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ABSTRACT 
 

The overall aim of the studies described herein was to evaluate genetic variation in cattle 

fertility traits for development of genetic and genomic predictors in breeding strategies. 

Results from these experiments suggest that improvements in fertility through genetic 

selection are a possible approach to increase reproductive efficiency. Experiment 1 

evaluated the development of genetic parameters associated with multiple ovulation and 

embryo transfer schemes in an attempt to assist producers in identifying animals with 

greater genetic merit for these protocols. This study confirmed that genetic selection of 

donors or sires appears to be a potential approach to improve efficiency of MOET 

procedures. Although low heritability would slow the progress, results shown in this work 

suggest that genetic improvement in fertility by selection for embryo transfer traits is 

possible. Experiment 2 evaluated fertility traits in Argentinean Holstein cattle in order to 

develop fertility genetic predictors for utilization in breeding strategies. The dollar fertility 

index ($F) included age to first calving (AFC) as a measure of initial reproductive 

performance and calving interval (CI) as an indicator of conception rate and success of 

early insemination. Values for $F ranged from -$76.6 to $139.4 in the current Holstein 

population. Results indicated substantial variation in fertility traits, suggesting that genetic 

selection would be highly effective in improving fertility.  
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CHAPTER 1 INTRODUCTION AND STATEMENT OF THE PROBLEM 
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Assisted reproductive technologies (ART; i.e. artificial insemination (AI), multiple 

ovulation and embryo transfer (MOET), cryopreservation and sperm/embryo sexing 

strategies) have provided fundamental tools for rapid genetic improvement of livestock, 

particularly in dairy and beef cattle.  These ART protocols have greatly increased 

efficiency of animal agriculture to provide high quality and low cost products to 

consumers. Although utilization of ART and genetic selection has resulted in tremendous 

progress for improving efficiency of cattle production, a significant need still exists to 

provide economical, “decision-making” tools to improve management and profitability for 

producers and sustainability to the animal agricultural sector. 

Impaired fertility is the primary reason for culling in US (26.5% of all disposals; APHIS-

USDA 2007). Even with improved ART strategies, reproductive efficiency in dairy cattle 

has steadily declined in the United States (US) and other dairy countries (Royal et al. 2000; 

2002; Evans et al. 2006) during the past 30 years. Conception rates have been reported to 

be declining by 0.45 to 1.0% per year (Beam and Butler, 1999; Royal et al. 2000; 2002; 

Evans et al. 2006). A complex list of factors which impacts reproduction includes 

management, nutrition, diseases, milk production, genetics, lameness, and environmental 

stress among others (Hansen and Arechiga 1999; Grohn and Rajala-Schultz 2000; Cartmill 

et al. 2001; Lucy 2001; Moreira et al. 2001 and Santos et al. 2004). Fertility directly 

impacts on revenues associated with milk production and offspring born. Moreover, low 

reproductive performance elevates costs associated with culling, multiple inseminations, 
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veterinarian expense (pharmaceuticals for estrus synchronization, pregnancy diagnosis, 

etc.), and replacement animals.  

Hence, to mitigate the deterioration of fertility, a strong need exists to identify and select 

animals according to their future reproductive potential. Therefore, our general approach 

encompassed understanding of how genotype contributes to phenotypic variation in 

fertility. In order to accomplish this approach estimation of genetic parameters and 

development of multi-trait selection indexes for fertility traits were performed. Second, 

identification of genomic regions and sequence variants (SNPs) affecting phenotypic 

variation in those traits was performed. 

Hence, the hypothesis was utilization of breeding values and fertility indexes can predict 

genetic merit in a bovine population. To test the hypothesis and accomplish the overall 

objective of this proposal, the research objectives were: 

1) Estimate genetic predictors for traits related to multiple ovulation and embryo 

traits. 

2) Development of fertility breeding values and a multi-trait selection index based 

upon data from milk recording programs in a Holstein population. 
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CHAPTER 2 LITERATURE REVIEW 
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2. 1  History of genetic selection in cattle  

2.1.1  Introduction 

Selection of animals has been performed since domestication over 5,000 years ago. Early 

selection was solely based on phenotype (outward appearance) of animals that expressed 

desirable characters. In the last two centuries, producers applied systematic breeding 

programs to domestic animals (livestock) to select for more specific roles such as meat, 

milk, and draft. Later during the 1940’s, the possibility to identify genetic merit of 

livestock through quantitative genetic approaches made more effective decisions about 

selection of replacements; therefore, improving subsequent generations. During the last 

century, increased accuracy and reduced bias of prediction for additive genetic merit have 

resulted in more efficient selection strategies and improved profits. 

The milestones in selection strategies achieved during the last century were discernible 

from scientific discoveries in several disciplines (Green 2009). These innovations resulted 

in technological changes that had salient impacts on improvements in prediction of genetic 

merit. These improvements involved several interdisciplinary contributions such as animal 

breeding and genetics, computer science, economics, and statistics (Golden and Garrick 

2009). These breakthrough technologies have resulted in milestone enhancement for 

selection based on genetic merit improvement. An example of statistical technologies is the 

mixed model (Henderson 1973), which provided best linear unbiased prediction (BLUP) 

for breeding values, resulting in a substantial increase in the accuracy of genetic prediction. 

Subsequently, BLUP became widely accepted as the standard approach to predict additive 



 

6 
 

genetic merit in livestock. Since BLUP is seen as a major breakthrough in dairy and beef 

genetic evaluation, we will briefly cover the history before (PREBLUB) and after 

(POSTBLUP) the breakthrough (Figures 1 and 2).  Lastly, the connection of these 

disciplines with molecular biology and discoveries in DNA technologies have shown even 

greater promise for improving accuracy of prediction of genetic merit, especially for 

predictions of animals at young ages (Green 2009).  

