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ABSTRACT 

This article considers the development of a reusable object-oriented array library, as 

well as the use of this library in the construction of finite difference and finite element 

codes. The classes in this array library are also generic enough to be used to construct 

other classes specific to finite difference and finite element methods. We demonstrate 

the usefulness of this library by inserting it into two existing object-oriented scientific 

codes developed at Sandia National Laboratories. One of these codes is based on finite 

difference methods, whereas the other is based on finite element methods. Previously, 

these codes were separately maintained across a variety of sequential and parallel 

computing platforms. The use of object-oriented programming allows both codes to 

make use of common base classes. This offers a number of advantages related to 

optimization and portability. Optimization efforts, particularly important in large scien

tific codes, can be focused on a single library. Furthermore, by encapsulating machine 

dependencies within this library, the optimization of both codes on different architec

tures will only involve modification to a single library. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

This research addresses the development of a 

general-purpose object-oriented class library for 

use in problems requiring operations across large 

arrays. Potential applications include finite differ

ence or finite element approximations to differen

tial equations as well as general matrix libraries. 

Large computational physics problems often 
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make use of either finite difference or finite ele

ment methods. Although these numerical tech

niques are quite different, they do share a similar 

set of underlying array computations. Further

more, increasing the computational speed of the 

software developed for these methods has, until 

recently, focused on the use of vector supercom

puters. The availability of a variety of powerful 

massively parallel computers must now also be 

considered in developing code. Thus, portability 

was one of the primary concerns addressed during 

the development of the array library. This array 

library takes advantage of the ease of access of

fered by workstations, as well as the high perfor

mance offered by vector and massively parallel ar

chitectures. 

The porting of parallel codes to different plat

forms is often a prohibitive task because it typi

cally involves rethinking a problem entirely in or-
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FIGURE 1 Relationships used in class diagrams. 

der to take advantage of a specific computing 

platform or programming environment. Encapsu

lating machine-dependent portions of the code at 

the lowest class levels improves portability by lim

iting the number of classes that must be modified 

when porting to new architectures. To achieve 

these goals a distributed object-oriented design 

was used to develop this class library. 

To capture both the functional and temporal 

characteristics of a software system at various lev

els of abstraction, a number of object-oriented di

agramming techniques can be used. The structure 

of the generic classes developed here will be de

picted using Booch's graphical object-oriented di

agramming techniques [ 1]. Booch introduced sev

eral diagrams that can be used to represent these 

types of relationships. These include class, object, 

module, state transition, and process diagrams. 

The static structure of the classes developed in 

this article is represented using the class diagram 

relationships shown in Figure 1. A class utility, 

shown in Figure 1 as a shadowed blob, is defined 

as a collection of related subfunctions that are not 

contained within a class. In Figure 1, class A's 

implementation either uses one or more of class 

B's methods in its computations, or class A con

tains class B within its data members. The next 

relationship in Figure 1 shows class C's interface 

using the resources of class D. By contrast, class E 

inherits all of its attributes and methods from class 

F. The addition of the line perpendicular to the 

inheritance line indicates that derived class G is 

not type compatible with base class H. 

In Section 2, we describe the hydrocode appli-

cations that use the array library. Although these 

applications motivated the development of the ar

ray library, they are by no means the only applica

tions that can make use of this package. Section 3 

discusses the design of classes in the array library, 

demonstrates their use in two existing scientific 

codes, and then compares them to the original 

field classes used in one of these codes. 

2 HYDROCODES 

Simulation codes that model phenomena such as 

the impact of solid bodies at high velocities or the 

effect of high explosive detonation are commonly 

termed hydrocodes [2]. Sandia National Labora

tories has developed two hydrocode packages 

called PCTH and RHALE + +. PCTH is based on 

a finite difference method, whereas RHALE+ +is 

based on a finite element method. Because the 

class library discussed here was developed to sup

port these existing codes, this section will briefly 

consider these codes and point out their differ

ences. 

