Pasaoglu et al., 2014) and 139 
USA (Krumm, 2012; Van Haaren, 2011); trip-chaining is fundamental in, fact, in order to identify charging 140 
opportunities for EV users (Smith et al., 2011). Results on the use of electric vehicles by a panel of 141 
drivers have been published, and the data reported are useful to complete the duty cycle definition 142 
together with general use information such as charging habitudes (Adornato et al., 2009; Smart et al., 143 
2013); field operational tests also offer the opportunity to rank powertrain use patterns on the basis of 144 
intensity and context identification (Liaw and Dubarry, 2007; Shankar et al., 2012).  145 

2 2 2 2 ---- Development of Development of Development of Development of driving driving driving driving cyclescyclescyclescycles    146 

A number of different methodologies can be used for data acquisition and for their synthesis in a 147 
representative cycle; main approaches are well described in literature, as highlighted in a recent review 148 
(Tong and Hung, 2010). 149 

2.1 2.1 2.1 2.1 ---- Driving sequences analysisDriving sequences analysisDriving sequences analysisDriving sequences analysis    150 

Numerical parameters are needed for the comparison of signals coming from different measurements. 151 
Since driving cycle are coming from some kind of synthesis algorithm, the identification of numerical 152 
characteristics of input data permits the possibility to validate the representativeness of the compressed 153 
cycles. One important limitation that is often taken into account is that the duration and/or the total length 154 
(in terms of run distance) of some driving cycles is limited by practical needs (e.g. for test–bed execution); 155 
typical durations are in the range of 500–1500s.  156 

In this paragraph, numerical parameters will be reported using a few reference articles. It is possible to 157 
distinguish at least six main categories of driving segment/cycles parameters depending on their physical 158 
dimension: distance, time, speed, acceleration, stop data (e.g. % of time or event count), indicators of 159 
dynamics. Considering relevant experiences such as the ARTEMIS project , the full list of the parameters 160 
used includes 40 elements (André, 2004; Barlow et al., 2009); their list is provided on Table 1. In most 161 
research activities only a subset of such parameters has been considered; looking at literature works, the 162 
evaluation can be based on a reduced set of indicators, such as 22 parameters (Hung et al., 2007), 13 or 163 
12 parameters (Kumar et al., 2012; Saleh et al., 2009).  164 



Group Parameter Units 

Distance related  Total distance m 

Time related 

Total time s 

Driving time s 

Cruising time s 

Drive time spent accelerating s 

Drive time spent decelerating s 

Time spent braking s 

Standing time s 

% of time driving % 

% of cruising % 

% of time accelerating % 

% of time decelerating % 

% of time braking % 

% of time standing % 

Speed related  

Average trip speed km/h 

Average driving speed km/h 

Standard deviation of speed km/h 

Speed: 75th – 25th percentile km/h 

Maximum speed km/h 

Acceleration related  

Average acceleration m/s2 

Average positive acceleration m/s2 

Average negative acceleration m/s2 

Standard deviation of acceleration m/s2 

Standard deviation of positive acceleration m/s2 

Acceleration: 75th – 25th percentile m/s2 

Number of acceleration per km [null]/km 

Stop related 

Number of stops [null] 

Number of stops per km [null]/km 

Average stop duration s 

Average distance between stops m 

Dynamics related 

Relative positive acceleration (RPA) m/s3 

Positiv kinetic energy (PKE) m/s2 

Relative positive speed (RPS) [null] 

Relative real speed (RRS) [null] 

Relative square speed (RSS) m/s 

Relative positive square speed (RRSS) m/s 

Relative cubic speed (RCS) m/s 

Relative positive cubic speed (RPCS) m2/s2 

Relative real cubic speed (RRCS) m2/s2 

Root mean square of acceleration (RMSA) m2/s2 

Table Table Table Table 1111    ––––    Full list of indicatorsFull list of indicatorsFull list of indicatorsFull list of indicators    to describe driving cyclesto describe driving cyclesto describe driving cyclesto describe driving cycles    (Barlow et al., 2009; Tong and Hung, 2010)(Barlow et al., 2009; Tong and Hung, 2010)(Barlow et al., 2009; Tong and Hung, 2010)(Barlow et al., 2009; Tong and Hung, 2010)....    165 

During the analysis of the data, trip events (i.e. a driving sequence between key–on and key–off events) 166 
and microtrip ones (i.e. a sequence measured between two stops events) are identified. The numerical 167 
parameters above described offer an aggregate information of the average results of cycle analysis. In 168 
addition to this, the analysis of cycles on the basis of quantitative information can take into account a 169 
large set of data represented in the form of statistical distribution. Typical data can be calculated in terms 170 
of absolute indicators (e.g. distance driven or time spent over a certain condition) or in terms of relative 171 

frequencies (e.g. percentage of occurrence of a certain class of events). Regarding 2–variables 172 
distribution, a largely used method for cycle clustering and cycle build–up is based on the analysis of the 173 
distribution of events falling in a determined class of speed–acceleration couple, expressed as relative 174 
frequency of occurrence or as total time (De Haan and Keller, 2004). In case of the use of such 175 
information for the extrapolation of a new cycle, the relative frequency assumes the meaning of 176 
“probability” of a determined class; the definition used by some authors is therefore SAPD (Hung et al., 177 
2007). The scope of distribution analysis is both related to data visual interpretation and to extended data 178 
processing; in particular, in case of creation of a new cycle using randomization methods, data 179 
distribution can used for the selection of sequences through random walk approaches, as described in 180 
next chapter (Lee et al., 2011).  181 



The ability to group into categories the different segments of measured driving sequences is fundamental 182 
for cycle synthesis; clustering activities can be based on a vector of indicators such as those in Table 1 183 
(Borgarello et al., 2001) or directly on SAPD. In this latter case, it can be needed to introduce a correction 184 
criteria on the acceleration values. In fact, considering that the occurrence of certain speed–acceleration 185 
couples on the whole range of possible values is very low or even zero, acceleration values can be 186 
artificially enhanced to improve the resolution of the SAPD. A suitable option is to multiply it by a factor 187 

that increases linearly from 1 at low speed to 2 at typical motorway speed (André, 2004; André et al., 188 
2006). Other classification methods based on fuzzy logic are documented in literature (Liaw, 2004; Tong 189 
and Hung, 2010).  190 