 

2.1.2 PREBLUP 

2.1.2.1 Historical Perspective of Genetic Selection  

During the first half of the 20th century, discoveries in the field of genetics and statistics 

provided enormous contributions to the agricultural sciences. One of the first and more 

fascinating contributions was made by Gregor Mendel in 1866. Working with peas and 

other vegetables, he discovered that genes were expressed in a predictable and 

mathematical progression, now known as Mendelian segregation (Eller 2007). These were 

the first reports describing basic transmission of hereditary particles from parent to 

offspring and inheritance of those particles in subsequent generations (Rishell 1997). 

Subsequently, S. Wright and R.A. Fisher initiated livestock breeding into this new area of 

science. Developing the statistical and mathematical theory of genetic relationships among 

relatives, Wright’s principals are essential for current day breeding value calculations 

(Eller 2007).  
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The concept of population genetics describes and quantifies Darwin’s writings during the 

first decades of the last century. Advances in this area aided in understanding basic genetic 

concepts such as genes, chromosomes, gene loci, and cellular reproduction (Green 2009). 

At the same time, a new field known as biometrics was established to apply statistics to 

biological events. Early statisticians working in this field were pioneers in defining long-

term selection and inbreeding in livestock (Green 2009). 

During 1940’s, J. L. Lush, who many refer to as the modern-day father of animal breeding 

(Dickerson, 1973; Dickerson and Willham, 1983), made several of the greatest 

contributions for livestock genetic improvement. He, along with coworkers such as Hazel 

and Dickerson, defined the concepts of “selection index” and “breeding value” (Hazel 

1943; Lush 1947). Furthermore, advances in the biometrics field enabled measurement 

from experimental populations pertaining to performance and heritability of production 

traits.  

Several of the greatest contributions occurred in the 1950’s. For example, Watson and 

Crick presented for the first time in the scientific literature a structure for 

Deoxyribonucleic Acid (DNA), later defined as the molecular structure of the genetic code 

(Crick 1953). This contribution, combined with the theories of genes and heritable 

variation of traits, suggested the possibility for using these genetic differences at the gene 

level for future genetic improvement. 

Consolidation of the national Dairy Herd Improvement Association (DHIA), which led the 

first national milk recording program, and continued adoption of artificial insemination 
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(AI) constituted significant milestones in livestock breeding programs. With these two 

significant events, the potential for genetic improvement was first understood by dairy 

breeders. They envisioned the power of combining AI with the quantitative genetic theory 

resulting in improved genetic evaluations (Green 2009). At the same time, the early 

experiences of dairy breeders extended to other breed associations which were quickly 

adopting performance data recording, often at the level of breed registries and societies 

(Green 2009).  

By 1964 in the US, five beef associations had developed performance recording programs 

with the Red Angus Association of America in 1959 as the pioneer in requiring mandatory 

input of performance information (Eller 2007).  

In 1965, the beef improvement committee of the American Society of Animal Science 

generated procedures for collecting and recording performance data (Eller 2007). After 

several years and a great deal of discussion, industry, academic, and government leaders 

agreed in 1967 to form the Beef Improvement Federation (BIF). The responsibility of BIF 

is to produce guidelines for performance recording programs and report research result 

(Eller 2007). Several other organizations were also established to develop guidelines for 

performance recording programs such as National Swine Improvement Federation and the 

National Association of Animal Breeders (Green 2009). 

The 1960s and 1970s were marked by increased competition in the seedstock industry and 

the next generation of statistical technology. The first across-herd genetic evaluations using 

sire-maternal grandsire models, and the initial era of breeding value estimation across 
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large-scale populations were born. Additionally, statisticians were gaining understanding 

of statistical approaches and application to large scale populations. As previously proposed 

in this introduction, what came next is a true time of transition for livestock breeding (the 

POSTBLUP period) which became a major breakthrough in national dairy and beef cattle 

genetic evaluation (Golden and Garrick 2009; Green 2009).  

 

2.1.3 POSTBLUP 

2.1.3.1 Statistical Models 

In 1973, Henderson elucidated statistical approaches that would be widely adopted from 

that time forward as standard methods for predicting additive genetic merit in livestock 

(Golden and Garrick 2009). Henderson's major contributions included development of 

statistical theory related to prediction of random variables from mixed linear models, 

estimation of variance components, and analyses of unbalanced data (Freeman 1991). Best 

linear unbiased prediction (BLUP) improved accuracy of prediction in contemporary 

groups (such as herds or years) and made possible the use of unbalanced data (Henderson 

1975). Accordingly, the mixed model procedures (estimating BLUP) represented 

significant progress in prediction of breeding values. These accomplishments had a major 

impact on evaluation methods of dairy and beef cattle as well as other livestock species.  
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2.1.3.2 Mixed Models  

Breeding values in dairy and beef cattle are predicted based on linear mixed models using 

Henderson's mixed model equations. The most common mixed model used in animal 

breeding and genetics is the "animal" model (Thompson 2008; Di Croce et al. 2009).  In 

this model, all animals are included in the model as random effects, while all other 

explanatory terms are fixed effects (such as year and herd).  Animal models use pedigrees 

to track relationships among animals, and related individuals will share additive genetic 

(co)variance.  Animals within the same herd will share the herd environmental variance.  

In this way, variances are separated into components of interest.  The advantages of using 

the animal model are that all additive genetic relationships are utilized and unequal family 

sizes are correctly accounted for during the analysis (Thompson 2008; Di Croce et al. 

2009). In addition, Henderson's mixed model estimation provides the most accurate 

prediction of breeding values for all animals in the dataset (Henderson 1953; Di Croce et 

al. 2009). 

 

2.1.3.3 Best Linear Unbiased Prediction (BLUP) 

Predictions of individual additive genetic effects or breeding values can be estimated from 

Henderson's mixed model equations.  Best linear unbiased predictions (BLUPs) are 

breeding values, predictions of the genetic value of that individual as a parent, since 

additive genetic effects are transmitted to progeny (Di Croce et al. 2009). An individual’s 

breeding value for a given phenotypic trait is the total additive effect of its genes for that 
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trait (Di Croce et al. 2009). The first BLUP models were univariate and had only 

contemporary group and sire effects included for predicting additive genetic merit. These 

models were introduced into dairy (1970) and beef (1974) cattle genetic evaluations 

(Freeman 1991; Golden and Garrick 2009) and resulted in performance predictions of 

progeny of a sire. These breeding values were divided in half before publications and the 

industry gave the name “expected progeny differences” (EPD) in beef and “predicted 

transmitting ability” (PTA) in dairy (Golden and Garrick 2009). 

