DEVELOPMENT OF GENERALIZED 2-D AND 3-D DISTINCT ELEMENT PROGRAMS FOR MODELING JOINTED ROCK

by

Peter A. Cundall, Roger D. Hart

Itasca Consulting Group, Inc.
PO Box 14806
Minneapolis, Minnesota 55414

January 1985
Final Report

Approved For Public Release; Distribution Unlimited

DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

Contract No. DACA 39-82-C-0015

Structures Laboratory
US Army Engineer Waterways Experiment Station
PO Box 631, Vicksburg, Mississippi 39180-0631
Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
Report Documentation Page

<table>
<thead>
<tr>
<th>Report Number</th>
<th>Report Date</th>
<th>多少</th>
<th>Recipient's Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Paper SL-85-1</td>
<td>January 1985</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Title (Main Title)

DEVELOPMENT OF GENERALIZED 2-D AND 3-D DISTINCT ELEMENT PROGRAMS FOR MODELING JOINTED ROCK

Authors

Peter A. Cundall
Roger D. Hart

Performing Organization Name and Address

Itasca Consulting Group, Inc.
PO Box 14806
Minneapolis, Minnesota 55414

Controlled Office Name and Address

DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

Report Date

January 1985

Number of Pages

79

Security Class.

Unclassified

Distribution Statement (of Report)

Approved for public release; distribution unlimited.

Distribution Statement (of the Abstract entered in Block 20, if different from Report)

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

Key Words

Rock deformation--Simulation methods (LC)
Joints (Geology) (LC)
Data structure (Computer science) (LC)
Numerical calculations--Computer programs (LC)
Block designs (LC)
Universal Distinct Element Code (UDEC) (WES)

Abstract

The capabilities of the distinct element code, UDEC, have been improved to provide full generality of the program for modeling jointed rock. Complete features exist for simulating variable rock deformability, nonlinear behavior of distinct joints and intact rock, dynamic cracking, projectile impaction, and fluid flow and fluid pressure generation in joints and voids.

Further, the first stage in the development of a three-dimensional...
20. ABSTRACT (Continued).

A distinct element program has been completed. A new data structure has been designed and a test-bed code produced for three-dimensional analysis.
PREFACE

This report presents the results of improvements and extension of the two-dimensional distinct element code, UDEC, and development of the data structure and skeleton code for a new three-dimensional distinct element program.

The work was performed for the U. S. Army Waterways Experiment Station under contract DACA39-82-C-0015. These improvements and extensions of the code supplement the original report "UDEC - A Generalized Distinct Element Program for Modeling Jointed Rock," written by Dr. P. A. Cundall in March 1980 for the U. S. Army European Research Office and Defense Nuclear Agency under contract DAJA 37-19-C-0543.

Mr. J. Drake of the Waterways Experiment Station initiated this project and the final report was prepared after consultation with Mr. Drake and Mr. B. Armstrong, also of the Waterways Experiment Station.

Commander and Director of the Waterways Experiment Station at the time of publication of this report was COL Robert C. Lee, CE. Technical Director was Mr. F. R. Brown.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>i</td>
</tr>
<tr>
<td>PART I: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Scope of Present Study</td>
<td>2</td>
</tr>
<tr>
<td>PART II: IMPROVEMENT AND EXTENSION OF UDEC</td>
<td>4</td>
</tr>
<tr>
<td>Work Items</td>
<td>4</td>
</tr>
<tr>
<td>Data Structure</td>
<td>4</td>
</tr>
<tr>
<td>PART III: APPROACH TO THREE-DIMENSIONAL MODELING</td>
<td>11</td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Block Characteristics</td>
<td>11</td>
</tr>
<tr>
<td>Physical Calculations</td>
<td>15</td>
</tr>
<tr>
<td>Contact Characteristics and Detection</td>
<td>18</td>
</tr>
<tr>
<td>Data Structure</td>
<td>21</td>
</tr>
<tr>
<td>PART IV: CONCLUSIONS</td>
<td>28</td>
</tr>
<tr>
<td>Program UDEC</td>
<td>28</td>
</tr>
<tr>
<td>Program D3</td>
<td>28</td>
</tr>
<tr>
<td>APPENDIX A: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2)</td>
<td>A1</td>
</tr>
<tr>
<td>USER'S MANUAL</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>A1</td>
</tr>
<tr>
<td>Improvements to UDEC</td>
<td>A2</td>
</tr>
<tr>
<td>Input Commands</td>
<td>A8</td>
</tr>
<tr>
<td>Program Guide</td>
<td>A13</td>
</tr>
<tr>
<td>Sample Problems</td>
<td>A19</td>
</tr>
<tr>
<td>APPENDIX B: THREE-DIMENSIONAL DISTINCT ELEMENT TEST-BED CODE</td>
<td>B1</td>
</tr>
<tr>
<td>(VERSION 1.0) USER'S MANUAL</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>B1</td>
</tr>
<tr>
<td>Input Commands</td>
<td>B1</td>
</tr>
<tr>
<td>Program Guide</td>
<td>B4</td>
</tr>
<tr>
<td>Sample Problem</td>
<td>B8</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 1.</td>
<td>Linked Lists for Main Data Arrays</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Block Pointers and Reverse Corner Links</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Domain Linkages</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Convention Used for Pointers Within a Contact Array</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Structure of 'Junk List' Holding Redundant Groups of Memory</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Vectors Describing Triangular Area, a</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Normal Vector Contours for 3-D Contact Detection</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Global Block and Contact Lists</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Lists Associated with Each Block</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Pointers Associated with Each Face</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>Pointers and Lists Associated with Each Contact</td>
</tr>
<tr>
<td>Figure A1.</td>
<td>UDEC Sample Problem No. 1</td>
</tr>
<tr>
<td>Figure A2.</td>
<td>UDEC Sample Problem No. 2</td>
</tr>
<tr>
<td>Figure A3.</td>
<td>UDEC Sample Problem No. 3</td>
</tr>
<tr>
<td>Figure A4.</td>
<td>UDEC Sample Problem No. 4</td>
</tr>
<tr>
<td>Figure B1.</td>
<td>D3 Sample Problem</td>
</tr>
</tbody>
</table>
DEVELOPMENT OF GENERALIZED 2-D AND 3-D

DISTINCT ELEMENT PROGRAMS FOR

MODELING JOINTED ROCK

PART I: INTRODUCTION

Background

1. The Universal Distinct Element Code (UDEC)* is the latest and most advanced numerical program available for simulating the behavior of discontinuous geologic systems subjected to high and transient loads. UDEC provides in one package all of the capabilities that existed separately in previous distinct element codes. The program is built around a very powerful data structure and is able to handle simultaneously the interaction of a mixture of rock blocks that have different types of deformability.

2. During the initial development of UDEC several facilities were encompassed by the original design but were only implemented in skeleton form. Features such as joint constitutive behavior, dynamic cracking, fluid flow and fluid pressure effects were identified as requiring supplemental work in order to realize the full modeling potential of the code. Also, some utilitarian improvements were suggested: an improved capability for dealing with flying blocks for impact-type problems, automatic zoning for fully-deformable blocks, improved logic for handling special cases of splitting such as splitting through corners, and more general specifications for boundary conditions.

3. In addition, it was recognized that the next logical extension of the distinct element method would be the development of a three-dimensional version. The first step in this formidable task would be the design and testing of a data structure and test-bed code which would be appropriate for three-dimensional analysis.

Scope of Present Study

4. The purpose of the present study was to address the considerations arising from the original development of UDEC. The first objective was to complete all the unfinished facilities identified above. This accomplished, the revised version of UDEC now has a general application to the following principal areas in jointed rock modeling:

 a. Discontinuous systems can be modeled as assemblages of blocks or particles of differing deformability; either rigid, simply-deformable (with 3 degrees of freedom) or fully-deformable (internally decomposed automatically into finite difference zones).

 b. Nonlinear constitutive models including dilatant and non-dilatant behavior can be prescribed for both the intact rock and the discrete joints.

 c. Blocks can break, repeatedly, in accordance with a user-supplied cracking criterion.

 d. Fluid flow and fluid-pressure generation in joints and voids can occur with flow rate specified in terms of joint permeability and apparent aperture.

 e. Directional loads can be applied to individual blocks and pressures can be prescribed to regions between blocks.

 f. Blocks or groups of blocks can be explicitly defined by the user as flying blocks for impact problems.

5. The second objective of this study was to begin the development of a new three-dimensional distinct element program. A data structure was developed which was well-suited for the extension of the method to 3-D. A test-bed code was then produced to evaluate various
aspects of the program such as the logic defining the characteristics of the block, the detection of contacts and the sequence for processing calculations. This effort has culminated in a workable but primitive distinct element program for three-dimensional analysis.

6. This report contains a description of the improvements made to UDEC and a discussion of the development of the three-dimensional program. In addition, a revised user's manual for UDEC and a new user's manual for the test-bed 3-D code are given as appendixes to this report.
PART II: IMPROVEMENT AND EXTENSION OF UDEC

Work Items

7. In the original report several areas were identified which required additional work to realize the full capacity of the two-dimensional distinct element code. Specifically, these work items are:

a. complete edge-to-edge contact logic and install a simple constitutive model for rock joints;
b. install fluid flow and fluid pressure generation logic;
c. improve logic for dealing with flying blocks, i.e., blocks or groups of blocks not in contact with other blocks;
d. install an automatic mesh generator for fully-deformable blocks;
e. design logic to treat the case of splitting through a corner and allow re-entrant splits (one line crosses a single block twice);
f. install dynamic cracking including the redistribution of forces, stresses and displacements on splitting, and create the framework for user specified criteria for crack development; and
g. install more general boundary conditions.

Modifications have been made to UDEC to complete these facilities. In Appendix A a revised UDEC user's manual is given which contains a description of the improvements made to the code and a complete set of input commands and program guide. Sample problems are also given which demonstrate the improvements made to UDEC.

Data Structure

8. The program guide, given in Appendix A, contains the complete contents of all the groups in the data structure. Figures 1 through 5,
reproduced from the original report, show schematically the linkage of these various groups and should assist the user in following through the program guide. Figure 1 shows the "linked list" arrangement of the main data arrays. Figures 2, 3 and 4 illustrate the conventions for pointers and links in the block data, domain data and contact data arrays, respectively, and Figure 5 shows the structural arrangement of redundant memory groups. The program guide and the figures will assist the user in making any code modifications.
FIGURE 1: LINKED LISTS FOR MAIN DATA ARRAYS
CORNER ARRAY

BLOCK DAT

TO NEXT BLOCK

FROM
PREVIOUS
BLOCK

CONTACT
ARRAY

REGULAR CORNER LINKAGE

REVERSE CORNER LINKAGE

LINK FROM BLOCK TO CORNER LIST

LIST OF BLOCKS

FIGURE 2: BLOCK POINTERS AND REVERSE CORNER LINKS
FIGURE 3: DOMAIN LINKAGES
NOTE: KB1, KB2 — KD2 REFER TO THE OFFSETS LISTED IN APPENDIX III

FIGURE 4: CONVENTION USED FOR POINTERS WITHIN A CONTACT ARRAY
Figure 5: Structure of 'JUNK LIST' holding redundant groups of memory.
PART III: APPROACH TO THREE-DIMENSIONAL MODELING

Introduction

9. This project is concerned mainly with the planning of a three-dimensional code based on the distinct element method. It is particularly important to design the data structure in a way that anticipates how the data will be used during a typical simulation of the behavior of a blocky assembly. Each physical quantity should be at hand when needed, with the minimum overhead of searching, or redundant calculations.

10. Even though the objective of the project was to arrive at a conceptual framework for future development, a working program, called D3, was written. The present deficiencies in D3 are in the areas of contact detection and updating and block creation. However, some aspects of the program are well-developed: for example, the data structure; the physical equations of motion and force-displacement law; and the determination of volumes and centroids for arbitrary blocks.

11. Throughout the program D3, functions or subroutines are used to perform common vector operations. This simplifies the coding considerably, at the expense of some increase in running time. All vector and tensor equations in this report are expressed in component form, where the subscripts i, j and k range from 1 to 3, and the Einstein summation convention applies for repeated subscripts.

