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ABSTRACT: This paper investigates the 
possibility of applying fuzzy algorithms in a 
microprocessor-based servomotor controller, 
which requires faster and more accurate re- 
sponse compared with other industrial pro- 
cesses. The performance of proportional-in- 
tegral-derivative control, model reference 
adaptive control, and fuzzy controllers is 
compared in terms of steady-state error, set- 
tling time, and response time. Limitations of 
fuzzy control algorithms are also described. 

Introduction 

Servomotors are used in many automatic 
systems, including drives for printers, tape 
recorders, and robotic manipulators. Since 
the development of microprocessors in the 
1970s, microprocessor-based servomotor 
controllers have become more popular be- 
cause of their superiority over analog con- 
trollers. One obvious reason is that the mi- 
croprocessors can be used to implement 
intelligent control algorithms to cope with 
varying environments as a result of load dis- 
turbances, process nonlinearities, and 
changes of plant parameters. A micropro- 
cessor-based controller can remember past 
experiences and predict future consequences 
caused by present inputs. This is beyond the 
ability of an analog controller. 

Conventional digital control algorithms can 
be developed by formulating the transfer 
function of the process [l]. However, in 
practice it is not always easy to describe an 
engineering object by means of a discrete 
transfer function so as to realize ideal com- 
pensation. Thus, servomotors are usually 
controlled by proportional-integral-deriva- 
tive (PID) algorithms. Such algorithms will 
be effective enough if the speed and accuracy 
requirements of the control system are not 
critical. The usual way to optimize the con- 
trol action is to tune the PID coefficients, but 
this cannot cope with a varying control en- 
vironment or system nonlinearity. 
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The Model Reference Adaptive Control 
(MRAC) technique [2] is an approach for 
coping with environmental variation and 
system nonlinearities. Its function is to com- 
pare the output from the process with that 
from a reference model. The error is then 
used for adjusting the parameters of the con- 
troller through a suitable adaptation algo- 
rithm, either based on physical or chemical 
laws or a parameter estimation method. 
These techniques are usually complex and 
require large amounts of computation time. 
This restricts the application when a fast re- 
sponse is desirable. The common difficulty 
with this approach lies in the attempt to for- 
mulate the input-output relationship by 
means of mathematical models, which may 
be difficult in many cases. Even when such 
models are developed, they may be too com- 
plex to compute in real time. 

Facing these problems, investigators re- 
alized that incorporating human intelligence 
into automatic control systems would be a 
more efficient solution, and this led to the 
development of fuzzy control algorithms [3]. 
The fuzzy algorithm is based on intuition 
and experience, and can be regarded as a set 
of heuristic decision d e s  or “rules of 
thumb.” Such nonmathematical control al- 
gorithms can be implemented easily in a 
computer. They are straightforward and 
should not involve any computational prob- 
lems. 

Mamdani [4] and Mamdani and Assilian 
[5] reported on the application of fuzzy set 
theory to control a small laboratory steam 
engine. The purpose was to regulate engine 
speed and boiler steam pressure by using heat 
applied to the boiler and the throttle setting 
on the engine. At the same time, van Nauta 
Lemke and Kickert [6]-[8] examined the 
performance of a fuzzy controller on a warm 
water plant. The success of these studies led 
King and Mamdani [9] to attempt to control 
the temperature of a chemical reactor by 
using fuzzy algorithms. Furthermore, Ruth- 
erford [lo] and Ostergaard [l 11 reported the 
results of the experiments with fuzzy con- 
trollers on a sinter strand and a heat ex- 
changer, respectively. Lastly, R. M. Tong’s 
paper [12] was concerned with the control 
of a pressurized tank containing liquid. The 
problem was to use fuzzy algorithms to reg- 

ulate the total pressure and the level of liquid 
inside the tank. 

The results of those experiments showed 
that fuzzy controllers performed better than, 
or at least as good as, a PID controller. They 
have the common feature of not requiring a 
detailed mathematical model. However, 
those experiments were concerned mainly 
with slow chemical processes. The objective 
of this paper is to investigate the possibility 
of applying fuzzy algorithms in faster, and 
more accurate, controllers, such as servo- 
motor position controllers. 

. 

Fuzzy Control Algorithm 

When controlling a process, human oper- 
ators usually encounter complex patterns of 
quantitative conditions, which are difficult to 
interpret accurately. The magnitude of the 
measurements is usually described as fast, 
big, slow, high, etc. To represent such inex- 
act information, a nonmathematical ap- 
proach called “fuzzy set theory” was de- 
veloped by Zadeh [3]. 