 

2.1.3.4 Further Developments (Sire, Animal Models, and Maternal Effects) 

 

Although these linear mixed models represented a breakthrough in animal breeding and 

genetic improvement, further developments in application of these linear mixed models 

were needed. For example, early models did not account for the relationships between 

sires; hence, did not consider the inbreeding of animals. It was not until the 1980s that the 

matrix which indicates the additive genetic relationships among individuals (A–1) was 

computed. Several contributions solved this problem in large data set. First, Henderson 

(1975) and Quaas (1976) elucidated high performance methods for computing the elements 

of the inverse of A. Later, Golden (1991) and then Meuwissen and Luo (1992) provided 

faster methods to determine the inbreeding on all animals in large data sets. 

Models pertaining to BLUP continued to evolve and improve the prediction capabilities in 

terms of decreasing bias and increasing accuracy. Also, in conjunction with improvements 
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in computer power and developments of computational methods, BLUP models evolved 

from univariate sire models to multivariate animal models. Sire models implies that only 

sires are included and evaluated in the model using progeny records. Conversely, in animal 

models, genetic effects of dams and sires are analyzed simultaneously; therefore, sire 

ratings are adjusted for any non-random mating providing more accurate predictions.These 

advanced models (animal models) including the direct additive genetic effect for dams 

along with the direct additive effect of the sires were implemented by 1984 (Golden and 

Garrick 2009). Including dams into the analyses also allowed for the inclusion of the 

additive maternal effect described by Willham (1972), who introduced the biometrical 

aspect of traits having a maternal effect. By definition, this maternal effect is a phenotypic 

value of a dam measurable only as a component part of her offspring's phenotypic value 

(Willham 1972).  Even more developments in the inclusion of dam effects were made by 

Pollak et al. (1977) with implementation of a multivariate model including birth weight, 

weaning weight, and postweaning weight gain to yearling age, with maternal effects for 

both weaning weight and birth weight. 

 

 

2.2 Breeding Value Prediction  

Prediction of breeding values represents an essential component of most evaluation 

programs for genetic improvement. The method utilized for predicting breeding values 

depends on the type and amount of information available to predict these values. Single 
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and repeated records could be used for predicting breeding values from the animal’s own 

performance. Also, this estimation could be performed from progeny records, commonly 

used for traits where records can be obtained only from females. This is typical of dairy 

cattle where predicting breeding values of bulls is evaluated on the basis of their daughters. 

Furthermore, breeding values for an animal may be predicted from its pedigree and from 

observations of genetically correlated traits.  

As previously shown, multiple equations have been developed over time to aid in accurate 

prediction of breeding values and must be introduced to assist in understanding this crucial 

methodology.  

 

2.2.1 The Basic Model  

In simplistic terms, the observed or phenotypic trait (P) is described by environmental and 

genetic factors and may be defined by the model  

y = m + g + e = m + gA + gD + gE+ e,  
where the 

phenotypic observation y is the record of an animal; 

environmental effects m refer to fixed environmental effects (i.e., herd management, year 

and/or month of birth, etc., of the animal); and 

 genetic effects g are the sum of the additive (gA), dominance (gD) and epistatic (gE) 

genetic values of the genotype of the animals. 

Residual effects e are the sum of the random environmental effects affecting the animal. 
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2.2.2 Breeding Values 

The additive genetic value in the g term gA represents the average additive effects of genes 

an individual receives from both parents and is expressed as the breeding value (Mrode 

1996, 2005). Each parent contributes half of its genes to its progeny. As stated earlier, 

these breeding values were divided in half before publication and the industry applied the 

terminology: Expected Progeny Differences (EPD) in beef and Predicted Transmitting 

Ability (PTA) in dairy. As the additive genetic value is a function of genes transmitted 

from parents to progeny, it becomes the only component that can be selected and the 

primary component of interest (Mrode 1996). Dominance and epistasis are mostly assumed 

to have small effects and are only included in the residual term of the model (Mrode 1996, 

2005). 

In most cases, it is assumed that y follows a multivariate normal distribution, meaning that 

the traits are determined by infinitely many additive genes of infinitesimal effect at 

unlinked loci, known as infinitesimal model (Fisher 1918, Mrode 1996, 2005). 

Additionally, these models assumed that the variance of g A and e terms are known and are 

not correlated (Mrode 1996).  

 

2.2.3 Variance 

The genetics of a quantitative character centers on the study of its variation. In the study of 

genetic variation, the basic understanding is its partitioning into components attributable to 

different causes or effects. The relative magnitude of these components determines the 
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genetic properties of the population, specifically the resemblance between relatives 

(Falconer and Mackay 1996). In simplistic terms, variance measures the range of 

difference in variables or estimates. For instance in genetics, the genotypic variance is the 

variance of genotypic values, and the environmental variance is the variance of 

environmental deviations. The total variance is the phenotypic variance and is the sum of 

the separate components (genotypic and environmental variance).  

 

2.2.4 Components of Variance 

In most genetic models, the amount of variation is measured and expressed as variance. 

Usually, the values are expressed as deviation of population means. When this occurs, the 

variance value is simply the mean of the squared values (Falconer and Mackay 1996). The 

components in which variances are partitioned can be defined as  

Vp = Va + Vg + Ve, 

where: 

Vp is the phenotypic variance, the total variance;  

Va is the additive genetic variance;  

Vg is all other genetic variance (i.e., dominance and interaction variance components); and  

Ve is the environmental variance.  