2.1 Existing Hydrocodes 

Finite difference methods involve converting par

tial differential equations into algebraic equa

tions. PCTH is a parallel hydrocode based on a 

finite difference methodology to approximate the 

equations of mass, momentum, and energy con

servation. PCTH is based on a three-dimensional 

fixed-mesh finite difference method in which the 

material flows through the mesh. A two-step ex

plicit solution scheme is used to integrate the 

equations of motion forward in time. The first step 

is a Lagrangian step in which material motion is 

calculated. Conservation of mass, momentum, 

and energy must be satisfied across this step. The 

second step is a remap step in which the Lagran

gian state quantities are mapped back to the fixed 

mesh. This two-step approach makes it easier to 

handle multiple materials in the simulation [3 J. 
Finite element methods are also used to ap

proximate the solution of partial differential equa

tions. In finite element methods, each region of 

interest is subdivided into finite sets of elements 

connected together at a set of points called nodes. 

In these methods, the solution is defined every

where using a piecewise-polynomial approxima

tion [ 4 J. RHALE + + is a hydrocode that uses a 

finite element method coupled with an arbitrary 

Lagrangian-Eulerian mesh motion. RHALE++ 



solves the equations of motion on an unstructured 

finite element mesh. This approach allows the 

simulation of odd-shaped structures. 

Sequential codes for shock wave physics simu

lation have been separately developed for both of 

these numerical approaches using the object-ori

ented programming language C++. These codes 

are currently in use at Sandia National Laborato

ries [ 5]. Although these two numerical ap

proaches are quite different, software modules 

that are capable of representing scalar, vector, 

and tensor fields are fundamental components in 

both approaches. Our design captures the com

monality of these fields and encapsulates machine 

dependencies. The advantage offered by this ap

proach is that the implementations of both nu

merical techniques can share a common set of un

derlying software classes, and the specific 

numerical class libraries can then be built on top 

of these base classes through the use of inheri

tance. The time spent on future low-level effi

ciency improvements and machine optimizations 

can then be shared immediatelv bv all derived 

classes and thus all codes (PCTH and 

RHALE + +) that use these base class libraries. 

This approach greatly simplifies the porting of 

both codes to different computers because only a 

single library of base classes needs to be modified. 

2.2 Parallel Object-Oriented 
Hydrocode Simulations 

Hydrocode simulations are typically compute in

tensive and also require large amounts of memory. 

To decrease execution time, these programs are 

often run on parallel or vector machines. For par

allel computers, memory and processing time are 

divided among the processors. The simulation 

must be designed in such a manner as to allow 

parallel processing. Hydrocodes are well suited for 

the data parallel programming model because 

their algorithms typically make use of large arrays. 

Parallelism in the data parallel model is ex

ploited by performing simultaneous operations 

across large sets of data, rather than by having 

multiple threads of control [ 6]. For example, a 

single program statement may simultaneously add 

all of the elements of two large data sets. This style 

of programming is well suited for fine-grained sin

gle instruction multiple data (SL\1D) machines. In 

a SIMD computer, the processors operate in lock

step using a global clock. In addition, data parallel 

algorithms have been successfully used on me

dium-grained multiple instruction multiple data 
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(MIMD machines). Data parallel algorithms in

tended for MIMD computers are often referred to 

as single program multiple data (SPMD) [7]. On 

an MIMD computer, data parallel operations are 

performed by synchronizing all processors after 

each step or several small steps. Synchronization 

and communication must be explicitly performed 

by the programmer but overall communication 

costs decrease because several operations may be 

executed between communication events. 

PCTH is implemented using an SPMD coding 

style. Using this approach, PCTH decomposes the 

problem domain into rectangular blocks. Addi

tional cells on each block edge, called ghost cells, 

are created to allow data from neighboring blocks 

to be stored. As shown in Figure 2, these blocks 

are called hydroblocks. Each processor is allo

cated one or more hydroblocks. Each hydroblock 

contains vector, scalar field, and vector field ob

jects. Single dimensional quantities such as initial 

momentum and gravity are stored as VECTORs. 