A fuzzy subset A with an element x has a 
membership function of u A ( x ) ,  which is in 
the interval between 0 and 1. If uA ( x )  is 1, 
then the element is a member of the set. If 
u A ( x )  is 0, then it is not. Consider a fuzzy 
subset A with five elements, which have the 
membership functions 0.7, 0.9, 1, 0.9, and 
0.7. From the preceding concept, the ele- 
ment with a membership function of 1 is a 
full member of A, whereas the others are 
only part member. The membership function 
determines the degree to which the element 
belongs to the subset. If a fuzzy set A is 
defined as “around 10” on a scale from 8 
to 12, itinight be described by the following, 
where 0.7, 0.9, and 1 are the membership 
functions and 8, 9, 10, 11, and 12 are called 
the universe of discourse. 

A = (0.7/8, 0.9/9, 1/10, 0.9/11, 0.7112) 

Fuzzy Logic 
Fuzzy subset theory involves very. com- 

plicated theorems, but most of these theo- 
rems do not relate to the development of 
fuzzy control algorithms. The following three 
definitions form the basis for the decision 
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table that will be used in the control algo- 
rithms. 

(1) The union of two sets, A U B,  corre- 
sponds to the OR function and is defined 

u(A O R B )  = max (U,&), ua(x)) 

( 2 )  The intersection of two sets, A f3 B,  
corresponds to the AND function and is 
defined by 

u ( A  AND B )  = min ( u A ( x ) ,  uB(x))  

to the NOT function and is defined by 

by 

(3) The complement of a set A corresponds 

u (N0TA)  = 1 - u A ( x )  

To illustrate the application of these defi- 
nitions, consider two qualitative statements, 
“big” and “medium,” with the following 
membership functions: 

u(big) = (0, 0.3, 0.7, 1.0) 

u(medium) = (0.2, 0.7, 1.0, 0.8) 

The three definitions can be applied directly 
to the two membership functions. 

u(big OR medium) 

= {max (0, 0.2), max (0.3, 0.7), 

max (0.7, l .O),  max (1.0, 0.8)) 

= (0.2, 0.7, 1.0, 1.0) 

u(big AND medium) 

= (min (0, 0.2), min (0.3, 0.7), 

min (0.7, l .O),  min (1.0, 0.8)} 

= (0, 0.3, 0.7, 0.8) 

u(NOT big) 

= ((1 - 0), (1 - 0.3), (1 - 0.7), 

(1 - 1.0)) 

= (1, 0.7, 0.3, 0) 

To establish the fuzzy controller, i t  is nec- 
essary to interpret rules that are based on 
experience so as to form a decision table that 
gives input and output values of the con- 
troller corresponding to situations of interest. 

A fuzzy algorithm consists of situation and 
action pairs, Conditional rules expressed in 
IF and THEN statements are generally used. 
For example, the control rule might be: If 
the output is lower than the requirement and 
the output is dropping moderately, then the 
input to the system shall be increased greatly. 
Such a rule has to be converted into a more 
general statement for application to fuzzy al- 
gorithms. To achieve this, the following 
terms are defined: error equals the set point 
minus the process output; error change equals 
the error from the process output minus the 
error from the last process output; and con- 

trol input equals the input applied to the pro- 
cess. 

In addition, it is necessary to quantize the 
qualitative statements, and the following lin- 
guistic sets are assigned. 

Large positive (LP) 
Medium positive (MP) 
Small positive (SP) 

Zero (ZE) 
Small negative (SN) 
Medium negative (MN) 

Large negative (LN) 

Thus, the statement of the example control 
rule will be: If the error is large positive and 
the error change is small positive, then the 
input to the system is large positive. 

Membership Matrix 

Having formulated the control rule in fuzzy 
terms, the next step is to define the mem- 
bership functions of the linguistic sets, i.e., 
large positive, medium positive, etc. The 
shape of the fuzzy set is quite arbitrary and 
depends on the user’s preference. For sim- 
plicity, trapezoidal shapes usually are used. 

Table 1 is an example of a membership 
matrix table for a membership function. It 
includes the error, error change, and control 
input variables. Each table consists of five 
sets, including LP, SP, ZE, SN, and LN, 
and each set consists of nine elements, i.e., 
-4, -3, -2, -1, 0, 1, 2, 3, 4. All error, 
error change, and control input variables are 
quantized to these nine levels. 

Control Rules 

Suppose four fuzzy rules have been for- 
mulated for a system; namely: 

(1) If the error is zero and the error change 
is small positive, then the control input 
is small negative. 