2.2 2.2 2.2 2.2 ---- Signal acquisition and treatmentSignal acquisition and treatmentSignal acquisition and treatmentSignal acquisition and treatment    191 

The acquisition of data from vehicles usually can comprehend a large number of parameters. Tipically, 192 
values about dynamics can be obtained by accelerometers (e.g. inertial platforms used for multiaxial 193 
accelerations); together with GPS data such analysis can completely describe the kinematic of the vehicle 194 
and the context in which it is moving. However, logging of powertrain values can also be needed (e.g. 195 
rpm, speed, throttle position, engine parameters if ICE, battery/inverter/powertrain parameters if EV or 196 
HEV) especially in the case that the aim is to correlate emissions (directly measured at tailpipe) and 197 
driving style (Alessandrini et al., 2009) or to correlate traction power to probability of occurrence (Shankar 198 
et al., 2012). The availability of logging capabilities through cheap and wide diffusion devices such as car 199 
infotainment system and smartphones highlights new possibilities for the monitoring of driving attitudes 200 
(Gerardo and Lee, 2009); such data can be used for driver training through continuous learning (Beusen 201 

et al., 2009; Corcoba Magana and M unoz-Organero, 2011; Manzoni et al., 2010), thus promoting safe or 202 
fuel-saving driving styles. When preparing a vehicle for data acquisition, the naturalistic behavior of the 203 
drivers can be influenced by the use of highly instrumented vehicles; the relation has been clarified in 204 
literature considering former research experiences (Valero-Mora et al., 2013).  205 

The minimum data acquisition frequency for vehicle speed should be at least 1Hz, that is also the value 206 
used for the time-speed signals defining most existing driving cycle; decimation at 1Hz has been 207 
suggested in defining driving cycle construction framework (Bishop et al., 2012). However, it has been 208 

demonstrated  that vehicle energy consumption and efficiency can be evaluated with acceptable results 209 
using low sample rates (0.2 – 1Hz) if a compensation technique is provided, but that higher sampling rate 210 
(from 2Hz to 10Hz) provide more accuracy and reliability for vehicle efficiency characterization due to the 211 
possibility to better describe vehicle dynamics (Corti et al., 2012). During pre–processing of the data, the 212 
first need is to check the continuity of the information: data affected by strong cold–start uncertainties, that 213 
is typical of GPS devices, large signal lack or similar should be rejected. Also, if a fleet is monitored on 214 
naturalistic conditions, some events should be excluded from driving patterns analysis (e.g. parking 215 
phases). After that, the data signal should be appropriately filtered. Regarding GPS data, there are 216 
different suitable filtering methodologies, each one presenting advantages and disadvantages (Jun et al., 217 
2006): 218 



• Piecewise polynomial regression model 219 
• Kernel–based smoothing methods 220 
• Discrete Kalman filter 221 
• Modified Kalman filter 222 

In other experiences (Alessandrini et al., 2006) filtering techniques set at fixed cutting frequency are used; 223 
0.5Hz is a typical value.  224 

When studying the characteristics of typical driving patterns of a certain fleet, there are two main 225 
alternatives for the selection of drivers panel and of their route: on board measurement of vehicle/fleet 226 
monitoring and “chase” car approach. The reliability of the first method is related to the size and the 227 
characteristics of the monitored fleet itself. The more varied data are acquired (number of drivers, of 228 
vehicles, distance run), the more the acquired data are appropriate to fit the real characteristics of the 229 
fleet under study. A large data collection could be therefore necessary. The second method is widely 230 
used for the acquisition of data in order to represent the characteristics of the driving style on a specific 231 
area, e.g. to identify local driving patterns. Car chasing consists in following a “target” vehicle, initially 232 
randomly selected, with another vehicle; as soon as the chased vehicle stops or is loss, another vehicle is 233 
selected. A trained driver is therefore needed, while the measurement is performed on the chasing 234 
vehicle even if the characterization is related to the “target” vehicle. The main advantage of the method is 235 
the possibility to acquire a large amount of data related to a population within its operating area, while the 236 
main disadvantage is the risk of data deformation: chased and chasing vehicle transient speed difference 237 
could occur, or chasing vehicles could interfere with chased vehicle, thus influencing the driving style.  238 

2.3 2.3 2.3 2.3 ---- Synthesis of driving cyclesSynthesis of driving cyclesSynthesis of driving cyclesSynthesis of driving cycles    239 

According to an early but still applicable definition (Lyons et al., 1986), during the synthesis of a new cycle 240 
a “compression” algorithm has to be defined; in general a time–speed history of “real” driving data is 241 
selected and assembled in such a way that it matches the overall characteristics of the data set. 242 
Summarizing, the parts selected and processed to build the representative cycles can include sequences 243 
or reduced trips along a particular route, or a number of randomly matched microtrips from the data.  244 

From early works, a large number of applications of similar or improved methods has been proposed. A 245 
synthesis method, however, is usually composed by four main phases: 246 

• the processing of the data, through calculation of kinematic indicators and distribution data; when 247 
applicable, partial data (events) are grouped in different classes, each representative of a certain 248 
typical driving sequence such as urban, rural, smooth, aggressive 249 

o events can include “modal events”, such as i.e. acceleration, deceleration, cruise and idle 250 
driving segments, or full microtrips segments, or partial microtrips segments 251 

• using the available database of driving sequences and of the associated kinematic parameters, a 252 

number of events is randomly selected according to the desired characteristics of the cycles; for 253 
general representativeness, a suitable method is to choose events from each group, maintaining 254 



the same proportion in terms of distance or duration that was identified between group data and 255 
total measured data 256 