Thus, the total variance (Vp) is the sum of the components (Falconer and Mackay 1996; Di 

Croce et al. 2009). 
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2.2.4.1  Heritability 

The partitioning of the variance allows for estimating relative importance of various 

determinants of the phenotype; for instance, the role of heredity versus environment 

(Falconer and Mackay 1996). The relative importance of heredity in determining 

phenotypic values is called the heritability of the trait.  From this partitioning of the total 

variance, one can calculate heritability= Va/Vp (h2; Falconer and Mackay 1996; Di Croce 

et al. 2010). Thus, the ratio, Va/Vp, expresses the degree to which phenotypes are 

determined by the genes transmitted from the parents (Falconer and Mackay 1996). 

Simply, heritability determines the degree of resemblance between relatives. 

  

2.2.5 Genetic Covariance between Relatives  

Genetic relationships among individuals are of fundamental importance for predicting 

breeding values. For instance, BLUP depends greatly on genetic covariance among 

individuals for obtaining high accuracy and unbiased estimates (Mrode 1996). The 

relationships between individuals are usually computed in a matrix that describes additive 

genetic relationships between individuals of a population, and is usually called the 

numerator relationship matrix (A), first described by Henderson (1975). This matrix is 

symmetric and composed of diagonal and off-diagonal elements. From diagonal elements 

inbreeding coefficients between animals can be computed. Off-diagonal elements (lower 

triangular elements) present the coefficient of relationships between animals (Mrode 1996, 

2005). In other words, these coefficients trace the shared flow of genes from one 
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generation to the next. The prediction of the breeding values requires the inverse of the 

relationship matrix to be included in the mixed model equations (MME; Mrode 1996, 

2005). 

 As discussed later in this chapter, variance and covariance "components" are estimated 

using statistical mixed models, which include fixed and random effects.  Fixed effects are 

constants that only affect the mean of the data. Random effects are terms that introduce 

variation, such as variation among animals.  Maximum likelihood (ML) is the current 

estimation method of choice; in particular, restricted maximum likelihood (REML).  The 

main advantages of REML include the ability to work with unbalanced data and correctly 

account for fixed and random effects in the estimation (Saxton 2007; Di Croce et al. 2010).  

 

2.2.6 Best Linear Unbiased Prediction of Breeding Value 

In animal breeding, Best Linear Unbiased Prediction (BLUP) is a technique for estimating 

genetic merit from phenotypic traits (Robison 1991). In general, it is a method of 

estimating random effects and was developed by Henderson (1949). Henderson developed 

BLUP so fixed effects and breeding values can be simultaneously estimated (Mrode 2005; 

Di Croce et al. 2009). 

  

2.2.6.1 Mixed Models 

The most general linear model is the mixed linear model. In matrix notation, this model is 
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with  containing the observed dependent variable values; 

and  are the design matrices for fixed and random effects containing observed or 

known values; 

 and  are parameter vectors for fixed and random effects, respectively; and  

the term  contains the random component of y that is not explained by the model (Saxton 

2007). Understanding the components in X, b, Z and u is critical to understanding how 

linear models translate observed data into an explanation of y (Saxton 2007). 

 

2.2.6.1.1 Animal Models 

The most common mixed model used is the "animal" model.  In this model, all animals are 

included in the model as random effects, while all other explanatory terms are fixed effects 

(i.e., year and herd; Di Croce et al. 2009).  Animal models use pedigrees to track 

relationships among animals, and related individuals will share additive genetic 

(co)variance (Di Croce et al. 2009).  Animals within the same herd will share the herd 

environmental variance. As previously shown, variances are separated into components of 

interest.  The advantages of using the animal model are that all additive genetic 

relationships are utilized and unequal family sizes are accounted for correctly during 

analysis (Thompson 2008; Di Croce et al. 2009). In addition, Henderson's mixed model 

estimation provides the most accurate prediction of breeding values for all animals in the 

dataset (Henderson 1953; Di Croce et al. 2009). Today's computing technology allows one 

to fit animal models for both univariate and multivariate data.  
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2.2.6.2 Variance Structure 

The mixed linear model, , is an important equation, but is not a 

complete description of the model. The general expression of this equation 

( ) is only describing the effects contained in each observation, 

commonly referred to as the model for means (Saxton 2007). To complete the model, a 

model for the variability needs to be included and is usually referred to as the “variance 

structure”. As previously mentioned, the variance of a vector produces a symmetric square 

matrix, with variances on the diagonal and covariances off-diagonal (Mrode 1996, 2005). 

Element (i,j) is the covariance between the ith and jth variables of the vector. The variance 

can be defined as the covariance of something with itself, so element (i,i) is the variance of 

the ith parameter (Saxton 2007).  

To complete the mixed model (y=Xb + Zu + e) with the appropriate variance structure, it 

is necessary to define the Var(y) that will be some combination of the variances and 

covariances of the terms on the right hand side (Saxton 2007). Some conventional 

definitions include Var(Xb)=0, Var(u)=G, Var(e)= R, and Cov (u,e)=0. This is the variance 

structure which provides variances and covariance among observations (Saxton 2007). 

Additional to the mean model and the described variance structure, a statistical distribution 

for Y needs to be assumed. Thus, Y is assumed usually to be normally distributed.  

Putting all of this together gives the “complete” mixed model, 

Y is normally distributed 
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or                                                       

 

 

2.2.6.3 Estimation of Parameters: Fixed and Random Terms 

Once the mixed model is correctly and completely defined, parameters b and u, the 

unknown constants used to describe a population, need to be estimated. Several methods 

are provided by statistical theory for estimating unknown parameters from observed data 

(Saxton 2007). Least squares estimation is the method of choice for linear models due to 

its simplicity and the desirable properties of the estimates (Saxton 2007). Currently, the 

best choice for estimating variance components (the parameters of variance structure) is 

the restricted maximum likelihood methodology (REML; Saxton 2007; Di Croce et al. 

2009).  

