
Development of Generic Field Classes for

Finite Element and Finite Difference Problems

DIANE A. VERNER1 , GREGORY L. HEILEMAN!, KENT G. BUDGE2
, AND ALLEN C. ROBINSON2

'Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131
2Computational Physics Research and Development (1431), Sandia National Laboratories, Albuquerque, NM 87185-5800

ABSTRACT

This article considers the development of a reusable object-oriented array library, as

well as the use of this library in the construction of finite difference and finite element

codes. The classes in this array library are also generic enough to be used to construct

other classes specific to finite difference and finite element methods. We demonstrate

the usefulness of this library by inserting it into two existing object-oriented scientific

codes developed at Sandia National Laboratories. One of these codes is based on finite

difference methods, whereas the other is based on finite element methods. Previously,

these codes were separately maintained across a variety of sequential and parallel

computing platforms. The use of object-oriented programming allows both codes to

make use of common base classes. This offers a number of advantages related to

optimization and portability. Optimization efforts, particularly important in large scien

tific codes, can be focused on a single library. Furthermore, by encapsulating machine

dependencies within this library, the optimization of both codes on different architec

tures will only involve modification to a single library. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

This research addresses the development of a

general-purpose object-oriented class library for

use in problems requiring operations across large

arrays. Potential applications include finite differ

ence or finite element approximations to differen

tial equations as well as general matrix libraries.

Large computational physics problems often

Received April 1993
Revised June 199.3

This research was performed in part at the l'niversity of
New Mexico under a grant from Sandia National Laboratories
(contract number AE-1518) and in part at Sandia National
Laboratories supported by the U.S. Department of Energy un

der contract number DE-AC04-76DP00789.

© 1994 by John Wiley & Sons, Inc.

Scientific Programming, Vol. 2, pp. 227-234 (1993)

CCC 1058-9244/94/040227-08

make use of either finite difference or finite ele

ment methods. Although these numerical tech

niques are quite different, they do share a similar

set of underlying array computations. Further

more, increasing the computational speed of the

software developed for these methods has, until

recently, focused on the use of vector supercom

puters. The availability of a variety of powerful

massively parallel computers must now also be

considered in developing code. Thus, portability

was one of the primary concerns addressed during

the development of the array library. This array

library takes advantage of the ease of access of

fered by workstations, as well as the high perfor

mance offered by vector and massively parallel ar

chitectures.

The porting of parallel codes to different plat

forms is often a prohibitive task because it typi

cally involves rethinking a problem entirely in or-

227

228 VERNER ET AL.

Class

Class Utility

A_ ___ B Uses/Has-A (implementation)

c ('""'") ___ o Uses/Has-A (interface)

r.: F Inheritance (compatible type)

G H Inheritance (new type)

FIGURE 1 Relationships used in class diagrams.

der to take advantage of a specific computing

platform or programming environment. Encapsu

lating machine-dependent portions of the code at

the lowest class levels improves portability by lim

iting the number of classes that must be modified

when porting to new architectures. To achieve

these goals a distributed object-oriented design

was used to develop this class library.

To capture both the functional and temporal

characteristics of a software system at various lev

els of abstraction, a number of object-oriented di

agramming techniques can be used. The structure

of the generic classes developed here will be de

picted using Booch's graphical object-oriented di

agramming techniques [1]. Booch introduced sev

eral diagrams that can be used to represent these

types of relationships. These include class, object,

module, state transition, and process diagrams.

The static structure of the classes developed in

this article is represented using the class diagram

relationships shown in Figure 1. A class utility,

shown in Figure 1 as a shadowed blob, is defined

as a collection of related subfunctions that are not

contained within a class. In Figure 1, class A's

implementation either uses one or more of class

B's methods in its computations, or class A con

tains class B within its data members. The next

relationship in Figure 1 shows class C's interface

using the resources of class D. By contrast, class E

inherits all of its attributes and methods from class

F. The addition of the line perpendicular to the

inheritance line indicates that derived class G is

not type compatible with base class H.