Block Characteristics

Geometry

12. A three-dimensional block is defined by dividing its surface into triangular faces. Triangles are used instead of arbitrary polygons for the following two reasons.
a. A surface is determined uniquely by specifying three points in space. If four or more are given, the nature of the surface is undefined and ambiguous.

b. The data structure is simplified if exactly three vertices are associated with each face; three memory locations can be reserved in advance. Similarly, exactly three pointers can be provided to locate the three adjoining faces to a given face.

13. There is no loss of generality by adopting the requirement that the surface of a polyhedron be subdivided into triangles. Any arbitrary shape can be devised by using triangles as building blocks, including blocks with concave regions. At present, in D3, the vertices of each face must be given manually, but automatic surface zoning should be possible, using the zone generation logic of UDEC.

Volume

14. The calculation for block volume is based upon Gauss's divergence theorem, given by:

\[
\frac{\partial p}{\partial x_i} = \frac{1}{\nu} \int p n_i \, da
\]

(1)

where \(p\) is any scalar, vector or tensor variable

\(\nu\) is the enclosed volume, and

\(n_i\) is the outward unit normal to an element of surface, \(da\).

If \(p\) is defined as any vertex vector \(x_i\), equation (1) becomes:

\[
\frac{\partial x_i}{\partial x_i} = \frac{1}{\nu} \int x_i \, n_i \, da
\]

or, solving for \(\nu\) using discrete areas,

\[
\nu = \frac{1}{3} \Sigma x_i \, n_i \, a
\]

(2)

where \(\Sigma\) is the summation over all surface elements.
If area, \(a \), is planar, \(x_i \) \(n_i \) is constant over the area.

For a triangular area defined by the vectors \(z_i^{(a)} \) and \(z_j^{(b)} \) (see Figure 6) the area calculation is:

\[
a = \frac{1}{2} \left| a_k \right| = \frac{1}{2} \sqrt{a_k \cdot a_k}
\]

where \(a_k = e_{1jk} z_i^{(a)} z_j^{(b)} \) (\(e_{1jk} \) is the permutation tensor) \((3) \)

and the unit normal is

\[
n_i = \frac{a_j}{2a}
\]

(4)

Substituting equations (3) and (4) in equation (2) produces

\[
v = \frac{1}{6} \sum_{k} e_{1jk} z_i^{(a)} z_j^{(b)}
\]

(5)

FIGURE 6: VECTORS DESCRIBING TRIANGULAR AREA

The volume associated with each face, when defined by equation (5), represents the volume of a tetrahedron with a base of area, \(a \), and apex at the coordinate axes origin. The block volume is then found from the sum of the tetrahedrons. To produce a positive tetrahedron volume the vertices defining a triangular face must be ordered counterclockwise when viewed from the axes origin.
Centroid

15. The centroid of the block is calculated by recognizing that the centroid and volume of each tetrahedron are related to the block centroid by:

\[r_i = \frac{r_i^{(N)} v^{(N)}}{v}, \] \hspace{1cm} (6)

where \(r_i \) is the centroid vector for the block

\(r_i^{(N)} \) is the centroid vector for the Nth tetrahedron

\(v \) is the block volume

\(v^{(N)} \) is the volume of the Nth tetrahedron

The centroid of each tetrahedron is calculated directly from the three vertex vectors \((x_i^{(1)}, x_i^{(2)}, x_i^{(3)}) \) that define a block face. The centroid lies along the same vector as the average of these three vectors. By simple integration techniques it can be shown that the magnitude of the centroid is 3/4 of the average vector, so that the tetrahedral centroid calculation becomes:

\[r_i^{(N)} = \frac{x_i^{(1)} + x_i^{(2)} + x_i^{(3)}}{4}, \] \hspace{1cm} (7)

The block centroid is then found by using this equation in equation (6) and summing over all tetrahedrons defining the block.

Radii of gyration

16. This calculation is incomplete in the present version of D3. Only dynamic behavior is affected by the moments of inertia, which are now taken to be equal, approximately, to:
where \(\bar{r} \) is the average distance from the centroid to vertices and \(m \) is the block mass.

Physical Calculations

Equation of motion

17. For each block, the following equations are integrated twice by central finite differences:

\[
\mu \ddot{u}_i + \gamma \mu \dot{u}_i = \Sigma F_i \tag{9}
\]

\[
I(i) \ddot{\theta}_i + \Sigma I(i) \dot{\theta}_i = \Sigma M_i \tag{10}
\]

where \(\dot{u}_i, \ddot{u}_i \) = components of acceleration and velocity

\(\dot{\theta}_i, \ddot{\theta}_i \) = components of angular acceleration and velocity

\(\Sigma F_i \) = sum of forces acting on block

\(\Sigma M_i \) = sum of moments acting on block

\(m \) = mass of block

\(I(i) \) = moments of inertia about 1, 2, 3 axes.

\(\alpha \) = damping coefficient

Knowing the centroid motion and the current locations of vertices and centroid, the velocities (and hence increments in displacement) of vertices are calculated as follows:

\[
\dot{u}_i(p) = \dot{u}_i(b) + e_{ijk} \dot{\theta}_j (x_k(p) - x_k(b)) \tag{11}
\]

where \(p \) refers to a vertex

\(b \) refers to the centroid of the block

\(e_{ijk} \) is the permutation tensor.
The moment acting at the centroid owing to a force \(F(P) \) acting at a surface point \(p \) is given by:

\[
M_i = \varepsilon_{ijk}(x_i(P) - x_j(P))F_k
\]

(12)

Contact forces

18. At each contact, the relative velocity of the two opposing points is calculated using equation (11) for both points and subtracting:

\[
\dot{u}(c) = \dot{u}(B) - \dot{u}(A)
\]

(13)

where \((A)\) and \((B)\) denote the opposing points on blocks \(A\) and \(B\).

The relative contact velocity \(\dot{u}(c) \) is resolved into normal and shear partitions:

\[
\dot{u}(n) = \dot{u}(c) n_i
\]

(14)

\[
\dot{u}(s) = \dot{u}(c) - \dot{u}(n) n_i
\]

(15)

where \(n_i\) is the contact normal.

Normal and shear force increments are then calculated as follows:

\[
\Delta F(n) = -\dot{u}(n) k(n) \Delta t
\]

(16)

\[
\Delta F(s) = -\dot{u}(s) k(s) \Delta t - \varepsilon_{ijk} e_{k\alpha\beta} F_j n_\alpha n'_\beta
\]

(17)

where

\(k(n) \) = normal contact stiffness

\(k(s) \) = shear contact stiffness

\(n_\alpha \) = previous contact normal

\(n'_\beta \) = current contact normal
The second term on the right hand side of (17) corrects the current shear force for rotation of the contact normal during the previous time step. The expression is approximate only, and assumes that \(\cos(\Delta \theta) \approx 1 \).

The contact normal may rotate because:

a. the two blocks concerned have rotated about a common axis; or
b. the contact location on one or both blocks has changed; hence the contact normal may have changed.

Contact forces may now be updated:

\[
F(n) := f(n) + \Delta F(n) \quad (18)
\]
\[
F(s)_i := f(s)_i + \Delta F(s)_i \quad (19)
\]

If \(\|F(s)_i\| > c + \mu F(n) \) then

\[
F(s)_i := f(s)_i \frac{(c + \mu F(n))}{\|F(s)_i\|} \quad (20)
\]

where \(c \) = cohesion

\(\mu \) = friction coefficient

:= means "replaced by"

Note that \(F(n) \) is stored in program D3 as a scalar, because the contact normal is stored independently. However, \(F(s)_i \) is stored as a vector with components referred to the global axes.

19. After calculation, the contact forces are applied immediately to the two blocks comprising the contact (in a positive sense to block B, and in a negative sense to block A). Equation (12) is used to compute the moment to be added, where \(x^{(p)}_i \) is the contact coordinate.
Contact Characteristics and Detection

Prescription for contact normals

20. The blocks in UDEC have rounded corners in order to eliminate the singularities, force-jumps and "hang-ups" associated with sharp corners. In three dimensions the same idea is almost unworkable, since a single spherical cap cannot be fitted to a vertex because it will not be tangent to all adjoining faces. Some kind of variable-radius curve would have to be fitted to the vertex. It would have to be tangent not only to adjoining faces, but also somehow merge smoothly with adjoining edges, which would also be rounded. Although such a scheme may be feasible in principle, its use would add a large computing overhead, particularly in the case of simply-deformable blocks, where the angles at vertices are continuously changing.

21. A scheme has been devised that overcomes the problems with sharp corners, and even resolves the ambiguities present in UDEC for very large block overlays. A "prescription" or rule is proposed that furnishes a unique direction of contact normal to be associated with each point within a block. Because two blocks must overlap in order to establish contact, the contact point must lie within both blocks. The prescription is consulted to find the average contact normal for the blocks' internal point. Certain conditions must be fulfilled by the prescription:

a. At the surface of a block, the prescribed normals must coincide with the real normals (with jumps at vertices and edges).

b. There must be a smooth transition in normal direction from point-to-point within the block.

c. The rate of change of normal direction with respect to coordinate should reduce as the depth of penetration increases.

In essence, the prescription provides a field of normal vectors for every internal point as illustrated in the figure below.
22. Much of the effect of UDEC's corner rounding is provided by the new scheme because there will be a smooth transition as a contact point moves around a corner. Furthermore, there is no need to know exactly which face is providing support close to a vertex; the known normal determines the direction of sliding and the direction in which the normal force increment is applied.

23. The following prescription for angles of contact normals is only tentative. More experience with its use in D3 is necessary before it can be accepted as being a reasonable analog of physical behavior.

 a. Select the vertex nearest the contact point.
 b. Determine the normal distance, \(d^{(N)} \), of the contact point from each adjoining face, \(N \).
 c. Compute the average normal face direction, weighted according to \(1/d^{(N)} \). If the contact point lies exactly on one face \(N \) (\(d^{(N)} = 0 \)), then the normal direction is that of face \(N \).
 d. The required normal is the unit vector in the computed direction.

The prescription fulfills the conditions previously set out, except that there will be a slight change in normal angle for deep penetration when the "nearest vertex" changes.

Types of contact

24. Although six types of contact can be identified physically, only two are necessary for complete support between two blocks.
Types of Physical Contact

- face - face
- face - edge
- face - vertex
- edge - edge
- edge - vertex
- vertex - vertex

Each of the six physical categories can be constructed from one or more combinations of face-vertex and edge-edge. These two latter categories may be termed "logical contacts," which are recognized by the detection process and in the formation of the data structure. The physical behavior corresponding to the other categories can be duplicated by knowing the appropriate areas and lengths of contacts, in the same way that UDEC models the physical behavior of an edge-to-edge contact even though the logical contacts are of the corner-to-edge form. D3 does not contain this logic in its present state of development.

Contact detection

25. In any code that models interaction between arbitrary blocks or particles it is necessary to avoid exhaustive searches for those particles that are touching because the computer time for such searches increases as \(N^2 \), where \(N \) is the number of particles. Programs RBM and SDEM used a "box" classification scheme. Cundall (1980) discusses this scheme, and its limitations. UDEC uses a linked-list scheme whereby a block's contact candidates are found by local search of its surrounding domains. However, the two-dimensional data structure of UDEC has no convenient three-dimensional analog, as discussed in the next section.

26. D3 uses a scheme for which the search time is proportional to \(N \), but which is less efficient than UDEC. D3 maintains links between blocks that are near each other. A given block can then interrogate this group of nearby blocks in order to detect potential contacts. The list of nearby blocks is updated in the following way. During an "update",

20
a block interrogates not only its local list of neighbors, but also the lists of its neighbors. Blocks that are further than a certain radius are not added to the list (or are deleted if they are on it already), and blocks within the radius are added. An "update" is only performed on a block after it has moved by some threshold distance since its previous update. In this way, updating of almost-stationary regions is avoided.

Data Structure

27. This section describes the form and use of the data structure in terms of the pointers and connecting links. The complete content of each data array is set out in Appendix B. Program D3 is modeled closely on UDEC as far as structure and operating logic are concerned.