 

2.2.6.3.1 Least Squares Estimation for Linear Models 

As previously mentioned, least squares estimation is the usual method for calculating 

unknown parameters from observed data in linear models. This methodology minimizes 

the sum of squared deviations between observed data and model predictions. In matrix 
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notation, observed data are y, and model predictions are Xb+Zu. The deviation between 

these two is obtained directly from the mixed model equations 

 

One could define least squares estimation by minimizing e’V-1e because the residual must 

be standardized by their variances and covariances (Saxton 2007). To accomplish this 

estimation in mixed models, Henderson (1953) demonstrated that solving the following 

matrix equations produces BLUEs and BLUPs.  

   X'R-1X    X'R-1Z   b  =  X'R-1y 

    Z'R-1X Z'R-1Z+G-1  u    Z'R-1y 

These equations are the generalization of the "normal equations" to the mixed model, and 

are usually referred to as Henderson’s mixed model equations (Henderson 1973). 

Moreover, these equations can be solved by inverting the left hand side (if the inverse 

exists), and pre-multiplying both sides by the inverse, if the inverse exists. Thus, the 

estimates are normally distributed, since they are linear functions of y, a normally 

distributed set of variables (Saxton 2007). 

Least squares estimates are best linear unbiased estimates (BLUE) with three important 

properties: are unbiased (for some linear function of the parameters); are linear functions 

of the data; and have the smallest variance (best) compared to other potential linear 

unbiased estimators. For random effects, the word “prediction” is used instead of 

“estimation”, giving BLUP (Saxton 2007; Di Croce et al. 2009) 
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2.2.6.3.2 Non-Full Rank Models 

In more complex models (i.e., ANOVA models), the left-hand side of normal equations 

cannot be inverted (Saxton 2007).  Least squares estimation is done without an inverse. If a 

matrix is full rank,  the matrix can be inverted. By definition, rank is the number of linearly 

independent rows or columns, and a row and column are linearly independent if one is not 

a linear function of the others. Conversely, if models are non-full rank, the left-hand side of 

the normal equation (Henderson 1975) cannot be inverted for least squares estimation 

(Saxton 2007). According to Saxton (2007), two approaches have been developed to solve 

this problem.  The model could be reparameterized to make X have full column rank; for 

example, by deleting the overall mean from the model (Saxton 2007). Conversely, another 

approach is to use a generalized inverse, which is an inverse that works for non-full rank 

matrices. The generalized inverse approach is one of the most popular solutions but leaves 

a problem in which estimates produced by the g-inverse approach are not unique. 

However, even though estimates are not unique, certain linear functions of the parameters 

can have unique and unbiased estimates (Saxton 2007).  

On the other hand, estimation for random effects is simpler since the mixed model 

equations are always full rank, so BLUP properties for random effects are not affected by 

reduced column rank of X (Saxton 2007). This is a result of adding G-1 to the random 

effects section of Henderson's Mixed Model Equations. As usual, the standard errors of the 

estimates will be the square root of the diagonal elements, and confidence intervals can be 

calculated.  
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2.2.6.4 Best Linear Unbiased Prediction (BLUP) 

In animal breeding, BLUP is a technique for estimating genetic merit for phenotypic traits 

(Robison 1991). In general, BLUP is a method of estimating random effects developed by 

Henderson (1949) by which fixed effects and breeding values can be simultaneously 

estimated (Mrode 2005).  

Given the estimates of the variance components, predictions (BLUPs) of individual 

additive genetic effects or breeding values can be estimated from Henderson's mixed 

model equations.  Best linear unbiased predictions are considered breeding values 

(predictions of the value of that individual as a parent) since additive genetic effects are 

transmitted to progeny. An individual’s breeding value for a given phenotypic trait is the 

total additive effect of its genes for that trait.  Also of interest, Henderson's equations can 

produce accuracy measures (ranging from 0.00 to 1.00) for each breeding value, reflecting 

the amount of information in the data for that prediction.   

The properties of BLUP are incorporated in the name: 

● Best – means it maximizes the correlation between true and predicted breeding value or 

minimizes prediction error variance; 

● Linear – predictors are linear functions of observations; 

● Unbiased – estimation of realized values for a random variable, such as animal breeding 

values, and of estimable functions of fixed effects are unbiased; and 

● Prediction – involves prediction of true breeding value. 
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These BLUP statistical properties has been widely accepted and used for genetic 

evaluation in livestock. 

As previously shown, mixed model analysis incorporates random effects into the model, 

allowing random parameters to be predicted. For example, by declaring animals to be 

random, the animals in the experiment are modeled as a random sample from a population 

of animals with a particular variance (Saxton 2007). This variance is the variance 

component used to create the variance structure matrix (V). When the "mean" of a 

particular animals is being estimated (or predicted), this variance needs to be taken into 

account (Saxton 2007; Di Croce et al. 2009). The BLUP value produced is the best 

prediction of the true value of that animal. Thus, the BLUP is giving the expected value of 

that animals for all possible future offspring. Basically, future performance is being 

predicted (Saxton 2007). With fixed effects, there is not distribution to take into account 

(i.e., no variance), so the means are the best possible estimates (BLUE). Therefore, the 

language distinction is fixed constants are estimated, and random values are predicted 

(Saxton 2007). Furthermore, BLUP takes into account variability in the random effects and 

the amount of data, producing the best prediction of the true value for random levels. 

These results reflect the model definition: the random levels being sampled from a 

distribution with variance (Saxton 2007). 
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2.2.7 Variance Component Estimation: Restricted Maximum Likelihood (REML) 

As previously mentioned, the variance structure matrix V (V=ZGZ’ +R) is a key 

component of mixed model definition and it is used to estimate random parameters such as 

BLUPs. These variance structures need to be obtained through variance and covariance 

component estimation. 

Several approaches exist for variance component estimation such as ANOVA based 

methods and maximum likelihood. However, restricted maximum likelihood (REML), a 

variation of maximum likelihood approach, outperforms others approach (i.e., ANOVA 

base method, methods of the moments; Saxton 2007). Some advantages of using REML 

include the ability to handle unbalanced data and negative estimates are not permitted 

(Saxton 2007; Di Croce et al. 2009). However, if data are balanced, most of the variance 

component estimation methods provide the same estimates. Nevertheless, it is a very 

common problem in biological research to deal with unbalanced data. One example is the 

genetic parameter estimation for sires that have different numbers of daughters; thus, 

unbalanced data.  