In Section 2, we describe the hydrocode appli-

cations that use the array library. Although these

applications motivated the development of the ar

ray library, they are by no means the only applica

tions that can make use of this package. Section 3

discusses the design of classes in the array library,

demonstrates their use in two existing scientific

codes, and then compares them to the original

field classes used in one of these codes.

2 HYDROCODES

Simulation codes that model phenomena such as

the impact of solid bodies at high velocities or the

effect of high explosive detonation are commonly

termed hydrocodes [2]. Sandia National Labora

tories has developed two hydrocode packages

called PCTH and RHALE + +. PCTH is based on

a finite difference method, whereas RHALE+ +is

based on a finite element method. Because the

class library discussed here was developed to sup

port these existing codes, this section will briefly

consider these codes and point out their differ

ences.

2.1 Existing Hydrocodes

Finite difference methods involve converting par

tial differential equations into algebraic equa

tions. PCTH is a parallel hydrocode based on a

finite difference methodology to approximate the

equations of mass, momentum, and energy con

servation. PCTH is based on a three-dimensional

fixed-mesh finite difference method in which the

material flows through the mesh. A two-step ex

plicit solution scheme is used to integrate the

equations of motion forward in time. The first step

is a Lagrangian step in which material motion is

calculated. Conservation of mass, momentum,

and energy must be satisfied across this step. The

second step is a remap step in which the Lagran

gian state quantities are mapped back to the fixed

mesh. This two-step approach makes it easier to

handle multiple materials in the simulation [3 J.
Finite element methods are also used to ap

proximate the solution of partial differential equa

tions. In finite element methods, each region of

interest is subdivided into finite sets of elements

connected together at a set of points called nodes.

In these methods, the solution is defined every

where using a piecewise-polynomial approxima

tion [4 J. RHALE + + is a hydrocode that uses a

finite element method coupled with an arbitrary

Lagrangian-Eulerian mesh motion. RHALE++

solves the equations of motion on an unstructured

finite element mesh. This approach allows the

simulation of odd-shaped structures.

Sequential codes for shock wave physics simu

lation have been separately developed for both of

these numerical approaches using the object-ori

ented programming language C++. These codes

are currently in use at Sandia National Laborato

ries [5]. Although these two numerical ap

proaches are quite different, software modules

that are capable of representing scalar, vector,

and tensor fields are fundamental components in

both approaches. Our design captures the com

monality of these fields and encapsulates machine

dependencies. The advantage offered by this ap

proach is that the implementations of both nu

merical techniques can share a common set of un

derlying software classes, and the specific

numerical class libraries can then be built on top

of these base classes through the use of inheri

tance. The time spent on future low-level effi

ciency improvements and machine optimizations

can then be shared immediatelv bv all derived

classes and thus all codes (PCTH and

RHALE + +) that use these base class libraries.

This approach greatly simplifies the porting of

both codes to different computers because only a

single library of base classes needs to be modified.

2.2 Parallel Object-Oriented
Hydrocode Simulations

Hydrocode simulations are typically compute in

tensive and also require large amounts of memory.

To decrease execution time, these programs are

often run on parallel or vector machines. For par

allel computers, memory and processing time are

divided among the processors. The simulation

must be designed in such a manner as to allow

parallel processing. Hydrocodes are well suited for

the data parallel programming model because

their algorithms typically make use of large arrays.

Parallelism in the data parallel model is ex

ploited by performing simultaneous operations

across large sets of data, rather than by having

multiple threads of control [6]. For example, a

single program statement may simultaneously add

all of the elements of two large data sets. This style

of programming is well suited for fine-grained sin

gle instruction multiple data (SL\1D) machines. In

a SIMD computer, the processors operate in lock

step using a global clock. In addition, data parallel

algorithms have been successfully used on me

dium-grained multiple instruction multiple data

DEVELOP.\1EYf OF GE:\IERIC FIELD CLASSES 229

(MIMD machines). Data parallel algorithms in

tended for MIMD computers are often referred to

as single program multiple data (SPMD) [7]. On

an MIMD computer, data parallel operations are

performed by synchronizing all processors after

each step or several small steps. Synchronization

and communication must be explicitly performed

by the programmer but overall communication

costs decrease because several operations may be

executed between communication events.

