5

US Army Corps of Engineers

DEVELOPMENT OF GENERALIZED 2-D AND 3-D DISTINCT ELEMENT PROGRAMS FOR MODELING JOINTED ROCK

Anrobar For Duble Release Distribution Unlimited

DIC FILE COPS
DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington. DC 20314-1000
Contract No. DACA 39-82-C-0015
US Army Engineer Waterways Experiment Station
PO Box 631. Vicksburg. Mississippi 39180-0631

20. ABSTRACT (Continued).
distinct element program has been completed. A new data structure has been designed and a test-bed code produced for three-dimensional analysis.

This report presents the results of improvements and extension of the two-dimensional distinct element code, UDEC, and development of the data structure and skeleton code for a new three-diriensional distinct element program.

The work was performed for the U. S. Army Waterways Experiment Station under contract DACA39-82-C-0015. These improvements and extensions of the code supplement the original report "UDEC - A Generalized Cistinct Element Program for Modeling Jointed Rock," written by Or. P. A. Cundall in March 1980 for the U. S. Army European Research Office and Defense Nuclear Agency under contract DAJA 37-19-C-0543.

Mr. J. Drake of the Waterways Experiment Station initiated this project and the final report was prepared after consultation with Mr. Orake and Mr. B. Armstrong, also of the Waterways Experiment Station.

Commander and Director of the Waterways Experiment Station at the tine of publication of this report was COL Robert C. Lee, CE. Technical Director was Mr. F. R. Brown.

TABLE OF CONTENTS

Page
PREFACE i
PART I: INTRODUCTION 1
Background 1
Scope of Present Study 2
PART II: IMPROVEMENT AND EXTENSION OF UDEC 4
Work Items 4
Data Structure 4
PART III: APPROACII TO THREE-DIMENSIONAL MODELING 11
Introduction $\vdots 1$
Block Characteristics :1
Physical Calculations 15
Contact Characteristics and Detection 18
Data Structure 21
PART IV: CONCLUSIONS 28
Program UDEC 28
Program D3 28
APPENDIX A: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2) USER'S MANUAL Al
Introduction A1
Improvements to UDEC A2
Input Commands A8
Program Guide Al3
Sample Problems A19
APPENDIX B: THREE-DIMENSIONAL DISTINCT ELEMENT TEST-BED CODE (VERSION 1.0) USER'S MANUAL 81
introduction B1
Input Commands B1
Program Guide B4
Sample Problem B8
Page
Figure 1. Linked Lists for Main Data Arrays 6
Figure 2. Block Pointers and Reverse Corner Links 7
Figure 3. Domain Linkages 8
Figure 4. Convention Used for Pointers Within a Contact Array 9
Figure 5. Structure of 'Junk List' Holding Redundant Groups of Memory 10
Figure 6. Vectors Describing iriangular Area, a 13
Figure 7. Normal Vector Contours for 3-D Contact Detection 19
Figure 3. Globai Block and Contact Lists 23
Figure 9. Lists Associated with Each Block 24
figure 10. Pointers Associated with Each Face 25
Figure 11. Pointers and Lists Associated with Each Contact 27
Figure Al. UDEC Sample Problem No. 1 A20
Figure A2. UDEC Sample Problem No. 2 A23
Figure A3. UDEC Sampie Problem No. 3 A27
Figure A4. UDEC Sample Problem No. 4 A32
Figure Bi. D3 Sample Problem B8

DISTINCT ELEMENT PROGRAMS FOR

MODELING JOINTED ROCK

PART I: INTRODUCTION

Background

1. The Universal Distinct Element Code (UDEC)* is the latest and most advanced numerical program available for simulating the behavior of discontinuous geologic systems subjected to high and transient loads. UDEC provides in one package all of the capabilities that existed separately in previous distinct element codes. The program is built around a very powerful data structure and is able to handle simultaneously the interaction of a mixture of rock blocks that have different types of deformability.
2. During the initial development of UDEC several facilities were encompassed by the original design but were only implemented in skeleton form. Features such as joint constitutive behavior, dynamic cracking, fluid flow and fluid pressure effects were identified as requiring supplenental work in order to realize the full modeling potential of the code. Also, some utilitarian improvements were suggested: an improved capability for dealing with flying blocks for impact-type problems, automatic zoning for fully-deformable blocks, improved logic for handling special cases of splitting such as splitting through corners, and more general specifications for boundary conditions.

[^0]3. In addition, it was recognized that the next logical extension of the distinct element method would be the development of a threedimensional version. The first step in this formidable task would be the design and testing of a data structure and test-bed code which would be appropriate for three-dimensional analysis.

Scope of Present Study

4. The purpose of the present study was to address the considerdi:ons arising from the original development of UOEC. The first objective was to complete all the unfinished facilities identified above. This accomplished, the revised version of UDEC now has a general application to the following principal areas in jointed rock modeling:
a. Discontinuous systems can be modeled as assemblages of blocks or particles of differing deformability; either rigid, simply-deformable (with 3 degrees of freedom) or fully-deformable (internally decomposed automatically into finite difference zones).
b. Nonlinear constitutive models including dilatant and nondilatant behavior can be prescribed for both the intact rock and the discrete joints.
c. Blocks can break, repeatedly, in accordance with a usersupplied cracking criterion.
d. Fluid flow and fluidpressure generation in joints and voids can occur with flow rate specified in terms of joint permeability and apparent aperture.
e. Directional loads can be applied to individual blocks and pressures can be prescribed to regions between blocks.
f. Blocks or groups of blocks can be explictly defined by the user as flying blocks for impact problems.
5. The second objective of this study was to begin the development of a new three-dimensional distinct element program. A data structure was developed which was well-suited for the extension of the method to 3-D. A test-bed code was then produced to evaluate various
aspects of the program such as the logic defining the characteristics of the block, the detection of contacts and the sequence for processing calculations. This effort has culminated in a workable but primitive distinct element program for three-dimensional analysis.
6. This report contains a description of the improvements made to UDEC and a discussion of the development of the three-dimensional program. In addition, a revised user's manual for UDEC and a new user's manual for the test-bed 3-D code are given as appendixes to this report.

PART 1I: IMPROVEMFNT AND EXTENSION OF UDEC

Work Items

7. In the original report several areas were identified which required additional work to realize the full capacity of the two-dimensional distinct element code. Specifically, these work items are:
a. complete edge-to-edge contact logic and install a simple constitutive model for rock joints;
b. install fluid flow and fluid pressure generation logic;
s. improve logic for dealing with flying blocks, i.e., blocks or groups of blocks not in contact with other blocks;
d. install an automatic mesh generator for fully-deformable blocks;
e. design logic to treat the case of splitting through a corner and allow re-entrant splits (one line crosses a single block twice):
f. install dynamic cracking including the redistribution of forces, stresses and displacements on splitting, and create the framework for user specified criteria for crack development; and
q. install more general boundary conditions.

Modifications have been made to UDEC to complete these facilities. In AppendixA a revised UDEC, user's manual is given which contains a description of the improvements made to the code and a complete set of input commands and program guide. Sample problems are also given which demonstrate the improvements made to UDEC.

Data Structure

8. The program guide, given in Appendix A_{1}, contains the complete contents of all the groups in the data structure. Figures 1 through 5 ,
reproduced from the original report, show schematically the linkage of these various groups and should assist the user in follewing through the program guide. Figure 1 shows the "linked list" arrangement of the main data arrays. Figures 2,3 and 4 illustrate the conventions for pointers and links in the block data, domain data and contact data arrays, respectively, and Figure 5 shows the structural arrangement of redundant memory groups. The program guide and the figures will assist the user in making any code modifications.

FIGURE 1: LINKED LISTS FOR MAIN DATA ARAAYS

figure 2: block pointers and reverse corner links

FIGURE 3: DOMAIN LINKAGES

NOTE : KAI, K.B2 - KO2 REFER TO THE OFPSETS LISTED IN APPENOIX III

FIGURE 4: CONVENTION USED FOR POINTERS WITHIN A CONTACT ARRAY

figure 5: structure of 'junk list' holding redundant gROUPS OF MEMORY.

PART 11I: APPROACH TO THREE-DIMENSIONAL MOOELING

Introduction

9. This project is concerned mainly with the planning of a threedimensional code based on the distinct element method. It is particularly important to design the data structure in a way that anticipates how the data will be used during a typical simulation of the behavior of a blocky assembly. Each physical quantity should be at hand when needed, with the min!mum overhead of searching, or redundant calculations.
10. Even though the objective of the project was to arrive at a conceptual framework for future development, a working program, called D3, was written. The present deficiencies in D3 are in the areas of contact detection and updating and block creation. However, some aspects of the program are well-developed: for example, the data structure; the physical equations of motion and force-displacement law; and the determination of volumes and centroids for arbitrary blocks.
11. Throughout the program 03, functions or subroutines are used to perform common vector operations. This simplifies the coding considerably, at the expense of some increase in running time. All vector and tensor equations in this report are expressed in component form, where the subscripts i, j and k range from 1 to 3 , and the Einstein summation convention applies for repeated subscripts.

Block Characteristics

Geometry

12. A three-dimensional block is defined by dividing its surface into triangular faces. Triangles are used instead of arbitrary polygons for the following twe reasons.
a. A surface is determined uniquely by specifying three points in space. If four or more are given, the nature of the surface is undefined and ambiguous.
b. The data structure is simplified if exactly three vertices are associated with each face; three memory locations can be reserved in advance. Similarly, exactly three pointers can be provided to locate the three adjoining faces to a given face.
13. There is no loss of generality by adopting the requirement that the surface of a polyhedron be subdivided into triangles. Any arbitrary shape can be devised by using triangles as building blocks, including blocks with concave regions. At present, in 03 , the vertices of wach face must be given manually, but automatic surface zonitg should be possible, using the zone generation logic of JOEC.

volume

14. The calculation for block volume is based upon Gauss's divergence theorem, given by:

$$
\begin{equation*}
\frac{\partial p}{3 x_{i}}=\frac{1}{v} \oint_{a} p n_{i} d a \tag{1}
\end{equation*}
$$

where p is any scalar, vector or tensor variable
v is the enclosed volume, and
n_{i} is the outward unit normal to an element of surface, da. If p is defined as any vertex vector x_{i}, equation (1) becomes:

$$
\frac{\partial x_{i}}{3 x_{i}}=\frac{1}{v} \oint_{d} x_{i} n_{i} d a
$$

or, solving for v using discrete areas,

$$
\begin{equation*}
v=\frac{1}{3} \quad \Sigma x_{i} n_{i} a \tag{2}
\end{equation*}
$$

where \mathbb{L} is the summation over all surface elements.

If area, a, is planar, $x_{i} n_{i}$ is constant over the area. For a triangular area defined by the vectors $z_{i}(a)$ and $z_{i}(b)$ (see figure 6) the area calculation is:

$$
\begin{equation*}
a=\frac{1}{2}\left|a_{k}\right|=\frac{1}{2} \sqrt{a_{k} \cdot a_{k}} \tag{3}
\end{equation*}
$$

where $a_{k}=e_{i j k} z_{i}^{(a)} z_{j}{ }^{(b)} \quad\left(e_{i j k}\right.$ is the permutation tensor)
and the unit normal is

$$
\begin{equation*}
n_{i}=\frac{a_{i}}{2 a} \tag{4}
\end{equation*}
$$

Substituting equations (3) and (4) in equation (2) produces

$$
\begin{equation*}
v=\frac{1}{6} \Sigma x_{k} e_{i j k} z_{i}^{(a)} z_{j}^{(b)} \tag{5}
\end{equation*}
$$

The volume associated with each face, when defined by equation (5), represents the volume of a tetrahedron with a base of area, a, and apex at the coordinate axes origin. The block volume is then found from the sum of the tetrahedrons. To produce a positive tetrahedron volume the vertices defining a triangular face must be ordered counterclockwise when viewed from the axes origin.

Centroid

15. The centroid of the block is calculated by recognizing that the centroid and volume of each tetrahedron are related to the block centroid by:

$$
\begin{equation*}
r_{i}=\frac{r_{i}^{(N)_{v}(N)}}{V} \tag{6}
\end{equation*}
$$

where r_{i} is the centroid vector for the block
$r_{i}^{(N)}$ is the centroid vector for the Nth tetrahedron
v is :he block volume
$v^{(N)}$ is the volume of the Nth tetrahedron
The centroid of each tetrahedron is calsulated directly from the three vertex vectors $\left(x_{i}^{(1)}, x_{i}^{(2)}\right.$ and $\left.x_{i}^{(3)}\right)$ that define a block face. The centroid lies along the same vector as the average of these three vectors. By simple integration techniques it can be shown that the magnitude of the centroid is $3 / 4$ of the average vector, so that the tetrahedral centroid calculation becomes:

$$
\begin{equation*}
r_{i}^{(N)}=\frac{x_{i}^{(1)}+x_{i}^{(2)}+x_{i}^{(3)}}{4} \tag{7}
\end{equation*}
$$

The block centroid is then found by using this equation in equation (6) and summing over all tetrahedrons defining the block.