• the elements are randomly “glued” according to “matching” criteria 257 
o a criteria to order the transitions from a certain driving sequence to another, as well as for 258 

the transition from a recognizable driving pattern to another (e.g. from city to highway and 259 
then to city again, as typical), can be used; such random walk can be created on the 260 

basis of a transition probability matrix, so that typical methods for Markov chain creation 261 
are applied (Bishop et al., 2012) 262 

o the coherence in terms of final speed of the preceding segment to the speed of its next 263 
segment has to be complied; as an example, in case of microtrips linking, speed is zero, 264 
so that the juxtaposition of events requires only the proposal of a duration for stop phase 265 
and, in some cases, an acceleration value for the next event 266 

• as soon as the target duration or distance has been reached, a verification of the 267 
representativeness of the cycle is performed according to appropriate control parameters. 268 

All the phases, depending on the goodness of fit of the compressed cycle in comparison with objective 269 
parameters, can be repeated from the beginning in trial-and-error processes. Various randomization 270 
methods have been used in literature, as summarized in previous works (Esteves-Booth et al., 2002; 271 
Tong and Hung, 2010). 272 

2.3.1 2.3.1 2.3.1 2.3.1 ---- Control parametersControl parametersControl parametersControl parameters    273 

In general, the synthesis procedure is iterated several times to obtain the satisfaction of basic matching 274 
condition. A general indication to be respected is (Hung et al., 2007): 275 
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�276 
Where qt is the vector of the indicators (see Table 1) calculated for the main dataset and qi is the same 277 
vector calculated for the synthetic cycle; the choice of the parameters to be included in the vector qt can 278 
vary depending on the author. After that a number of possible candidate cycles are defined, additional 279 
confrontation parameters can be calculated, in order to let the user select the one having most favorable 280 
ones. Typical quantitative values are:  281 

• Performance Value (PV), that is the scalar product of the difference between q vectors with a 282 
weighting vector: 283 
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�284 

o an example of PV definition is (Lin and Niemeier, 2003): 285 
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• Sum Square Difference – SSD – of SAPDs, that is the summary of quadratic product of the 288 
probability of each class of speed (Ns) and acceleration (Na) for the source data (pij) and the 289 
candidate cycle (qij): 290 
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As highlighted in literature, the longer the generated cycle, the smaller the distance between it and the 291 
original data (Waldowski et al., 2011).  292 

2.3.2 2.3.2 2.3.2 2.3.2 ---- From driving cycles to sequence generatorFrom driving cycles to sequence generatorFrom driving cycles to sequence generatorFrom driving cycles to sequence generator    293 

According to those literature works related with development of vehicle management strategies (e.g. for 294 
HEV or PHEV, or for automatic transmissions on ICE vehicles), the importance of the availability of a 295 
large set of real world driving data is undoubted. The last trends in driving cycle definition methods show 296 
an evolution from the construction of synthetic cycles – that, after that moment, are somehow “rigid” – to 297 
the definition of a set of data which can be manipulated on the basis of probabilistic criteria (e.g. Markov 298 
chain approaches). This methods can improve the value of vehicle performance simulation, thus being 299 
suitable for the optimization of certain performances over non-repetitive cycles or for the build-up of 300 

predictive control techniques (Gong et al., 2012; Montazeri et al., 2012; Moura et al., 2011; Schwarzer 301 
and Ghorbani, 2013; Souffran et al., 2012). Data measured can therefore be used as a whole, as an 302 
historical dataset of driving situations; in Montecarlo applications, such databases can be used for the 303 
execution of a batch of simulations and/or experiments getting randomly extracted data from a suitable 304 
space. If a database of driving sequences is available for consultation and processing, each simulation 305 
can use a newly extracted driving cycle, exploring a large part of possible driving situations space. The 306 
present work also includes a proposal for the extended use of all acquired data. 307 

3 3 3 3 ---- CCCCase studyase studyase studyase study: the city of Florence: the city of Florence: the city of Florence: the city of Florence    308 

This chapter describes the acquisition of data from EVs circulating in the city of Florence (Italy) and their 309 
use for generation of a new group of driving cycles. Florence is located in the central area of Italy, it is a 310 
Large city according to Eurobarometers criteria, its population being about 380.000 inhabitants for the 311 
municipality and about 1 million of inhabitants for its Metropolitan area (formerly defined as Province). 312 
The city applied in the last years a number of limitations for motor vehicles, including parking fares (on the 313 
whole city) and restricted access to central historical area, including large pedestrian zones. EVs are not 314 
subjected to restricted access and can also be driven on some of the pedestrian areas. A low power 315 
charging infrastructure is also available (about 110 points, for a total availability of about 450 plugs). 316 

The first aim of the development of a driving cycle for the Florence case study is to include all the 317 
peculiarities of driving in an historical city in a synthetic time–speed cycle (or a number of them) using 318 
only data coming from EVs. A second aim is to make the dataset of acquired data available for 319 
processing in other applications as a source of driving data, as explained in paragraph 2.3.2.  320 



3.1 3.1 3.1 3.1 ---- DescriptionDescriptionDescriptionDescription    321 

The data acquisition took place on vehicles which were used during their normal service both for private 322 
and business use. The speed of the vehicles, together with other powertrain information, have been 323 
acquired from on-board diagnostics; GPS data have been used mainly for geo-referencing and 324 
identification of suitable driving sequences when manually examining the data in post processing. The 325 
acquisition sessions took place for nine months on 2013 in the city of Florence (Pfluegl et al., 2015). The 326 
usable acquired data comprehend about 2500 km. It is notably to say that all the users and the owners 327 
declared that the one of the main reason for the use of electric vehicles was determined by the necessity 328 
to drive within the restricted traffic area of the city. 329 