Likelihood is a measure of how likely we are to observe the data, given the variance 

component value (Likelihood = Prob(obs1) * Prob(obs2) * ...). Maximum likelihood 

approach starts with initial priors (guesses), and if these priors (guesses) match the data, 

then the priors are most likely close to the true values. If the priors are bad, they won't fit 

the data, so iteratively different values are tried. This overall fit to the data is measured by 

likelihood, with each iteration providing a likelihood value. Once likelihood values do not 
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change, then convergence on the final estimates will be attained. Therefore, it is important 

to show that the maximum likelihood estimation algorithm does achieve a true maximum 

likelihood.  

Equation for MME likelihood is 

 

, 

 

where: r=residuals; n=number of observations; p=rank  (Saxton 2007). 

In general terms, the disadvantage of this maximum likelihood approach is the necessity to 

find the maximum doing an iterative search; thus, computer time is a concern (Saxton 

2007). Additionally, the maximum likelihood approach produce estimates which are 

generally biased; meaning on average they do not estimate the true parameter value. This 

bias must be accepted to avoid negative variance estimates. 

Computer software for these calculations is readily available. Packages used for genetic 

parameter estimation include ASReml, DFReML (now Wombat), and MTDFREML 

(Boldman et al. 1995; Di Croce et al. 2009).  These programs must be able to model single 

traits (univariate analysis) to estimate variance components, and model two or more traits 

(multivariate analyses) for the estimation of covariance components. 
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2.2.8 Genetic Gain Prediction 

Given the predicted breeding values determined by BLUP, genetic improvement is 

accomplished by selecting superior animals as parents based on those predictions. 

Predicting rate of genetic gain or response to selection is the rate of genetic change on a 

population under selection and depends upon three factors: heritability (h2), selection 

differential, and generation interval. Selection differential is the amount of improvement in 

a phenotypic trait of selected individuals compared to contemporaries. This differential is 

determined by selection intensity (i = standardized mean deviation of selected parents) and 

phenotypic variation (SD) present in the population. Generation interval is the amount of 

time required to replace one generation with the next.  As an example, utilizing the above 

methodology (i=0.8)*(SD=49.962)*(h2=0.029), Di Croce et al. (2008) estimated a genetic 

gain of 1.16 % per generation in pregnancy rate (PR) following embryo transfer, assuming 

50% selection.  

 

2.3 Genetic Selection for Fertility 

To achieve a pregnancy in the modern high producing dairy cow has become a challenge 

for most dairy producers. This issue has motivated the interests of dairy producers, 

scientists, veterinarians, breed associations and the industry, since dairy cows tend to have 

lower conception rates, higher days open, and greater probability of culling due to 

infertility in recent years (Lucy 2001; Weigel 2007, USDA 2007). Genetic evaluation and 

selection strategies that focus on production traits have led to rapid gains in milk yield and 
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conformation traits, but performance for traits such as female fertility, longevity, and 

susceptibility to disease has tended to decline (Weigel 2007). Several factors such as 

changes in nutrition andreproductive, housing and health management may be contributing 

to these trends. However, it is clear that functional traits such as fertility, health, and 

longevity were not a priority in the selection strategies in the past decades. Additionally, 

the unfavorable genetic correlation with production traits (milk) has led to a decline in 

fertility in dairy cattle (Berglund 2008). Several studies have shown that selection for 

production alone causes negative effects on udder health (Heringstad et al. 2003; Miglior et 

al. 2005) and reproductive performance (Veerkamp et al. 2001; Haile-Mariam et al. 2003; 

Kadarmideen et al. 2003; Miglior et al. 2005). 

Today, the negative trends of fertility traits (functional traits), the crucial economic 

importance of reproduction, and new genomic technology are a strong motivation for 

including reproduction in genetic selection programs. In 2006, the World Holstein Friesian 

Federation (WHFF) initiated a survey on the status of fertility in Holstein populations 

around the world. In the 19 countries surveyed, eight different fertility traits were used for 

heifers and eighteen fertility traits were used for cows (Sørensen et al. 2007). Most 

common traits used in cows were the interval from calving to first insemination (13/19 

countries), calving interval (13/19 countries), number of inseminations to achieve 

conception (11/19 countries), non-return rate 56 days after insemination (9/19 countries), 

and number of days open (8/19 countries) among others (Sørensen et al. 2007). 

Furthermore, several countries have implemented genetic evaluation for fertility traits in 
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recent years. Several different traits are gradually being evaluated and incorporated into the 

evaluation methods. Berglund (2008) concluded that this implementation of selection for 

fertility traits leveled out the decline in fertility. However, the low level of reproductive 

efficiency continues as a major problem in dairy herds (Berglund 2008).  

 

2.3.1 Genetic Selection for Female Fertility 

Genetic selection for fertility has been performed for several years in Scandinavian 

countries to reduce the decline in reproductive efficiency (Weigel 2006). These countries 

have traditionally recorded and implemented genetic evaluation for a broad range of 

functional traits including fertility, but in recent years, many other countries have also 

implemented genetic evaluation for these traits (Berglund 2008). Breeding values for 

daughter fertility were introduced in Sweden as early as 1972 and have since been used in 

selection. In the Nordic countries, the integration of cow databases (pedigree, milk 

recording, artificial insemination and disease data) has facilitated selection for reproductive 

traits. Three of the Nordic (Denmark, Finland and Sweden) breeding organizations have 

had a joint genetic evaluation and breeding program since 2005 (Nordic Cattle Genetic 

Evaluation; http://www.nordicebv.info). Since 1990’s, genetic evaluation for fertility has 

gradually been introduced in several countries, such as the Netherlands (Hoekstra et al. 