Radii of gyration
16. This calculation is incomplete in the present version of D3. Only dynamic behavior is affected by the moments of inertia, which are now taken to be equal, approximately, to:

$$
\begin{equation*}
\frac{1}{2} \bar{r}^{2} m \tag{8}
\end{equation*}
$$

where \bar{r} is the average distance from the centroid to vertices and m is the block mass.

Physical Calculations

Equation of motion

17. For each block, the following equations are integrated twice by central finite differences:

$$
\begin{gather*}
m \dot{u_{i}}+x m \dot{u}_{i}=\Sigma F_{i} \tag{9}\\
I_{(i)} \ddot{\ddot{a}}_{i}+x I_{(i)} \dot{\theta}_{i}=\Sigma \mu_{i} \tag{10}
\end{gather*}
$$

where $\ddot{u}_{i}, \dot{u}_{i}=$ components of acceleration and velocity
$\ddot{\theta}_{i}, \dot{\theta}_{i}=$ components of angilar acceleration and velocity
$\Sigma F_{i}=$ sum of forces acting on block
$\Sigma M_{i}=$ sum of moments acting on block
m = mass of block
$I_{(i)}=$ moments of inertia about $1,2,3$ axes.
a = damping coefficient
Knuwing the centroid motion and the current locations of vertices and centroid, the velocities (and hence increments in displacement) of vertices are calculated as follows:

$$
\begin{equation*}
\dot{u}_{i}^{(p)}=\dot{u}_{i}^{(b)}+e_{i j k} \dot{\theta} \underset{j}{(b)}\left(x_{k}^{(p)}-x \underset{k}{(b)}\right) \tag{11}
\end{equation*}
$$

where (p) refers to a vertex
(b) refers to the centroid of the block
$\mathbf{e}_{i j k}$ is the permutation tenso:

The moment acting at the centroid owing to a force $F_{i}^{(p)}$ acting at a surface point p is given by:

$$
\begin{equation*}
M_{i}=e_{i j k}\left(x_{j}^{(p)}-x_{j}^{(b)}\right) F_{k}^{(p)} \tag{12}
\end{equation*}
$$

Contact forces

18. At each contact, the relative velocity of the two opposing points is calculated using equation (11) for both points and subtracting:

$$
\begin{equation*}
\dot{u}_{i}^{(c)}=\dot{u}_{i}^{(B)}-\dot{u}_{i}^{(A)} \tag{13}
\end{equation*}
$$

where (A) and (B) denote the opposing points on blocks A and B. The relative contact velocity $\underset{i}{(\mathrm{i})}$ is resolved into normal and shear partitions:

$$
\begin{array}{r}
\dot{u}^{(n)}=\dot{u}_{i}^{(c)} n_{i} \\
\dot{u}_{i}^{(s)}=\dot{u}_{i}^{(c)}-\dot{u}^{(n)_{n_{i}}} \tag{15}
\end{array}
$$

where n_{i} is the contact normal.
Normal and shear force increments are then calculated as follows:

$$
\begin{gather*}
\Delta F^{(n)}=-i^{(n)} k^{(n)} \Delta t \tag{16}\\
\Delta F_{i}^{(s)}=-\dot{u}_{i}(s)_{k}(s) \Delta t-e_{i j k} e_{k a \beta} F_{j} n_{a}^{n^{\prime}} \tag{17}
\end{gather*}
$$

where $\begin{aligned} k^{(n)} & =\text { normal contact stiffness } \\ k^{(s)} & =\text { shear contact stiffness } \\ n_{a} & =\text { previous contact normal } \\ n_{B}^{\prime} & =\text { current contact normal }\end{aligned}$

The second term on the right hand side of (17) corrects the current shear force for rotation of the contact normal during the previous time step. The expression is approximate only, and assumes that $\cos (\Delta \theta)=1$. The contact normal may rotate because:
a. the two blocks concerned have rotated about a common axis; or
b. the contact location on one or both blocks has changed; hence the contact normal may have changed.

Contact forces may now be updated:

$$
\begin{align*}
& F^{(n)}:=F^{(n)}+\Delta F^{(n)} \tag{18}\\
& F(s):=F(s)+\Delta F_{i}^{(s)} \tag{19}
\end{align*}
$$

$$
\text { If }\left|F_{i}^{(s)}\right|>c+\mu^{(n)} \text { then }
$$

$$
\begin{equation*}
F_{i}^{(s)}:=F_{i}^{(s)} \frac{\left(c+\mu^{\mu}(n)\right.}{\left|F_{i}^{(s)}\right|} \tag{20}
\end{equation*}
$$

where $c=$ cohesion
$\mu=$ friction coefficient
:= means "replaced by"
Note that $F^{(n)}$ is stored in program 03 as a scalar, because the contact normal is stored independently. However, $F_{i}^{(s)}$ is stored as a vector with components referred to the global axes.
19. After calculation, the contact forces are applied immediately to the two blocks comprising the contact (in a positive sense to block B, and in a negative sense to block A). Equation (12) is used to compute the moment to be added, where $\underset{i}{ }{\underset{i}{ })}^{p}$ is the contact coordinate.

Contact Characteristics and Detection

Prescription for contact normals

20. The blocks in UDEC have rounded corners in order to eliminate the singularities, force-jumps and "hang-ups" associated with sharp corners. In three dimensions the same idea is almost unworkable, since a single spherical cap cannot be fitted to a vertex because it will not be tangent to all adjoining faces. Some kind of variable-radius curve would have to be fitted to the vertex. It would have to be tangent not only to adjoining faces, but also somehow merge smoothly with adjoining edges, which would also be rounded. Although such a scheme may be feasible in principle, its use would add a large computing overhead, particularly in the case of simply-deformable blocks, where the angles at vertices are continuously changing.
21. A scheme has been devised that overcomes the problems with sharp corners, and even resolves the ambiguities present in UDEC for very large block overlays. A "prescription" or rule is proposed that furnishes a unique direction of contact normal to be associated with each point within a block. Because two blocks must overlap in order to establish contact, the contact point must lie within both blocks. The prescription is consulted to find the average contact normal for the blocks' internal point. Certain conditions must be fulfilled by the prescription:
a. At the surface of a tlock, the prescribed normals must coincide with the real normals (with jumps at vertices and edges).
b. There must be a smooth transition in normal direction from point-to-point within the block.
c. The rate of change of normal direction with respect to coordinate should reduce as the depth of penetration increases.
In essence, the prescription provides a field of normal vectors for every internal point as illustrated ir the figure below.

FIGUAE 7: NORMAL VECTOR CONTOUNS FOR 3-D CONTACT DETECTION
22. Much of the effect of UDEC's corner rounding is provided by the new scheme because there will be a smooth transition as a contact point moves around a corner. Furthermore, there is no need to know exactly which face is providing support close to a vertex; the known normal determines the direction of sliding and the direction in which the normal force increment is applied.
23. The following prescription for angles of contact normals is only tentative. More experience with its use in 03 is necessary before it can be accepted as being a reasonable analog of physical behavior.
a. Select the vertex nearest the contact point.
b. Determine the normal distance, $d(N)$, of the contact point from each adjoining face, N.
C. Compute the a̧yerage normal face direction, weighted according to $1 / d(N)$. If the contact point lies exactly on one face $N(d(N)=0)$, then the normal direction is that of face N.
d. The required normal is the unit vector in the computed direction.
The prescription fulfills the conditions previously set out, except that there will be a slight change in normal angle for deep penetration when the "nearest vertex" changes.
Types of contact
24. Although six types of contact can be identified physically, only two are necessary for complete support between two blocks.

Types of Physical Contact

face - face
face - edge
face - vertex
edge - edge
necessary for support
edge - vertex
vertex - vertex

Each of the six physical categories can be constructed fron one or more combinations of face-vertex and edge-edge. These two latter categories may be termed "logical contacts," which are recognized by the detection process and in the formation of the data structure. The physical behavior corresponding to the other categories can be dup? icated by knowing the appropriate areas and lengths of contacts, in the same way that UDEC models the physical behavior of an eoge-to-edge contact even though the logical contacts are of the corner-to-edge form. O3 does not contain this logic in its present state of development.

Contact detection

25. In any code that models interaction between arbit ary blocks or particles it is necessary to avoid exhaustive searches for those particles that are touching because the computer time for such searches increases as N^{2}, where N is the number of particles. Programs RBM and SOEM used a "box" classification scheme. Cundall (1980) discusses this scheme, and its limitations. UDEC uses a linked-list scheme whereby a block's contact candidates are found by local search of its surrounding domains. However, the two-dimensional data structure of UDEC has no convenient three-dimensional analog, as discussed in the next section.
26. D3 uses a scheme for which the search time is proportional to N, but which is less efficient than UDEC. 03 maintains links between blocks that are near each other. A given block can then interrogate this group of nearby blocks in order to detect potential contacts. The list of nearby blocks is updated in the following way. Ouring an "update",
a block interrogates not only its local list of neighbors, but also the lists of its neighbors. Blocks that are further than a certain radius are not added to the list (or are deleted if they are on it already), and blocks within the radius are added. An "update" is only performed on a block after it has moved by some threshold distance since its previous update. In this way, updating of almost-stationary regions is avoided.

Data Structure

27. This section describes the form and use of the data structure in terms of the pointers and connecting links. The complete content of each data array is set out in Appendix B. Program D3 is modeled closely on UDEC as far as structure and operating logic are concerned.

General considerations

28. The program UDEC, which models two-dimensional block systems, maintains a data structure with the same topological form as the physical assembly. The notion of representing blocks by circulating lists that simultaneously encompass the void spaces seems infeasible in three dimensions. It is possible to have a stable assembly of three-dimensional blocks without having an associated collection of isolated void spaces, or "domains"; in some three-dimensional assemblies it is possible to journey from one portion of the void space to any other without needing to pass between two blocks in contact. In two dimensions, the voids can share the same linked lists that serve to describe blocks. (A void is traced by following a counterclockwise route, while blocks are delimited by the same :ist, but traced in a clockwise direction.) This convenient symmetry is not found in three dimensions.
29. Program D3 embodies, for three-dimensional systems, a data structure that ensures rapid access to data as it is needed during the calculation cycle, but the physical correspondence of UDEC's data structure is missing. This carries a penalty of more time-consuming searches for contarts and increased difficulty in representing flutd behavior in the
void spaces. Figure 8 shows the global lists that link blocks and contacts.

Block structure

30. For individual blocks, the data structure describes the block geometry and also permits the program to jump from one face to its neighbors directly, and from a face to its bounding vertices directiy. Figures 9 and 10 illustrate this scheme. Triangular faces, apart from their physical advantages, noted earlier, lead to simplified data structures because exactly three pointers suffice to link faces to neighbors and faces to vertices. The connectivity of faces and vertices is specified completely by the pointers provided in the data array for faces, illustrated in Figure 10. A knowledge of face and vertex connectivity is necessary for an efficient scheme to detect and update contacts around a block. The data array for vertices contains only coordinate data, but each block has access to a list of its own vertices so that coordinates can be updated as the block moves. All coordinates are absolute, as components are referred to the global axes.

Contacts and links between blocks
31. Global connectivity of the block system is represented by a series of links between nearby blocks. When a block system is created initially, these links are established by exhaustive search. However, during operation, the program can determine potential contacts by interrogating just those blocks in its immediate neighborhood. In this way, che computer time needed for searching increases linearly with the number of blocks, N, and not as N^{2}. The scheme, however, is not nearly as efficient as that of UDEC because many more potential contacts need to be examined in D 3 for each block.
32. Contacts come in three forms: one is a "degenerate" form, and the other two correspond to "real" contacts. A degenerate contact is a simple link between nearby blocks. The memory taken by such a contact is much less than that of a real contact, but the pointers have the same locations as those in real contacts. This pemnits both degenerate and real contacts to be included in the same scan. A code number identi-

figure : Global block and contact lists

FIGURE g : LISTS ASSOCIATED WITH EACH BLOCK

F: NEIGHBOAING FACE
v: vertex

figure 10: POINTERS ASSOCIATED WITH EACH FACE
fies each type. Pointers and lists associated with each contact type are illustrated in Figure 11. The two forms of real contact are: vertex-to-face and edge-to-edge. These two categories are sufficient to capture all types of physical contact, as explained previously.

FIGURE 11: POINTERS ANO LISTS ASSOCIATED WITH EACH CONTACT

Program UDEC

33. The two-dimensional program UDEC has been considerably enhanced: it can now be used to model a wide spectrum of problems ranging from continua to discontinua; from static to dynamic; and with or without pore fluid interaction. The utility of the canonical* data structure has been confirmed by the comparative ease with which the new features were installed.