Multidimensional values such as cell temperature, 

volume, and pressure are stored as cell-centered 

fields in a class called CC_FIELD. In a cell-cen

tered field, the grid is fixed in space and the values 

at the center of each cell are mapped to the indices 

of the array variables. In contrast, in a face-cen

tered field the values on the face of each cell are 

mapped to the indices of the arrays. Velocity is 

stored as an instance of the class FCV_FIELD 

(face-centered vector field), which is an array or 

vector of face-centered fields. The state of the ma

terials used in the simulation is contained in ob

jects of the class MATERIAL. Each hydro block ob

ject also contains information concerning required 

output. When RHALE+ + is parallelized a similar 

SPMD programming style will be used. 

3 GENERIC FIELD CLASS DESIGN 

As stated previously, large physics simulations 

rely heavily on the use of a basic set of mathemati

cal operations. At the lowest levels of calculations, 

element-by-element operations are performed on 

ordered sets of values. 1\;o topology or calculus is 

included at this level. These operations are encap

sulated into a FIELD class for full precision float

ing point numbers and an !FIELD class for inte

ger data elements. It should be noted that the 

usage of field as our class name is not strictly cor

rect, because the concept of a field implies topol

ogy and calculus, and our generic classes have 

neither. However, the names ORDERED_SE-
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FIGURE 2 PCTH hydroblock class structure. 

T_OF_DOUBLE and ORDERED_SET_OF_INT are 

awkward and the use of ARRAY seemed likelv to 

lead to name clashes with existing programs. In 

this article, the terms FIELD and IFIELD will refer 

specifically to the individual classes. We will also 

use the term field to refer generically to both the 

FIELD and IFIELD classes. 

In developing scalar, vector, and tensor field 

classes, there are two approaches for selecting the 

structure of the data: arrays of objects or objects 

of arrays. In the arrays of objects approach the 

vector or tensor object is laid out sequentially in 

memory whereas in the objects of arrays approach 

each of the components of the vector or tensor 

objects is laid out sequentially in memory. In this 

approach, an array of data elements (or a pointer 

to an array) is selected as the object attribute. 

RHALE+ +originally used an array of objects ap

proach but difficulties in porting and optimizing 

became apparent. PCTH always utilized the ob

ject of arrays approach in order to leave open the 

possibility of porting to SL\1D architectures. 

Therefore, the objects of arrays approach was 

adopted for RHALE ++,which led to the develop

ment of a new field class. This field class has now 

been adopted by the PCTH project. 

3.1 Original PCTH Field Class 

Figure 3 shows the class diagram for the original 

PCTH field class library. In this library, the field 

classes contain all the mathematical operations 

and memory management functions required for 

their respective classes. The FIELD class contains 

a dynamic array of floating point data elements, 

an integer pointer to a reference counter, and a 

pointer to the topology class SIZE. The IFIELD 

class uses a dynamic integer array instead of a 

floating point array. The SIZE class contains data 

that specifies the dimension of the field class and 

the size of the array in each axis. Both field classes 

have a HAS-A relationship with the SIZE class. 

That is, one of the members of the class is a 

pointer to a SIZE object. A USES-A relationship 
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FIGURE 3 Original PCTH field class library class dia

gram. 

exists between the field classes and the FILE_IQ 

class. The field classes both call FILE_ IO mem

ber functions when it is necessary to perform file

based 1/0. 

3.2 New Field Class 

Figure 4 depicts the new field class library struc

ture developed for RHALE + + and PCTH. As 

with PCTH, the floating point FIELD and integer 

!FIELD classes are used as the base classes for 

classes that contain topological information. 

These field classes have a HAS-A relationship 

with either the SNL_FIELDNODE class or the 

SNL_IFIELDNODE class, which are discussed in 

more detail below. That is, one of the data mem

bers in the field classes is a pointer to the appro

priate SNL.....FIELDNODE or SNL_IFIELDNODE 

class. The term node will be used to generically 

refer to the SNL.....FIELDNODE and SNL_ 

IFIELDNODE classes. The data members of the 

node classes consist of a reference counter, a 

length value, and a dynamic array of either integer 

or floating point numbers. 