(2) If the error is zero and the error change 
is zero, then the control input is zero. 

(3) If the error is small negative and the er- 
ror change is small negative, then the 
control input is small positive. 

(4) If the error is small negative and the er- 
ror change is zero, then the control input 
is large positive. 

These rules are then combined to form a 
decision table for the fuzzy controller. The 
table consists of values showing the different 
situations experienced by the system and the 
corresponding control input function. 

Decision Table 

To show the preparation of the decision 
table, the four rules are interpreted as func- 
tional diagrams, as shown in Fig. 1. Con- 
sider a process having an error of -1  and 
an error change of 1.5. From the diagram, 
it can be shown that, for such an erroderror 
change pair, rules 1 ,  2, and 4 are applicable. 

The points of intersection between the val- 
ues of -1 and the graph in the first column 
(Le,, error) have the membership functions 
of 0.6, 0.6, 0.6, and 0.6. Likewise, the sec- 
ond column (i.e., error change) shows that 
an error change of 1.5 has the membership 
functions of 0.8, 0.2, 0, 0.2. The control 
input for the four rules is the intersection of 
the paired values obtained from the graph, 
i.e., min(0.6,0.8), min(0.6,0.2), min(0.6, 
0), and min (0.6,0.2), which reduces to 0.6, 
0.2, 0, and 0.2, respectively. 

The membership functions representing the 
control adjustment are weighted according to 
the corresponding input change and the dif- 
ferent control contributions as shown in Fig. 
2. Now, for a pair of error and error changes, 
three sets of control inputs exist. To deter- 
mine the value of action to be taken from 
these contributions, we can either choose the 
maximum value or use the “center-of-grav- 
ity” method. In our example, the maximum 
value is 0.6, which corresponds to a control 
input of approximately -2 units (Fig. 2 ) .  In 
the center-of-gravity method, the action is 
given by the center of the summed area, 

Table 1 
Membership Matrix Table 

~~ ~ ~ ~ ~ 

Quantized Levels Linguistic 
Sets -4 -3 -2 -1 0 1 2 3 4  

LP 0 0 0 0  0 0  0 0.6 0 
SP 0 0  0 0 0 0.6 1 0.6 0 
ZE 0 0 0 0.6 1 0.6 0 0 0 

0 SN 0 0.6 1 0.6 0 0 
LN 1 0.6 0 0  0 0  0 0  0 

Membership function 

0 0  

66 iEEE Controi Systems Magazine 

- ~- 



Error (e) Error change (e) Control Input (I) 

-4 - 2 1 0  2 4 
I 
I 

-4 - 2 ’ 0  2 4 
I 
I 

- - -  , ,-$/L--y 
0.2 

- A - 2  0 ’ 2  4 

I Rule 1 
I 

~ ~~ 

-4 -2 0 ‘ 2  4 -4 -2 0 2 
I 

I 
Rule 2 

U 

4 

-4 - 2 : o  2 4 
I 

I 
I U  

-4 - 2 ; o  2 4 

-4 -2 0 I 2  4 

Rule 3 I 

I 

- - -  , 

- - - -  0.2 

-4 -2 0 ‘2 4 

-4 -2 0 2 4 

I Rule 4 

1.5 

Graphical representation of control rules. 

-1 
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Membership function (c) 
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Contributed by rule 4 . 4  

Universe of 
f discourse ( U )  

-4  -2 1 0  2 4 6 
I 
I 
I -0.4 (Control input to the process) 

Fig. 2. 
method. 

Determination of the control input to process by means of the center-of-gravity 

which is contributed by the control inputs. 
In this study, the latter is chosen because the 
contributions have the same maximum value. 
Furthermore, the center-of-gravity method I = [o.6 (-2) + o.2 + 

gives a more reliable decision table com- 

Thus, for an error of -1 and an error 
change of 1.5, the control input I will be 

+ 0.2 X 4]/(0.6 + 0.2 + 0 + 0.2) 
pared with the “maximum” operation. = -0.4 

In general terns, the control input can be 
written as follows, where U is the member- 
ship function, U the universe of discourse, 
and n the number of contributions (i.e., 1 ,  
2, . . . , etc.). 