Program 03

34. Considerable thought has been given to devising a good data structure and physical idealisation for representing three-dimensional block assemblies. The result is reported herein; much of the scheme has also been embodied in the test-bed program D3. In fact D3 contains a good deal more than that required by the contract: it includes the full equations of motion for blocks and surfaces, equations for interaction of contacts, primitive logic for contact detection and updating, and fixed/free boundary conditions.
35. It is possible to run very simple simulations with D3 as it stands, but the program is still only a skeleton code. The following developments are suggested, in order of priority.
a. Test thoroughly the prescription for contact normals, and, if necessary, propose modifications.
b. Generalize logic for contact detection and updating, and verify that it will work under extreme conditions.
c. Recognize, and treat correctly, all six categories of contact; install corresponding constitutive models.
d. Add simply-deformable logic.

[^1]e. Install comprehensive boundary conditions:

1. stress tensor
2. arbitrary velocity prescription
f. Allow blocks to split, dynamically and statically; include point-to-point splitting law and Griffith's law for simply-deformable blocks.
g. Perform validation and simulation tests.

APPENDIX A: UNIVERSAL DISTINCT ELEMENT CODE (VERSION 1.2) USER'S MANUAL

Introduction

1. This manual describes the latest improvements to the Universal Distinct Element Code (UDEC) and supplements the original report "UOEC - A Generalized Distinct Element Program for Modeling Jointed Rock" written by Or. P. A. culldall, March 1980, for the U. S. Army (European Research Office, and Defense Nuclear Agency under Contract DAJA 37-79-C-0548.
2. The improvements to UDEC were made in the folla ing general areas:
a. joint logic
b. fluid flow
c. flying blocks
d. automatic mesh generator
e. general splitting logic
f. dynamic cracking of blocks
g. generalized boundary conditions

Descriptions of these improvements and their applications in UDEC are given in the next section.
3. The modifications to UOEC have led to the development of several types of constitutive models for the intact blocks and block contacts. Intact block behavior may be defined by separate deformation and fracture laws, while either point- or joint-contact constitutive models may be chosen. The different constitutive behaviors are discussed below and summarized in Table Al.
4. This manual also contains the revised user's input commands for UDEC and an updated program guide. Input and output files are presented for sample problems which illustrate the use of the improvements to UDEC.

lon

 give in. The modifications. The modifications to UOEC have led to the development of

Improvements to UDEC

Joint logic

5. UDEC recognizes edge-to-edge contacts between blocks as joints, and refers to a constitutive model that works in terms of stresses rather than forces. The joint logic is used for those blocks or joints that are given constitutive number 2 or 5 by the user (see Table Al). In addition, some or all of the following properties for joints should be defined:

Although the joint logic may be set for the whole block assembly, UDEC will still refer to contact parameters under some circumstances; therefore, these parameters should also be defined. A joint reverts back to being a contact if it no longer consists of planar block faces in opposition. The point-contact logic is also used if incremental normal deformation using the joint parameters would be greater than that using the contact parameters: i.e., if

$$
s n_{j} l_{j}<s n
$$

where l_{j} is the length of the joint and $s n$ is the contact normal stiffness.
Fluid flow
6. Flow may occur between domains if a differential pressure exists between the domains. Two types of flow law are used, depencing on whether a contact or a joint separates the domains. For a contact the flow-rate is

$$
q=p_{d i f f}{ }_{c}
$$

where $P_{\text {diff }}$ is the pressure difference, and
k_{c} is a permeability constant, defined for contacts, for a particular material number.
For a joint the flow rule is:

$$
q=p_{d i f f} k_{j}{ }^{a_{j}}{ }^{3} / l_{j}
$$

where k_{j} is a permeability constant for joints,
l_{j} is the joint length,
a_{j} is the apparent aperture, defined as

$$
a_{j}=\max \left(\operatorname{ares}, a_{0}-s t r n^{\prime} / s n_{j}\right)
$$

where ares is the residual displacement (fully closed),
$a_{0} \quad$ is the aperture for an open joint,
strn' is the effective normal stress, and
sn_{j} is the joint normal stiffness.
The constants k_{j}, ares and a_{o} are defined by the user for a particular material number.
7. In one time-step, $t_{d e l}$, the adjustment to pressure, $P_{d e l}$, in a domain is as follows:

$$
P_{d e l}=Q(b u l k w)\left(t_{d e l}\right) / A_{d}
$$

where $Q \quad$ is the sum of flows into the domain, bulkw is the bulk modulus of the fluid, A_{d} is the area of the domain.
For a domain corresponding to a joint,

$$
A_{d}=a_{j}{ }_{j}
$$

(a_{j} and l_{j} defined previously). The quantities a_{j} and l_{j} are only defined for a joint. If constitutive numbers 2 or 5 are not set, the domain corresponding to an edge-to-edge contact will be assumed to have an area of $A_{d}(\mathrm{~min})$, which may be set by the user; othervise it will default a small fraction of average block areas. For regular domains, $A_{d}(\min)$ is the limiting area for fluid calculations.
8. A printout of fluid flow in all joints and contacts may be requested by giving the PRINT FLOW command. Aperture and length are also printed for joints.
9. The influence of a fluid pressure gradient is included in UDEC for fully-saturated blocks subjected to gravity loading. This has been accomplished by adding a buoyancy force term to the law of motion for a block. The buoyancy force is defined by a fluid density parameter, rhow, in the FLUID input command.

Flying blocks

10. UDEC keeps track of "flying" blocks (i.e., blocks not in contact with other blocks) by retaining one link to the main data structure. This ensures that new contacts will be detected in the domain containing the flying block. The single link is of the same form as a regular contact, but it contributes no forces and is deleted immediately after the block comes into contact with other blocks. Groups of flying blocks are handled in an identical manner. The same logic ensures that the group is linked to the global data structure by one virtual contact. Blocks which are initially not in contact with other blocks must be linked to the main data structure using the LINK input command.

Automatic mesh generator

11. The automatic mesh generator is based upon that described in the report "Computer Modeling of Jointed Rock Masses" written by Dr. Cundall, et. al., (see Technical Report N-78-4 for the U. S. Army Engineers Waterways Experiment Station, August, 1978).
12. Automatic mesh generation for a fully-deformable block is accomplished in three stages. First, all corners of the boundary are linked so that the block is discretized as a triangular finitedifference mesh. Then, the triangles are split until all triangular sides are smaller than a maximum edge length specified by the user. Finally, all internal grid-points are adjusted until their coordinates coincide with the average of the coordinates of the surrounding gridpoints. The generator appears to be sufficient for discretizing most
blocks provided the aspect ratio (longest to shortest dimensions) of the block is kept smaller than 2:1.
General splitting logic
13. The logic for splitting blocks has been overhauled so that a split may occur at any orientation. Splits through corners are allowed. If a given split-line passes too close to a corner, the line is diverted so that the corner is split. The criterion of "closeness" is based on the given rounding length; the line is diverted if a newlycreated corner would interfere with the existing corner (i.e., their rounding arcs would overlap). After diverting a proposed split-line through corners (if necessary) a check is made to see if the line would coincide with an existing edge; if it would, the split is rejected for that block.
14. Block splitting is accomplished via subroutine XYSPL(MAT,ICONS). This routine only :equires two coordinates $((x 3, y 3)$ and $(x 4, y 4))$ which. define the split iine through the block and MAT and ICONS which assign joint properties and constitutive behavior to the newly created , joint. Dynamic cracking of blocks
15. UDEC has been rodified to allow dynamic cracking of rigid and simply-deformable blocks. The decision to check for cracking is made by introducing a tensile strength factor, tf, to the material property list. If a block has a specified tensile strength factor, it is searched once every cycle for conditions which would satisfy a user-supplied cracking criterion. If this criterion is met, the biock is split into two. The joint created ty splitting a block will take the material and constitutive numbers of the biock.
16. Two cracking criteria are presently available in the code. A criterion based upon a relationship developed from "point-load" testing has been assigned to constitutive numbers 1 and 2 . The tensile strength factor in this case is defined by:

$$
t f=\frac{(f 1+f 2)}{2 d^{2}}
$$

where $f 1$ and $f 2$ are two opposing contact forces applied to the block, and
d is the distance between these forces. Splitting of the block occurs if the maximum value of the contact force-distance relationship equals or exceeds tf. Oynamic cracking is not permitted through corners or too close to corners ($d<1 / 2$ smallest block edge) for this cracking criterion.
17. A criterion based on Griffith theory is assigned to constitutive numbers 4 and 5 . This criterion evaluates conditions for cracking in terms of the internal stresses in SDEF blocks (tensile stresses are assumed positive). The relationships for block splitting are defined by:

$$
t f=s p 1 \quad \text { if } 3 s p 1+s p 2>0
$$

and

$$
t f=\frac{-(s p 1-s p 2)^{2}}{8(s p 1+s p 2)^{2}} \quad \text { if } 3 s p 1+s p 2<0
$$

where spl is the maximum principal stress in the SDEF block, sp2 is the minimum principal stress in the SDEF block, tf corresponds to the uniaxial tenstle strength of the intact material.
When stress conditions exceed the tensile strergth, the block is split through its centroid in a direction parallel to sp2 and the block stresses are set to zero.
18. It should be noted that these two cracking models du not account for energy lost in the system when the fracture occurs. A ifore thorough approach should take into account the change rif : train energy into kinetic energy at fallure.
Generalized boundary conditions
19. Two types of boundary conditions can be used in UDEC. X and Y directional loads can be added to block centroids using the LOAD command. Comain pressure can be user-controlled using the PFIX and PFREE commands.
Summary of constitutive models
20. Each constitutive number gives the user ? different combination of constitutive behavior for the intact block and the contact between blocks. 5our combinatiuns are presently defined (see table below). Other combinations are left to the discretion of the user.

Table Al
Constitutive Sehavior Models

Constitutive Number	Intact 81 gck		Contacts
	$\begin{gathered} \hline \text { Deformation } \\ \text { Law } \\ \hline \end{gathered}$	$\begin{gathered} \text { Cracking } \\ \text { Law } \\ \hline \end{gathered}$	$\begin{gathered} \text { Deformation } \\ \text { Law } \end{gathered}$
1	elastic-isotropic	point-load	point contact
2	elastic-isotropic	point-load	joint contact
3	elastic-isotropic	Griffith	point contact
4	elastic-isotropic	Griffith	joint contact

Input Commands

Notes: Upper-case letters in a command or parameter must be typed; the remaining letters are optional. Lower-case parameters stand for numeric values. Integers must be given for parameters starting with $i, j, k, 1, m, n$. Real numbers may be given as integers, but not vice versa.

Input is free-format: parameters may be separated by any number of the following characters, in addition to spaces:
$=(1), 1$
An EidD command is required at the end of the input file (after the STOP command). The first command must be START or RESTART. * $=$ comment line
$+=$ continuation line

Block Material n Constitutive m x $\mathrm{y}^{1} 1 \times 2$ y2 \ldots
Create a rigid block of material number n and constitutive number m. Defaults are $n=1, m=1$, if m, n are omitted. Corner coordinates are: $(x 1, y 1),(x 2, y 2) e t c ., i n$ a clockwise direction. Continuation lines may be used, but a pair of numbers defining a corner must not be separated. Only one BLOCK command may be used per run at present. Further blocks may be created with a SPLIT command, and unwanted ones deleted with the DELETE command. Any blocks may be changed to simply- or fully-deformable with a CHANGE command.
CHange $x 1 \times 2$ yl y2 Sdef Material n Constitutive m
Fdef
All blocks with centroids lying within the range $x l<x<x 2, y l<y<y 2$ are changed to simply- or fully-deformable (Sdef or Fdef respectively). Material and constitutive numbers may also be changed.