PCTH is implemented using an SPMD coding

style. Using this approach, PCTH decomposes the

problem domain into rectangular blocks. Addi

tional cells on each block edge, called ghost cells,

are created to allow data from neighboring blocks

to be stored. As shown in Figure 2, these blocks

are called hydroblocks. Each processor is allo

cated one or more hydroblocks. Each hydroblock

contains vector, scalar field, and vector field ob

jects. Single dimensional quantities such as initial

momentum and gravity are stored as VECTORs.

Multidimensional values such as cell temperature,

volume, and pressure are stored as cell-centered

fields in a class called CC_FIELD. In a cell-cen

tered field, the grid is fixed in space and the values

at the center of each cell are mapped to the indices

of the array variables. In contrast, in a face-cen

tered field the values on the face of each cell are

mapped to the indices of the arrays. Velocity is

stored as an instance of the class FCV_FIELD

(face-centered vector field), which is an array or

vector of face-centered fields. The state of the ma

terials used in the simulation is contained in ob

jects of the class MATERIAL. Each hydro block ob

ject also contains information concerning required

output. When RHALE+ + is parallelized a similar

SPMD programming style will be used.

3 GENERIC FIELD CLASS DESIGN

As stated previously, large physics simulations

rely heavily on the use of a basic set of mathemati

cal operations. At the lowest levels of calculations,

element-by-element operations are performed on

ordered sets of values. 1\;o topology or calculus is

included at this level. These operations are encap

sulated into a FIELD class for full precision float

ing point numbers and an !FIELD class for inte

ger data elements. It should be noted that the

usage of field as our class name is not strictly cor

rect, because the concept of a field implies topol

ogy and calculus, and our generic classes have

neither. However, the names ORDERED_SE-

230 VERNER ET AL.

.....................

I '·· (I "")
,, -.. ,_

(/··-··· :
.... ...,\ Frame /

:. J

......,
'· ... Out put Manaqe r/ ·-· - ,

• PertTUtat.or .•

···.1 :
········-···-·

··\ .. -........ i .. ·· ···:
'... Plotfile (

I • :

.... /·····
··.... Mllterial •••

····: ;' 1

···--·········

•• //'""··-·-.. o::; ... ;;:::=========:i
'.. ccv_rield l:

"j l
····-······--·J

/········-····· ••• 4

(
• , Vector

: :

.......................
l .. ,

.-t----------r·~ Block ·-..')

······.. r
l r-···-J

.. ······-~·-·
l ·

< ... si.. ;:

"• I

i.J

.....................
....

.. ·
'····~. cc_F1eld .l I ,

)···········-...

"·· •••• {c_riold (

··-····-·····"
l J

:·····-......... .

.. · '··· ("l

••• ~cv_rield :/
..
............ ·

............. ,... .
.. ··
'·· rev vector /

l J
··..... cc Irield /

"•: - i ···\ .. ~J
:.. :

FIGURE 2 PCTH hydroblock class structure.

T_OF_DOUBLE and ORDERED_SET_OF_INT are

awkward and the use of ARRAY seemed likelv to

lead to name clashes with existing programs. In

this article, the terms FIELD and IFIELD will refer

specifically to the individual classes. We will also

use the term field to refer generically to both the

FIELD and IFIELD classes.

In developing scalar, vector, and tensor field

classes, there are two approaches for selecting the

structure of the data: arrays of objects or objects

of arrays. In the arrays of objects approach the

vector or tensor object is laid out sequentially in

memory whereas in the objects of arrays approach

each of the components of the vector or tensor

objects is laid out sequentially in memory. In this

approach, an array of data elements (or a pointer

to an array) is selected as the object attribute.

RHALE+ +originally used an array of objects ap

proach but difficulties in porting and optimizing

became apparent. PCTH always utilized the ob

ject of arrays approach in order to leave open the

possibility of porting to SL\1D architectures.

Therefore, the objects of arrays approach was

adopted for RHALE ++,which led to the develop

ment of a new field class. This field class has now

been adopted by the PCTH project.