Figure 2 shows the control input to the 
process graphically, and the contributions are 
developed from rules 1 ,  2 ,  and 4 of Fig. 1 .  
In most cases, the number of rules that define 
different input conditions are limited, and 
there is a good possibility that no rule exists 
for certain inputs. Such undefined situations 
lower the efficiency of the fuzzy controller. 
To overcome this, the effect of all rules is 
spread around the input situations in all di- 
rections to a distance that is determined by 
the user. Thus, for a given input, the control 
algorithms will check if there exists a cor- 
responding rule. If no rule exists, then the 
rules in the immediate neighborhood (within 
the predetermined distance) will be consid- 
ered. 

In the following example, a distance of 1 
unit is chosen. Consider at one instant, the 
situation where the system has an error of 
-3  and an e m r  change of 2. No rule ap- 
pears to correspond to this situation. How- 
ever, rule 4 can be adopted within a distance 
of 1 unit (Fig. 1). 

These calculations can be implemented on 
a computer. After the calculations, each er- 
roderror change pair will have their corre- 
sponding control input values. The decision 
table is stored in memory in the form of a 
‘‘lookup’’ table. An example of the lookup 
table is shown in Table 2 .  

The following procedure shows how a 
control input to the process is determined 
from the lookup table. 

Suppose the set point = 1 unit 
Output of the system at r ,  = 4 units 

Output of the system at f2 = 2 units 
Error at f, = 4 - 1 = 3 units 
Error at r2 = 2 - 1 = 1 unit 

Error change = 1 - 3 = -2 units 

From the table, the quantized control input 
for the system at r, will be 1 unit. If the 
scaling factor of the quantized control input 
is 0.5 per unit, then the absolute value for 
control input is 1 x 0.5 = 0.5. 

However, the preceding rules may not be 
adequate to cover the wide range of different 
situations the system may encounter. In this 
respect, different lookup tables may be re- 
quired in order to increase the adaptability 
of the fuzzy controller. 
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Table 2 
Sample Lookup Table 

Error Change 

Error -4 -3 > - 2  - 1  0 1 2 3 4 

-4 5 4 4 3 3 2 1 1 -1 
-3 5 4 3 2 2 1 0 0 -2 
-2 4 3 3 2 1 1 0 -1 -3 
-1 4 3 2 1 1 0 1 -2  - 3  

0 3 3 2 1 0 - 1  -2 -3 -3 
1 3 2 > 1  0 -1 -1 -2 -3 -4 
2 3 1 0 0 -1 -2 -3 -3 -4 
3 2 0 0 -1 - 2  -2 -3 -4 -5 
4 1 -1 - 1  -1 -2 -3 -4 -4 -5 

Control input 

The notation > illustrates the example. 

Fuzzy Control Algorithms 
for Servomotors 

The task of the control algorithm is to ro- 
tate the shaft of the motor to a set point with- 
out overshoot. It is necessary to write a set 
of fuzzy control statements based on the er- 
ror signal between the set point and the mea- 
sured shaft position and the change of error 
so as to adjust the output of the drive unit. 

The inputs of the fuzzy controller are de- 
noted by the following, where 0 is the out- 
put from the shaft encoder, S the set point, 
e ,  the error of the servo system at t , ,  and e2 
the error of the servo system at r2. 

e = O - S  

e = e ,  - e2 

The output is denoted by U ,  which is the 
voltage output from the servo drive unit. 

In this investigation, the shaft encoder is 
an incremental type having a resolution of 
1000, and the servo amplifier has an output 
range of k 3 0  V. The universes of discourse 
of these functions are as follows: e equals 
- 1000 to + 1000, e equals - 100 to + 100, 
and v equals -30 to +30. Table 3 shows 
the quantized variables. A pure verbal for- 
mulation is then carried out to control the 
servo system. 

Counterclockwise and clockwise rotations 
are defined as positive and negative, respec- 
tively. A corresponding output is given for 
the error and error change detected in each 
sampling interval. For example, if the error 
is positive large and the error change is pos- 
itive small then a large positive drive is used. 

All of the preceding strategies are com- 
bined to form a series of rules and six num- 
bers as follows: 

(1) If e is LP and e is any, then v is LP. 
(2) If e is SP and e is SP or ZE, then v is 

SP. 

(3) If e is ZE and e is SP, then zl is ZE. 

(4) If e is ZE and e is SN, then v is SN. 

(5) If e is SN and e is SN, then v is SN. 