Large part of the acquisition included data coming from vehicles used by a freight delivery company in 330 
city context, a service similar to post delivery. The vehicles include light vans (Renault Kangoo ZE, M1 331 
class vehicle, electric, curb mass about 1400kg) and quadricycles (Renault Twizy, L7e class, curb mass 332 
about 470 kg). The company owns a fleet of 15 electric vehicles in total, but, in general, not all the 333 
vehicles of the fleet are used every day, since this depends on the workload and on the availability of the 334 
drivers. As a consequence, the same vehicle can be used by different drivers. The use of the fleet was 335 
quite intense and the required range in some days exceeded the capability of the vehicles, so that they 336 
were charged everyday: charging during night was always performed, while partial charge during the day 337 
was also done frequently (e.g. at lunch break). It is important to note that due to the availability of a 338 
charging infrastructure in Florence – even if suitable only for low power charging solution due to the 339 
presence of single phase plugs, comparable with home plugs – some drivers use the vehicles to go 340 

home, then park and charge there. Such kind of trips can be longer than usual delivery trips (e.g. some 341 
systematic runs of about 10-15km in morning and evening hours have been recognized); it was chosen 342 
not to exclude this data from analysis.  343 

Another part of the data are related to passenger transport. Two types of vehicles have been used: the 344 
already cited Renault Twizy and the electric passenger vehicle of the PSA group (Peugeot iOn or Citroen 345 
C–zero). Three different cars of this type have been monitored, including one used by the members of a 346 
family for their daily needs (home –  work trips, personal needs, weekend trips – but in this case, only if 347 

the expected distance is below about 100 km) and other two owned by a company and used by the 348 
workers for their movements within urban and suburban area. For this latter, most trips were systematic, 349 
being between two different sites of the Company (from city center -that is a pedestrian area accessible to 350 
EVs- to the peripheral area of Florence).  351 

3.2 3.2 3.2 3.2 ---- Data post processing and sData post processing and sData post processing and sData post processing and synthesisynthesisynthesisynthesis        352 

The first step of the analysis included speed data filtering for the elimination of “spikes” or of any irregular 353 
data. Data have been acquired at a rate of 4 Hz, than a kernel filter – as described in section 2.2 – has 354 



been applied, considering a time interval of one second. An example of speed signal smoothing through 355 
this method is shown on Figure 1. 356 

 357 

Figure Figure Figure Figure 1111    ––––    Upper plot: a portion of speed measurement for iOn passenger vehicle, showing a Upper plot: a portion of speed measurement for iOn passenger vehicle, showing a Upper plot: a portion of speed measurement for iOn passenger vehicle, showing a Upper plot: a portion of speed measurement for iOn passenger vehicle, showing a 358 
comparison between raw and filtered data. Lower plot: a detail coming from the same comparison between raw and filtered data. Lower plot: a detail coming from the same comparison between raw and filtered data. Lower plot: a detail coming from the same comparison between raw and filtered data. Lower plot: a detail coming from the same 359 
measurement.measurement.measurement.measurement.    360 

The second step of the analysis included the grouping of the data in different categories. The main 361 
strategy adopted is to identify in each mission (or trip) the sequences between two events of speed being 362 
equal to zero (microtrips); after that, for each microtrip two different sets of parameters were calculated: 363 

• a vector of indicators, that is a selection of those adopted in literature (see Table 2) 364 
• a speed–acceleration density matrix. 365 

Regarding the vectors (edges) used for the calculation of SAPD matrix, the limit values have been 366 
selected considering the maximum values measured (about 30 m/s for speed and 2.5 m/s2 for 367 
acceleration); the first speed class includes only very low speed (from 0 to 0.1 m/s2) to identify zero 368 
speed phases.  369 

Two calculation methods have been adopted for mean positive and negative accelerations: 370 

• the first method calculates these values considering the same threshold used for cruise and 371 
acceleration time percentage calculation. In other words, each value of is coherent with the 372 
related others (e.g. mean positive acceleration value is calculated for those phases which are 373 
considered effective acceleration phases);  374 
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• the second method does not consider any threshold for acceleration, thus the mean acceleration 375 
value is not perfectly coherent with acceleration time percentage; this criteria is applied only to 376 
perform a confrontation with some literature works. 377 

Parameter Unit Note Abbreviation 

Duration s duration (s) 

Distance m distance (m) 

Percentage of idle time % a=0; v=0; idle % 

Percentage of cruise time % |a|< 0.05 m/s^2 cruise % 

Percentage of positive acceleration time % a>0.05 m/s^2 acc % 
Percentage of negative acceleration 
time % a<–0.05 m/s^2 dec % 

Average speed m/s avg speed (m/s) 

Average moving speed m/s v>0  avg mov speed (m/s) 

Mean positive acceleration (a>threshold) m/s^2 a>0.05  acc+ 
Mean negative acceleration (a< 
threshold) m/s^2 a<–0.05  acc– 

Root Mean Square of speed m/s^2 RMS 

Positive Kinetic Energy m/s^2 PKE 

Relative Positive Acceleration m/s^3 RPA 

Stop rate – stops/km 

Additional parameters   

Mean positive acceleration (without 
using threshold) m/s^2 a>0  acc+ noth 
Mean negative acceleration (without 
using threshold) m/s^2 a<0  acc– noth 

SAPD edges 

Acceleration classes (51 classes) m/s^2 from –2.5 to 2.5 

Speed classes (17 classes) m/s 
from 0 to 0.1 and from 
0.1 to 30  

Table Table Table Table 2222    ––––    Parameters used for cycle characterization and grouping. Parameters used for cycle characterization and grouping. Parameters used for cycle characterization and grouping. Parameters used for cycle characterization and grouping.     378 

3.2.1 3.2.1 3.2.1 3.2.1 ---- Analysis andAnalysis andAnalysis andAnalysis and    clusteringclusteringclusteringclustering    of driving sequencesof driving sequencesof driving sequencesof driving sequences    379 