3.1 Original PCTH Field Class

Figure 3 shows the class diagram for the original

PCTH field class library. In this library, the field

classes contain all the mathematical operations

and memory management functions required for

their respective classes. The FIELD class contains

a dynamic array of floating point data elements,

an integer pointer to a reference counter, and a

pointer to the topology class SIZE. The IFIELD

class uses a dynamic integer array instead of a

floating point array. The SIZE class contains data

that specifies the dimension of the field class and

the size of the array in each axis. Both field classes

have a HAS-A relationship with the SIZE class.

That is, one of the members of the class is a

pointer to a SIZE object. A USES-A relationship

, ·····················~

••••• •• , !Field /

: :

•' .::·.·.: (•••••• : File_IO

: '

FIGURE 3 Original PCTH field class library class dia

gram.

exists between the field classes and the FILE_IQ

class. The field classes both call FILE_ IO mem

ber functions when it is necessary to perform file

based 1/0.

3.2 New Field Class

Figure 4 depicts the new field class library struc

ture developed for RHALE + + and PCTH. As

with PCTH, the floating point FIELD and integer

!FIELD classes are used as the base classes for

classes that contain topological information.

These field classes have a HAS-A relationship

with either the SNL_FIELDNODE class or the

SNL_IFIELDNODE class, which are discussed in

more detail below. That is, one of the data mem

bers in the field classes is a pointer to the appro

priate SNL.....FIELDNODE or SNL_IFIELDNODE

class. The term node will be used to generically

refer to the SNL.....FIELDNODE and SNL_

IFIELDNODE classes. The data members of the

node classes consist of a reference counter, a

length value, and a dynamic array of either integer

or floating point numbers.

For efficiency reasons, the field class uses dy

namically allocated memory and the reference

counting memory management technique in order

DEYELOP~fE!\T OF GE~ERIC FIELD CLASSES 231

to decrease the number of heap accesses. This is

especially important on certain computers, such

as the Cray, where heap accesses are very expen

sive. This leads to the use of an envelope/letter

class idiom [8]. In this idiom, the envelope class

handles all message requests from the external

world. The letter class is completely encapsulated

within the envelope class. In this project, the field

class acts as the envelope class and the node class

acts as the letter class. The advantage of this id

iom is in the division of memory management and

mathematical operations. Specifically, the enve

lope class handles all mathematical operations

and reference counting. The letter class is respon

sible for memory management functions. These

node classes then interface with the memory man

ager to perform dynamic memory allocation and

deallocation.

As shown in Figure 4, the field classes have a

USES-A relationship with two class utilities:

GENFUN and FAST. The GENFUN class utility con

tains generic procedures that perform a few simple

integer and floating point operations, as well as

some file read and write operations. The FAST

. ······ ,, __

'· Field /

........... J

......... ..····-......... ······· ·····.. ... ···-...
. l ·

(~L_IFieldNode/ ~ Fast / <~.~L_FieldNoae)

L~ ,_j ;r-j
"··"·· /

< 1 .. ~~:~~~:?
FIGURE 4 New generic field class library class dia

gram.

232 VERNER ET AL.

class utilitv contains vectorizable functions used

to perform mathematical and logical operations

on the field class members. This allows mathe

matical operations to be easily ported to many

new machines and optimized without affecting the

field classes. The field classes call the required

vector functions from the appropriate overloaded

operators or methods.

The new field class differs from the original

PCTH class in several significant ways:

1. An envelope/letter class idiom is used. As

discussed above, this leads to a better divi

sion between memory management and

mathematical operations.

2. The field class contains no topological in

formation about memory layout. This infor

mation is contained in derived classes, pro

viding a more general and reusable set of

base classes.

3. Memory allocation functions are contained

in a separate class, thus allowing different

memory management schemes to be imple

mented without affecting the field class de

sign.

4. Vectorizable mathematical operations are

contained in a separate class utility file that

allows optimization of these operations in a

different language, and also allows ma

chine-dependent functions to be moved to a

separate file from the field classes. The field

classes then become machine independent.

5. A complete set of operations (not just those

required by PCTH and RHALE + +) have

been implemented in these classes to en

hance reusability in other applications.