(6) If e is LN and e is any, then v is LN 

Rule 1 implies a general condition when 
the present position of the shaft is very far 
away from the set point. Therefore, it re- 
quires a large drive output to turn the motor 
shaft to the set point quickly. Rule 2 imple- 
ments the condition when the error starts to 
decrease and the motor is approaching the 
required position. Thus, a small drive output 
is given. Rule 3 implies that the set point is 
very nearly reached. Because of the inertia 
of the motor, it is necessary to stop the drive 
at this instant to keep the overshoot at a min- 
imum. However, rule 4 deals with the con- 
dition when overshoot does occur. A small 
reverse drive signal is given to bring the mo- 
tor to its set point. Rule 6 implies the reverse 
condition of rule 1. 

These rules are then combined to form the 
decision table (lookup table) shown in Table 
4. However, the lookup table may not pro- 

vide optimum control when the error is ap- 
proaching zero. This will lead to overshoot 
and hunting around the desired position. 
Thus, Table 4 is used only for coarse control 
and a second lookup table is formulated for 
fine control (Tables 5 and 6). 

The two lookup tables are stored in the 
memory of a 6502-based microcomputer, 
which checks whether the error is within the 
predetermined limit and then assigns the cor- 
responding lookup table to the control func- 
tion. In this application, the limit is set be- 
tween + 100 and - 100. When the error falls 
within such limits, the computer will switch 
to the fine control lookup table. This speeds 
up the response at regions around the set 
point. A block diagram of the fuzzy con- 
troller is presented in Fig. 3. 

Simulation Results 

For comparison purposes, three different 
control algorithms are implemented in a 
6502-based microcomputer with a BASIC 
interpreter. The first is a conventional digital 
PI controller, the second is an MRAC con- 
troller. The third is the fuzzy algorithm de- 
scribed in the previous section. 

A servomotor having the following param- 
eters is chosen for this simulation: moment 
amplification (K,) equals 1.088 Nm/A; elec- 
trical amplification (K,) equals 1.1 V/rad/ 
sec; armature inductance (La) equals 10 mH; 
armature resistance (R,) equals 3.5 Q ;  and 
the moment of inertia of the motor ( J )  equals 
0.0945 kg-m. Using these constants, the 
poles of the transfer function of the motor 
are found to be the following: 

S(l + Sl3.6) (1  + S/350) 
Because the electrical time constant 

(0.00285 sec) is much smaller than the me- 
chanical time constant (0.28 sec), the trans- 

Table 3 
Quantized Variables (Coarse Control) 

e e 
Quantized 

v Level 

- lo00 - 100 - 30 -5 
- 800 - 80 - 24 -4 
- 600 - 60 - 18 -3 
- 400 - 40 - 12 - 2  
- 200 - 20 - 6  - 1  

0 0 0 0 
200 20 6 1 
400 40 12 2 
600 60 18 3 
800 80 24 4 

lo00 100 30 5 
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Table 4 
Lookup Table (Coarse Control) 

Error Change 

comes 

C(Z) = O.l65Z/[(Z - 1) 

. (Z - 0.4) + 0.16521 
The transfer function of the servo system 
(Fig. 4) is transformed into the following 
difference equation: 

Y,, = 1.235 Y,-I - 0.4 Yn-l 

+ 0.165 Xn-] 
During the simulation, the sampling time 

and the set points were common to all three 
algorithms and of the values 0.25 sec and 23 
deg (360 X 64/1OOO), respectively. In order 
to test the adaptability of the controllers, a 
disturbance is simulated in the servo system. 
This disturbance results in a slight change in 
the mechanical time constant (from 3.6 to 4) 
after the servo has settled. The difference 
equation of the modified system transfer 
function is 

Y,, = 1.21 Yn-l  - 0.368 Yn- l  

+ 0.158 Xn-] 
PI Controller 

The digital controller used in this investi- 
gation is in the usual form, where U is the 
output of the controller, E the output of the 
system minus the set point, and K1, K2, and 
K3 are the coefficients of the controller. 

U, = K,(E, + K2 X l J - 1 )  

Error -5 -4 -3 -2 -1 0 1 2 3 4 5 

-5 -5 -5 
-4 -5 -5 
-3 -5 -5 
-2 -5 -5 
- 1  -5 -5 

0 -5 -4 
1 -4 -4 
2 -4 -4 
3 -3 -4 
4 -2 -3 
5 -2 -3 

-4 -4 -3 -1 
-5 -4 -3 -1 
- 5  -4 -3 -1 
-4 -4 -3 -1 
-4 -3 -2 0 
-4 -2 -2 0 
-3 -2 -1 0 
-3 -2 - 1  1 
- 2  -1 0 1 
-2 -1 0 1 
- 1  -1 0 1 