Before the application of a grouping algorithm on the data, a manual cleanup has been performed. Short 380 
distance microtrips have been identified, since they can include data which are not suitable for general 381 
driving cycle generation, such as incomplete microtrips (e.g. generated by a delay between vehicle key–382 
on event and logging start), sequences including reverse gear maneuvers, small vehicle displacement 383 
(e.g. stop on traffic light without using brake pedal). The examination of total distance run at high speed 384 
(exceeding 25 m/s. which has been chosen as threshold) together with the comparison with GPS data 385 
(where available) confirms that no continuous motorway driving has been measured for the vehicles 386 
under study; however, short trips on interchange roads (similar to motorways) have been found. After 387 
preliminary selection, the microtrips have been subjected to grouping process. The selected algorithm is 388 
the k–means ones. The conditions used for partitioning are: 389 

• each sample is described by SAPD density elements and by RMS, RPA and PKE element, that 390 
are all descriptors of microtrip speed and acceleration 391 



• the k-means “distance” is calculated as correlation between points  392 
• 9 different clusters have been determined.  393 

The results of the grouping algorithms are shown in Table 3, which includes a selection of main 394 
parameters describing the microtrips included in the group and some notes describing the most probable 395 
driving situation for each cluster, whichis coherent with the scatter plot shown on Figure 2. A priori 396 
classification (e.g. on vehicle type, since three different have been used) has not been performed, so that 397 
each cluster can contain microtrips coming from different vehicles and drivers.  398 

 399 

FigureFigureFigureFigure    2222    ––––    Scatter plot representing average positive and negative accelerations for all cluster Scatter plot representing average positive and negative accelerations for all cluster Scatter plot representing average positive and negative accelerations for all cluster Scatter plot representing average positive and negative accelerations for all cluster 400 
elements; centroids are indicated by numbers.elements; centroids are indicated by numbers.elements; centroids are indicated by numbers.elements; centroids are indicated by numbers.    401 

 402 
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Number Class Stop notes 
Speed 
notes 

Avg mov 
speed 

Avg 
speed 

Stop 
duration 

Stops/k
m 

Acc+ nth Acc– nth 

m/s m/s % 1/km m/s
2
 m/s

2
 

1 Urban 
High stop 
duration 

Unsteady 5.50 1.98 63.9% 3.34 0.57 –0.58 

2 Urban 
Low stop 
duration 

Very low 
speed 

2.55 2.39 6.2% 4.15 0.32 –0.30 

3 Urban 
Low stop 
duration 

Low speed 4.19 3.95 5.4% 2.09 0.43 –0.41 

4 Urban 
Intermediate 
stop duration 

Steady 6.83 4.31 36.7% 2.35 0.58 –0.59 

5 Urban 
Intermediate 
stop duration 

Unsteady 5.99 4.31 27.8% 3.23 0.65 –0.64 

6 Urban 
Low stop 
duration 

Unsteady 6.14 5.47 10.6% 2.04 0.65 –0.64 

7 Urban 
Low Stop 
duration 

Steady 8.26 6.83 17.2% 1.24 0.53 –0.55 

8 
Urban –  
Main roads 

Flow 
Intermediat
e speed 

9.01 8.63 4.0% 0.79 0.60 –0.64 

9 
Urban – Main 
roads 

Flow, steady 
Intermediat
e speed, 
steady 

11.30 10.92 3.3% 0.44 0.44 –0.52 

Manual 
identified* 

Queue, 
manouvers 

high stop 
duration 

Very low 
speed 

1.20 0.50 57.4% 318.00 0.43 –0.37 

Table Table Table Table 3333    ––––    Summary of main descriptor parameters for each microtripSummary of main descriptor parameters for each microtripSummary of main descriptor parameters for each microtripSummary of main descriptor parameters for each microtrip    group. The name of the class and group. The name of the class and group. The name of the class and group. The name of the class and 403 
the notes in relation to the speed are assigned after the grouping and are not relevant for the notes in relation to the speed are assigned after the grouping and are not relevant for the notes in relation to the speed are assigned after the grouping and are not relevant for the notes in relation to the speed are assigned after the grouping and are not relevant for 404 
analysis.analysis.analysis.analysis.    405 

Considering SAPD values that have been used for the definition of each group, it is possible to notice 406 
significant differences between the “patterns” of each cluster, as is shown in Figure 3. 407 



 408 

Figure Figure Figure Figure 3333    ––––    SAPD contour plot for the microtrip groups described in SAPD contour plot for the microtrip groups described in SAPD contour plot for the microtrip groups described in SAPD contour plot for the microtrip groups described in Table Table Table Table 3333; the plots do not include the ; the plots do not include the ; the plots do not include the ; the plots do not include the 409 
point corresponding to idle phases (zero speed and acceleration) to avoid distortions due point corresponding to idle phases (zero speed and acceleration) to avoid distortions due point corresponding to idle phases (zero speed and acceleration) to avoid distortions due point corresponding to idle phases (zero speed and acceleration) to avoid distortions due 410 
to its predominance.to its predominance.to its predominance.to its predominance.    411 

3.2.2 3.2.2 3.2.2 3.2.2 ---- Customized Customized Customized Customized ddddrivingrivingrivingriving    cyclecyclecyclecyclessss    developmentdevelopmentdevelopmentdevelopment    412 

After grouping the microtrips, the creation process of a representative cycle consists of a first phase of 413 
“generation”: 414 

• the selection of the main group of microtrips to be used (e.g. only a certain vehicle  or only a set 415 
of clusters) 416 

• the selection of a target distance for the whole cycle 417 
o for each cluster, a target distance is set in order to maintain the same proportion of the 418 

original data set 419 
• random microtrips from each group are selected, until the target distance for that cluster has 420 

been reached 421 
o if the addition of a certain microtrip causes the overcome of target distance, the microtrip 422 

is truncated on a random point and glued together with the final portion of another 423 
microtrip, maintaining coherence for speed, acceleration and jerk values (threshold being 424 
0.1 m/s, m/s2 and m/s3 respectively); the junction between microtrips is repeated in an 425 
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iterative process if necessary. New microtrips, different from those part of the database, 426 
are therefore generated. 427 