In general, the PCTH field classes were simpler

and easier to implement, but also more applica

tion specific and less complete, making them

harder to reuse in other applications. Several im

portant but potentially conflicting criteria were

weighted when developing the new field classes:

reusability, memory usage, execution time, and

portability.

3.2. 7 Reusability

The methods developed for the field class library

are intended to be complete and extendable so

that the library can be used in many different ap

plications. Care was taken to create the minimum

number offunctions necessary, to avoid having an

unmanageable class library. These classes per-

form array-scalar and array-array operations for

both integers and floating point numbers. C++

allows the use of both functions and overloaded

operators in its classes. There are 33 overloadable

arithmetic operators defined inC++ [9]. Of these

only the increment and decrement operators were

not implemented because their functionality can

be achieved using the binary plus and minus op

erators. The other functions required for the field

classes can be divided into several categories: trig

onometric, other transcendental functions, gen

eral purpose, and Fortran-like functions. There

are also some specialized functions that either

simulate hardware commands found on certain

machines or are widely used in both finite element

and matrix applications. All of the functions used

by these field classes are detailed in [10]. Other

application-specific functions are implemented in

derived classes. For example in PCTH, the

FC_FIELD and CC_FIELD classes, which are de

rived from fields, implement various mean, differ

ence, and product functions required for this ap

plication. A mechanism to implement these

additional functions has been provided through a

protected method that returns a pointer to the

start of the data element arrav.

3.2.2 Memory Usage

In general, hydrocodes use large amounts of mem

ory that must be managed effectively to provide an

efficient simulation. The type of computer being

used to perform the simulation will affect the

memory management requirements. Both the pro

gram executable size and the amount of program

data used can affect performance. On computers

with virtual memory capability, program data and

executable segments may be swapped out to disk

and large problems can (at least in principle) be

run. However, the amount of dynamic memory

used will significantly affect the speed of the simu

lation because more operations are being per

formed and more virtual memory accesses will oc

cur. The processing nodes of many parallel

computers have a fixed memory size that requires

minimal executable size in order to maximize user

memory for efficient scaling.

Dynamic memory allocation is performed by

the field class and for efficiency reasons memory

management is not relegated to the operating sys

tem. The memory manager functions, which are

called by the field class, limit heap accesses by

creating a free store pool of pointers to unused but

allocated memory. Because these functions are

not strictly part of the field class, they will not be

discussed any further in this article. Refer to

Verner [10] for a discussion of the memorv man

ager. There are several techniques that can be

used by the field classes to reduce the amount of

dynamic memory used. Cnfortunately, these re

quire that the user be aware of what is happening

in the field class in terms of memory in the over

loaded operators. Overloaded operators cause the

creation of several unnecessary temporary vari

ables [5]. For example, the expression A = B +

C * D creates four temporary variables, two per

operation, when no memory management tech

niques are applied. There are two techniques that

can be applied by the application programmer to

decrease the number of temporary variables that

exist at any particular time. The first technique

involves rewriting the above expression as:

A= C * D

A +=B

This method eliminates two of the temporary vari

ables, and if used in conjunction with reference

counting will eliminate a third temporary. Unfor

tunately, this method forces an unnatural pro

gramming style. The application programmer

must also force temporary objects to go out of

scope so they can be deallocated. This can be

done in the application code by adding scope de

limiters "{ }" around code segments.

3.2.3 Minimizing Execution Time

There are many techniques used to improve time

efficiency inC++ programs, such as inline func

tions, reference counting, and machine optimized

code. lnline functions can be used to reduce func

tion call overhead by expanding the inline func

tion code at the location of the function call but

generally at the expense of increased code size.

Therefore, inline functions were only used on

small functions that are called often. Array opera

tions are optimized by writing vectorizable or as

sembly language functions. These techniques lead

to machine and compiler dependent code, and are

supported by the modular development used

here.

Compared to the previous PCTH implementa

tion, the new field classes have yielded similar ex

ecution times but a slightly larger executable size.