General considerations

28. The program UDEC, which models two-dimensional block systems, maintains a data structure with the same topological form as the physical assembly. The notion of representing blocks by circulating lists that simultaneously encompass the void spaces seems infeasible in three dimensions. It is possible to have a stable assembly of three-dimensional blocks without having an associated collection of isolated void spaces, or "domains"; in some three-dimensional assemblies it is possible to journey from one portion of the void space to any other without needing to pass between two blocks in contact. In two dimensions, the voids can share the same linked lists that serve to describe blocks. (A void is traced by following a counterclockwise route, while blocks are delimited by the same list, but traced in a clockwise direction.) This convenient symmetry is not found in three dimensions.

29. Program D3 embodies, for three-dimensional systems, a data structure that ensures rapid access to data as it is needed during the calculation cycle, but the physical correspondence of UDEC's data structure is missing. This carries a penalty of more time-consuming searches for contacts and increased difficulty in representing fluid behavior in the
void spaces. Figure 8 shows the global lists that link blocks and contacts.

Block structure

30. For individual blocks, the data structure describes the block geometry and also permits the program to jump from one face to its neighbors directly, and from a face to its bounding vertices directly. Figures 9 and 10 illustrate this scheme. Triangular faces, apart from their physical advantages, noted earlier, lead to simplified data structures because exactly three pointers suffice to link faces to neighbors and faces to vertices. The connectivity of faces and vertices is specified completely by the pointers provided in the data array for faces, illustrated in Figure 10. A knowledge of face and vertex connectivity is necessary for an efficient scheme to detect and update contacts around a block. The data array for vertices contains only coordinate data, but each block has access to a list of its own vertices so that coordinates can be updated as the block moves. All coordinates are absolute, as components are referred to the global axes.

Contacts and links between blocks

31. Global connectivity of the block system is represented by a series of links between nearby blocks. When a block system is created initially, these links are established by exhaustive search. However, during operation, the program can determine potential contacts by interrogating just those blocks in its immediate neighborhood. In this way, the computer time needed for searching increases linearly with the number of blocks, \(N \), and not as \(N^2 \). The scheme, however, is not nearly as efficient as that of UDEC because many more potential contacts need to be examined in D3 for each block.

32. Contacts come in three forms: one is a "degenerate" form, and the other two correspond to "real" contacts. A degenerate contact is a simple link between nearby blocks. The memory taken by such a contact is much less than that of a real contact, but the pointers have the same locations as those in real contacts. This permits both degenerate and real contacts to be included in the same scan. A code number identi-
FIGURE 8: GLOBAL BLOCK AND CONTACT LISTS
SIMPLY-DEFORMABLE EXTENSION

FIGURE 9: LISTS ASSOCIATED WITH EACH BLOCK
F: NEIGHBORING FACE
V: VERTEX

FIGURE 10: POINTERS ASSOCIATED WITH EACH FACE
fies each type. Pointers and lists associated with each contact type are illustrated in Figure 11. The two forms of real contact are: vertex-to-face and edge-to-edge. These two categories are sufficient to capture all types of physical contact, as explained previously.
FIGURE 11: POINTERS AND LISTS ASSOCIATED WITH EACH CONTACT
PART IV: CONCLUSIONS

Program UDEC

33. The two-dimensional program UDEC has been considerably enhanced: it can now be used to model a wide spectrum of problems ranging from continua to discontinua; from static to dynamic; and with or without pore fluid interaction. The utility of the canonical* data structure has been confirmed by the comparative ease with which the new features were installed.

Program D3

34. Considerable thought has been given to devising a good data structure and physical idealisation for representing three-dimensional block assemblies. The result is reported herein; much of the scheme has also been embodied in the test-bed program D3. In fact D3 contains a good deal more than that required by the contract: it includes the full equations of motion for blocks and surfaces, equations for interaction of contacts, primitive logic for contact detection and updating, and fixed/free boundary conditions.

35. It is possible to run very simple simulations with D3 as it stands, but the program is still only a skeleton code. The following developments are suggested, in order of priority.

a. Test thoroughly the prescription for contact normals, and, if necessary, propose modifications.

b. Generalize logic for contact detection and updating, and verify that it will work under extreme conditions.

c. Recognize, and treat correctly, all six categories of contact; install corresponding constitutive models.

d. Add simply-deformable logic.

*A "canonical" data structure is "a model of data which represents the inherent structure of that data." Martin, J. (1977), Computer Data-Base Organization, Prentice-Hall, Inc.
e. Install comprehensive boundary conditions:
 1. stress tensor
 2. arbitrary velocity prescription
f. Allow blocks to split, dynamically and statically; include point-to-point splitting law and Griffith's law for simply-deformable blocks.
g. Perform validation and simulation tests.
APPENDIX A: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2)
USER'S MANUAL

Introduction

1. This manual describes the latest improvements to the Universal Distinct Element Code (UDEC) and supplements the original report "UDEC - A Generalized Distinct Element Program for Modeling Jointed Rock" written by Dr. P. A. Cundall, March 1980, for the U. S. Army (European Research Office, and Defense Nuclear Agency under Contract DAJA 37-79-C-0548.

2. The improvements to UDEC were made in the following general areas:
 a. joint logic
 b. fluid flow
 c. flying blocks
 d. automatic mesh generator
 e. general splitting logic
 f. dynamic cracking of blocks
 g. generalized boundary conditions

Descriptions of these improvements and their applications in UDEC are given in the next section.

3. The modifications to UDEC have led to the development of several types of constitutive models for the intact blocks and block contacts. Intact block behavior may be defined by separate deformation and fracture laws, while either point- or joint-contact constitutive models may be chosen. The different constitutive behaviors are discussed below and summarized in Table A1.

4. This manual also contains the revised user's input commands for UDEC and an updated program guide. Input and output files are presented for sample problems which illustrate the use of the improvements to UDEC.
Joint logic

5. UDEC recognizes edge-to-edge contacts between blocks as joints, and refers to a constitutive model that works in terms of stresses rather than forces. The joint logic is used for those blocks or joints that are given constitutive number 2 or 5 by the user (see Table A1). In addition, some or all of the following properties for joints should be defined:

- s_{nj}: normal stiffness (stress/displacement)
- s_{sj}: shear stiffness (stress/displacement)
- c_j: cohesion (stress/displacement)
- f_j: friction coefficient

Although the joint logic may be set for the whole block assembly, UDEC will still refer to contact parameters under some circumstances; therefore, these parameters should also be defined. A joint reverts back to being a contact if it no longer consists of planar block faces in opposition. The point-contact logic is also used if incremental normal deformation using the joint parameters would be greater than that using the contact parameters: i.e., if

$$s_{nj} l_j < s_n$$

where l_j is the length of the joint and s_n is the contact normal stiffness.

Fluid flow

6. Flow may occur between domains if a differential pressure exists between the domains. Two types of flow law are used, depending on whether a contact or a joint separates the domains. For a contact the flow-rate is

$$q = p_{diff} k_c$$
where p_{diff} is the pressure difference, and k_c is a permeability constant, defined for contacts, for a particular material number.

For a joint the flow rule is:

$$q = p_{\text{diff}} k_j a_j^3 / l_j$$

where k_j is a permeability constant for joints, l_j is the joint length, a_j is the apparent aperture, defined as

$$a_j = \max(\text{ares}, a_0 - \text{strn}'/\text{sn}_j)$$

where ares is the residual displacement (fully closed), a_0 is the aperture for an open joint, strn' is the effective normal stress, and sn_j is the joint normal stiffness.

The constants k_j, ares and a_0 are defined by the user for a particular material number.

7. In one time-step, t_{del}, the adjustment to pressure, p_{del}, in a domain is as follows:

$$p_{\text{del}} = Q(\text{bulkw})(t_{\text{del}})/A_d$$

where Q is the sum of flows into the domain, bulkw is the bulk modulus of the fluid, A_d is the area of the domain.

For a domain corresponding to a joint,

$$A_d = a_j l_j$$

(a_j and l_j defined previously). The quantities a_j and l_j are only defined for a joint. If constitutive numbers 2 or 5 are not set, the domain corresponding to an edge-to-edge contact will be assumed to have an area of $A_d(\text{min})$, which may be set by the user; otherwise it will default a small fraction of average block areas. For regular domains, $A_d(\text{min})$ is the limiting area for fluid calculations.
8. A printout of fluid flow in all joints and contacts may be requested by giving the PRINT FLOW command. Aperture and length are also printed for joints.

9. The influence of a fluid pressure gradient is included in UDEC for fully-saturated blocks subjected to gravity loading. This has been accomplished by adding a buoyancy force term to the law of motion for a block. The buoyancy force is defined by a fluid density parameter, rho\textsubscript{w}, in the FLUID input command.

Flying blocks

10. UDEC keeps track of "flying" blocks (i.e., blocks not in contact with other blocks) by retaining one link to the main data structure. This ensures that new contacts will be detected in the domain containing the flying block. The single link is of the same form as a regular contact, but it contributes no forces and is deleted immediately after the block comes into contact with other blocks. Groups of flying blocks are handled in an identical manner. The same logic ensures that the group is linked to the global data structure by one virtual contact. Blocks which are initially not in contact with other blocks must be linked to the main data structure using the LINK input command.

Automatic mesh generator

11. The automatic mesh generator is based upon that described in the report "Computer Modeling of Jointed Rock Masses" written by Dr. Cundall, et. al., (see Technical Report N-78-4 for the U. S. Army Engineers Waterways Experiment Station, August, 1978).

12. Automatic mesh generation for a fully-deformable block is accomplished in three stages. First, all corners of the boundary are linked so that the block is discretized as a triangular finite-difference mesh. Then, the triangles are split until all triangular sides are smaller than a maximum edge length specified by the user. Finally, all internal grid-points are adjusted until their coordinates coincide with the average of the coordinates of the surrounding grid-points. The generator appears to be sufficient for discretizing most
blocks provided the aspect ratio (longest to shortest dimensions) of the block is kept smaller than 2:1.

General splitting logic

13. The logic for splitting blocks has been overhauled so that a split may occur at any orientation. Splits through corners are allowed. If a given split-line passes too close to a corner, the line is diverted so that the corner is split. The criterion of "closeness" is based on the given rounding length; the line is diverted if a newly-created corner would interfere with the existing corner (i.e., their rounding arcs would overlap). After diverting a proposed split-line through corners (if necessary) a check is made to see if the line would coincide with an existing edge; if it would, the split is rejected for that block.

14. Block splitting is accomplished via subroutine XYSPL(MAT,ICONS). This routine only requires two coordinates ((x3,y3) and (x4,y4)) which define the split line through the block and MAT and ICONS which assign joint properties and constitutive behavior to the newly created joint.

Dynamic cracking of blocks

15. UDEC has been modified to allow dynamic cracking of rigid and simply-deformable blocks. The decision to check for cracking is made by introducing a tensile strength factor, t_f, to the material property list. If a block has a specified tensile strength factor, it is searched once every cycle for conditions which would satisfy a user-supplied cracking criterion. If this criterion is met, the block is split into two. The joint created by splitting a block will take the material and constitutive numbers of the block.

16. Two cracking criteria are presently available in the code. A criterion based upon a relationship developed from "point-load" testing has been assigned to constitutive numbers 1 and 2. The tensile strength factor in this case is defined by:

$$t_f = \frac{(f_1 + f_2)}{2d^2}$$

where f_1 and f_2 are two opposing contact forces applied to the block, and
d is the distance between these forces. Splitting of the block occurs if the maximum value of the contact force-distance relationship equals or exceeds t_f. Dynamic cracking is not permitted through corners or too close to corners ($d < \frac{1}{2}$ smallest block edge) for this cracking criterion.

17. A criterion based on Griffith theory is assigned to constitutive numbers 4 and 5. This criterion evaluates conditions for cracking in terms of the internal stresses in SDEF blocks (tensile stresses are assumed positive). The relationships for block splitting are defined by:

\[t_f = s_1 \text{ if } 3s_1 + s_2 > 0 \]

and

\[t_f = \frac{-\left(s_1 - s_2\right)^2}{8\left(s_1 + s_2\right)} \text{ if } 3s_1 + s_2 < 0 \]

where s_1 is the maximum principal stress in the SDEF block,
s_2 is the minimum principal stress in the SDEF block,
t_f corresponds to the uniaxial tensile strength of the intact material.