All blocks encountered in the range $x 1<x<x 2, y l<y<y 2$ are discretized as fully-deformable. For automatic generation the parameter (amaxl) must be given to define the maximum edge length of the triangular zones. For manual generation a list of grid-points, (glist), and zones, (zlist) must be given. The format for (glist) is:

```
x1 y1 x2 y2 x3 y3 .....,
```

where each x, y pair is a coordinate of a grid-point. The format for (zlist) is:
$11 \mathrm{ml} \mathrm{nl} 12 \mathrm{~m} 2 \mathrm{n} 2 \ldots$.
Each triple corresponds to the three grid-points that define the zone, where the numbering of the grid-points refers to the order in (glist), starting with the last point (i.e., the last grid-point is number 1). The grid-points should be given in clockwise order around the zone. Both (glist) and (zlist) may extend over an arbitrary number of continuation lines, but doubles and triples should not be split over two lines. If a given coordinate lies within a certain tolerance of a block corner, the grid-point is placed on that corner. The tolerance is taken as 0.9 times the rounding length. Grid-point coordinates can be defined to coincide with block corners but should not be defined to lie along block edges, for manual generation.
Gravity gx gy
Gravitational accelerations are set for the x - and y-directions. $x 1$ y1 $x 2$ y2
Links a flying block to the main data structure. ($x 1, y 1$) are the coordinates of any point inside the flying block and ($x 2, y 2$) are the coordinates of any point inside the block which will provide the link to the flying block. This block should be the one which is topologically closest to the flying block. ($x 1, y l^{\prime}$) and ($x 2, y 2$) should be chosen close to the blocks' centroid locations to ensure correct linkage.
Load $x 1 \times 2$ yl y2 xload yload
All blocks with centroids lying within the range $x 1<x<x 2, y l<y<y 2$
are prescribed static loads applied at the block centroid.
PFix ia p
The pressure is controlled in the domain with address ia. The real constant value for pressure, p, is inserted in the pore pressure offset of the domain list.
PFRee ia
The pressure is not controlled in the domain with address ia.
Plot Nofix Zones NC Vel
If no parameter follows the PLot command, all blocks and centroids are plotted. If "Nofix" is used, no fixed blocks are plotted. The keyword "Zones" is used to plot the zones in fullydeformable blocks. The word "NC" deletes corner rounding on all blocks and "Vel" plots block velocity vectors at block centroids.
Print Blocks Contacts CORners Domains List DList Flows Data are printed on blocks, contacts, corners, domains and linked lists for blocks and domains. Fluid flows in joints and contacts are printed with the FLOWS keyword.
PROperty Material n keyword value
n
The first parameter must be the specification of the material number. Material properties are defined for material number n.
Property keywords are:
Bulk(or K) bulk modulus
G shear modulus
Density density
KN contact normal stiffness
KS contact shear stiffness
Cohesion contact cohesion
Friction contact friction coefficient
JKN joint normal stiffness
JKS joint shear stiffness
JCoh joint cohesion
JFric joint friction coefficient
Tf tensile strength factor
JPerm joint permeability constant

```
    CPerm contact permeability constant
    AZero aperture for zero normal stress
    ARes residual aperture at high stress
    (Units of joint nommal and shear stiffness and joint cohesion
    are stress/displacement.)
Restart
```

The program is restarted using data from the restart file.
RSet v ia joff
The real value v is inserted in the main array at address ia, with offset ioff.
ROund
d
Each block corner is rounded with a circle that is tangential to the two corresponding edges at a distance d from the corner.
SAve
The current problem state is saved on the restart file.
SPlit $x l$ yl $x 2$ y2 Material n Constitutive m
All blocks in the path of a line extending from point ($x 1, y 1$)
to ($x 2, y 2$) are split into two. The joint created by the split
is assigned a joint material number n and a joint constitutive number m. If MAT or CONS are omitted, the joint or contact will take the material and constitutive numbers of one of the adjoining blocks (however no number will be printed when the PRINT CONTACTS command is given.)
STArt
The program does a cold start.
Stop
The run stops.
View $\{x\}$ ix2 iyl iy2
The integer ranges $\{x 1$ to $\{x 2$ and $\{y\}$ to $\{y 2$ define the viewport region on the plotting device within which the plot will be made. Defaults are $i \times 1=0, i \times 2=2000, i y l=0,\{y 2=1400$.
Window $x 1 \times 2$ yl yz
The coordinate ranges $x 1$ to $x 2$ and $y 1$ to $y 2$ define in real problem units the region of the model to be plotted. Defaults are $x 1=0, x 2=10, y 1=0, y 2=7$.
----------.-
Parameters and Data Group
Offects for block data array
Note: The first integer in each block array
.-.. (offset 0) is the block type number, as follows:
1 rigid block
2 simply-deformable block
3 fully-deformable block
KB Poincer to next block in block list.
KP Pointer to one corner in block's corrier list.
KMAT Material number.
KCONS Constitutave number.
KBCOD Code number:
O free block
1 fixed block
KX x coordinate of centroid,
KY y coordinate of centroid.
KXD x velocity.
KYD y velocity.
KTD Angular velocity (counterclockwise positive).
KAREA Block area.
KBM Block mass.
KEI Moment of inertia.
KBFX x centroid force-sum.
KBFY y centroid foree-sum.
KBFT Centroid moment sum.
KXL x load applied to block cuntroid.
KYL y load applied to block centroid.
KBEX Extension pointer (to SDEF or FDEF data)
Offsets for corner data array
Note: The first integer (offset 0) contains
-..- the value MCOR to denote a corner.
KL Pointer to next corner or contact on
block, in clockwise direction.
KR Pointer so next corner in counterclockwise
direction.
KNB Pointer to host block.
KXP x coordinate of corner.
KYP y coordinate of corner.
KXCP x coordinate of local circle center.
KYCP y coorcinate of local circle center.
KRAD Radius of local circle.

```
```

KXDP x velocity of corner.
KYDP y velocity of corner.
KGP Pointer to corresponding grid-point if block
is fully-deformable.
Offsets for contact data array
Note: The first integer (offget 0) contains
-.-. the value MCON to denore a contact.
KC Pointer to next contact in contact list.
KB! Address of first block involved in contact.
KB2 Address of second block involved in contact.
KLl Pointer to next item in clorkivise list
of block corresponding to K\&l.
KL2 Same as KL1, but for block KB2.
KD1 Address of domain to left of contact,
going from block KEl to KB2.
KD2 Address of domain to right of contact,
going from block KB2 to kBl.
KCM Material type number.
KCC Coristitutive number.
KXC }\quad\times\mathrm{ contact coordinate.
KYC y contact coordinate,
KXDC Relative x yelocity lof block KB2 relative
to Elock KB1).
KYDC Relative y velocity,
KCS Relative shear disolacement.
KCN Relative normal displacement.
KCFS Shear force.
KCFN Normal force (compression Dositive).
KCCOD Code number:
1 corner/corner contact
2 corner/edge contact (KB1...corner,
KB2...edge)
3 edge/corner contact (KB1....edge,
KB2...corner)
KCAP Mean aperture for joint
KCQ Flow-rate in joint or contact
KCL Length associated with joint
Offgets for domain data array
Note: The first integer (offget 0) contains
.... the value MDOM to denote a domain.
KD Pointer to next domain in domain list.
KDAR Domain area.
KPP Pore-pressure for domain.
KUMAX Fictitious domain displacemerit.
KDLOOP Pointer to one contact in counterelockwise
list around domain.
KDCOD Code number:
o domain presgure not controlled
l domain pressure controlled

```
```

Simply-deformable extension array
KED11)
KEDI2 , Strain-rate
KED21 , tensor
KED22)
KSI11)
KSI\2) Internal stregs
KSI21, tensor
KSI22,
KSAl1, Applied stress
KSAl2) tensor (multiplied
KSA2! , by block area)
:SA22 ,
Offsets for grid-poirit data
K.C Pointer to next grid-point in grid-point list.
KCOR Pointer to corresponding block corner.
KXC x coordinate.
KYG y coordinate.
KXDC x velocity.
KYDC y velocity.
RCFX x force-sum.
KGFY y force-sum.
KCPM grid-poine mass.
Offsets for zone data
KZ Pointer to next zone in zone list.
KZC Start of triple pointer to { surrounding
grid-points.
KZS11)
KZS12, Stress tensor
KZS22)
KZM Zone mass
KZLL Pointer co neighboring zone for
mixed-discretization calculapion.
Logical unit numbers
LUNIF Unis number for ingut file,
LUNOF Unit number for output file.
LUNC Uris: number for general 1/0 (e.g. restart),
LUNP Unit number for plotted output.

```


Array limits
```

Size of main array (IA)
NMAT Ma<imum number of materials.
NCONS Maximum constitutive numbers.
NTiP Numoer of block types (rigid, SDEF, erc.)

```
```

Head codes (coritents of first integer in dari groups)

```
MRIC = 1 Rigid block
MSDEF \(=2\) Simply-deformable block.
MFDEF a 3 Fullyrdeformable block
MCOR Corner
MCON Contact
MDOM Domaín
LINE(80) Buffer for current input line in Al format.
LINEI(30) Buffer for next input line.
LPNT(I) Pointer to gtart of parameter i in LiNEI,
    after removal of blanks, ete.
PPFLAG \(\quad\) TRUE, if pore-pressure calculation requested,
ERFLAC
- TRUE, if an error has occured.
.TRUE. if the first input line has been processed.
.TRUE. if the domain pressure is controlled.
-TRUE, if the current line is a continuation.
- TRUE, if the next line is continuation,
-TRUE, if block spliteing calculation is requeseed.
Index of last compured COTO in MON.
Error number.
Pointer to list of spare memory groups.
Current block number.

1 DOM ISTACK NCYC NCTOT TDEL FRAC IROUTE NLINE NPACE JMPGEN ALPHA BETA
CONI
CON2
BDT
ALPB

C18
C2B DECRAD PI
DAMIN ATOL

ETOL
CTOL
DTOL
DTOL2 ETOL

FTOL
CTOL
HTOL
IBPNT
ICPNT
1 DPNT
IODPNT
AKN(I)
AKS(I)
AMU(I)
COH(I)
AKNJ (I)
AKSJ(I)
AMUJ(I)
COHJ(1)
PERMJ(1)
PERMC(I)
AZERO(1)
ARES(I)

Current domain number.
Stack pointer.
Currenily requested number of cyeles.
Total number of cycles.
Time-step.
Requested fraction of eritical time-siep.
Routing number, used in main routine.
Output line count.
Output page count.
Routing number for continuation line in GEN.
Mass damping coefficient.
Stiffness damping coefficient.
Damping factor (1.0-ALPHA*TDEL/2,0)
Damping facror (1.0/(1.0+ALPHA*TDEL/2.0)) BETA/TDEL
Iriternal mass dampirig coefficient for simplr-deformable diocks.
Damping factor (1.0-ALPE*TDELiこ.0)
Jampirig factor (1.0/(1.0+ALPB*TUEL/2.0))
PI/180
3.14159

Mirismum domain area allowed.
Distarice between particles at which a contact is first formed.
Distance betweeri particles at which a contact is broken.
Maximum (negative) overlap allowed when forming contacts.
Rounding length.
DTOL/2.0 (maximum contact overlap)
Limit on maximum domain displacement to trigger contact update. Total area of blocks for setting ploting scale factor.

Pointer to list of blocks. Pointer to list of contacts. Pointer to list of domains. Pointer to outer domain.
Normal contact stiffness, material \(I\).
Shear contact stiffness, material \(I\).
Contact friction coefficient, material i.
Contace cohesion, material 1 .
Joint normal stiffness, material \(I\).
Joint shear stiffness, material 1 .
Joint fritetion coefficient, material 1 .
Joint cohesion, material 1.
Joint permeability constant, material \(l\).
Contact permeability constant, material I.
Instial aperture, material \({ }^{\text {Pat }}\)
Residual aperture, material \(I\).
```

DAMIN Minimum domain area for fluid caleulations.
DENS(I)
BULK(I)
SHEAR(1)
TFAC(I)
ALAMI (I)
ALAMZ(I)
CRAVX
GRAVY
RHOW
BULKW
|XI
IX2
IYI
IY2
RXI
RX1 Problem window coordinate.
RYi Problem window Eoordiriate.
Rr2 Problem wiridow coordinate.
\A()
Densizy, material l.
Bulk modulus, material l.
Shear modulus, material i.
Tensile strength factor, material l.
Lame constant, material l.
Lame constant, material l.
x component of gravitational acceleration,
y component of gravitational acceleration.
Fluid density.
Fluid bulk modulus.
Flotter viewport coordinate,
Plotter viewport coordinate.
Plotter viewport coordinate.
Plotter viewport coordinate.
Maln array.
Main Subroutine Calling Map
UDEC
-SETUP
-MON
-HALT
-PRINT
-CREATE
-SPLIT
-APLOT
-INI
-CYCLE
-PPSCAN

- BLKSCN
-PPCEN
-PPDIS
-CONSCN
-CRKSCN
-DOMSCN
- CEN

```

Sample Problems

The following four sample problems illustrate the improvements made to UDEC.

No. 1 Single point-load cracking
No. 2 Pressurized cavity
No. 3 Complex block deformation
Ho. 4 Projectile breaking beam
The printed output for each problem should be used to provide a check that the program is performing correctly.

\section*{Sample Probłen No. 1}

A single crack is induced by two opposing point contacts. Cracked block then falls and comes to rest on base.


Figure A1. UDEC Sample Problem No. 1
\(1 / 2\)
\(1 / 2\)
?
```

*)
N 0-10
$1 / 2$
0.1
0.1
LII $-1,1041,10$
LII $-1,1041,10$
LII $-1,1041,10$
LII $-1,1041,10$
,it $-1,20$ 41,20
TEIE $3,405,10$
URTE 30,40 ※.
0,4 y, j
LOT
int glick CCNifits
0
0
0
0
0
0
0
0
0
0
0
2ND

```
2ND
```

2ND

```
```

D

```
2.5
2.5
2.5


 \\ \title{
 \\ \title{
 \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\  \\ \\ \(\begin{array}{ll}\text { OLIT } & 30,15 \\ 30,40 \\ \text { UELTE } & 30,40 \\ \chi, 30\end{array}\) \\ \\ \(\begin{array}{ll}\text { OLIT } & 30,15 \\ 30,40 \\ \text { UELTE } & 30,40 \\ \chi, 30\end{array}\) \\ \\ FLIT \(30,15 \quad 30,40\)
OERE \(30,40 \times 2 \times 0\)
iNO \(50 \div=0\) \\ \\ FLIT \(30,15 \quad 30,40\)
OERE \(30,40 \times 2 \times 0\)
iNO \(50 \div=0\) \\ \\ 
} \\ \\ 
}
.




ISTMET