The increased executable size is due to the larger

number of functions that have been implemented

in order to develop the complete set of base

DEVELOPME:'\T OF GENERIC FIELD CLASSES 233

classes necessary for reusability. This penalty can

be mitigated somewhat by splitting the field class

and their FAST class utility functions into sepa

rately compiled files, and then creating a library

that contains these files.

Reference counting is another method, used by

the field classes, for minimizing unnecessary

copying of data and thus greatly improving effi

ciency. A nice feature of this approach is that it is

completely hidden from the user. Reference

counting is a technique where several items point

to one memory location rather than creating a new

item for each reference [8].

3.2.4 Portability

As mentioned previously, one of the primary goals

of PCTH and RHALE+ + is ease of portability.

Specifically, these simulations must be easily por

table to many different architectures including

single processor workstations and workstation

networks, MIMD massively parallel processors,

vector computers, and potentially even SIMD

computers. Portability can be enhanced by isolat

ing machine-dependent portions of the code from

machine-independent portions. This is not to say

that all the code will run efficiently on all com

puters. Instead, the subset of the code that bene

fits from optimization, such as the vector math

libraries, is stored in routines at the lowest level in

the hierarchy to hide the details behind underlying

generic objects [2]. This machine-dependent

code is compiled according to preprocessor state

ments that specify the specific code for that ma

chine. This effectively separates the physics por

tions of the code from the architectural details. In

the new generic field class, the FAST class utility

provides this machine-dependent code. It is being

ported to and optimized on the nCCBE2, Intel

Gamma, and the Intel Paragon massively parallel

computers, as well as the CRA Y vector computers

and SUN workstations. Future machine-specific

optimization for these individual machines can fo

cus on the FAST class utility.

4 CONCLUSIONS

In this research we have successfully developed a

reusable field class structure that is being used in

two different computational physics codes; one

code uses a finite difference method whereas the

other code uses a finite element method. This is of

critical importance to the PCTH and RHALE+ +

development teams as all future development of

234 VERNER ET AL.

the field libraries will be synergistic to both

projects. Great care has been taken to make these

classes extendable (to aid in adding new function

ality), and easily portable to new architectures. It
is also worth noting that a modification of these

classes has been proposed for inclusion in the

Al\"SI C++ standard library [11].

ACKNOWLEDGMENTS

We would like to extend our appreciation to James

Peerv for his technical efforts.

REFERENCES

[1 J G. Booch, Object Oriented Design: With Applica

tions. Redwood City, CA: Benjamin/Cummings,

1991.

[2] A. C. Robinson, A. Ames, H. E. Fang, D. Pavla

kos, C. T. Vaughan, and P. Campbell, "Massively

parallel computing, C++ and hydrocode algo

rithms," Comput. Civil Eng., pp. 519-526,

1992.

[3] J. M. McGlaun and S. L. Thompson, "CTH: A

three-dimensional shock wave physics code, Int.

]. Impact Eng., vol. 10, pp. 351-360, 1990.

[4 J A. Davies, The Finite Element Method: A First

Approach. New York: Oxford Cniversity Press,

1980.

[5] K. G. Budge, J. S. Peery, and A. C. Robinson,

US£WJX C++ Technical Conference Proceed

ings. Portland, Oregon: USENIX Association.

[6] W. D. Hillis and G. L. Steele, Jr., "Data parallel

algorithms," Communications ACM, vol. 29, pp.

1170-1183, 1986.

[7] M. J. Quinn and P. J. Hatcher, "Data-parallel

programming on multicomputers," IEEE Soft

ware, vol. 7, pp. 69-76, 1990.

[8] I. Coplien, Advanced C++ Programming Styles

and Idioms. Reading, MA: Addison-Wesley,

1992.

[9] B. Stroustrup, The C++ Programming Language

(2nd ed.). Reading, :\1A: Addison-Wesley, 1991.

[1 0 J D. Verner, "Developing generic classes for finite

element and finite difference problems." ~1aster· s

thesis, Department of Electrical and Computer

Engineering, University of New Mexico. Albu

querque, :'-lew Mexico, 1993.

[11] K. G. Budge, Proposal for a Numerical Array Li

brwy, ANSI X3J16-93-0042/WG21-N0249,

1993.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