For efficiency reasons, the field class uses dy

namically allocated memory and the reference 

counting memory management technique in order 
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to decrease the number of heap accesses. This is 

especially important on certain computers, such 

as the Cray, where heap accesses are very expen

sive. This leads to the use of an envelope/letter 

class idiom [8]. In this idiom, the envelope class 

handles all message requests from the external 

world. The letter class is completely encapsulated 

within the envelope class. In this project, the field 

class acts as the envelope class and the node class 

acts as the letter class. The advantage of this id

iom is in the division of memory management and 

mathematical operations. Specifically, the enve

lope class handles all mathematical operations 

and reference counting. The letter class is respon

sible for memory management functions. These 

node classes then interface with the memory man

ager to perform dynamic memory allocation and 

deallocation. 

As shown in Figure 4, the field classes have a 

USES-A relationship with two class utilities: 

GENFUN and FAST. The GENFUN class utility con

tains generic procedures that perform a few simple 

integer and floating point operations, as well as 

some file read and write operations. The FAST 
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FIGURE 4 New generic field class library class dia

gram. 
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class utilitv contains vectorizable functions used 

to perform mathematical and logical operations 

on the field class members. This allows mathe

matical operations to be easily ported to many 

new machines and optimized without affecting the 

field classes. The field classes call the required 

vector functions from the appropriate overloaded 

operators or methods. 

The new field class differs from the original 

PCTH class in several significant ways: 

1. An envelope/letter class idiom is used. As 

discussed above, this leads to a better divi

sion between memory management and 

mathematical operations. 

2. The field class contains no topological in

formation about memory layout. This infor

mation is contained in derived classes, pro

viding a more general and reusable set of 

base classes. 

3. Memory allocation functions are contained 

in a separate class, thus allowing different 

memory management schemes to be imple

mented without affecting the field class de

sign. 

4. Vectorizable mathematical operations are 

contained in a separate class utility file that 

allows optimization of these operations in a 

different language, and also allows ma

chine-dependent functions to be moved to a 

separate file from the field classes. The field 

classes then become machine independent. 

5. A complete set of operations (not just those 

required by PCTH and RHALE + +) have 

been implemented in these classes to en

hance reusability in other applications. 

In general, the PCTH field classes were simpler 

and easier to implement, but also more applica

tion specific and less complete, making them 

harder to reuse in other applications. Several im

portant but potentially conflicting criteria were 

weighted when developing the new field classes: 

reusability, memory usage, execution time, and 

portability. 

3.2. 7 Reusability 

The methods developed for the field class library 

are intended to be complete and extendable so 

that the library can be used in many different ap

plications. Care was taken to create the minimum 

number offunctions necessary, to avoid having an 

unmanageable class library. These classes per-

form array-scalar and array-array operations for 

both integers and floating point numbers. C++ 

allows the use of both functions and overloaded 

operators in its classes. There are 33 overloadable 

arithmetic operators defined inC++ [9]. Of these 

only the increment and decrement operators were 

not implemented because their functionality can 

be achieved using the binary plus and minus op

erators. The other functions required for the field 

classes can be divided into several categories: trig

onometric, other transcendental functions, gen

eral purpose, and Fortran-like functions. There 

are also some specialized functions that either 

simulate hardware commands found on certain 

machines or are widely used in both finite element 

and matrix applications. All of the functions used 

by these field classes are detailed in [ 10 ]. Other 

application-specific functions are implemented in 

derived classes. For example in PCTH, the 

FC_FIELD and CC_FIELD classes, which are de

rived from fields, implement various mean, differ

ence, and product functions required for this ap

plication. A mechanism to implement these 

additional functions has been provided through a 

protected method that returns a pointer to the 

start of the data element arrav. 

3.2.2 Memory Usage 

In general, hydrocodes use large amounts of mem

ory that must be managed effectively to provide an 

efficient simulation. The type of computer being 

used to perform the simulation will affect the 

memory management requirements. Both the pro

gram executable size and the amount of program 

data used can affect performance. On computers 

with virtual memory capability, program data and 

executable segments may be swapped out to disk 

and large problems can (at least in principle) be 

run. However, the amount of dynamic memory 

used will significantly affect the speed of the simu

lation because more operations are being per

formed and more virtual memory accesses will oc

cur. The processing nodes of many parallel 

computers have a fixed memory size that requires 

minimal executable size in order to maximize user 

memory for efficient scaling. 