When stress conditions exceed the tensile strength, the block is split through its centroid in a direction parallel to s_2 and the block stresses are set to zero.

18. It should be noted that these two cracking models do not account for energy lost in the system when the fracture occurs. A more thorough approach should take into account the change of strain energy into kinetic energy at failure.

Generalized boundary conditions

19. Two types of boundary conditions can be used in UDEC. X and Y directional loads can be added to block centroids using the LOAD command. Domain pressure can be user-controlled using the PFIX and PFREE commands.

Summary of constitutive models

20. Each constitutive number gives the user a different combination of constitutive behavior for the intact block and the contact between blocks. Four combinations are presently defined (see table below). Other combinations are left to the discretion of the user.
Table A1
Constitutive Behavior Models

<table>
<thead>
<tr>
<th>Constitutive Number</th>
<th>Intact Block</th>
<th>Contacts</th>
<th>Intact Block</th>
<th>Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deformation Law</td>
<td>Cracking Law</td>
<td>Deformation Law</td>
<td>Cracking Law</td>
</tr>
<tr>
<td>1</td>
<td>elastic-isotropic</td>
<td>point-load</td>
<td>point contact</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>elastic-isotropic</td>
<td>point-load</td>
<td>joint contact</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>elastic-isotropic</td>
<td>Griffith</td>
<td>point contact</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>elastic-isotropic</td>
<td>Griffith</td>
<td>joint contact</td>
<td></td>
</tr>
</tbody>
</table>
Input Commands

Notes: Upper-case letters in a command or parameter must be typed; the remaining letters are optional. Lower-case parameters stand for numeric values. Integers must be given for parameters starting with i, j, k, l, m, n. Real numbers may be given as integers, but not vice versa.

Input is free-format: parameters may be separated by any number of the following characters, in addition to spaces:

```
= ( ) . /
```

An END command is required at the end of the input file (after the STOP command). The first command must be START or RESTART.

* = comment line
+ = continuation line

Block Material n Constitutive m x1 y1 x2 y2 ...

Create a rigid block of material number n and constitutive number m. Defaults are n=1, m=1, if m, n are omitted. Corner coordinates are: (x1,y1), (x2,y2) etc., in a clockwise direction. Continuation lines may be used, but a pair of numbers defining a corner must not be separated. Only one BLOCK command may be used per run at present. Further blocks may be created with a SPLIT command, and unwanted ones deleted with the DELETE command. Any blocks may be changed to simply- or fully-deformable with a CHANGE command.

CHANGE x1 x2 y1 y2 Sdef Material n Constitutive m Fdef

All blocks with centroids lying within the range x1<x<x2, y1<y<y2 are changed to simply- or fully-deformable (Sdef or Fdef respectively). Material and constitutive numbers may also be changed.
Cycle n
Do n time-steps (cycle 0 is permitted as a check on data).

DAMPING fcrit freq Mass
Stiffness
Internal

Viscous damping is applied in the form of Rayleigh damping.
fcrit is the fraction of critical damping and freq is the center frequency. If a qualifier is not given as the third parameter,
full damping is used. The word "Mass" eliminates the stiffness-
proportional dashpots. The word "Internal" causes the specific
damping to be applied to the 3 internal degrees of freedom of
simply-deformable blocks.

DELETE x1 x2 y1 y2
All blocks are deleted in the range x1<x<x2 , y1<y<y2

DUMP n m
Dump memory to printer from the main array from address n to
address m. Internal pointers MFREE, JUNK IBPNT, ICPNT and IDPNT
are also printed. MFREE gives the highest memory location that
is currently free.

END
Last input command.

FIX x1 x2 y1 y2
All blocks are fixed in the range x1<x<x2 , y1<y<y2.

FRACTION f
f is taken as the fraction of critical time-step to be used.

FLUID rhow bulkw
Fluid properties are specified for an effective stress analysis.
These are the density, rhow, and the bulk modulus, bulkw.

FREE x1 x2 y1 y2
All blocks are set free in the range x1<x<x2 , y1<y<y2.
Note: By default all blocks are free initially.

GENERATE x1 x2 y1 y2 Manual Gridpoints (glist) Zones (zlist)
Automatic (amaxl)
All blocks encountered in the range \(x_1 < x < x_2 \), \(y_1 < y < y_2 \) are discretized as fully-deformable. For automatic generation the parameter \((a_{max})\) must be given to define the maximum edge length of the triangular zones. For manual generation a list of grid-points, \((glist)\), and zones, \((zlist)\) must be given. The format for \((glist)\) is:

\[
x_1 \ y_1 \ x_2 \ y_2 \ x_3 \ y_3 \ ...
\]

where each \(x,y \) pair is a coordinate of a grid-point. The format for \((zlist)\) is:

\[
11 \ m_1 \ n_1 \ 12 \ m_2 \ n_2 \ ...
\]

Each triple corresponds to the three grid-points that define the zone, where the numbering of the grid-points refers to the order in \((glist)\), starting with the last point (i.e., the last grid-point is number 1). The grid-points should be given in clockwise order around the zone. Both \((glist)\) and \((zlist)\) may extend over an arbitrary number of continuation lines, but doubles and triples should not be split over two lines. If a given coordinate lies within a certain tolerance of a block corner, the grid-point is placed on that corner. The tolerance is taken as 0.9 times the rounding length. Grid-point coordinates can be defined to coincide with block corners but should not be defined to lie along block edges, for manual generation.

Gravity \(gx \ \ g_\text{y} \)

Gravitational accelerations are set for the \(x \)- and \(y \)- directions.

Link \(x_1 \ y_1 \ x_2 \ y_2 \)

Links a flying block to the main data structure. \((x_1,y_1)\) are the coordinates of any point inside the flying block and \((x_2,y_2)\) are the coordinates of any point inside the block which will provide the link to the flying block. This block should be the one which is topologically closest to the flying block. \((x_1,y_1)\) and \((x_2,y_2)\) should be chosen close to the blocks' centroid locations to ensure correct linkage.

Load \(x_1 \ x_2 \ y_1 \ y_2 \ x_{\text{load}} \ y_{\text{load}} \)

All blocks with centroids lying within the range \(x_1 < x < x_2 \), \(y_1 < y < y_2 \)
are prescribed static loads applied at the block centroid.

Pfix
\[ia \ p \]

The pressure is controlled in the domain with address \(ia \). The real constant value for pressure, \(p \), is inserted in the pore pressure offset of the domain list.

PFRee
\[ia \]

The pressure is not controlled in the domain with address \(ia \).

PLot
Nofix Zones NC Vel

If no parameter follows the PLot command, all blocks and centroids are plotted. If "Nofix" is used, no fixed blocks are plotted. The keyword "Zones" is used to plot the zones in fully-deformable blocks. The word "NC" deletes corner rounding on all blocks and "Vel" plots block velocity vectors at block centroids.

Print
Blocks Contacts CORners Domains List DList Flows

Data are printed on blocks, contacts, corners, domains and linked lists for blocks and domains. Fluid flows in joints and contacts are printed with the FLOWS keyword.

PROperty
Material n keyword value

The first parameter must be the specification of the material number. Material properties are defined for material number \(n \).

Property keywords are:

- **Bulk** (or K) bulk modulus
- **G** shear modulus
- **Density** density
- **KN** contact normal stiffness
- **KS** contact shear stiffness
- **Cohesion** contact cohesion
- **Friction** contact friction coefficient
- **JKN** joint normal stiffness
- **JKS** joint shear stiffness
- **JCoh** joint cohesion
- **JFric** joint friction coefficient
- **Tf** tensile strength factor
- **JPerm** joint permeability constant
CPerm contact permeability constant
AZero aperture for zero normal stress
ARes residual aperture at high stress
(Units of joint normal and shear stiffness and joint cohesion are stress/displacement.)

Restart
The program is restarted using data from the restart file.

RSet v ia ioff
The real value v is inserted in the main array at address ia, with offset ioff.

ROund d
Each block corner is rounded with a circle that is tangential to the two corresponding edges at a distance d from the corner.

SAve
The current problem state is saved on the restart file.

SPlit x1 y1 x2 y2 Material n Constitutive m
All blocks in the path of a line extending from point (x1,y1) to (x2,y2) are split into two. The joint created by the split is assigned a joint material number n and a joint constitutive number m. If MAT or CONS are omitted, the joint or contact will take the material and constitutive numbers of one of the adjoining blocks (however no number will be printed when the PRINT CONTACTS command is given.)

START
The program does a cold start.

Stop
The run stops.

View ix1 ix2 iy1 iy2
The integer ranges ix1 to ix2 and iy1 to iy2 define the viewport range on the plotting device within which the plot will be made. Defaults are ix1=0, ix2=2000, iy1=0, iy2=1400.

Window x1 x2 y1 y2
The coordinate ranges x1 to x2 and y1 to y2 define in real problem units the region of the model to be plotted. Defaults are x1=0, x2=10, y1=0, y2=7.
Parameters and Data Group

Offsets for block data array

Notes:
The first integer in each block array (offset 0) is the block type number, as follows:

1 rigid block
2 simply-deformable block
3 fully-deformable block

KB Pointer to next block in block list.
KP Pointer to one corner in block's corner list.
KMAT Material number.
KCONS Constitutive number.
KBCOD Code number:
0 free block
1 fixed block

KX x coordinate of centroid.
KY y coordinate of centroid.
KXD x velocity.
KYD y velocity.
KTD Angular velocity (counterclockwise positive).
KAREA Block area.
KBM Block mass.
KBI Moment of inertia.
KBFX x centroid force-sum.
KBFY y centroid force-sum.
KBFT Centroid moment sum.
KXL x load applied to block centroid.
KYL y load applied to block centroid.
KBEX Extension pointer (to SDEF or FDEF data)

Offsets for corner data array

Notes:
The first integer (offset 0) contains the value MCOR to denote a corner.

KL Pointer to next corner or contact on block, in clockwise direction.
KR Pointer to next corner in counterclockwise direction.
KNB Pointer to host block.
KXP x coordinate of corner.
KYP y coordinate of corner.
KXCP x coordinate of local circle center.
KYCP y coordinate of local circle center.
KRAD Radius of local circle.
KXDP x velocity of corner.
KYDP y velocity of corner.
KGP Pointer to corresponding grid-point if block is fully deformable.

Offsets for contact data array

Note: The first integer (offset 0) contains the value MCON to denote a contact.

KC Pointer to next contact in contact list.
KB1 Address of first block involved in contact.
KB2 Address of second block involved in contact.
KL1 Pointer to next item in clockwise list of block corresponding to KB1.
KL2 Same as KL1, but for block KB2.
KD1 Address of domain to left of contact, going from block KB1 to KB2.
KD2 Address of domain to right of contact, going from block KB2 to KB1.
KCM Material type number.
KCC Constitutive number.
KXC x contact coordinate.
KYC y contact coordinate.
KXDC Relative x velocity (of block KB2 relative to block KB1).
KYDC Relative y velocity.
KCS Relative shear displacement.
KCN Relative normal displacement.
KCFS Shear force.
KCFN Normal force (compression positive).
KCCOD Code number:
 1 corner/corner contact
 2 corner/edge contact (KB1...corner, KB2...edge)
 3 edge/corner contact (KB1...edge, KB2...corner)

KCAP Mean aperture for joint
KCP Flow-rate in joint or contact
KCL Length associated with joint

Offsets for domain data array

Note: The first integer (offset 0) contains the value MDOM to denote a domain.

KD Pointer to next domain in domain list.
K DAR Domain area.
KPP Pore-pressure for domain.
KUMAX Fictitious domain displacement.
KDLOOP Pointer to one contact in counterclockwise list around domain.
KDCOD Code number:
 0 domain pressure not controlled
 1 domain pressure controlled
Simply-deformable extension array

KED11) Strain-rate tensor
KED12)
KED21)
KED22)

KS111)
KS112) Internal stress tensor
KS121)
KS122)

KSA11) Applied stress tensor (multiplied by block area)
KSA12)
KSA21)
KSA22)

Offsets for grid-point data

KG Pointer to next grid-point in grid-point list.
KCOR Pointer to corresponding block corner.
KXC x coordinate.
KYG y coordinate.
KXDC x velocity.
KYDC y velocity.
KGFX x force-sum.
KGFY y force-sum.
KGPM grid-point mass.