Control input 

0 1 1 2 2  
0 1 1 2 2  
0 1 2 2 2  
1 2 3 3 3  
1 2 3 3 4  
1 3 4 4 4  
2 3 4 4 4  
2 3 5 4 5  
2 3 5 4 5  
3 3 5 5 5  
3 3 5 5 5  

Table 5 
Quantized Variables (Fine Control) 

e e 
Quantized 

U Level 

100 
75 
50 
25 
0 

- 25 
- 50 
- 75 
-100 

60 
45 
30 
15 
0 

- 15 
- 30 
-45 
- 60 

20 
15 
10 
5 
0 

- 5  
- 10 
- 15 
- 20 

4 
3 
2 
1 
0 

-1 
-2 
-3 
-4 

Table 6 
Lookup Table (Fine Control) 

Error Change 

Error -4 -3 -2 -1 0 1 2 3 4  
-4 -4 -4 -3 
-3 -4 -3 -3 
-2 -3 -2 -2 
-1 -2 -2 -1 

0 -2 -2 -1 
1 -2 -2 0 
2 -1 -1 0 
3 0 0 1 
4 0 0 1 

-3 -2 
-2 -2 
- 1  -1 

0 1 
0 0 
1 1 
1 1 
2 2 
2 3 
Control input 

-1 
-1 
-1 

0 
0 
1 
1 
2 
3 

~ 

-1 0 1 
0 1 1  
0 1 2  
1 2 2  
1 2 3  
2 3 3  
2 3 4  
3 3 4  
3 4 4  

fer function of the motor is simplified to for this system becomes 

G(S)  = (K/S) (S + 3.6) 
(Z - 1) (Z - 0.4) + 0.165 KZ = 0 

The partial fraction expansion for G(S) is 
By using the Routh criteria, the system is 

shown to be unstable for K > 16.97. In this 
investigation, K is chosen to be 1. Finally, 
the transfer function of the servomotor be- 

C(S) = (K/3.6) [(l/S) - 1/(S + 3.6)] 
Taking the sampling period Tequal to 0.25 

sec, the characteristic equation (Z-transform) 

The coefficients for the PI controller are 
tuned for best performance, i.e., with min- 
imum overshoot and no steady-state error, 
and the values are found to be A equals 
-2.79, B equals 0.90625, and C equals 
-0.001, 

MRAC 

A block diagram of the MRAC loop is 
shown in Fig. 4, with the reference model 
being described by 

I/S(S + 3.6) 
Variation on any parameter of the servo sys- 
tem can be adjusted by K X e;  e = Y,,, - 
Yp, where Y,,, and Yp are the outputs of the 
model and process, respectively. The refer- 
ence model is of the same order as the pro- 
cess and is linear as well. 

In order to get the two identical responses, 
the parameter K must be adjusted. It is ob- 
vious that K should be increased, and a rea- 
sonable choice for adjustment of K seems to 
be 

K(t) = K(0) + B e dt 
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Fuzzy 
subsets Rules 

set 
point+ 
+ 

Limits for 
fine control 

- ' 
Gain ( K )  

Error (e) 

change 

I I 1 1L. 

L I & L A  

output 

T 
7 for comparison purposes. A plot of fuzzy 
controller output against time is shown in 
Fig. 6. 

To prevent instability problems, the gain 
for the fuzzy controller is kept as low as 
possible so that the system remains stable 
within the range of operation. Unfortu- 
nately, this will increase the response time 
of the system. To overcome this, a third 
lookup table may be needed for varying the 
system gain so as to increase the adaptability 
of the controller. 

The simulation programs were written in 
BASIC. It can be expected that, in practical 
implementation, where control programs are 
written in assembly language, faster re- 
sponse times can be expected. 

Summary and Conclusions 
I I The parameters of the controller should be 

Fig. 3. Block diagram of fuzzy controller. designed so that the servo system can have 

With the gain B, the speed of adjustment 
can be set, and the desired memory function 
is realized by means of integration. 

Note that when the input signal U is in- 
verted, the adjustment of K will be in the 
wrong direction because of the negative sign 
of e .  This will result in an unstable system. 
Thus, it is necessary to include the sign of 
the input signal. For instance, by multiply- 
ing e and U ,  the result of the parameter ad- 
justment will conform to the adaptation cri- 
teria. The adjustment law is modified as 
follows, where B equals -0.007. 