• all the chosen or generated microtrips are put beside each other, thus generating a cycle 428 
• the process is repeated for a number of predetermined attempts.  429 

After the generation of the attempt cycles, the final proposal cycle is selected on the basis of three main 430 
criteria: 431 

1. considering the parameters of Table 2 (from number 3 to number 14), the differences between those 432 
of the original dataset and of the generated cycles have to be below a threshold (that is, 5%) for at 433 
least 11 over 12 values; about 0.5–1% cycles of the generated ones usually respect this condition for 434 
a distance of about 10–15km 435 

2. for the reduced number of cycle chosen at the former point, those having similar PV are considered 436 
as candidate 437 

3. for the remaining candidate cycles, the final one is that having lower SSD between SAPD matrix. 438 

If a satisfactory cycle cannot be found (e.g. it is not possible to find a cycle having both low PV and low 439 
SSD in comparison with other cycles), the whole process is repeated generating new cycles.  440 

Using this procedure, 10 different cycles have been generated. A summary includes: 441 

• depending on the source of the data, 5 vehicle categories are considered: 442 
o all data from all vehicles are used, so that the cycle is representative of “average” electric 443 

vehicles; quadricycles data are included since, especially in urban driving, it is assumed 444 
that their performances are comparable with those of the other vehicles;  445 

o data from N1 passenger vehicles 446 
o data from M1 light delivery vehicles 447 
o data from quadricycles, so that the cycle is suitable for low powered vehicles  448 
o data from N1 and M1 vehicles, using only “unsteady” sequences as identified during 449 

clustering phase 450 
• for each category, two different distances have been used: 451 

o “long” cycles are based on the 95th percentile trip distance; all the microtrip clusters are 452 
considered (excluding clusters 1, 2, 4 and 7 for unsteady cycle) and, therefore, also high 453 
speed phases can be included 454 

o “mean” cycles are based on mean trip distance, but clusters 8 and 9 are not used since 455 

their data also include quite “long” microtrips, by far exceeding the whole target distance. 456 

Table 4 summarizes the information and the assumptions used for the driving cycle generation. The 457 
characteristic of the synthetic cycles are shown in Table 5. Figure 4 and Figure 5 show two of the 458 
generated cycles, including a comparison between the SAPD of original and synthetic data. The 459 
comparison between All vehicle SAPD and LDV vehicle SAPD highlights the more frequent occurrence of  460 
low-speed events for the latter one, as expected considering the typical needs of post services. 461 



Finally, all the cycles are plot in Figure 6. 462 

 463 

N. Cycle name Vehicles Groups Target Distance (km) 

1 All long All 1 to 9 12 

2 All mean All 1 to 7 6 

3 Passenger long N1 1 to 9 15 

4 Passenger mean N1 1 to 7 6 

5 LDV long M1 1 to 9 15 

6 LDV mean M1 1 to 7 4.8 

7 Quadricycle long L7 1 to 9 15 

8 Quadricycle mean L7 1 to 7 6 

9 Unsteady long M1 and N1 3, 5, 6, 8, 9 12 

10 Unsteady mean M1 and N1 3,5,6 6 

Table Table Table Table 4444    ----    SSSSummary ummary ummary ummary of the boundary conditions chosen for the cycles generation.of the boundary conditions chosen for the cycles generation.of the boundary conditions chosen for the cycles generation.of the boundary conditions chosen for the cycles generation.    464 

N
. 

Cycle 
name 

durati
on (s) 

dista
nce 
(m) 

idle 
% 

cruis
e % 

acc 
% 

dec 
% 

avg 
spee

d 
(m/s) 

avg 
mov 
spee

d 
(m/s) 

acc+ 

(m/s
2
) 

acc– 

(m/s
2
) 

stop/
km 

PKE 

(m/s
2
) 

acc+ 
noth 

(m/s
2
) 

acc– 
noth 

(m/s
2
) 

1 All long 1536 11566 
13.7
% 

7.4% 
40.6
% 

38.3
% 

7.5 8.7 0.60 –0.64 1.0 0.53 0.55 –0.59 

2 All mean 1214 5837 
24.0
% 

6.7% 
34.6
% 

34.8
% 

4.8 6.3 0.63 –0.62 2.2 0.56 0.57 –0.57 

3 M1 long 1835 15675 7.3% 7.6% 
45.0
% 

40.1
% 

8.5 9.2 0.58 –0.65 0.9 0.51 0.54 –0.59 

4 M1 mean 1277 6481 
17.6
% 

6.7% 
39.2
% 

36.6
% 

5.1 6.2 0.65 –0.69 2.2 0.64 0.60 –0.63 

5 N1 long 2015 14017 
19.3
% 

7.2% 
37.6
% 

35.9
% 

7.0 8.6 0.64 –0.66 1.3 0.54 0.59 –0.62 

6 N1 mean 1100 4755 
31.3
% 

6.1% 
31.7
% 

31.0
% 

4.3 6.3 0.64 –0.65 2.1 0.55 0.59 –0.61 

7 L7 long 2028 15480 
10.4
% 

7.8% 
40.8
% 

41.1
% 

7.6 8.5 0.57 –0.56 1.0 0.46 0.52 –0.52 

8 L7 mean 1076 6360 
17.2
% 

6.9% 
38.3
% 

37.7
% 

5.9 7.1 0.56 –0.56 1.7 0.46 0.51 –0.52 

9 
Unsteady 

long 
1521 12854 6.2% 7.7% 

45.5
% 

40.7
% 

8.5 9.0 0.61 –0.68 1.0 0.53 0.57 –0.63 

1
0 

Unsteady 
mean 

1227 6082 
12.7
% 

7.4% 
40.0
% 

39.8
% 

5.0 5.7 0.67 –0.67 2.3 0.65 0.62 –0.61 

Table Table Table Table 5555    ––––    Parameters of synthetized driving cyclesParameters of synthetized driving cyclesParameters of synthetized driving cyclesParameters of synthetized driving cycles    465 