Offsets for zone data

KZ Pointer to next zone in zone list.
KZG Start of triple pointer to 3 surrounding grid-points.
KZS11) Stress tensor
KZS12)
KZS22)
KZM Zone mass
KZLLL Pointer to neighboring zone for mixed-discretization calculation.

Logical unit numbers

LUNIF Unit number for input file.
LUNOF Unit number for output file.
LUNC Unit number for general I/O (e.g. restart).
LUNP Unit number for plotted output.
Number of words in data arrays

NVCR Corner
NVBL Block
NVCN Contact
NVDO Domain
NVSD Simply-deformable extension
NVZO Zone
NVGP Grid-point

Array limits

MTOP Size of main array (IA).
NMAT Maximum number of materials.
NCONS Maximum constitutive numbers.
NTIP Number of block types (rigid, SDEF, etc.)

Head codes (contents of first integer in data groups)

MRI = 1 Rigid block
MSDEF = 2 Simply-deformable block
MFDEF = 3 Fully-deformable block
MCOR Corner
MCON Contact
MDOM Domain

Main Common Block Variables

LINE(80) Buffer for current input line in AI format.
LINEI(30) Buffer for next input file line.
LPNT(I) Pointer to start of parameter I in LINE()
after removal of blanks, etc.
RAFLAC .TRUE, if pore-pressure calculation requested.
PPFLAG .TRUE, if pore-pressure calculation requested.
ERFLAC .TRUE, if an error has occurred.
STFLAG .TRUE, if the first input line has been processed.
DCFLAC .TRUE, if the domain pressure is controlled.
COFLAG .TRUE, if the current line is a continuation.
NCFLAG .TRUE, if the next line is a continuation.
CRFLAG .TRUE, if block splitting calculation is requested.
JMPSAVE Index of last computed GOTO in MON.
NERR Error number.
JUNK Pointer to list of spare memory groups.
MFREE First unused memory address.
IBLOCK Current block number.
IDOM Current domain number.
ISTACK Stack pointer.
NCYC Currently requested number of cycles.
NCTOT Total number of cycles.
TDEL Time-step.
FRAC Requested fraction of critical time-step.
IRoute Routing number, used in main routine.
NLINE Output line count.
NPAGE Output page count.
JMPGEN Routing number for continuation line in GEN.
ALPHA Mass damping coefficient.
BETA Stiffness damping coefficient.
CON1 Damping factor (1.0-ALPHA*TDEL/2.0)
CON2 Damping factor (1.0/(1.0+ALPHA*TDEL/2.0))
BETD BETA/TDEL
ALPB Internal mass damping coefficient for simply-deformable blocks.
C1B Damping factor (1.0-ALPB*TDEL/2.0)
C2B Damping factor (1.0/(1.0+ALPB*TDEL/2.0))
DEGRAD PI/180
PI 3.14159
DAMIN Minimum domain area allowed.
ATOL Distance between particles at which a contact is first formed.
BTOL Distance between particles at which a contact is broken.
CTOL Maximum (negative) overlap allowed when forming contacts.
DTOL Rounding length.
DTOL2 DTOL/2.0 (maximum contact overlap)
ETOL Limit on maximum domain displacement to trigger contact update.
FTOL Total area of blocks for setting plotting scale factor.
CTOL
HTOL
IBPNT Pointer to list of blocks.
ICPNT Pointer to list of contacts.
IDPNT Pointer to list of domains.
IOPDNT Pointer to outer domain.
AK(I) Normal contact stiffness, material I.
AKS(I) Shear contact stiffness, material I.
AMU(I) Contact friction coefficient, material I.
COH(I) Contact cohesion, material I.
AKN(I) Joint normal stiffness, material I.
AKSJ(I) Joint shear stiffness, material I.
AMUJ(I) Joint friction coefficient, material I.
COHJ(I) Joint cohesion, material I.
PERMJ(I) Joint permeability constant, material I.
PERMC(I) Contact permeability constant, material I.
AZERO(I) Initial aperture, material I.
ARES(I) Residual aperture, material I.
DAMIN Minimum domain area for fluid calculations.
DENS(I) Density, material I.
BULK(I) Bulk modulus, material I.
SHEAR(I) Shear modulus, material I.
TFAC(I) Tensile strength factor, material I.
ALAM1(I) Lame constant, material I.
ALAM2(I) Lame constant, material I.
GRAVX x component of gravitational acceleration.
GRAVY y component of gravitational acceleration.
RHOW Fluid density.
BULKW Fluid bulk modulus.
IX1 Plotter viewport coordinate.
IX2 Plotter viewport coordinate.
IY1 Plotter viewport coordinate.
IY2 Plotter viewport coordinate.
RX1 Problem window coordinate.
RX2 Problem window coordinate.
RY1 Problem window coordinate.
RY2 Problem window coordinate.
IA() Main array.

Main Subroutine Calling Map

UDEC - SETUP
- MON
- HALT
- PRINT
- CREATE
- SPLIT
- APLT
- INI
- CYCLE
- PPSCAN
- BLKSCN
- PPCEN
- PPDIS
- CONSCN
- CRKSCN
- DOMSCN
- CEN
Sample Problems

The following four sample problems illustrate the improvements made to UDEC.

No. 1 Single point-load cracking
No. 2 Pressurized cavity
No. 3 Complex block deformation
No. 4 Projectile breaking beam

The printed output for each problem should be used to provide a check that the program is performing correctly.
Sample Problem No. 1

A single crack is induced by two opposing point contacts. Cracked block then falls and comes to rest on base.

Figure A1. UDEC Sample Problem No. 1
START
PROP MAT=1 DENS=2000 KI=1E8 KS=1E8 F=2 TF=0.5E4
GRAV 0 -10
DAMP 1 15 (MASS)
FRAC 0.1
BLOCK (0,0) (0,30) (40,30) (+0,0)
SPLIT -1,10 41,10
SPLIT -1,20 41,20
SPLIT -1,5 41,5
SPLIT 25,2.5 25,12.5
DELETE 25,40 5,10
SPLIT 30,15 30,40
DELETE 30,40 26,30
-IND 0 50 / 50
FIX 0,4 0.5
PLOT
CYC 600
PRINT BLOCKS CONTACTS
PLOT
STOP
END
START

PROGRAM UDEC: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2)

THIS IS A START RUN

PROP MAT=1 BB=2000 ID=153 ES=153 F=2 TF=2.5E4

GRID 0 10

STIFFNESS-DAMPING TERM SET TO ZERO

FRAC 0.1

BLOCK (0,0) (0.20) (0,20) (0,0)

SPLIT -1.1, 10 41,10

SPLIT -1.2, 20 41,20

SPLIT -1.5 41.5

SPLIT 25,2.5 25,12.5

DELETE 25,40 5,10

SPLIT 30,15 20,40

DELETE 30,40 20,30

WIND 0 50 0 50

FIX 0,40 0,5

PLOT

CYC 600

INITIAL TIMESTEP = 1.00E-02

CURRENT CYCLE COUNT = 600

PRINT BLOCK CONTACTS

BLOCK DATA

BLOCK MAT CONST X, Y, Z COORDS.

CENTROID Coordinates.

145 1 1 3.446E+01 1.100E+01 2.596E+05

1.436E+00 2.600E+05 4.055E+05

POL. MOM.

-1.218E-04 -2.787E-04 1.984E-05 -4.002E-02 2.597E+04 2.644E+03

X,Y, THETA VELOCITIES

X,Y, THETA FORCES

(RIGID)

1 1 1 1.500E+01 2.472E+01 6.000E+05 5.000E+07 2.992E-05 5.592E-05

5.903E-07 7.786E+02 6.901E+04 1.216E+04

(RIGID)

433 1 1 1.250E+01 7.427E+00 2.500E+05 1.354E+07 4.059E-05 -1.348E-04

6.799E-07 -4.573E+02 2.500E+04 2.752E+03

(RIGID)

214 1 1 2.000E+01 2.500E+00 4.000E+05 5.417E+07 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

(RIGID)

76 1 1 1.255E+01 1.500E+01 5.391E+05 3.777E+07 3.317E-04 -1.002E-05 3.587E-06 -7.600E+02

(RIGID)

CONTACT DATA

CONTACT MAT CONST X, Y COORDS.

FORCE NORMAL SHEAR NORMAL SHEAR

DISPLACEMENT

285 0 0 3.888E+01 4.995E+00 1.886E+00 -3.179E+05 -9.804E-03 3.179E-03

186 0 0 2.904E+01 1.946E+00 3.041E+06 -3.959E+05 -1.732E-01 4.296E+03

619 0 0 2.467E+01 9.759E+00 7.190E+05 -2.143E+05 -6.950E-05 1.128E+02

352 0 0 2.401E+01 9.500E+00 6.975E+05 -2.143E+05 -7.174E+02 1.817E+03

352 0 0 2.474E+01 1.017E+00 0.000E+00 0.000E+00 1.568E+01 0.000E+00

548 0 0 2.450E+01 4.956E+00 8.486E-06 1.537E-05 -6.468E-02 -1.357E-03

404 0 0 5.055E+01 4.997E+00 6.115E+06 1.568E+05 -6.135E-02 -1.566E-03

263 0 0 5.432E-01 1.988E+00 2.936E+06 3.740E+05 -2.913E-02 -3.740E-03

144 0 0 5.042E-01 9.916E+00 4.478E+06 1.621E+05 -4.424E+02 -1.621E-03

PLOT

STOP

A22
Sample Problem No. 2

Upper block is forced into a cavity by an applied load. Pressure is thereby induced in the cavity, driving the righthand block outwards. The pressure also induces flows in the surrounding joints, and hence pressure-drops in the enclosed volumes between blocks. The outer domain is held to a fixed pressure of zero.

a. After 3,000 Cycles

Figure A2. UDEC Sample Problem No. 2

A23
START
PROP MAT=1 DENS=2000 K=1.0E8 G=1.0E8 W=1.0E8 RS=1.0E8 F=0.5
PROP MAT=1 CP=0.4=E-6
FLUID 0.0 1.0E9
DAMP .5 16. MASS
FRAC 0.10
BLOCK 0.,0. 0.,30. 40.,30. 40.,0.
ROUND 0.2
SPLIT -1.,10. 41.,10. MAT=1 CONS=1
SPLIT 15.,9. 15.,31. MAT=1 CONS=1
SPLIT 25.,9. 25.,31. MAT=1 CONS=1
SPLIT 10.,20 41.,20 MAT=1, CONS=1
DELETE 15.,25. 10.,20.
FIX 0.,40. 0.,10.
FIX 0.,15. 0.,30.
FIX 25.,40. 20.,30.
FIX 69 0.0
LOAD 15.,25. 20.,30 0.0 -1.0E6
WIND 0 50 0 40
CYCLE 3000
PRINT FLOWS, DOMAINS, BLOCK;
PLOT
STOP
END

PROBLEM NO. 2 INPUT FILE
START

PROGRAM UDEC: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2)

THIS IS A START RUN

- **PROP MAT=1 DBMS=2000 E=1.0E8 G=1.0E8 RO=1.0E8 RS=1.0E8 P=0.5**
- **PROP MAT=1 CPREM=1E-9**
- **FLUID 0.0 1.0E9**
- **DAMP .3 16. MAXS**
- **STIFFNESS-DAMPING TERM SET TO ZERO**
- **FRAC 0.10**
- **BLOCK 0.,0., 30., 40., 30., 40., 0.**
- **BOUND 0.2**
- **DELETE 1.,10., 41.,10., MAT=1 COMB=1**
- **DELETE 15., 25., 10., 20.**
- **DELETE 20., 20., 30.**
- **DELETE 69. 0.0**
- **LOAD 15., 25., 20., 30 0.0 -1.0E6**
- **MIND 0.5 0 40**
- **CYCLE 3000**
- **INITIAL TIMESTEP = 8.944E-03**
- **CURRENT CYCLE COUNT = 3000**
- **PRINT FLOWS, DOMAINS, BLOCKS**

FLOW ACROSS CONTACTS OR JOINTS ...