K(t )  = K(0)  + B (e  X U) dt 

Converting this into a difference equation 
gives 

K, = B X E,, X U,, f Kn-I 

Fuzzy Control 

Tables 4 and 6 have been used to imple- 
ment the fuzzy control algorithm. Entries in 

fast response and minimum steady-state er- 
ror. To achieve this, the quantization of the 
parameters is arranged so that the full lookup 
table can be utilized. Also, two sets of al- 
gorithms are used to describe the control 

these tables are initially estimated based on 
the characteristics of the servomotor. Then 
they are fine-tuned by repeated trials. Sim- 
dation results are shown in Fig. 5 and Table 

4 t  

0 25 1 2 3 4 3 6 7 8  Time (sec) 

Mechanical time constant 
Degree 

22.4928' 23.0429' ' 

Time (sec) 
0 1 2 3 4 5 6 7 8  

PID controller 
Degree 

loo t/ Y Time (sec) 
1 2 3 4 5 6 7 8  0 

MRAC Degree 

9 Time (sec) 
1 2 3 4 5 6 7 8  

Fuzzy controller 
Fig. 5 .  Simulation results for three different controllers. 
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Table 7 
Comparison of Simulation Results 

PI MRAC Fuzzy 

Settling time, sec 2.5  

Effect of disturbance Yes 
Overshoot, % 10 

(Steady-state 
error of 3%) 

2 1 
6 0 

No No 

Fuzzy controller output 
(quantized) 

4 h  

L .  
0 Time (sec) 

1 2 3 4 5 6 7 8  

Fig. 6. Fuzzy controller output. 

function of the servo system; namely, coarse 
and fine control. This greatly reduces the 
system settling time. 

By comparing the simulated results ob- 
tained from the fuzzy, MRAC, and PI con- 
trollers, it can be seen that the performance 
of the fuzzy controller is better than that of 
the PI controller and as good as that of the 
MRAC. As can be seen, the settling time of 
the fuzzy controller is only one-half that of 
the MRAC controller and two-fifths that of 
the PI controller. Both the MRAC and fuzzy 
controllers are insensitive to the simulated 
disturbance, which is done by slightly alter- 
ing the mechanical time constant. It is im- 
portant to note that the fuzzy algorithms have 
the distinct advantage of not relying on a 
mathematical transfer function for formulat- 
ing control rules. Instead, the fuzzy algo- 
rithms rely mainly on the overall knowledge 
of the designer. However, an optimum re- 
sponse of the fuzzy controller can be ex- 
pected only for a limited range of inputs, and 
it is necessary to retune the controller (ad- 
justing the scaling factor and, in some cases, 
the magnitude of the parameters) for other 
ranges of input. This is because the control- 

ler has been dimensioned and formulated in 
a very straightforward way on the basis of 
the basic operational characteristics of the 
servomotor. The limited sets of rules and 
lookup tables restrict the adaptability of the 
controller. 

Since there is no mature guidance in fuzzy 
set theory for the determination of the best 
shapes for fuzzy sets, it is suggested that 
different shapes for different set points need 
to be studied to obtain an optimum solution 
for various ranges of erroderror change pairs. 
The amount of overlap with the fuzzy sets 
affects the efficiency of the fuzzy controller. 
In case of too much overlap, many rules will 
be applied for a single-input pair, and the 
situation will not be represented accurately. 
If there is too little overlap, it will be difficult 
to derive the lookup table. 

In summary, it has been shown that fuzzy 
controllers offer the following advantages: 

(1) They do not require a detailed mathe- 
matical model to formulate the algo- 
rithms. 

( 2 )  Because both error and error change are 
required to evaluate the control input, 

the fuzzy controller has more adaptive 
capability. 

(3) By using different sets of control rules, 
the fuzzy controller can operate for a 
large range of inputs. 

However, certain challenges remain for 
their use, including the following: 

(1) Completeness of the rule base, 
(2 )  Guidance on the shape of the fuzzy lin- 

(3) Guidance on the overlapping of subsets, 

(4) Practical methods for controller calibra- 

guistic functions, 

and 

tion. 
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Future Directions 
in Control Theory 

A major report on the status and future 
directions of control theory, entitled “Future 
Directions in Control Theory: A Mathemati- 
cal Perspective,” was released in December 
1988 and is being distributed by the Society 
for Industrial and Applied Mathematics 
(SIAM). Wendell H. Fleming of Brown 
University chaired the panel of 17 mathemati- 
cians and engineers that produced the report. 
During various stages of its preparation, the 
panel solicited, and received, valuable input 
from more than 50 members of the control 
community. For a copy of the report, write 
to SIAM at the address listed at the end of 
this article. 