1994), United Kingdom (Wall et al. 2003) and United States (VanRaden et al. 2004). An 

international genetic evaluation for fertility traits was introduced for Holstein populations 

in February 2007 by Interbull and an evaluation of fertility in the other primary breeds of 
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the Interbull member countries is under development (Jorjani 2007). Thus, the relative 

emphasis of dairy cattle breeding objectives has gradually changed from production to 

functional traits such as fertility during the last decade (Miglior et al. 2005). In United 

States (US) and other leading dairy countries, fertility was ignored until 1993 when 

VanRaden and Klaaskate (1993) developed the first improvement in female fertility by 

genetic selection through evaluation in length of productive life.  

Weigel (2006) reported that inclusion of length of productive life during selection tended 

to stabilize genetic decline in daughter pregnancy rate. According to genetic evaluations, 

indirect selection for length of productive life was useful in improving fertility traits; 

however, direct selection for improved fertility is more advantageous (Weigel 2004, 2006). 

In accordance, a US national fertility evaluation was developed in 2004 based on genetic 

evaluation for daughter pregnancy rate (VanRaden et al. 2004). The daughter pregnancy 

rate (DPR) measures the percentage of nonpregnant cows becoming pregnant within each 

21-d opportunity period. The DPR by definition is calculated as “the number of cows that 

became pregnant during a given 21-day period divided by the number of cows that were 

eligible for breeding at the beginning of the period” (Weigel 2006). These groups are 

composed of cows that are not yet pregnant and have completed the voluntary waiting 

period (VanRaden et al. 2004).   

 The US genetic evaluation data include measurements for days open, date pregnant, and 

the success/failure of last breeding (VanRaden et al. 2004). These evaluated measurements 

were adjusted by parity and calving season within geographic region and time period 
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(VanRaden et al. 2004). This evaluation was the first report of a predicted transmitting 

ability for daughter pregnancy rate based on an animal model. 

Sire evaluation for DPR can be interpreted as the expected difference in a 21-day 

pregnancy rate between progeny groups of different sires (Weigel 2006). In other words, 

the pregnancy rate for an individual daughter indicates the number of 21-day opportunity 

periods required to achieve pregnancy (Weigel 2006). The significant variation between 

sires with the highest and lowest differences in daughter pregnancy rate is more than seven 

percent (Weigel 2006). VanRaden et al. (2004) estimated that a “1% difference in 

pregnancy rate is equivalent to approximately 4 days open”. Therefore, days open 

between daughters of the highest and lowest sires would differ by approximately 28 days 

per lactation. 

Weigel (2006) reported that daughter pregnancy rate was included in all selection indexes 

prepared for the US dairy industry. The relative weight of DPR on those indexes was 5–

7% of the total economic value (Weigel 2006). Moreover, the genetic negative correlation 

of milk yield and female fertility was considered relatively small. Thus, this small 

correlation guarantees the possibility of some sires with high production (milk) and 

fertility in their daughters. However, there are still many countries that do not include 

fertility information in their genetic evaluation.  Additional improvements need to be made 

in future genetic evaluation for fertility, such as detailed databases on reproductive 

performance. These events should include outcomes of pregnancy examinations, dates of 
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hormonal synchronization for estrus and ovulation, and dates of exposure to natural service 

sires (Weigel 2006). 

 

2.3.1.1 Genetic Trend for Cow Fertility  

VanRaden et al. (2004) reported fertility trends based on predicted transmitting ability 

(PTA) for DPR. The declining genetic trend for fertility by breed in United States is 

depicted in Figure 3 across different years (VanRaden et al. 2004). Furthermore, genetic 

trends were compared across breeds including milking Shorthorn, Jersey, and Ayrshire 

breeds which had smaller losses of fertility across time; whereas, Guernsey, Brown Swiss, 

and Holstein had larger losses (VanRaden et al. 2004). VanRaden and coworkers also 

observed that the genetic trend in Holstein became flat after 1994, suggesting that 

introduction of productive life, and the subsequent selection for this trait, could be 

responsible for this change. Furthermore, VanRaden et al. (2004) reported an increased 

genetic trend in Holstein for days open as well as yearly fluctuations (Figure 4). 

As mentioned earlier, pregnancy rate is highly correlated with days open, and a 1% 

increase in pregnancy rate represents a decrease of 4 days open (VanRaden et al. 2004). 

Moreover, an unfavorable genetic correlation exists between production (milk) and days 

open of about 0.35. Additionally, selection for productive life since 1994 apparently has 

slowed the decline in fertility, but direct selection for fertility should be more profitable. 
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2.3.2 Genetic Selection for Male Fertility 

Two regional systems were developed for evaluating male fertility in the United States 

(Weigel 2006; Kuhn and Hutchison 2008; Kuhn et al. 2008) consisting of the Animal 

Improvement Programs Laboratory (AIPL) implemented in May 2006, and the Estimated 

Relative Conception Rate (ERCR) developed by Dairy Records Management Systems and 

North Carolina State University (Raleigh, NC). The animal model employed in ERCR 

adjusted for effects of cows and their ancestors on 70-d nonreturn rates; thus, estimating 

the effect of the male (Clay and McDaniel 2001). Estimated relative conception rate is an 

estimate of the difference between an AI service sire and the average AI service sire of 

herdmates for rate of non-return in 70 d (Clay and McDaniel 2001). The authors evaluated 

reproductive performance using first service non-return in 70 d (NR70), where a first 

service was successful when a cow was not reported in heat or rebred within 70 d (Clay 

and McDaniel 2001).  

Other studies (Kuhn et al. 2004; Kuhn and Hutchison 2008; Kuhn et al. 2008) have shown 

that use of multiple services and use of an “expanded” service sire term improved accuracy 

of bull fertility. This improvement in use of “expanded” service sire, rather than use of first 

service exclusively, is due to increasing amount of information used to evaluate each bull. 

By definition, the term expanded service sire, includes “fitting factors related to bull 

fertility separately in the model and then computing a bull’s evaluation as the sum of the 

solutions for each factor” (Kuhn and Hutchison 2008). Despite improvement in accuracy, 

heritability estimates for conception rates for artificial insemination are zero. Therefore, an 
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additive genetic effect does not exist for predicting bull fertility (Kuhn and Hutchison 

2008). To evaluate production and conformational traits, evaluation of bull fertility is 

projected as phenotypic rather than genetic evaluation (Kuhn and Hutchison 2008).   