<table>
<thead>
<tr>
<th>CONTACT</th>
<th>X</th>
<th>Y</th>
<th>FLOW</th>
<th>LENGTH</th>
<th>APERTURE</th>
<th>DOM1</th>
<th>DOM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>683</td>
<td>1.50E+01</td>
<td>1.915E+01</td>
<td>2.94E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>522</td>
<td>905</td>
</tr>
<tr>
<td>706</td>
<td>2.50E+01</td>
<td>2.02E+01</td>
<td>2.94E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>522</td>
<td>728</td>
</tr>
<tr>
<td>648</td>
<td>3.90E+01</td>
<td>2.00E+01</td>
<td>-2.92E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>69</td>
<td>670</td>
</tr>
<tr>
<td>626</td>
<td>2.42E+01</td>
<td>2.00E+01</td>
<td>2.94E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>522</td>
<td>670</td>
</tr>
<tr>
<td>500</td>
<td>2.62E+01</td>
<td>1.00E+00</td>
<td>-2.94E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>184</td>
<td>522</td>
</tr>
<tr>
<td>449</td>
<td>2.50E+01</td>
<td>2.87E+01</td>
<td>-2.92E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>69</td>
<td>728</td>
</tr>
<tr>
<td>350</td>
<td>1.48E+01</td>
<td>1.00E+00</td>
<td>2.94E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>522</td>
<td>372</td>
</tr>
<tr>
<td>285</td>
<td>1.50E+01</td>
<td>2.87E+01</td>
<td>-2.92E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>69</td>
<td>905</td>
</tr>
<tr>
<td>166</td>
<td>3.90E+01</td>
<td>1.00E+00</td>
<td>-2.92E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>69</td>
<td>166</td>
</tr>
<tr>
<td>144</td>
<td>2.00E+01</td>
<td>1.00E+00</td>
<td>-2.92E-05</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>69</td>
<td>372</td>
</tr>
</tbody>
</table>

DOMAIN DATA

<table>
<thead>
<tr>
<th>DOMAIN</th>
<th>PORE PRESSURE</th>
<th>VOLUME</th>
<th>MAXIMUM DISPLACEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>905</td>
<td>2.922E+04</td>
<td>4.800E-01</td>
<td>8.512E-04</td>
</tr>
<tr>
<td>728</td>
<td>2.922E+04</td>
<td>4.800E-01</td>
<td>5.931E-03</td>
</tr>
<tr>
<td>670</td>
<td>2.922E+04</td>
<td>4.800E-01</td>
<td>3.450E-04</td>
</tr>
<tr>
<td>522</td>
<td>5.864E+04</td>
<td>9.999E-01</td>
<td>1.196E-02</td>
</tr>
<tr>
<td>372</td>
<td>2.922E+04</td>
<td>4.800E-01</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>188</td>
<td>2.922E+04</td>
<td>4.800E-01</td>
<td>3.450E-04</td>
</tr>
<tr>
<td>69</td>
<td>0.000E+00</td>
<td>4.800E-01</td>
<td>1.160E-02</td>
</tr>
</tbody>
</table>

(OUTER BOUNDARY)

A25
<table>
<thead>
<tr>
<th>BLOCK MAT CONST</th>
<th>CENTROID COORDS.</th>
<th>MASS</th>
<th>POL. MOM.</th>
<th>X,Y,THETA VELOCITIES</th>
<th>X,Y,THETA FORCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>558</td>
<td>3.250E+01</td>
<td>2.500E+01</td>
<td>3.000E+05</td>
<td>0.125E+06</td>
<td>0.000E+00 0.000E+00 0.000E+00 6.50E+03 -3.25E+03 1.55E+03</td>
</tr>
<tr>
<td>(RIGID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>3.357E+01</td>
<td>1.500E+01</td>
<td>3.000E+05</td>
<td>0.125E+06</td>
<td>3.857E-02 -2.511E-09 -7.425E-11 -1.171E-01 -2.284E-02 -5.432E-02</td>
</tr>
<tr>
<td>(RIGID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>7.500E+00</td>
<td>2.000E+01</td>
<td>6.000E+05</td>
<td>3.125E+07</td>
<td>0.000E+00 0.000E+00 0.000E+00 -3.716E+04 -1.056E+04 -1.708E+05</td>
</tr>
<tr>
<td>(RIGID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>2.000E+01</td>
<td>2.395E+01</td>
<td>2.000E+05</td>
<td>3.203E+06</td>
<td>3.218E-05 -3.945E-02 7.359E-04 3.045E+04 2.163E+04 1.312E+05</td>
</tr>
<tr>
<td>(RIGID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.000E+01</td>
<td>5.000E+00</td>
<td>8.000E+05</td>
<td>1.133E+08</td>
<td>0.000E+00 0.000E+00 0.000E+00 5.284E-02 -1.957E-01 -1.820E-00</td>
</tr>
<tr>
<td>(RIGID)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Problem No. 3

A small heavy block sits on a large block that has low moduli and is fully deformable. After 1000 time-steps the plot shows the complex deformation pattern that develops, and the printout gives the internal stresses.

a. After 1,000 cycles

Figure A3. UDEC Sample Problem No. 3
START
PROP MAT=1 D=2000 RN=158 KS=1E8 FRIC=.1 C=1E6 BULK=2E6
PROP MAT=2 D=10000 RN=158 KS=1E8 FRIC=.1 C=1E6 BULK=1E6
ROUND = 0.2
BLOCK 2,2,2,6,6,6,2
SPLIT 0,7 7,7
SPLIT 4,5 4,5 9
DELETE 2 5 7 8
SPLIT 5,5 6 5,5 9
DELETE 5,5 6 7 8
SPLIT 0,3 8,3
CHANGE 4,5 5,5 7 & MAT=2
CHANGE 2 & 3 & FDEF
GEN 2 = 3,7 & TG=S1
FIL 2 = 2,3
GROW 0 -.10
DMAP .11 MASS
CYCLE 1000
wind 0 8 0 10
FLUT
PRINT BLOCKS
STOP
END

PROBLEM NO. 3 INPUT FILE
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Note: The table above represents some example data points. The actual data may vary depending on the specific context of the document.
<table>
<thead>
<tr>
<th>ZONE</th>
<th>GRID-POINTS</th>
<th>SIGMA-11</th>
<th>SIGMA-12</th>
<th>SIGMA-22</th>
<th>MASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1237</td>
<td>411 642 897</td>
<td>1.73E+03</td>
<td>1.46E+02</td>
<td>7.71E+03</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1246</td>
<td>483 495 897</td>
<td>1.22E+04</td>
<td>3.23E+03</td>
<td>-3.30E+02</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1253</td>
<td>411 897 495</td>
<td>6.21E+03</td>
<td>2.23E+03</td>
<td>1.29E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>606</td>
<td>456 807 615</td>
<td>4.30E+03</td>
<td>1.47E+03</td>
<td>-1.83E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1264</td>
<td>483 615 807</td>
<td>1.92E+04</td>
<td>2.05E+03</td>
<td>-1.56E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1273</td>
<td>456 495 807</td>
<td>-9.74E+03</td>
<td>2.28E+03</td>
<td>-2.06E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1282</td>
<td>483 607 495</td>
<td>5.39E+03</td>
<td>5.86E+03</td>
<td>-1.77E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>780</td>
<td>447 624 615</td>
<td>1.54E+04</td>
<td>9.18E+03</td>
<td>-3.92E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1291</td>
<td>546 615 624</td>
<td>2.06E+04</td>
<td>1.05E+03</td>
<td>-3.72E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1300</td>
<td>447 669 624</td>
<td>4.39E+03</td>
<td>1.77E+04</td>
<td>-6.94E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1309</td>
<td>546 624 669</td>
<td>9.34E+03</td>
<td>1.90E+04</td>
<td>-6.76E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>789</td>
<td>546 945 615</td>
<td>1.26E+04</td>
<td>6.27E+03</td>
<td>-4.00E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1318</td>
<td>456 615 945</td>
<td>-1.20E+03</td>
<td>8.39E+03</td>
<td>-3.39E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1327</td>
<td>546 696 945</td>
<td>4.72E+03</td>
<td>7.46E+03</td>
<td>-2.85E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1336</td>
<td>456 945 696</td>
<td>-9.32E+03</td>
<td>9.58E+03</td>
<td>-2.26E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>798</td>
<td>402 924 633</td>
<td>5.76E+03</td>
<td>6.84E+03</td>
<td>-4.48E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1345</td>
<td>525 633 924</td>
<td>1.29E+04</td>
<td>2.78E+03</td>
<td>-6.58E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1354</td>
<td>402 438 924</td>
<td>5.75E+03</td>
<td>5.64E+03</td>
<td>-4.07E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1363</td>
<td>525 924 438</td>
<td>1.30E+04</td>
<td>1.52E+03</td>
<td>-6.15E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>837</td>
<td>665 858 438</td>
<td>8.19E+03</td>
<td>1.80E+03</td>
<td>-7.79E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1372</td>
<td>525 438 858</td>
<td>-1.03E+04</td>
<td>-4.21E+03</td>
<td>-6.72E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1381</td>
<td>465 651 858</td>
<td>-1.24E+04</td>
<td>-1.62E+03</td>
<td>-8.09E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1390</td>
<td>525 858 651</td>
<td>1.57E+04</td>
<td>-4.40E+03</td>
<td>-6.97E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>867</td>
<td>465 888 651</td>
<td>1.35E+04</td>
<td>3.66E+03</td>
<td>-7.96E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1399</td>
<td>585 651 888</td>
<td>7.36E+03</td>
<td>2.10E+03</td>
<td>-6.08E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1400</td>
<td>465 888 888</td>
<td>8.46E+03</td>
<td>1.23E+04</td>
<td>-1.17E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1417</td>
<td>585 888 687</td>
<td>1.60E+03</td>
<td>1.07E+04</td>
<td>-1.19E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>906</td>
<td>585 1031 651</td>
<td>-2.16E+04</td>
<td>1.07E+04</td>
<td>-9.28E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1426</td>
<td>447 651 1031</td>
<td>1.12E+03</td>
<td>3.58E+03</td>
<td>-6.66E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1435</td>
<td>585 669 1031</td>
<td>-3.65E+03</td>
<td>1.51E+04</td>
<td>-8.91E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1444</td>
<td>447 1031 669</td>
<td>1.90E+04</td>
<td>4.75E+03</td>
<td>-6.28E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>915</td>
<td>546 963 696</td>
<td>5.52E+03</td>
<td>5.75E+03</td>
<td>-2.63E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1453</td>
<td>420 696 963</td>
<td>-1.07E+04</td>
<td>2.40E+03</td>
<td>-2.69E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1462</td>
<td>546 714 963</td>
<td>1.56E+04</td>
<td>8.63E+03</td>
<td>-5.30E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1471</td>
<td>420 963 714</td>
<td>-1.45E+04</td>
<td>5.49E+03</td>
<td>-5.32E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>660</td>
<td>474 981 669</td>
<td>2.06E+03</td>
<td>1.15E+04</td>
<td>-7.53E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1480</td>
<td>546 669 981</td>
<td>9.05E+03</td>
<td>8.27E+03</td>
<td>-6.74E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1489</td>
<td>474 714 981</td>
<td>-1.34E+03</td>
<td>1.31E+04</td>
<td>-6.57E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1498</td>
<td>546 981 714</td>
<td>6.48E+03</td>
<td>9.86E+03</td>
<td>-5.70E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>954</td>
<td>585 678 669</td>
<td>-3.67E+03</td>
<td>1.72E+03</td>
<td>-8.87E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1507</td>
<td>474 669 678</td>
<td>5.96E+03</td>
<td>6.96E+03</td>
<td>-7.35E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1516</td>
<td>585 516 678</td>
<td>-1.76E+03</td>
<td>6.91E+03</td>
<td>-1.12E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1525</td>
<td>474 678 516</td>
<td>7.57E+03</td>
<td>1.13E+04</td>
<td>-9.71E+04</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>972</td>
<td>393 1070 687</td>
<td>1.10E+04</td>
<td>1.11E+04</td>
<td>-1.29E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1534</td>
<td>585 687 1070</td>
<td>7.50E+03</td>
<td>6.96E+03</td>
<td>-1.04E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1543</td>
<td>393 516 1070</td>
<td>-4.68E+03</td>
<td>5.53E+03</td>
<td>-1.39E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>1552</td>
<td>585 1070 516</td>
<td>-7.65E+03</td>
<td>1.00E+03</td>
<td>-1.14E+05</td>
<td>5.00E+02</td>
</tr>
<tr>
<td>GRID-POINT</td>
<td>CORNER-LINK</td>
<td>X</td>
<td>Y</td>
<td>X,Y VELOCITIES</td>
<td>X,Y FORCES</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