```

TMIS IS A STMRT RAN

```

```

Mown 0-10
JNW .1 L5 (MES)
STIFNES-MNPINC DNN SET TO L50O
mNC}0.
)mocy (0,0)(0,50)(40,30) (40,0)
)9[17 -1,10 41,10
y%lif -1,20 41,20
ventr -1,5 41,5
ymilf 8;2.5 8,12.5
)0ELIE \$,40 5,10
1SFIT 30,15 30,40
NOETEE 30,40 20,30
wle O S0 O So
IFIX 0,40 0,5
PLOT
ICYC 200
IMIPIAL IINESTPP = 1,000E-0.2
Cureant CTClE CaNT: 600
HFRINT MOCXS CDNACTS

```
bLCX DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{nock mit conot} & \multicolumn{2}{|l|}{CETINDID COMOSS.} & \multirow[t]{2}{*}{MASS} & \multirow[t]{2}{*}{Poi. non. h.CSEEDS} & \multicolumn{3}{|c|}{\(X, Y\), ITETA VELOCITIES} & \multicolumn{3}{|c|}{\(x, y\), META Procts} \\
\hline 188 & 1 & 1 & 3.445501 & 1.1408 .01 & & & -1.2138-04 & -2.785-04 & 1.584E-05 & -4.0022.02 & 2.5\%7Eas & 2.0018.03 \\
\hline \multicolumn{13}{|l|}{(RICID)} \\
\hline 1 & 1 & 1 & 1.508E+01 & 2.473t.01 & 6.000¢+05 & 3.000E+07 & 2.992E-05 & 9.9975-05 & S.403E-07 & 1.786E02 & 6.001i06 & \(1.2168+34\) \\
\hline \multicolumn{13}{|l|}{(RICID)} \\
\hline 433 & 1 & 1 & 1.250E.01 & 7.427200 & 2,500E 105 & 1.354E097 & 4.039E-65 & 1.340E-04 & 0.709E-07 & \(-4,573 E+02\) & C.500E+06 & 2.7528+03 \\
\hline \multicolumn{13}{|l|}{(RICID)} \\
\hline 314 & 1 & 1 & 2.000\$201 & 2.500E400 & 4.000E+05 & 5.417E407 & \(0.0008 \times 00\) & \(0.000 \pm+00\) & 0.0008400 & 8.707E401 & -1.0412+37 & 4.545E.07 \\
\hline \multicolumn{13}{|l|}{(aicio)} \\
\hline 76 & 1 & 1 & 1.3558401 & 1.500t+01 & 5.391E+05 & 3.778407 & 3.317E-06 & \(\cdot 1.0025-05\) & 3.305-06 & \(\cdot 4.0005+60\) & 5.309E+06 & -7.6005:02 \\
\hline (RICID) & & & & & & & & & & & & \\
\hline
\end{tabular}

COITACT DATA

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & 10 & Sen & NDWHL & geap \\
\hline 205 & 0 & 0 & 3.8065c01 & 4,9951+00 & 1.006EAS & -3.179tas & -9,8ME-03 & 3.1292-03 \\
\hline 16 & 0 & 0 & 2.904Lcol & 1.96aldol & 3.041ECOS & -4.290E.05 & -1.753-01 & 4.2900-03 \\
\hline 614 & 0 & 0 & 2,407t+01 & 9.73P4+00 & 7.1993+05 & -2.965805 & -b, FSOE-05 & 1.120e-02 \\
\hline 532 & 0 & 0 & 2,401E.01 & 9.901000 & 4.715809 & -1.81574 & -7.1740-02 & 1.817-43 \\
\hline 332 & 0 & 0 & 2.476E-01 & 1.017t+01 & 0.0005000 & \(0.0007 \times 00\) & 1.5015-01 & 0.0005000 \\
\hline 580 & 0 & 0 & 2.450t+01 & 4.\%84.40 & 8.4Mcias & 1.557t+05 & -8.466-02 & -1.557E-03 \\
\hline 404 & 0 & 0 & 3.005t-01 & 4.9697000 & 6.115E.06 & 1.5403005 & -6.115-02 & \(-1.540 E-03\) \\
\hline 263 & 0 & 0 & S.4321-01 & 1.980E401 & 2.951505 & 3.740E 105 & -2,9135-02 & -3.740 [-03 \\
\hline 144 & 0 & 0 & 5.042E-01 & 9.9168.00 & 4.016E40\% & 1.621EAOS & -4.624E-02 & - 1. \(8218-03\) \\
\hline \[
\begin{aligned}
& \text { MOT } \\
& \text { IST0 }
\end{aligned}
\] & & & & & & & & \\
\hline
\end{tabular}

\section*{Sample Problem No. 2}

Upper block is forced into a cavity by an applied load. Pressure is thereby induced in the cavity, driving the righthand block outwards. The pressure also induces flows in the surrounding joints, and hence pressure-drops in the enclosed volumes between blocks. The outer domain is held to a fixed pressure of zero.

a. After 3,000 Cycles

Figure A2. UDEC Sample Problem No. 2

\section*{STAFT}
 PROP MAT=1 CPETH:IE-C
FUID 0.01 .059
DNP 5 16. HASS
FROC 0.10
Mact \(0 ., 0.0,130.40,30,40,10\). 5015 0.2
SPLIT -1.,10. 41.,10. MAT:1 CONS-1
SFIT 15.,9. 15.,31, Mif:1 cans:!
STLIT 26.,4, 25.,31, MAI \(=1\) COK: 1
SFIIT 10,20 4:,20 mat:1, 50 HS 51
DELETE \(15 .,-5.10 ., 20\).
fix 0., 40. . 0,10 .
FIX 0.,15. 0., 50.
FIX 25.,40, \(20 ., 30\).
Frix 69 i. 0
LCAD 15.,25. 20.,30 0.0 - i . UES
WIND O 50 i 40
EYCLE 3000
frivi fous, binains, mock:;
HOT
576
END

PROBLEM NO. 2 INPUT FILE

ISTART

MIS IS A STMT RM


mulio 0.01 dex
JuF is 16, Mes

IPAC 0.10
MOCK 0., 0. 0.,30. 40.,30. 40.,0. mond 0.2
Ferilt -1.,10. 41.,10. Mifal Consel
NEMTI 15,99. 15.,31. Misi Cansi

YSRLI 10,20 41,20 MMFi, Cons:1
DOELIE 15., Z. 10.,20.
JFIX 0.,40. 0.,10.
JF1X 0.,15. 0., 30 .
JFIX \(25 ., 40,20,130\).
JFFIX 690.0
LOAD 15., \(8,20 ., 300.0-1,0 E S\)
YINO 050040
ICYCLE 3000
INITIAL TINESTEP \(=8.944 E-03\)
a Disit CYCLE CONT : 3000
MRIMT FLOS, DOWINS, BLOCNS
fon acoss contact or joints.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline COVTACT & \(X\) & \(Y\) & FLO & LEMTH & AFETURE & Dow1 & 000 \\
\hline 863 & 1.500E+01 & 1.915E+01 & 2,944E-05 & 0.000E-00 & 0.000E+00 & 522 & 05 \\
\hline 706 & 2.500E+01 & 2,020E+01 & 2.94E-05 & 0.000Ead0 & 0.000E+00 & 522 & 728 \\
\hline 640 & 3.900E+01 & 2,000E+01 & -2,921E-0 & 0,000E+00 & \(0.000 ¢ 500\) & 69 & 670 \\
\hline 620 & 2,62EE01 & 2,000E+01 & 2.944E-05 & 0.000E+00 & 0.000E+00 & 522 & 670 \\
\hline 500 & 2,6258+01 & 1,000 +01 & -2,94EE-0s & \(0.0002+00\) & \(0.0006+00\) & 188 & 52 \\
\hline 449 & 2,500E.01 & 2.875E01 & -2.921E-05 & \(0.000 E+00\) & \(0.0005 \times 00\) & 69 & 728 \\
\hline 350 & 1,4006+01 & 1,000E+01 & 2,946-05 & \(0.0001+00\) & \(0.0005+00\) & 522 & 372 \\
\hline 205 & 1.500E+01 & 2,875E-01 & -2.421E-05 & 0.000E+00 & \(0.0003+00\) & 69 & 905 \\
\hline 166 & 3.900E401 & 1,000E+01 & -2,921E-05 & \(0.0008+00\) & \(0.0003 \times 00\) & 69 & 160 \\
\hline 14 & 2,000\% -01 & 1.000E+01 & -2.961E-55 & \(0.0008+\infty\) & \(0.000 \mathrm{e}+00\) & 69 & 372 \\
\hline
\end{tabular}

DOASIN MATA
\begin{tabular}{|c|c|c|c|}
\hline DCMIL & PCRE PPussife & wure & HAXINM DISPTACERENT \\
\hline s05 & 2.922E04 & 4,000E-01 & 0.5125-04 \\
\hline 720 & 2.923s+04 & 4,000e-01 & 5,951E-03 \\
\hline 670 & 2.922e+04 & 4,000E-01 & 3.450E-04 \\
\hline 522 & 5.064\%404 & \(9.89 \% 401\) & 1.196E-02 \\
\hline 372 & 2.970end & 4.800\%-01 & 0.0001400 \\
\hline 168 & \(2.7205+04\) & 4.800E-01 & 3.450E-04 \\
\hline 69 & \(0.0005+00\) & 4,800E-01 & ؛.160E-02 \\
\hline (OUTDR manda & & & \\
\hline
\end{tabular}

\section*{noce mina}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{macr michor} & \multicolumn{2}{|l|}{Canmoid corms.} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { MASS } \\
3.000 E \mathrm{COS}
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
rac. mon. \\
\(8.12 \mathrm{t}+06\)
\end{tabular}} & \multicolumn{3}{|c|}{\(\lambda, r\), TETA VEDCITILS} & \multicolumn{3}{|c|}{\(x, y\), MeTA Pucts} \\
\hline 58 & 1 & 1 & 3.80E+01 & 2.500E~01 & & & 0.000E+00 & \(0.0000^{00}\) & 0.000¢ +00 & 8.5095000 & -3. 204500 & 1.558+03 \\
\hline (RICID) & & & & & & & & & & & & \\
\hline 341 & 1 & 1 & 3.5858101 & 1.5008001 & 3.000E-0S & 8.12tas & 3.857-02 & -2.5118-09 & -7.04-11 & -1.1718-0t & -2.2008-02 & \(-5.4325-02\) \\
\hline (RICID) & & & & & & & & & & & & \\
\hline 195 & 1 & 1 & 7.500Erio & \(2.0000^{2} 1\) & 6.000EN05 & 3.18t+07 & \(0.0008+00\) & \(0.000 ¢+00\) & 0.0008000 & -3.716E404 & -1.656\%m4 & -1.700E+0S \\
\hline (RICID) & & & & & & & & & & & & \\
\hline 76 & 1 & 1 & 2.000801 & 2.358001 & 2.000E.05 & 3.708+0\% & 3.2188-05 & -3.94st-02 & 7.539E-06 & 3.05580M & 2.1838004 & 1.3128005 \\
\hline (RICID) & & & & & & & & & & & & \\
\hline 1 & 1 & 1 & 2,000E-01 & 5.000E000 & 8.000E*05 & 1,130.00 & \(0.0001+00\) & \(0.0000^{200}\) & 0.000E.00 & 5.2065-02 & -1.057e-01 & -1.200800 \\
\hline (RICID) & & & & & & & & & & & & \\
\hline Hiot & & & & & & & & & & & & \\
\hline 1570 & & & & & & & & & & & & \\
\hline
\end{tabular}

Sample Problem No. 3

A small heavy block sits on a large block that has low moduli and is fully deformable. After 1000 time-steps the plot shows the complex deformation pattern that develops, and the printout gives the internal stresses.

a. After 1,000 cycles

Figure A3. UDEC Sample Problem No. 3
```