 466 



 

 

Figure Figure Figure Figure 4444    ––––    Upper plot: “Passenger long” cycle. Lower plot: comparison between original SAPD (left) Upper plot: “Passenger long” cycle. Lower plot: comparison between original SAPD (left) Upper plot: “Passenger long” cycle. Lower plot: comparison between original SAPD (left) Upper plot: “Passenger long” cycle. Lower plot: comparison between original SAPD (left) 467 
and cycle SAPD (right).and cycle SAPD (right).and cycle SAPD (right).and cycle SAPD (right).    468 
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Figure Figure Figure Figure 5555    ––––    Upper plot: “LDV long” cycle. Lower plot: comparison between original SAPD (left) and cycle Upper plot: “LDV long” cycle. Lower plot: comparison between original SAPD (left) and cycle Upper plot: “LDV long” cycle. Lower plot: comparison between original SAPD (left) and cycle Upper plot: “LDV long” cycle. Lower plot: comparison between original SAPD (left) and cycle 469 
SAPD (right).SAPD (right).SAPD (right).SAPD (right).    470 
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 471 

Figure Figure Figure Figure 6666    ––––    TimeTimeTimeTime----series plot series plot series plot series plot of all the generated cycles.of all the generated cycles.of all the generated cycles.of all the generated cycles.    472 

3.2.3 3.2.3 3.2.3 3.2.3 ---- A comparison with existing cyclesA comparison with existing cyclesA comparison with existing cyclesA comparison with existing cycles    473 

As a final outcome, dot plots illustrating the characteristics of generated cycles in comparison with 474 
previously available ones are presented. In particular, Figure 7 shows the average speed (including zero 475 
phases) in comparison with average positive acceleration, highlighting the proximity between typical 476 
urban cycles (NEDC and Artemis Urban) and generated ones (see “All mean” and “All long” dots), as 477 
expected due to the typical urban pattern in which the vehicles have been used.   478 

The plot shown in Figure 8 clearly shows that the mean speed and stops per km of the generated cycles 479 
fall in the same order of magnitude indicated for legislative cycles such as NEDC and FTP; however, a 480 
direct comparison between urban patterns cycle (“All mean” generated cycles) and naturalistic urban 481 
driving cycles (Artemis Urban) highlights a lower stop per km number, even if the mean speed is 482 
absolutely similar. At this stage, it is not possible to say if this is related to the characteristics of the 483 
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electric vehicles (which can be driven in a smooth way in intense traffic, limiting start and stop phases) or 484 
not.  485 

Similarly, Figure 9 compares the cycles on the basis of Mean Positive and Negative accelerations. As 486 
known from previous studies, the trend shows that the values are generally higher for urban pattern 487 
cycles in comparison with rural or motorway ones. Negative acceleration values are often slightly higher 488 
than positive ones. Regarding the generated cycles, the mean negative values of acceleration are 489 
significantly lower than the value related to Artemis Urban naturalistic cycle; again, the difference could 490 
be related to the characteristics of the Electric Vehicle which could induce a particular driving behavior 491 
during deceleration. It can be noted also that L7 vehicle shows for both “long” and “mean” cycles lower 492 
values of mean accelerations, as expected due to its low power characteristics. 493 

Cycle abbreviation Cycle full name 

NEDC New European Driving Cycle 
FTP US FTP 75 Cycle 
Art Urban Artemis Urban 
Art Rural Artemis Rural 
Art MW Artemis Motorway 
Art URM 130 Artemis Mixed cycle 130 

Table Table Table Table 6666    ––––    List of abbreviations used List of abbreviations used List of abbreviations used List of abbreviations used to indicateto indicateto indicateto indicate    the cycles.the cycles.the cycles.the cycles.    494 

 495 

 496 

Figure Figure Figure Figure 7777    ––––    Speed vs Mean Speed vs Mean Speed vs Mean Speed vs Mean PPPPositive ositive ositive ositive AAAAcceleration for existing and generated cycles. cceleration for existing and generated cycles. cceleration for existing and generated cycles. cceleration for existing and generated cycles. Left side: oLeft side: oLeft side: oLeft side: only “All nly “All nly “All nly “All 497 
long” and “All long” and “All long” and “All long” and “All mean” cycles are plot for readability.mean” cycles are plot for readability.mean” cycles are plot for readability.mean” cycles are plot for readability.    Right side: aRight side: aRight side: aRight side: all generated cycles are ll generated cycles are ll generated cycles are ll generated cycles are 498 
included and the scale is modified included and the scale is modified included and the scale is modified included and the scale is modified to focus onto focus onto focus onto focus on    those.those.those.those.    499 
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 501 

Figure Figure Figure Figure 8888    ––––    Speed vs Speed vs Speed vs Speed vs number of stopsnumber of stopsnumber of stopsnumber of stops    per km per km per km per km for existing and generated cycles.for existing and generated cycles.for existing and generated cycles.for existing and generated cycles.    502 

 503 

Figure Figure Figure Figure 9999    ––––    Dot plots Dot plots Dot plots Dot plots representing Mean Positive and Mean Negative accelerations for existing and representing Mean Positive and Mean Negative accelerations for existing and representing Mean Positive and Mean Negative accelerations for existing and representing Mean Positive and Mean Negative accelerations for existing and 504 
generated cycles.generated cycles.generated cycles.generated cycles.    505 

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NEDC

FTP

Art Urban

Art Rural

Art MW

Art URM130

All long

All mean

M1 long

M1 mean

N1 long

N1 mean

L7 long

L7 mean

Speed (m/s)

S
to

p
s
/k

m

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0.5

0.55

0.6

0.65

0.7

0.75

0.8

NEDC

FTP

Art Urban

Art Rural

Art MW

Art URM130

All long

All mean

M1 long

M1 mean

N1 long

N1 mean

L7 longL7 mean

Unsteady long

Unsteady mean

Mean Acc Positive (m/s2)