A31
Sample Problem No. 4

A projectile hits a beam and breaks it into two (fracture based on Griffith theory).

a. Initial State

b. After 1,000 Cycles

c. After 1,200 Cycles

d. After 2,000 Cycles

Figure A4. UDEC Sample Problem No. 4
START

PROP MAT=1 DENS=2000 K=1.0E8 G=1.0E8 KH=1.0E8 KS=1.0E8 P=0.1
PROP MAT=1 TF=2040.
GRAVITY 0. -10.
ROUND 0.1
DAMP .5 16. MASS
DAMP .5 16. INTEGRAL
FRAC 0.10
LOCK MAT=1 CONS=4 1,0 1,3,35 5,3,35 3,0
SPLIT 0.1 0.1
SPLIT 0.19 0.19
SPLIT 1.5,0.5 1.5,1.5
SPLIT 4.5,-0.5 4.5,1.5
DELETE 1.5,4.5 6,1
SPLIT 2.5,1.7 3.25,4
SPLIT 3.25,1.8 4.4,1
SPLIT 2.65,1.67 3.75,2.48
SPLIT 3.15,1.6 2.55,2.95
SPLIT 2.6,3.5 4,3,05
DELETE 1.2,5 1,9,3,3
DELETE 3.75,5 1,9,3,3
DELETE 3.15,3,4 1,9,2,4
DELETE 3.3,75 3,15,3.35
CHANGE 1.5,1.2 3DEF
LINK 3,3 4.1,5
FIX 1.5 0,1
LOAD 1.5 2,3,35 -0.2E4 -0.95E4
VIEW 0 700 700 1400
WIND 0 6 0 7
PLOT
CYCLE 1000
VIEW 700 1400 700 1400
PLOT
CYCLE 200
VIEW 0 700 0 700
PLOT
CYCLE 800
VIEW 700 1400 0 700
PLOT
P B C COL DL L
STOP
END

PROBLEM NO. 4 INPUT FILE
START

PROGRAM UDEC: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2)

THIS IS A START RUN

>PROP MAT=1 DENS=2000 K=1.0E8 C=1.0E8 KD=1.0E8 KS=1.0E8 F=0.1

>PROP MAT=1 TF=3240.

>GRAVITY 0. -10.0

>ROUND 0.1

>DAMP 5 16. MASS

STIFFNESS-DAMPING TERM SET TO ZERO

>DAMP 5 16. INTERNAL

NOTE - ONLY MASS-DAMPING USED

>FRAC 0.10

>BLOCK MAT=1 CONS=4 1.,0.1.,3.35 5.,3.35 5.,0.

>SPLIT 0,1 6,1

>SPLIT 0,1,9 6,1,9

>SPLIT 1.5,-0.5 1.5,1.5

>SPLIT 4.5,-0.5 4.5,1.5

>DELETE 1.5,4.5 0,1

>SPLIT 2.5,1.7 3.25,4

>SPLIT 3,25,4.8 4,4.1

>SPLIT 2.65,1.87 3.75,2.48

>SPLIT 3.15,1.8 2.55,2.85

>SPLIT 2.6,3.5 4,3.05

>DELETE 1.2,5 1.9,3.3

>DELETE 3.75,5 1.9,3.3

>DELETE 2.6,3.4 1.9,2.4

>DELETE 3.3,75 3.15,3.35

>CHANGE 1.5 1.2 SDEF

>LINK 3,9 4,1.5

>FIX 1.5 0.1

># SET FORCE OF PROJECTILE

>LOAD 1.5 2.3.35 -0.3E4 -0.95E4

>VIEW 0 700 700 1400

>WIND 0 6 0 7

>PLOT

>CYCLE 1000

INITIAL TIMESTEP = 6.325E-04

CURRENT CYCLE COUNT = 1000

>VIEW 700 1400 700 1400

>PLOT

>CYCLE 200

INITIAL TIMESTEP = 6.325E-04

CURRENT CYCLE COUNT = 1200

>VIEW 0 700 0 700

>PLOT

>CYCLE 600

INITIAL TIMESTEP = 6.325E-04

CURRENT CYCLE COUNT = 2000

>VIEW 700 1400 0 700

>PLOT

>P B C COR DL L

A34
DOMAIN LINKED LISTS

DOMAIN 1189

<table>
<thead>
<tr>
<th>Contact</th>
<th>Block1</th>
<th>Block2</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1167</td>
<td>1373</td>
<td>195</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>544</td>
<td>1373</td>
<td>1373</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>259</td>
<td>1373</td>
<td>544</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>108</td>
<td>1373</td>
<td>239</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>166</td>
<td>1373</td>
<td>500</td>
<td>EDGE/CORNER</td>
</tr>
<tr>
<td>120</td>
<td>500</td>
<td>536</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>57</td>
<td>500</td>
<td>120</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>532</td>
<td>500</td>
<td>37</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>448</td>
<td>500</td>
<td>1373</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>1373</td>
<td>1373</td>
<td>108</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>619</td>
<td>76</td>
<td>1373</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>709</td>
<td>76</td>
<td>215</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>1034</td>
<td>76</td>
<td>709</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>433</td>
<td>1</td>
<td>36</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>334</td>
<td>1</td>
<td>96</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>358</td>
<td>1</td>
<td>334</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>358</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>144</td>
<td>1</td>
<td>76</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>132</td>
<td>76</td>
<td>1034</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>215</td>
<td>76</td>
<td>132</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>1429</td>
<td>195</td>
<td>76</td>
<td>CORNER/CORNER</td>
</tr>
<tr>
<td>1216</td>
<td>195</td>
<td>828</td>
<td>CORNER/CORNER</td>
</tr>
<tr>
<td>1240</td>
<td>195</td>
<td>1218</td>
<td>CORNER/CORNER</td>
</tr>
<tr>
<td>370</td>
<td>195</td>
<td>1240</td>
<td>CORNER/CORNER</td>
</tr>
<tr>
<td>1405</td>
<td>195</td>
<td>370</td>
<td>CORNER/CORNER</td>
</tr>
<tr>
<td>828</td>
<td>195</td>
<td>1405</td>
<td>CORNER/CORNER</td>
</tr>
</tbody>
</table>

DOMAIN 937 (OUTER BOUNDARY)

<table>
<thead>
<tr>
<th>Contact</th>
<th>Block1</th>
<th>Block2</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1167</td>
<td>1373</td>
<td>195</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>1429</td>
<td>195</td>
<td>76</td>
<td>CORNER/CORNER</td>
</tr>
<tr>
<td>619</td>
<td>76</td>
<td>1373</td>
<td>CORNER/EDGE</td>
</tr>
</tbody>
</table>

DOMAIN 670

<table>
<thead>
<tr>
<th>Contact</th>
<th>Block1</th>
<th>Block2</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>448</td>
<td>500</td>
<td>1373</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>532</td>
<td>500</td>
<td>532</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>166</td>
<td>1373</td>
<td>500</td>
<td>EDGE/CORNER</td>
</tr>
</tbody>
</table>

DOMAIN 188

<table>
<thead>
<tr>
<th>Contact</th>
<th>Block1</th>
<th>Block2</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>433</td>
<td>1</td>
<td>76</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>144</td>
<td>1</td>
<td>76</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>96</td>
<td>1</td>
<td>21</td>
<td>CORNER/EDGE</td>
</tr>
<tr>
<td>BLOCK</td>
<td>1373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>1393, BLOCK 1373, R-LINK 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>619, BLOCK 1373, R-LINK 123/3 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>1167, BLOCK 1373, BLOCK 6 1373 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>544, BLOCK 1373, R-LINK 1373</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>299, BLOCK 1373, R-LINK 544</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>108, BLOCK 1373, R-LINK 299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>166, BLOCK 1373, BLOCK 2 BLOCK 1373 EDGE/CORNER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>448, BLOCK 1373, BLOCK 2 1373 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>522, BLOCK 500, R-LINK 57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>648, BLOCK 1373, BLOCK 2 1373 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>556, BLOCK 500, R-LINK 522</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>166, BLOCK 1373, BLOCK 2 1373 EDGE/CORNER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>120, BLOCK 500, R-LINK 556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>57, BLOCK 500, R-LINK 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>370, BLOCK 195, R-LINK 1240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>1405, BLOCK 195, R-LINK 370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>628, BLOCK 195, R-LINK 1405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>1167, BLOCK 1373, BLOCK 2 195 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>1429, BLOCK 195, BLOCK 2 195 CORNER/CORNER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>1216, BLOCK 195, R-LINK 828</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>1240, BLOCK 195, R-LINK 1216</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>709, BLOCK 76, R-LINK 215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>1034, BLOCK 76, R-LINK 709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>433, BLOCK 1, BLOCK 2 1373 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>144, BLOCK 1, BLOCK 2 76 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>122, BLOCK 76, R-LINK 1034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>215, BLOCK 76, R-LINK 122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>1429, BLOCK 195, BLOCK 2 76 CORNER/CORNER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>619, BLOCK 195, BLOCK 2 1373 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>334, BLOCK 1, R-LINK 96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>358, BLOCK 1, R-LINK 334</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>21, BLOCK 1, R-LINK 358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>144, BLOCK 1, BLOCK 2 76 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORNER</td>
<td>96, BLOCK 1, R-LINK 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTACT</td>
<td>433, BLOCK 1, BLOCK 2 76 CORNER/EDGE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| STOP | }
APPENDIX B: THREE-DIMENSIONAL DISTINCT ELEMENT TEST-BED CODE (VERSION 1.0)
USER'S MANUAL

Introduction

1. This manual describes the test-bed code, D3, written to evaluate features developed in the design of a new three-dimensional distinct element program. D3 is in skeleton form with several facilities provided for in the code but not completed at present. The input commands and program operation follow closely those given for UDEC.

Input Commands

Notes: Upper-case letters in a command or parameter must be typed; the remaining letters are optional. Lower-case parameters stand for numeric values. Integers must be given for parameters starting with i, j, k, l, m, n. Real numbers may be given as integers, but not vice versa. Input is free-format: parameters may be separated by any number of the following characters, in addition to spaces:

* = comment line
+ = continuation line

An END command is required at the end of the input file (after the STOP command). The first command must be START or RESTART.

Block

Create a rigid block of material number n and constitutive number m. Defaults are n=1, m=1, if m, n are omitted. The block's surface is divided into triangular faces. Vertex coordinates. (x1, y1, z1), (x2, y2, z2), etc., are entered three at a time for
each triangular face. Continuation lines may be used but a set
of three vertices defining a face must not be separated.
Vertices must be ordered counterclockwise looking along the
outward normal.

CHANGE x1 x2 y1 y2 z1 z2 SDEF Material m Constitutive n
All blocks with centroids lying within the range x1<x<x2,
y1<y<y2 and z1<z<z2 are changed to simply-deformable (Sdef) or
may have material and constitutive numbers changed.

CYCLE n
Do n time-steps (cycle 0 is permitted as a check on data).