START

```

```

PFOP MATz2 D= 20000 WNaIES MSaIES PRICz,1 GaIEO RLRK=iES
ROUND = 0.2
BLOCX 2,2 2,8 6,8 6,2
SPLIT 0,7 7,7
SRIT 4.564.59
DELETE 2578
SMLT S.S \& 5.59
DIFIE 5.5678
SLIT U.3 8,:
\#\#UCE 4.5 5.57 \& Hit:?
iHWNEE:^39 FOEF
uEN 2: ; % NuTj=i..
F:^こ: こう
umave o - 10
CHF1.11 NSS
TCOE lovo
wind us 0 ij
FLOT
FF:INT KLOTKS
STCF
ENB

```

ISTAK

\section*{}

MIS IS A STAKT RN


HROND: 0.2
) mocx \(2,2 \quad 2,0 \quad 1,8 \quad 0,2\)
JEMIT 0,7 7,7
ISPLIT 4.564 .59
JOETIE 2578
\(15 P L I T 5.565 .59\)
POELTE 5.5678
)SPLIT \(0,3 \quad 8,3\)
YOWLE 4.55 .578 mAT 2
HOWNE 2637 FDSF
JCEK 2637 MUOP1.1
IFTX 2623
rexaw \(0 \cdot 10\)
JDWF . 11 NOS

心にLE 1000
INITIAL TINESTER : 1.78YE-03
OKKDN CYCLE COWT \(=1000\)
JINDO 08010
PHLT
ipkint slocas

BLOCK DATA

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2006 & \multicolumn{3}{|l|}{CRLD-POINTS} & SIGA-11 & SIGA-12 & SITHA-23 & 5 \\
\hline 1237 & 411 & 642 & 897 & 1,730540 & 1,466E.02 & 7.710E+03 & 3.0005002 \\
\hline 1246 & 463 & 45 & 897 & 1.2278004 & 3.205+03 & -3.302E+02 & 5.000E+02 \\
\hline 125 & 411 & 897 & 45 & \(6.214 E+03\) & 2,237E+03 & 1.292E404 & 5,000E002 \\
\hline 606 & 46 & 807 & 615 & 4.3036 .03 & -1.475E+03 & 1.830E+04 & 5.000E +02 \\
\hline 1264 & 463 & 615 & 807 & 1,925+04 & 2,057E+03 & 1.563E+04 & 5.000E+02 \\
\hline 1273 & 46 & 45 & 007 & -9.704E+03 & 2.200E+03 & 2,066E+04 & 5.000E+02 \\
\hline 1262 & 463 & 607 & 495 & 5.391E.03 & 5,006E+03 & 1.779E+04 & 5,000E002 \\
\hline 760 & 47 & 624 & 615 & 1.545EN04 & 9.120E+03 & 3.927t+04 & \(5.000 t+02\) \\
\hline 1291 & 54 & 615 & 624 & 2.06SE+04 & 1.057e+04 & 3.726E+04 & 5,000E+02 \\
\hline 1300 & 47 & 669 & 624 & 4.390 E 103 & 1.770E+04 & 6.940E+04 & 5.0006.02 \\
\hline 1309 & 546 & 624 & 669 & 9,3405.03 & 1.909E+04 & -6.765E+04 & 5.000E+02 \\
\hline 709 & 546 & 945 & 615 & \(1.2635+04\) & \(6.2768+03\) & -4.003E+04 & 5.000\% +02 \\
\hline 1318 & 456 & 615 & 945 & -1.209E003 & 8,395E+03 & -3.397E+04 & 5,000E 002 \\
\hline 1327 & 546 & 696 & 96 & \(4.723 E 003\) & 7.464E.03 & 2,050E+04 & 5.000E402 \\
\hline 1336 & 456 & 945 & 696 & -9.323E-03 & 9,582E+03 & \(-2.263 E+04\) & 5.000E+02 \\
\hline 798 & 402 & 924 & 633 & 5.766E+03 & 6,847E+03 & 4.463E+04 & 5,000E+02 \\
\hline 1345 & 52 & 630 & 924 & 1.291E+04 & 2,786E+03 & \(-5.587 \mathrm{E}+04\) & 5.000E+02 \\
\hline 1354 & 402 & 436 & 924 & 5.751E+03 & 5.649E+03 & -4.074E+04 & 5.000E +02 \\
\hline 1363 & 52 & 924 & 438 & 1.300E+04 & 1.52 厄+03 & -6.152E+04 & 2.000t:02 \\
\hline 837 & 465 & 858 & 438 & 8.199E+03 & -1.807E +03 & -7.794E+04 & 5.000E+02 \\
\hline 1372 & 52 & 438 & 858 & 1.103E.04 & \(-4.521 E+03\) & h.72SE+04 & 5.000E+02 \\
\hline 1381 & 465 & 651 & 858 & \(1.242 \mathrm{E}+04\) & -1,628E+03 & -1.098E+04 & 5.000E+02 \\
\hline 1390 & 52 & 850 & 651 & 1.574E-04 & \(-4,408 \mathrm{E}+03\) & -6,978E+04 & 5.000E+02 \\
\hline 867 & 45 & 808 & 651 & 1,357E04 & 3.66TE403 & -7.963E+04 & 5.000E+02 \\
\hline 1399 & 505 & 651 & 808 & \(7.304 \mathrm{ENO3}\) & 2. 105E+03 & -8.088E+04 & 5.000f.02 \\
\hline 1400 & 465 & 607 & 868 & 8.461E+03 & 1.2338+04 & 1.172E+05 & 5,000E+02 \\
\hline 1417 & 505 & 888 & 608 & 1.606E.03 & 1.077E+04 & 1.192E+05 & 5,000E+02 \\
\hline 906 & 585 & 1031 & 651 & -2.166Ed04 & 1.078E+04 & -9.285E+04 & 5.000t+02 \\
\hline 1426 & 47 & 651 & 1031 & 1.129E+03 & 3.585E+02 & \(-6.562 E+04\) & 5.000E +02 \\
\hline 1435 & 585 & 669 & 1031 & -3.1505+03 & 1.518E+04 & -8.915E+14 & -.000E+02 \\
\hline 144 & 44 & 1031 & 669 & 1.9048404 & 4.754E+03 & 6.299E+04 & 5,000E402 \\
\hline 915 & 546 & 963 & 696 & 5,523E+03 & 5.752E+03 & \(-2.631 \mathrm{E}+04\) & 5,000E+02 \\
\hline 1453 & 420 & 696 & 963 & -1.074E004 & 2,403E+03 & -2.694EN04 & 5.000E+02 \\
\hline 1462 & 546 & 714 & 963 & 1.566E+04 & 8,837E+03 & \(-5.301 E+04\) & 5,0005+02 \\
\hline 1471 & 420 & 963 & 714 & -1.453E+02 & 5.490E+03 & -5.326E+04 & 5.000¢ 002 \\
\hline 660 & 474 & 981 & 669 & 2,086E+03 & 1.157E+04 & -7.531E+04 & 5,000E+02 \\
\hline 1400 & 546 & 669 & 981 & 9.050E403 & 8.270E+03 & -6.746E+04 & 5.000E+0\% \\
\hline 1409 & 474 & 714 & 981 & -1.3428+03 & 1,317E+04 & -6.578E+04 & 5,000E+02 \\
\hline 1498 & 546 & 981 & 714 & 6.402E+03 & 9,85SE+03 & -5.705E+04 & 5,000E+02 \\
\hline 954 & 585 & 678 & 669 & \(-3.874 E+03\) & 1,720E+03 & -8.871E+04 & 5,000E+02 \\
\hline 1507 & 474 & 669 & 678 & 5,960E+03 & 6.966E403 & -7.351E+04 & 5,000t+02 \\
\hline 1516 & 585 & 516 & 678 & -1.7622+03 & 6,091E+03 & -1.120E+05 & 5.000E+02 \\
\hline 158 & 474 & 478 & 516 & 7.578E03 & 1.133E.04 & -9.7168+04 & 5.000E402 \\
\hline 972 & 373 & 1070 & 68 & 1.101E+04 & 1.112E404 & 1.291E+05 & 5,000E+02 \\
\hline 1534 & 585 & 607 & 1070 & 7.505E+03 & 6.596E+03 & -1.042E+05 & 5,000E+02 \\
\hline 1543 & 373 & 516 & 1070 & -4.683E+03 & 5,536E403 & \(-1.396 E+05\) & 5.000E+02 \\
\hline 1552 & 585 & 1070 & 516 & \(\cdot 7.6508+03\) & 1.000E+03 & \(-1.1438+05\) & 5.000E402 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Crid.poin & COFOBS-LINX & \(X\) & Y & \(x, y\) velo & 5 & \(X, Y 80\) & S & M 463 \\
\hline 420 & 108 & 2.031E +00 & 3.000E+00 & -7.926E-02 & 4.3145-04 & 5.3918+02 & 4.995E+03 & 3.30350.02 \\
\hline 411 & 96 & \(2.1328+00\) & 6,982E+00 & 1.894E-01 & 1.646E-01 & 1.317E003 & 4.744E-03 & 3.3x<602 \\
\hline 402 & 120 & 6.152E+00 & 6.860E+00 & 2.3628-01 & 2.9115-01 & -5.9608,00 & 1.8035.04 & 3.356E402 \\
\hline 393 & 20 & 6,003E+00 & 2,999E+00 & 5,754E-03 & 4.124E-02 & 2.342t.02 & 9,0015012 & 3.353602 \\
\hline 47 & 0 & 4.007E 00 & 4.948E+00 & 3.200E-01 & 8.715E-02 & \(-1.4984+04\) & 4.850.40 & 1.3538.03 \\
\hline 429 & 504 & 4.135E+00 & 6.926E+00 & -2,463E-02 & 1,30\%\%-01 & 5.517E+03 & 6,3495003 & 6.645102 \\
\hline 456 & 534 & 2.072e+0 & 4.965t+0 & 1.007E-01 & 1.0535-01 & -8.403ta & 9.637E 003 & 6.667E02 \\
\hline 465 & 564 & 6.113E+00 & 4.911E+00 & 1.039E-02 & 3.367E-02 & -1.5185404 & 1.8453.03 & 6.36TEAO2 \\
\hline 474 & 594 & \(4.0478+\infty\) & 2.9798+00 & 1.472E-01 & 4.260E-02 & 5,0118.03 & 1.740E03 & 6,667EN2 \\
\hline 463 & 0 & \(3.1038+\infty\) & 5.954E+00 & 5.316E-02 & 2.25E-01 & -1.181E.04 & 2.2128404 & 1.33sisto \\
\hline 525 & 0 & 5.117E+00 & 5.904E+00 & 1.350E-01 & 2.0096-01 & 8.919E+02 & 1.699En04 & \(1.3558+03\) \\
\hline 546 & 0 & 3.050E +00 & 3,970E+00 & \(2.1608-01\) & -3.2055-02 & 4.336E+03 & 1.2258+04 & 1.3558403 \\
\hline 585 & 0 & 9.075E+00 & 3.960E+00 & 3.623E-01 & 4.2098-02 & 1.564EN04 & 6,3665i03 & 1.3535+0] \\
\hline 576 & 0 & \(4.105 \mathrm{t}+00\) & 5.97\%E+00 & 1,917E-02 & 6.850E-02 & 2.13TEN3 & 3.3005004 & \(1.3535+03\) \\
\hline 642 & 759 & \(3.1315+\infty\) & 6.950E+C0 & -2,439E-01 & \(2.264 E \cdot 02\) & -3.9146+03 & 1.560E003 & 6,66TE+02 \\
\hline 615 & 0 & 3.076E +00 & 4.962E+00 & 1.097E-01 & -1.158E-01 & -5.304E+103 & 1.524E.04 & 1.3535+03 \\
\hline 445 & 81. & 2.099E \(+\infty\) & 5.979E+00 & -1.985E-01 & 1.806E-01 & 2.903E+03 & 1.331E+04 & 6.667E+02 \\
\hline . 533 & 948 & 5.143E +00 & - \(0.87 Y \mathrm{E}+\infty 0\) & 5.093E-02 & \(2.085 E-01\) & 4,551E+03 & 2.712E+04 & 6.667E+02 \\
\hline 439 & 87\% & \(6.131 \varepsilon+\infty\) & 5.882E+00 & -6.894E-02 & 6.179E-02 & \(-5.830 \mathrm{E}+03\) & 9,543E+03 & 6,66TE+02 \\
\hline 651 & 0 & 5.047E +00 & 4. \(¢ 315+\infty\) & 1.561E-01 & 2.523E-02 & 6.198E+03 & 0.500E603 & 1.300E+03 \\
\hline 696 & 433 & 2.045E+00 & 3.972E+00 & 1.104E-01 & -9.888E-02 & -3.740E+02 & 7.3458 .03 & 6.667E+02 \\
\hline 69 & 0 & 4.063E+C0 & 3.973E+00 & 1.043E-01 & -7.978E-02 & 5.552E+03 & 2.5538+03 & 1.333E+03 \\
\hline 714 & Fio & 3.038E+00 &  & 1.138E-01 & 1.451E-02 & -7.430E+02 & 2,059E+04 & 6.867E+62 \\
\hline 687 & 1048 & \(6.092 \mathrm{~F}+00\) & 3.953E+00 & 3.82E-01 & -1.2JE-01 & -5.301E403 & 1.2305404 & 6.66JE+02 \\
\hline 516 & 1079 & 5.064E+00 & 2.447YE+00 & -1.107E-02 & -3.507E-02 & 2.5628+03 & 1.135E+04 & 6, \(667 \mathrm{E}+02\) \\
\hline 705 & 0 & 3.618E400 & 6.41E+00 & -4.517E-03 & -7.0525-02 & \(6.721 E+03\) & 1.3UE+04 & 6.66JE+02 \\
\hline 750 & 0 & 3.590E+00 & 5.44TE+00 & 1.190E-01 & 2,087E-01 & \(1.3525+04\) & 1.794E+03 & 6.66JE+02 \\
\hline 71 & 0 & 4.623E400 & 6.409E+00 & -1.665E-01 & -4.24E-02 & -4.707E+03 & \(1.5905+03\) & 6.667E +02 \\
\hline 828 & 0 & 4.600E+00 & 5.429E+00 & 4.420E-02 & 1.521E-01 & 2.907 E+03 & -3.691E+03 & 6.66TE022 \\
\hline 897 & 0 & 2.615E+00 & 6.465E+00 & 1,595E-01 & 1.291E-02 & -8.559E+02 & 3.712E003 & 6.665E+02 \\
\hline 807 & 0 & 2.505EA00 & 5.470E +00 & -1.319E-02 & 2.526E-01 & \(1.808 \mathrm{P}+04\) & \(2.077 E+02\) & 6.86JEA02 \\
\hline 624 & 0 & 3.5705+00 & 1.463E+00 & 1.749E-01 & 1.399E-02 & -1.304E+04 & 1.8205.04 & 6,66TE 02 \\
\hline 945 & 0 & \(2.586 E+00\) & 4.400E+00 & 2.162E-01 & -6, 600E-02 & 1.131E+C4 & -4.13TE+03 & 6.66/E+02 \\
\hline \(92^{4}\) & 0 & \(5.637 \mathrm{E}+00\) & 6.381E+00 & 2.520E-02 & 2.027E-01 & -9.123E+02 & 9.597E 003 & 6.667EN02 \\
\hline 850 & 0 & S.615E+00 & 9.405E+00 & 1.357E-01 & \(6.610 \mathrm{E}-02\) & -5.26E+03 & 8.272E+03 & \(6.367 E 02\) \\
\hline 808 & 0 & S.593E+00 & 4.436E+00 & 1.348E-01 & \(3.767 \mathrm{E}-01\) & -3.12t+03 & 2.541EN04 & \(6.667 E 02\) \\
\hline 1031 & 0 & 4.503E+00 & 4.451E+00 & -3.2358-02 & 1.506E-01 & -2.732E+04 & 1.156ENO4 & 6.667E+02 \\
\hline 963 & 0 & \(2.530 E+00\) & 3.450E+00 & 1.458E-01 & 1.104E-01 & 1.312E404 & 1.691EN4 & 6.667 t 02 \\
\hline 981 & 0 & \(3.5508+\infty\) & 3.406E \(+\infty\) & 1.379E-01 & S.038E-01 & -4.618E+03 & 1,021E.02 & 6,66JE+02 \\
\hline 678 & 0 & 4.562E+00 & \(3.462 E+\infty\) & 9.105E-02 & 1.550E-01 & -6.637E03 & 4,003i+03 & 6.607E 02 \\
\hline 1070 & 0 & 5,576E+00 & 3,47JE+C0 & -5.406E-02 & 1.040E-01 & 9.440E+03 & 2,305E+04 & 6,66TE+02 \\
\hline
\end{tabular}

Sample Problem No. 4

A projectile hits a beam and breaks it into two (fracture based on Griffith theory).

a. Initial State

b. After 1,000 Cycles

c. After 1,200 Cycles

d. After 2,000 Cycles

Figure A4. UDEC Sample Problem No. 4
```