Dynamic memory allocation is performed by 

the field class and for efficiency reasons memory 

management is not relegated to the operating sys

tem. The memory manager functions, which are 

called by the field class, limit heap accesses by 

creating a free store pool of pointers to unused but 

allocated memory. Because these functions are 



not strictly part of the field class, they will not be 

discussed any further in this article. Refer to 

Verner [10] for a discussion of the memorv man

ager. There are several techniques that can be 

used by the field classes to reduce the amount of 

dynamic memory used. Cnfortunately, these re

quire that the user be aware of what is happening 

in the field class in terms of memory in the over

loaded operators. Overloaded operators cause the 

creation of several unnecessary temporary vari

ables [5]. For example, the expression A = B + 

C * D creates four temporary variables, two per 

operation, when no memory management tech

niques are applied. There are two techniques that 

can be applied by the application programmer to 

decrease the number of temporary variables that 

exist at any particular time. The first technique 

involves rewriting the above expression as: 

A= C * D 

A +=B 

This method eliminates two of the temporary vari

ables, and if used in conjunction with reference 

counting will eliminate a third temporary. Unfor

tunately, this method forces an unnatural pro

gramming style. The application programmer 

must also force temporary objects to go out of 

scope so they can be deallocated. This can be 

done in the application code by adding scope de

limiters "{ }" around code segments. 

3.2.3 Minimizing Execution Time 

There are many techniques used to improve time 

efficiency inC++ programs, such as inline func

tions, reference counting, and machine optimized 

code. lnline functions can be used to reduce func

tion call overhead by expanding the inline func

tion code at the location of the function call but 

generally at the expense of increased code size. 

Therefore, inline functions were only used on 

small functions that are called often. Array opera

tions are optimized by writing vectorizable or as

sembly language functions. These techniques lead 

to machine and compiler dependent code, and are 

supported by the modular development used 

here. 

Compared to the previous PCTH implementa

tion, the new field classes have yielded similar ex

ecution times but a slightly larger executable size. 

The increased executable size is due to the larger 

number of functions that have been implemented 

in order to develop the complete set of base 
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classes necessary for reusability. This penalty can 

be mitigated somewhat by splitting the field class 

and their FAST class utility functions into sepa

rately compiled files, and then creating a library 

that contains these files. 

Reference counting is another method, used by 

the field classes, for minimizing unnecessary 

copying of data and thus greatly improving effi

ciency. A nice feature of this approach is that it is 

completely hidden from the user. Reference 

counting is a technique where several items point 

to one memory location rather than creating a new 

item for each reference [8]. 

3.2.4 Portability 

As mentioned previously, one of the primary goals 

of PCTH and RHALE+ + is ease of portability. 

Specifically, these simulations must be easily por

table to many different architectures including 

single processor workstations and workstation 

networks, MIMD massively parallel processors, 

vector computers, and potentially even SIMD 

computers. Portability can be enhanced by isolat

ing machine-dependent portions of the code from 

machine-independent portions. This is not to say 

that all the code will run efficiently on all com

puters. Instead, the subset of the code that bene

fits from optimization, such as the vector math 

libraries, is stored in routines at the lowest level in 

the hierarchy to hide the details behind underlying 

generic objects [2]. This machine-dependent 

code is compiled according to preprocessor state

ments that specify the specific code for that ma

chine. This effectively separates the physics por

tions of the code from the architectural details. In 

the new generic field class, the FAST class utility 

provides this machine-dependent code. It is being 

ported to and optimized on the nCCBE2, Intel 

Gamma, and the Intel Paragon massively parallel 

computers, as well as the CRA Y vector computers 

and SUN workstations. Future machine-specific 

optimization for these individual machines can fo

cus on the FAST class utility. 

4 CONCLUSIONS 

In this research we have successfully developed a 

reusable field class structure that is being used in 

two different computational physics codes; one 

code uses a finite difference method whereas the 

other code uses a finite element method. This is of 

critical importance to the PCTH and RHALE+ + 

development teams as all future development of 
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the field libraries will be synergistic to both 

projects. Great care has been taken to make these 

classes extendable (to aid in adding new function

ality), and easily portable to new architectures. It 
is also worth noting that a modification of these 

classes has been proposed for inclusion in the 

Al\"SI C++ standard library [ 11]. 
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