DAMPING fcrit freq Mass
 Stiffness
 Internal
Viscous damping is applied in the form of Rayleigh damping.
fcrit is the fraction of critical damping and freq is the center
frequency. If a qualifier is not given as the third parameter,
full damping is used. The word "Mass" eliminates the stiffness-
proportional dashpots, and "Stiffness" eliminates the mass-
proportional dashpots. The word "Internal" causes the specific
damping to be applied to the 3 internal degrees of freedom of
simply-deformable blocks.

DUMP n m
Dump memory to printer from the main array from address n to
address m. Internal pointers MFREE, JUNK, IBPNT and ICPNT are
also printed. MFREE gives the highest memory location that is
currently free.

END
Last input command.

FRACtion f
f is taken as the fraction of critical time-step to be used.

GRAVITY gx gy gz
Gravitational accelerations are set for the x-, y- and z-
directions.

PRINT Blocks Faces Velocities Vertices Contacts
Data are printed on blocks, faces, block velocities, vertices and
contacts, respectively.
PROperty Material n keyword value

The first parameter must be the specification of the material number. Material properties are defined for material number n. Property keywords are:

Bulk(orK) bulk modulus
G shear modulus
Density density
KN contact normal stiffness
KS contact shear stiffness
Cohesion contact cohesion
Friction contact friction coefficient
JKN joint normal stiffness
JKS joint shear stiffness
Jcoh joint cohesion
JFric joint friction coefficient

Restart

The program is restarted using data from the restart file.

RSet v ia ioff

The real value v is inserted in the main array at address ia, with offset ioff.

SAve

The current problem state is saved on the restart file.

STArt

The program does a cold start.

Stop

The run stops.
Parameters and Data Group

Offsets for block data array

Note: The first integer (offset 0) is the block type number, as follows:
1 rigid block
2 simply-deformable block

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB</td>
<td>Pointer to next block in block list.</td>
</tr>
<tr>
<td>KF</td>
<td>Pointer to one face in block's face list.</td>
</tr>
<tr>
<td>KMAT</td>
<td>Material number.</td>
</tr>
<tr>
<td>KCONS</td>
<td>Constitutive number.</td>
</tr>
<tr>
<td>KCODE</td>
<td>Code number:</td>
</tr>
<tr>
<td></td>
<td>0 free block</td>
</tr>
<tr>
<td></td>
<td>1 fixed block</td>
</tr>
<tr>
<td>KCDN</td>
<td>Start of triple pointer to x,y,z coordinates of block centroid.</td>
</tr>
<tr>
<td>KCO</td>
<td>Start of triple pointer to x,y,z components of velocity.</td>
</tr>
<tr>
<td>KTD</td>
<td>Start of triple pointer to x,y,z components of angular velocity (counterclockwise positive).</td>
</tr>
<tr>
<td>KVOL</td>
<td>Block volume.</td>
</tr>
<tr>
<td>KRM</td>
<td>Block mass.</td>
</tr>
<tr>
<td>KBM</td>
<td>Start of triple pointer to moment of inertia about x,y and z axes.</td>
</tr>
<tr>
<td>KBFX</td>
<td>Start of triple pointer to x,y,z components of block centroid force sum.</td>
</tr>
<tr>
<td>KBFT</td>
<td>Start of triple pointer to x,y,z components of block centroid moment sum.</td>
</tr>
<tr>
<td>KDL</td>
<td>Start of triple pointer to x,y,z components of load applied to block centroid.</td>
</tr>
<tr>
<td>KBEX</td>
<td>Extension pointer (to SBF data).</td>
</tr>
<tr>
<td>KV</td>
<td>Pointer to one vertex in block's vertex list.</td>
</tr>
<tr>
<td>KC</td>
<td>Pointer to block's contact list.</td>
</tr>
</tbody>
</table>

Offsets for face data array

Note: The first integer (offset 0) contains the value NBFAC to denote a face.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDF</td>
<td>Pointer to next face on this block.</td>
</tr>
<tr>
<td>KDFB</td>
<td>Pointer to host block.</td>
</tr>
<tr>
<td>KFP1</td>
<td>Pointer to first connecting face.</td>
</tr>
<tr>
<td>KFP2</td>
<td>Pointer to second connecting face.</td>
</tr>
</tbody>
</table>
KP3 Pointer to third connecting face.
KP1 Pointer to first vertex of this face.
KPV2 Pointer to second vertex of this face.
KPV3 Pointer to third vertex of this face.

Offsets for vertex data array

Note: The first integer (offset 0) contains
---- the value KVER to denote a vertex.

KCN Pointer to next vertex on this block
KVX Start of triple pointer to x,y,z coordinates
 of vertex.

Offsets for contact data arrays

Note: The first integer (offset 0) contains
---- the value KCON to denote a contact

KCG Pointer to next contact in global list
KCG1 Block 1 of block pair
KCG2 Block 2 of block pair
KCN1 Pointer to next contact in block-1's list
KCN2 Pointer to next contact in block-2's list
KCCOD Code number
 (above offsets shared by degenerate contact)
KCN1 Nearest vertex on block-1
KCVX1 2nd. vertex, block-1, for edge-edge contact
KCV2 Nearest vertex on block-2
KCVX2 2nd. vertex, block-2, for edge-edge contact
KCN Coordinate vector (triple)
KCNORM unit normal vector (triple)
KCFN normal force (scalar)
KCFPS shear force vector (triple)

Logical unit numbers

LUMIP Unit number for input file.
LUMOF Unit number for output file.
LUMG Unit number for general I/O (e.g. restart).
LUMP Unit number for plotted output.
Number of words in data arrays

HMAL Block
HMFR Face
HMVR Vertex
HMDN Contact
HMDC Degenerate contact

Array limits

MTOP Size of main array (IA).
MPREM Maximum number of materials.
MCNOS Maximum constitutive numbers.
MTPN Number of block types (rigid, SDEF, etc.)

Head codes (contents of first integer in data groups)

HRRC = 1 Rigid block
HSEF = 2 Simply-deformable block
HFAC Face
HVAR Vertex
HMDN Contact

Contact codes

HCEE edge-to-edge
HCVP vertex-to-face
HCDC degenerate

Main Common Block Variables

LINE(80) Buffer for current input line in AI format.
LINE(80) Buffer for next input line.
LPMT(I) Pointer to start of parameter I in LINE()
after removal of blanks, etc.
VMT(3) vector of zero length
ERFLAG .TRUE. if an error has occurred.
SFPLAG .TRUE. if the first input line has been processed.
CFLAG .TRUE. if the current line is a continuation.
NCFLAG .TRUE. if the next line is a continuation.
JMPSAV Index of last computed GOTO in MDM.
NERR Error number.
JNMK Pointer to list of spare memory groups.
MVFREE First unused memory address.
IBLOCK Current block number.
ISTACK Stack pointer.
MCYC
 Currently requested number of cycles.
MCTOT
 Total number of cycles.
TDEL
 Time-step.
FRAC
 Requested fraction of critical time-step.
ROUTE
 Routing number, used in main routine.
MLINE
 Output line count.
NPADE
 Output page count.
JPGCHN
 Routing number for continuation line in CEM.
ALPHA
 Mass damping coefficient.
BETA
 Stiffness damping coefficient.
COM1
 Damping factor (1.0-ALPHA*TDEL/2.0)
COM2
 Damping factor (1.0/(1.0+ALPHA*TDEL/2.0))
DOT
 BETA/TDEL
ALPB
 Internal mass damping coefficient for simply-deformable blocks.
CIB
 Damping factor (1.0-ALPB*TDEL/2.0)
C2B
 Damping factor (1.0/(1.0+ALPB*TDEL/2.0))
DECRAO
 PI/180
PI
 3.14159
ATOL
 Distance between particles at which a real contact is formed.
CTOL
 Distance between particles at which a degenerate contact is formed.
ETOL

FTOL

ISPMT
 Pointer to list of blocks.
ICPMT
 Pointer to list of contacts.
ADN(I)
 Normal contact stiffness, material I.
ANS(I)
 Shear contact stiffness, material I.
ANU(I)
 Contact friction coefficient, material I.
COH(I)
 Contact cohesion, material I.
ANK(I)
 Joint normal stiffness, material I.
ANKJ(I)
 Joint shear stiffness, material I.
ANKU(I)
 Joint friction coefficient, material I.
COHJ(I)
 Joint cohesion, material I.
DENM(I)
 Density, material I.
BULK(I)
 Bulk modulus, material I.
SHEAR(I)
 Shear modulus, material I.
ALAM(I)
 Lame constant, material I.
ALAM2(I)
 Lame constant, material I.
GMA(I)
 Vector of gravitational acceleration.
A()
 Main array.
Sample Problem

Two tetrahedral blocks are created. The lower block is fixed, and the upper block allowed to come into contact with the upper vertex of the fixed block. Gravity acts in the -z direction. Since the centroid of the upper block is not directly above the fixed vertex, the block translates and rotates, and develops shear forces at the contact as well as a normal force.

a. Initial State

Figure B1. D3 Sample Problem
START
PROP MAT=1 B=2000 EM=180 NS=.558 P=1.0
BLOCK MAT={ (0,0.0) (1,0,0) (1,1,0) + (1,0,0) (1,0,1) (1,1,0) + (0,0,0) (1,1,0) (1,0,1) + (1,0,0) (0,0,0) (1,0,1) BLOCK MAT={ (0,-0.5,1) (1.5,-0.5,1) (1.5,1,1) + (1.5,-0.5,1) (1.5,-0.5,3) (1.5,1,1) + (0,-0.5,1) (1.5,1,1) (1.5,-0.5,3) + (0,-0.5,1) (1.5,-0.5,3) (1.5,-0.5,1) FIX 0 1 0 1 0 1 GRAV 0 0 -10 CYC 1 PRINT CON VEL CYC 5 PRINT CON VEL CYC 10 PRINT CON VEL STOP END

INPUT FILE
START

```
#PROP MAT=1 D=2.000 ED=123 ES+.5EB F=1.0
#BLOCK MAT=1 (0,0.,0) (1.,0.,0) (0.,1.,0)
  + (1.,0.,0) (1.,0.,0) (1.,0.,0)
  + (0.,0.,0) (1.,0.,0) (1.,0.,0)
  + (1.,0.,0) (0.,0.,0) (1.,0.,0)
#BLOCK MAT=1 (0,-6.5,) (1.,7.5,5) (15.,5,1)
  + (1.,7.5,5) (15.,5,5,5) (5.,5,5,5)
  + (15.,5,5,5) (1.,7.5,5,5) (1.,7.5,5,5)
  + (0.,-6.5,) (1.,-6.5,) (1.,-6.5,)
#FIX 0 1 0 1
#GAM 0 0 -10

CYC 1
TIME STEP = 2.582E-04
CURRENT CYCLE COUNT = 1

<table>
<thead>
<tr>
<th>CONTACT</th>
<th>TYPE</th>
<th>BLOCK-1</th>
<th>BLOCK-2</th>
<th>X(1)</th>
<th>X(2)</th>
<th>X(3)</th>
<th>PS(1)</th>
<th>PS(2)</th>
<th>PS(3)</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>VERTEX</td>
<td>BLOCK-1</td>
<td>BLOCK-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>177</td>
<td>DEGENERATE</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
</tr>
</tbody>
</table>

CYC 5
TIME STEP = 2.582E-04
CURRENT CYCLE COUNT = 5

<table>
<thead>
<tr>
<th>CONTACT</th>
<th>TYPE</th>
<th>BLOCK-1</th>
<th>BLOCK-2</th>
<th>X(1)</th>
<th>X(2)</th>
<th>X(3)</th>
<th>PS(1)</th>
<th>PS(2)</th>
<th>PS(3)</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>184</td>
<td>VERTEX</td>
<td>BLOCK-1</td>
<td>BLOCK-2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
</tr>
<tr>
<td>177</td>
<td>DEGENERATE</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
<td>0.000E+00</td>
</tr>
</tbody>
</table>
```

CYC 10

TIME STEP = 2.582E-04
CURRENT CYCLE COUNT = 16

CYC 15

TIME STEP = 2.582E-04
CURRENT CYCLE COUNT = 21

CYC 19

TIME STEP = 2.582E-04
CURRENT CYCLE COUNT = 25

END

PROG 83: TEST-MED 3-D ELASTIC ELEMENT CODE

B10