STH゙T
FROF MAT=1 DENS=2OUO K=1,OES C=1,OES K'N=1,E'SB KS=1,EOB F=0.1
FFOF MAT:1 TF:324M,
GRAVITY v. -:O.
KOWD 0.1
DANP . }5\textrm{li}.\mathrm{ MLASS
DANF'.5 i6, INTENNAL
FRAC 0.10

```

```

Split 0,1 b,1
SFLIT 0,1,y 0,1,\dot{y}
SFLIT 1,5,-0,5 1,5,1,5
SLLT 4.5,-0,5 4,5,1,5
DELETE 1,5,4,5 © %.1
Solit 2.5,1,: 3.25,4
F゙LIT 3.2E,1,ダ4.4.1
joliT 2,05,1,47 3.75,2.43
Filit 3.55,1.5 2,55,2.05
FLIT 2,6,3.5 4,3.j5
DELETE 1,2.5 2,9,3.3
DELETE 3.75,5 1,%,3.3
DELTEE < O,3,4 1,4,2,4
DELETE E,3.55 \.,5,3.3%

```

```

i.NK}3,3 4.1.
F:X 1,3 0,1
LUAD:,5 2,S.55-0.3E4 -.,F5F4
VIED O
WINDO:0.7
floT
CYCLE 1000
VIEW TOU 1400 TON I WiN
HLCT
CYCLE 200
VIEN O 700 © ?'j0
PLDT
CYCLE \&NO
VIEW T00 1400 O 700
FLOT
FBCCNDLI
STOF
END

ISTART

THIS IS A START RLN
JPROP MAT: 1 DENS $=2000 ~ K=1,0 E 8 \quad G=1, O E S \quad K N=1, E O 8 \quad K S=1, E O 8 \quad F=0,1$
JPKOP MAI $=1$ TF=3240.
JCRNITY O. -10.
MOND 0.1
JDAP .5 16. MASS
STIFFNESS-DATPIMC TERM SET TO TED
DDAFP 5 16. INTEPNAL
HOEE - OHYY MASS-DAPINC USED
IFRAC 0.10
\BLOCX MAT $=1$ CONS $=4$ 1.,0. 1.,3.35 5., 3.35 5.,0.
SSPLIT 0,1 6,1
YSPLIT $0,1,9 \quad 6,1,9$
1SPLIT 1.5,-0.5 1.5,1.5
ISPLIT $4.5,-0.54 .5,1.5$
YDELETE 1.5,4.5 0,1
15FLIT 2.5,1.7 $\quad 3.25,4$
ISFLIT 3.25,1.8 4,4.1
ISPLIT 2.65,1.87 $3.75,2.48$
ISPLIT $3.15,1.8$ 2.55,2,85
ISPLII 2.6,3.5 4,3.05
SDELETE 1,2.5 1.9,3.3
DDELETE 3.75,5 1.9,3.3
SDELETE 2.6,3.4 1.4,2.4
IDELETE $3,3.75 \quad 3.15,3.35$
JOHACE $1,51,2$ SDEF
UINX 3,3 1,1,5
गFIX $1,50,1$
) ${ }^{\text {M }}$ SET FORCE OF PFOJECTILE
YOAD 1,5 2,3.35-0.3E4-0.95E4
SUIE 07007001400
JUIND 0607
SPLOT
ICYCLE 1000
INITIAL TIMESTEP $=6.325 E-04$
OFKEVT CYCLE CONT = 1000
NIEX 70014007001400
IPLOT
FCYCLE 200
INITIAL TIHESTEP $=6.325 E-04$
CURRENT CYCLE CONT $=1200$
WIEN 07000700
JPLOT
MCYCLE 800
IMITIAL TIKESTEP $=6.325 E-04$
ORREST CYCLE CONT : 2000
SUIEI 70014000700
SPLOT
IP OCCOR DLL

MOCA MSA

500	1	4	4.750E+00	5.000E-01	$1.0005+03$	1.042E+02	0.000E+N0	0.000E+00	0.000E+10	4.2035.03	2.317204	1.672F.03
(RICID)												
195	1	4	3.260E+00	2.373t+00	1.4402+03	1.43; $¢ 002$	-1.6STE.02	-2.353E-01	-9.901E-03	1.761E003	6.033203	-1.094E.02
(Ricib)												
76	1	4	1.973E+00	1.403E+00	3.600E-03	1.43E+03	-4.7nEE 02	8.43aE-02	-1.607-0t	-6.585E.03	2.078E04	1.20t.04
(sper)												
	± 11		1012	\pm	2 SIII	5112	5121	SI2	SAl1	5A12	961	

1
(KICIO)

ENTICT DATA

TJMTACT MAT CNOT			X, Y COCKDS.		FOKCE		DISFLCEKDT			
			NDOHL	SHEAK	NOTOHLL	SinEin				
1167	1	4			3.066E+00	1.780E+00	$2.3368+03$	$2.336 E+02$	--3.317t-05	-6.424E-04
619	1	4	$3.007 E+\infty$	1.680E.00	1.065t04	1.067E.03	$5.096 E-05$	-1.821E-02		
1424	0	0	2.948E+00	1.765E+00	5.25t+03	5.25E+02	1.002E-G4	-7.676E-03		
848	0	0	4.593E+00	9.44bE-01	2.41YE+04	-2.419E.03	-2.375E-j4	5.4125-02		
430	0	0	1.409E+00	4.445E-01	2.525.04	2.522F-03	-2.623E-04	-3,530E-02		
166	0	0	4.852E+00	1.011E+00	$0.0005+00$	$0.000[+\infty$	$2.155 E \cdot 02$	0.000E100		
144	0	0	1.110E+00	1.013E $\times 0$	$0.0005+00$	0.000Em0	2.600E-02	0.000E, 00		

COSNER COCROIMTES : IM X,Y ORDEX)

DOMAIN LINKED LISTS

DOMAIM 1189				
CONTACT	1167, BLOCXI	1373, BLACK2	195	COFOER/EDCE
COPNER	54, BLOCX	1373, R-LINK	1393	
CORUSR	239, BLOCX	1373, R-LINK	544	
COPESR	108, BLOCX	1373, R-LINX	237	
CONTACT	166, BLOCK1	1373, BLOCX2	500	EDCE/COFNER
CLPNER	120, BLOCX	500, R-LINX	536	
Caryer	57, BLOCX	500, R-LIN	120	
COPNER	532, BLOCX	500, R-LINX	37	
CONTACT	648, RLOCK1	500, Bl0CK2	1303	COFSER/EDCE
COPNER	1393, BLOCK	1373, R-LIN	108	
CONTACT	619, BLOCK1	76, BLOCK2	1373	COFAER/EDCE
Capter	709, BLOCK	76, R-LINK	215	
COPNER	1034, BLOCK	76, R-LIMK	709	
CONTACT	433, 8LOCX1	1, BLOCX2	76	COFTER/EDGE
COFNER	334, BLOCK	1, K-LIMX	96	
CORNER	358, BLOCK	1, R-LINK	334	
COFRNER	21, BLOCK	1, R-LINK	358	
CONTACT	144, BLOCK1	1, BLOCK2	76	COFHE:/EOSE
COFOUER	132, BLOCK	76, R-LIMK	1034	
COFNER	215, BLOCK	7b, R-LINX	132	
CONTACT	1429, ELOCX1	195, BLOCK2	76	COENER/COFNER
COFOER	121b, BLOCK	145, R-LINX	828	
CORNER	1240, BLOCX	195, R-LINK	1216	
COPNER	370, BLOCK	195, R-LINX	1240	
COFNER	1405, HLOCX	195, R-LINK	370	
CORNER	828, BLOCK	195, R-LINX	1405	
DOHAIN 937(CUTER EOUNDAFY)				
CONTACT	1167, BLOCK1	1373, RLOCK2	15	CORNER/EDCE
CONTACT	1429, FLOCK1	195, BLOCK2	76	COFNER/COFNER
CONTACT	619, BLOCK1	76, HLOCK2	1373	COFNES/ETGE
DONAIN 670				
CONTACT	648, BLOCK1	500, BLOCK2	1373	COFTER/EDGE
COPVER	556, BLOCK	500, R-LINK	532	
COMTACT	166, BLOCKI	1373, BLaCK2	500	EDGE/COFNER
DOHAIN 188				
CONTACT	433, BLOCK1	1, ELOCX2	76	COFATER/EDGE
COMTACT	144, BLOCK1	1, HLOCK2	76	COFNER/EDCE
COFNER	96, EASCK	1, R-LINK	21	

SHOCY LINEW LISTS

BLOC 1373					
COMSR	1393,	mocx	1373, R-LINX	100	
Caninct	619,	Macxi	76, 8LOCle	$13 / 3$	CORUSPRECE
contmet	1167,	rack!	1373, 10012	195	COPRESPIDDE
capls		MaCX	1373, R-LDE	1393	
COTER		Bucx	1373, R-LIK	54	
Capus		HLCX	1373, R-LINK	239	
COTTACT	166,	日H0CX1	1373, ELOCX2	500	EDCE/COFAER
Contict	640,	BLOCXI	500, 840CT2	133	COATER/EDCE
Hinx 500					
coner		mact	500, R-LINX	57	
CMTACT	646,	12006	500, BLOCK2	1373	COFSTR/EDGE
comer	536,	mocx	500, R-LINX	532	
contact	166,	Bucx	1373, MOCX 2	500	EDCE/COPAER
C00\%2R	120,	BLOCX	500, R-LINX	556	
C0002R		810ck	500, R-LINX	129	
BLOCT 195					
cores	378,	block	155, k-i.lnk	1240	
COFMEP	1405,	block	185, n -LINK	370	
COFOER	828,	BLOCX	195, k-LIN	1405	
COMTACT	1167,	block 1	1373, BLOCX2	195	COFTENEDCE
COMTACT	1424,	8LOCX1	195, BLCCX2	71	COFOER/CONNER
Cosuter	1216,	BLOCK	195, 8-LINX	828	
Comevit	1240,	BLOCK	145, K-LIMK	1216	
Blocy 76					
Crpers	709,	BLOCX	75, R-LINX	215	
Camer	1034,	BLOCX	76, R-LINX	709	
Cantact	433,	8LOCX1	1, MLOCX2	76	COHES/EDCE
COTIACP	144,	block!	1, BLOCX2	76	COTAESVEDC:
COMER	132,	Elocr	7h, R-LINK	1034	
C00NTR	215,	Blocx	76, R-LINK	132	
COHTACT	1429,	sa0ck 1	19, BLCCX2	76	COSATSNCORSSR
contact	619,	BLOCXI	?6, ELOCC2	1373	COPMER/ECEE
Brocs 1					
comer	334,	Bucx	1, R-LINX	96	
caner	358,	clack	1, R-LIM	334	
Cunes	21,	8lock	1, R-LIM	350	
CONTACT	144,	Klocx	1, MOCY2	76	COFATS/EDAE
Comerer		8100x	1, K-LINX	21	
CONTACT	433,	slock!	1, BLSCX2	76	COFOTE/EDCE
15708					

APPENDIX 8: THREE-DIMENSIONAL DISTINCT ELEMENT TEST-BED CODE (VERSION 1.0) USER'S MANUAL

Introduction

1. This manual describes the test-bed code, D3, written to evaluate features developed in the design of a new three-dimensional distinct element program. 03 is in skeleton form with several facilities provided for in the code but not completed at present. The input cormands and program operation follow closely those given for UDEC.