M
e
a
n
 A

c
c
 N

e
g
a
ti
v
e
 (

m
/s

2
)



3.2.4 3.2.4 3.2.4 3.2.4 ---- Extended use of measured driving dataExtended use of measured driving dataExtended use of measured driving dataExtended use of measured driving data    506 

As described in paragraph 2.3.2, the randomization of driving cycles for vehicle development activities is 507 
part of recent applied research trends. Such inputs are useful during testing (e.g. for control systems 508 
robustness verification in SIL/MIL/HIL environment) or optimization of vehicle characteristics (e.g. for 509 
energy management strategies, to be verified over a large number of use cases). A tool for the extraction 510 
and the treatment of measured driving data has been developed; it is mainly conceived to be used during 511 
batch simulation, extending the variability of the inputs in comparison with “fixed” generated data. 512 

The second main product of driving cycle analysis activity is therefore a “package” for data analysis and 513 
cycle synthesis. The package implements the same methodology applied for cycle generation (as 514 
described in the former paragraph) and is prepared as a Matlab–based product with Graphical Users 515 
Interface (GUI). The tool – “builder” – is an interpreter of data that can be used to generate new cycles 516 
and to verify their similarity with original data. The user can set a few parameters (the target distance, the 517 
vehicle data to be used, the data “clusters” to be included, the acceptance thresholds), than a number of 518 
“attempts” cycles can be generated; if any of the created cycles fits with original dataset, the tools plots 519 
the generated “representative” cycle and saves it in a spreadsheet. Saved data include the speed signal, 520 

the acceptance results (number of similar parameters, Performance Values – PV – indicator, Sum Square 521 
Distance – SSD – of speed–acceleration density matrix – SAPD) and the general describing parameters. 522 
The interface of the tool is shown in Figure 10; it is also part of  the research products for the project 523 
ASTERICS EU FP7. Its typical output is shown in Figure 11. The tool can be used also through command 524 
line and is therefore suitable for the integration on simulation environment.  525 



 526 

Figure Figure Figure Figure 10101010    ––––    Driving cycle “builder” tool: main GUI screenshot.Driving cycle “builder” tool: main GUI screenshot.Driving cycle “builder” tool: main GUI screenshot.Driving cycle “builder” tool: main GUI screenshot.    527 

  

Figure Figure Figure Figure 11111111    ––––    Output from “builder” tool: cycle plot (left), cycle SAPD plot (right).Output from “builder” tool: cycle plot (left), cycle SAPD plot (right).Output from “builder” tool: cycle plot (left), cycle SAPD plot (right).Output from “builder” tool: cycle plot (left), cycle SAPD plot (right).    528 

4 4 4 4 ---- ConclusionsConclusionsConclusionsConclusions    529 

Driving cycles are a relevant input for the development of procedures for design, testing and 530 
homologation of any kind of vehicles; such topic is particularly relevant considering the high level of 531 
attention on vehicles both for pollutants emission and energy use. Considering precedent literature 532 
products, in the first part of the present work a summarization of current state of the art on the topic has 533 
been proposed. A few main findings emerged from the preliminary analysis of the topic. A large number 534 
of synthesis methods have been proposed, most of them being similar on their key points. Literature 535 
analysis also highlights a strong need for continuous improvement of the cycles in terms of detail and 536 
variety, in order to catch the peculiarities of the vehicle under study and of the area where it is used; such 537 
need is therefore the main motivation to propose a new case study. In addition, recent applied research 538 
activities show the emerging trend of tools able to generate “on demand” cycles; such data can be used 539 
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during vehicle development and for simulation and testing activities, as improved input in comparison with 540 
synthetic cycles. However, a synthesis method has been prepared considering reference experiences. 541 

In the second part of the work an application case study has been proposed. The activity includes the 542 
measurement of driving data within the city of Florence, which is characterized by the presence of 543 
restricted traffic and pedestrian areas within its historical center; such areas can be accessed using EVs. 544 
A small fleet of EVs used by both professional and private drivers has therefore been monitored within its 545 
normal use; the driving sequences obtained can be considered naturalistic, since no predefined itinerary 546 
was imposed and since the logging instrumentations was absolutely not invasive. Using the developed 547 
method, the data have been therefore processed in order to build up a set of ten synthetic cycles, 548 
differing for the type of vehicle used (from low powered quadricycles, to light vans and passenger cars) 549 
and for the distance proposed (from typical city route – build up using mainly urban sequences – to mixed 550 
route, including fluent driving on longer distances). The cycles represents main outcome of the activity, 551 
their peculiarity being the use of data coming exclusively from EVs. In addition, the time-speed vector for 552 

each cycle has been defined using four points per second, which is an improved level of detail in 553 
comparison with existing cycles; the aim is to offer the possibility to increase the precision of energy 554 
consumption and efficiency assessment in simulation activities. The activity is than concluded proposing 555 
a short comparison with existing cycles; considering naturalistic cycles, a few differences in typical 556 
kinematic indicators are noticeable. A few hypothesis have been proposed; however, at the present stage 557 
it cannot be said if the spreading of the data is related to the characteristics of the city, to the relatively 558 
small number of drivers involved (a known limitation of the study) or to the peculiarities of electric 559 
vehicles, most evident being the regenerative braking capabilities and the fluent traction at very low 560 
speed. Both characteristics, in fact, can potentially let the drivers obtain smooth acceleration events even 561 
in intense traffic situations. A suggestion for future development, therefore, is to investigate about the 562 
attitude of the users in driving EVs in comparison with ICEVs, in order to verify if different powertrain 563 
characteristics can induce remarkable modification on driving style. Finally, an interpreter tool for further 564 
valorization of the whole dataset has been developed and implemented both as GUI and command-line 565 
function. Such activity has been prepared to overcome the limitations of “rigid” representative cycles and 566 
extend the representativeness of the data during vehicle development phases, coherently with recent 567 
literature experiences and applied research trends.  568 
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