Challenges 

Control theory has grown dramatically 
from the linear systems, optimum control, 
and linear filtering of noisy signals of the 
1960s into a vastly diverse family of theories 
of nonlinear, stochastic, adaptive, distributed 
parameter, discrete event, and intelligent con- 
trol. Because control research is driven by the 
diverse and changing needs of applications, 
the wide variety of mathematical techniques 
included in control theory go beyond those 
associated with tradit ional applied 
mathematics. 

Control theory faces particular challenges 
arising from its diverse origins and the wide 
applicability of its research. The field is both 
an  engineering discipline and applied 
mathematics discipline and, in addition, is ex- 
periencing increasing interaction with com- 
puter science and computation. The creative 
interplay between mathematics and engineer- 
ing in the solution of control problems has 
been a major strength of the field, bu_t it also 
raises questions about the raison d’etre and 
the future direction of the field. 

In spite of the rapid growth of the field, 
the panel found that many fundamental 
problems-such as control of nonlinear 
multivariable systems, especially those with 
many degrees of freedom, and control of 
nonlinear distributed parameter systems (e.g., 
those governed by nonlinear partial differen- 
tial equations)-are not yet understood. These 
fundamental problems give rise to difficult 
mathematical questions, many of which can- 
not be answered within the current theoretical 
framework. 

Advances 

The report describes both striking recent 
advances in the mathematical theory, such as 
the robust control theory for linear systems, 
and successful applications to  control 
technology. Among the latter are the space 
shuttle control systems, a new hormone 
therapy that is programmed by a nonlinear 
feedback linearization and decoupling tech- 
nique, the fly-by-wire F-16 jet, the hot strip 
steel mill computer control, and a variety of 
“small” applications that make modern con- 
trol systems pervasive in today’s technological 
environment. 

The report also identifies a strikingly 
diverse range of areas in science and 
technology that could benefit from research 
in control theory; e.g., robotics, combustion 
control, fluid flow control, solidification pro- 
cesses, biomedical research, hydrology, and 
economics. 

The report strongly encourages control 
scientists to make the fullest possible use of 
advanced scientific computing as a research 
tool. It predicts that major new advances may 
become possible because of the dramatic in- 
creases in computing power, the proliferation 
of new computing tools, and, to some extent, 

the availability of new sensor technologies, 
which open new possibilities for data collec- 
tion and experimental research on control. 

The panel avoided the all-too-easy 
approach of calling US. federal government 
agencies to double or triple the dollar amounts 
spent on research in this area, relying, instead, 
on the importance of the field and the con- 
tinuing high quality of research as the guaran- 
tors of future funding. Questions were raised, 
however, about the continuing supply of 
young talent, training opportunities, and 
communication barriers. 

Recommendations 

The panel recommended that academic in- 
stitutions promote the development of the 
field by training Ph.D.s in both mathematics 
and engineering and by facilitating com- 
munication across departmental lines. The 
success of such programs depends on the 
critical mass of faculty interested in control 
research. 

The panel further recommended that the 
mathematical and engineering aspects of fun- 
damental control research become an integral 
part of new research initiatives sponsored by 
the federal agencies in many areas of science 
and technology, such as robotics, space struc- 
tures, and computation. 

The control science community, the 
academic institutions, and the federal agen- 
cies were encouraged to promote greater ex- 
change of ideas among mathematicians, 
engineers, and computer scientists. One of the 
goals in this area is integration within the field 
to overcome the internal communication bar- 
riers; another is facilitation of the flow of 
ideas from other rapidly progressing fields of 
mathematics into control theory. 

The panel members were the following: 
H.T. Banks, G. Blankenship, R. Brockett, 
J.A. Burns, W.H. Fleming, R.V. Kohn, 
A. Krener, A.J. Laub, J.L. Lions, S. Markus, 
J.E. Marsden, S. Mitter, E. Polak, R.T. 
Rockefeller, D. Russell, E.D. Sontag, and 
G. Stein. 

In the process of assembling the report, it 
has become clear that perceptions of the 
future directions vary widely among the 
members of the control science community. 
For instance, some believe that the field will 
evolve more in the direction of software 
engineering, artificial intelligence, and in- 
telligent control, with mathematical research 
taking second place to computer science. 
These views, however, were not strongly em- 
phasized in the report. In fact, the report 
definitely takes a mathematical perspective 
and emphasizes the need to continue the 
creative interaction of mathematics, computa- 
tion, and engineering. 

Copies of the report can be obtained by 
writing to: Customer Service, SIAM, 117 
South 17th St., 14th FI., Philadelphia, PA 
19103-5052. 
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