Input Commands

Notes: Upper-case letters in a command or parameter must be typed; the remaining letters are optional. Lower-case parameters stand for numeric values. Integers must be given for parameters starting with i, j, k, l, m, n. Real numbers may be given as integers, but not vice versa.
Input is free-format: parameters may be separated by any number of the following characters, in addition to spaces:

$$
=(1), 1
$$

An END command is required at the end of the input fi'e (after the STOP command). The first command must be START or PESTART.

* = comment line
+ = continuation line

Block : Material n Constitutive m xl yl 21 x2 y2 z2...
Create a rigid block of material number n and constitutive number m. Defaults are $n=1, m=1$, if m, n are omitted. The block's surface is divided into triangular faces. Vertex coordinates. ($x 1, y 1,21$), $(x 2, y 2, z 2)$, etc., are entered three at a time for
each triangular face. Continuation lines may be used but a set of three vertices defining a face must not be separated. Vertices must be ordered counterclockwise looking along the outward normal.
CHange $x 1 \quad x 2$ yl y2 $21 \quad z 2$ Sdef Material n Constitutive m All blocks with centroids lying within the range $x l<x<x 2$, $y l<y<y 2$ and $z l<z<z 2$ are changed to simply-deformable (Sdef) or may have material and constitutive numbers changed.
Cycle
Do n time-steps (cycle 0 is permitted as a check on data).
DAmping forit freq Mass
Stiffness
Internal
Viscous damping is applied in the form of Rayleigh damping. fcrit is the fraction of critical damping and freq is the center frequency. If a qualifier is not given as the third parameter, full damping is used. The word "Kass" eliminates the stiffnessproportional dashpots; and "Stiffness" eliminates the massproportional dashpots. The word "Internal" causes the specific damping to be applied to the 3 internal degrees of freedom of simply-deformable blocks.
Dump $n \mathrm{~m}$
Dump memory to printer from the main array from address n to address m. Internal pointers MFREE, JUNK, IBPNT and ICPNT are also printed. MFREE gives the highest memory location that is currently free.
End
Last input command.
fraction f
f is taken as the fraction of critical time-step to be used.
Gravity gx gy gz
Gravitational accelerations are set for the $x-, y$ - and $z-$ directions.
Print Blocks Faces Velocities VERtices Contacts
Data are printed on blocks, faces, block velocities, vertices and contacts, respectively.

```
PROperty Material n keyword value
    n
The first parameter must be the specification of the material number. Material properties are defined for material number \(n\).
Property keywords are:
Bulk(ork) bulk modulus
G shear modulus
Density density
KN contact normal stiffness
KS contact shear stiffness
Cohesion contact cohesion
friction contact friction coefficient
JKN joint normal stiffness
JKS joint shear stiffness
Jcoh joint cohesion
JFric joint friction coefficient
Restart
The program is restarted using data from the restart file.
RSet \(v\) ia ioff
The real value \(v\) is inserted in the main array at address ia, with offset ioff.
SAve
The current problem state is saved on the restart file.
STArt
The program does a cold start.
Stop
The run stops.
```

Parneters and Data Group

Offsets for block data array
Hotes the first integer in ench block array
.... (offert 0) is the block type maber, as follows: 1 rigid block 2 simply-deformale block

18 Pointer to next block in block list.
XF Pointer to one face in block's face list.
pat haterial number.
KCONS Constitutive nuaber.
xEODD Code nuber:
0 free block
Ifixed block
XCEN Start of triple pointer to x, y, z coordinates of block centroid.
100 Start of triple pointer to x, y, z components of velocity.
ITD Start of triple poimer to x, y, z coaponemts of angular velocity (caunterclocknise positive).
nWO Block volum.
KEM Block eass.
KGI Start of triple pointer to moment of inertia about x, y and 2 axes.
KEFX Start of triple pointer to x, y, z components of block centroid force sun.
UEFT Start of triple pointer to x, y, z components of block centroid coment sum.
10. Start of triple pointer to x, y, z components of load applied to block centroid.
18EX Extension pointer (to SDars dera)
IV Pointer to one vertex in block's virtex list
IV. Pointer to block's contact list

Oifsets for face data array
Hote: The first integer loffset 0) contrims
.... the value RFAC to denote a face.
DF Pointer to next face on this block.
We Pointer to host block.
XFI Pointer to first conmeting fexe.
WF2 Pointer to second comecting face.

103 Pointer to thind comacting face.

W1 Pointor to first vortes of this face.
N2 Pointer to sacend wertex of this face.
NW Pointer to thind verter of this face.
offeets for vertex data arroy
Hote: The filst integer (offere 0) contaims the value Mde to denote a vertex.

DN Pointer to ment wertex on this block
WX Start of triple pointer to x, y, z coordinates of vertex.

Offsets for contact data arrays

Note: The first integer (offset 0) contains
.... the value nCON so denote a contact
NC Pointer to next contact in global list
XCB1 slock 1 of block pair
yCO2 Block 2 of block pair
KOVI Pointer to next contast in block-l's list
1 1 COK Pointer to next contact in block-2's list
rocei cote number
(above offsets shared by degenerate conract)
KCVI Nearest vertex on block-1
KCVIEI 2 nal, wertex, block-1, for edge-edge comtact
KCV2 Nearest vertex on block-2
KCVEE2 2nd, vertex, block-2, for edge-edge comtact
YCX coordinate vector (triple)
KOARS unit noreal vertor (triple)
XCFW normal force (scalar)
MCFS shear force vertor (triple)
Logical unit numbers

UNIF Unit nmber for innut file.
UNaf Unit maber for output file.
UNW Unit nuber for general LO (e.g, restart).
UNP Unit mesber for plotted output,

```
Mmber of moxds in date arrays
MML Block
M/R Face
MNR Kertex
MON CONTzet
MNC Degmerate contact
Array linits
nilp Size of main arroy (IA).
MAT Naxien number of eaterials.
NCONS maximu constifutive numbers.
NTYP Numer of block types (rigid, 5DEF, etc.)
Head codes (contents of first integer in data groups)
MIC = 1 Rigid block
NSDEF = 2 Siaply-deformable block
FFAC face
MER Vertex
HCOH Contact
    Contact codes
REEE dege-to-edge
Hovs vertex-to-face
ILDC degenerate
```


Main Comon Plock Variables

```
LiNE(80) Duffer for current input lime in Al format,
LINEI(80) Buffer for naxt input lime.
UPNI(I) Pointer to start of pameter 1 in LINE ) after removal of blaks, etc.
WUll(3) vector of zero length
ERLAC .Thes. if an error has cecured,
SIFLAS . That, if the first input line has beon processed.
CDFLAC .TILEE, if the current lime is a contimation.
MCFLAC . TBRE, if the next line is a contimuation.
STPSN Inder of last capputed COTO in MON.
VIPR Error niaber.
Mix Pointer to list of spare mery groups.
FiRes Pirst unused meory address.
IMOCX Current block mubber.
LSTACK Stack pointer.
```

NETC	Ourrutly requested mader of cycles.
MCTOT	foral nubr of cyeles.
TD ${ }^{\text {ch }}$	fim-step.
FPMC	Aequented fractiom of critical cimestep.
IROME	plouting number, used in min rourtine.
MLIS	Outget line court.
NPACE	Ortpert page count.
STPCEN	mouting numer for contiountion line in CEN,
ALPM	Mass deping coeflicient.
EETA	Stiffnes daping coefficiert.
coun	
Cob	Daping factor (1,0/(1,0+ALPHARTVE1/2,0))
MT	BEATIER
APS	Internal ass dreping coofficient for simply-deformale blocks.
C18	Deping factor (1,0-ALPEPTOG/2,0)
COB	Daping factor (1.0/(1.04ALPgeTDE1/2.0))
DEPAS	PI/180
PI	3.14159
ATOL.	Distance between particles at mich a real contact is formed.
CTOL	
DTOL	Distance between particles at mich a degenerate contact is forned
ETOL	
FTLC	
IEPTI	Pointer to list of blocks,
ICPM	Pointer to list of contacts.
AMN(1)	Horal contact stiffness, material 1.
AMS(I)	Shear coatrict stiffress, material I.
AM(1)	Contact friction conficient, eatrial I.
Call ${ }^{\text {a }}$	Contact cohesion, material 1.
A ASN(I)	Joint normal stiffness, caterial I.
AKSJ(1)	doint shear stiffness, material I.
Muld	Joimt friction coefficient, eaterial I,
Cond (l)	Soint catresion, aterial I.
Descli)	genalty, entrmial I.
M1(${ }^{\text {(1) }}$	Quik modulus, aiterial If
Sespli)	Share medulus, mitrial If
	Lee constant, material I.
ALAR (1)	Lue constore, entrial I.
Cow(3)	vector of gravitational scceleration.
A()	Main array.

Sample Problem

Two tetrahedral blocks are created. The lower block is fixed, and the upper block allowed to come into contact with the upper vertex of the fixed block. Gravity acts in the -2 direction. Since the centroid of the upper block is not directly above the fixed vertex, the block translates and rotates, and develops shear forces at the contact as well us a normal force.

a. Initial State

Figure B1. D3 Sample Problem

```
START
PROP MAT:1 D=2000 M|=1ES KS=,5EO F:1,0
BLOCK mATs! (0,0,0) (1,0,0) (1,1,0)
+ (1,0,0) (1,0,1) (1,1,0)
+(0,0,0) (1,1,0) (1,0,1)
* (1,0,0) (0,0,0) (1,0,1)
BuCx maf=1 (0,-0.5,1) (1.5,-0.5,1) (1.5,1,1)
+(1.5,-0.5,1) (1.5,=0.5,3) (1,5,1,1)
+(0,-0.5,1) (1.5,1,1) (1.5,-0.5,3)
+(0,-0.5,1) (1.5,-0.5,3) (1.5,-0.5,1)
FIX010101
CRAN O O-10
CYC !
FKINT CON VEL
CYC S
FRINT CON UM
CYC IC
Frint con vil
STOP
50
```

this is a stamt ran

moce Mix: $(0,0,0)(1,0,0)(1,1,0)$
is $(1,0,0)(1,0,1)(1,1,0)$
$1+(0,0,0)(1,1,0)(1,0,1)$
$x+(1,0,0)(0,0,0)(1,0,1)$
$\operatorname{Max} \operatorname{MT}=1(0,-0.5,1)(1.5,-0.5,1)(1.5,1,1)$

1. $(1.5,-0.5,1)(1.5,-0.5,3)(1.5,1,1)$
is $(0,-0,5,1)(1,5,1,1)(1,5,-0,5,3)$
ro $(0,-0.5,1)(1.5,-0.5,3)(1.5,-0.5,1)$
>FLX010101
JCiw OO-10
ICTC:
PINESTES : 2.589 E .04
afoent crcle cant : 1
sprist con ver
COMTACT TFE HLOCK-1 BLOCX-2 X(1) X(2) X(3) FS(1) FS(2) PS(3) M
 17 (DDEDTRAF:) $\quad 1$

IOTC 5
THESTP: $2.5384-04$
COREDR CTCLS cant : 6
Herint cor vai

icre 10

apoert cras cant: 16
yprint ow vee

[^0]: * P. A. Cundall, "UnEC - A Generalized Distinct Element Program for Modeling Jointed Kock," Final Technical Report, Eurnoean Research Office, U. S. Army, London, 1980.

[^1]: *A "canonical" data structure is "a model of data which represents the inherent structure of that Jata." Martin, J. (1977), Computer Data-Base Organization, Prentice-Hall, Inc.