Unlike the AIPL, the Western Bull Fertility Analysis (Agri-Tech Analytics, Visalia, CA) 

began releasing sire fertility estimates in 2004. Their system uses on-farm data from large 

herds in the western part of the United States, most of which are located in California. By 

definition, this system is based on “75-day veterinary-confirmed conception rate for up to 

five inseminations per cow per lactation” (Weigel 2006). In general terms, both regional 

systems are adjusting estimates similarly by several factors but use different animal 

populations. 

Dairy producers are utilizing results of these genetic evaluations of male fertility when 

selecting bulls and purchasing semen (Weigel 2006). Differences of 4–5% are reported 

between the highest and lowest deciles of bulls (Weigel 2006). However, Weigel (2006) 

reported that most variation in male fertility is removed when bulls are culled for 

infertility. This culling occurs when ejaculates are discarded for failing to meet laboratory 

standards. 

Although considerable research has now been performed on cow fertility, Weigel (2006) 

suggested that direct genetic selection for improved female fertility is achievable by 

exploiting traits such as daughter pregnancy rate or indirect selection such as longevity. 

The statistical methodologies for analyzing reproductive data are standardized and proven 

to provide efficient estimates. However, Weigel (2006) reported that enhancements in 
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collection of fertility data are needed. This improvement would optimize information 

pertaining to pregnancy diagnosis, hormonal treatments, natural service matings, and “do-

not-breed” designations (cows to be culled). As previously mentioned, evaluation of bull 

fertility is projected as phenotypic rather than genetic evaluation (Kuhn and Hutchison 

2008). 

Since August 2008, sire conception rate (SCR), an evaluation of the fertility of artificial 

insemination (AI) service-sire, was available to dairy producers from USDA. As 

previously mentioned, from 1986 to November 2005, evaluations of bull fertility termed 

ERCR were provided by Dairy Records Management Systems (DRMS; Raleigh, NC). In 

May 2006, USDA's Animal Improvement Programs Laboratory assumed responsibility for 

phenotypic evaluation of U.S. bull fertility. Initially, ERCR evaluations were implemented 

without change in calculating methods. Since 2006, Kuhn and Hutchison (2008) and Kuhn 

et al. (2008) have developed an intense research effort developing methods to improve 

accuracy of bull fertility evaluations. The researchers identified factors associated with the 

bull effect to obtain a pregnancy, and variables that distorted the fertility measure for the 

bull providing semen (nuisance variables; Kuhn et al. 2008).  Those nuisance variables 

removed variation and improved accuracy of sire conception rates (Kuhn et al. 2008).  

 

2.3.2.1 Interpretation of Sire Conception Rate 

The technical difference between ERCR (70-day nonreturn rate) and SCR (sire conception 

rate) is based on confirmed pregnancy for SCR (Table 1). However, the two traits are 
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highly related and provide no differences in interpretation (Norman et al. 2008). For 

example, a bull with an SCR of 2.0% is expected to produce a conception rate of 32% in a 

herd that normally averages 30% (historic average of CR in bulls; Norman et al. 2008). 

The term “expected” implies these results would occur if based on large numbers of 

matings (Norman et al. 2008). In herds with only two possible inseminations per bull, the 

potential results for conception rate will represent 0, 50, or 100% (Norman et al. 2008). 

 

 

2.3.3 Female Fertility Traits and Fertility Index 

Several measures of reproductive performance have been proposed for evaluating breeding 

programs and producing selection indexes. These measurements include traits such as days 

open (DO), calving interval (CI), days to first service (DFS), number of inseminations per 

lactation (INS), success in first insemination (SF), interval between first and last 

insemination (IFL), and pregnancy rates (PR) at 21, 56, 70 days after service (Gonzalez-

Recio and Alenda 2005; Caraviello et al. 2006). However, no consensus of which traits 

should be included in fertility indexes exists (Gonzalez-Recio and Alenda 2005); however, 

the above mentioned traits have been included in various forms of fertility indexes 

(Gonzalez-Recio and Alenda 2005).  

González-Recio and Alenda (2005) estimated heritability, phenotypic, and genetic 

correlations among various fertility traits as illustrated (Table 2)  
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They reported low heritability (0.02 to 0.06) according to previous research available 

(Dematawewa and Berger, 1998; Veerkamp et al. 2001). In general, genetic correlations 

were high, ranging from 0.89 to 0.99. Days to first service were an exception with 

correlations of –0.52 with SF, 0.82 with DO, and –0.82 with PR. Furthermore, P56, P90, 

and SF had high positive genetic correlations (from 0.92 to 0.97). Conversely, some traits 

showed negative correlations with the remaining traits.  

In general, these results agree with low heritabilities and strong genetic correlations 

estimated by other researchers. Kadarmideen et al. (2003) and Veerkamp et al. (2001) 

reported strong (positive and negative) correlations ranging from ± 0.70 to ± 0.98 for 

fertility traits. However, Wall et al. (2003) reported lower correlations (0.61 and –0.45) for 

CI with INS and nonreturn rate at 56 d, respectively.  

González-Recio and Alenda (2005), using a threshold sire model, reported similar 

heritabilities for binary traits as Kadarmideen et al. (2000) and Averill et al. (2004). 

González-Recio and Alenda (2005) suggested that comparison between P56/P90 and 

nonreturn rates must be carefully considered. They considered these two traits different 

because nonreturn rates indicate absence of an additional AI within a given period.  

However, P56 (P90) indicates pregnancy within 56 d (90 d) (achieved with any number of 

AI) after first insemination (González-Recio and Alenda 2005). This trait indicated that 

success for P56 and P90 can be achieved with any number of inseminations whereas, only 

one AI is considered with nonreturn rate.  
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Gonzalez-Recio and Alenda (2005) proposed six fertility indexes utilizing information 

from milk recording schemes and insemination records. The fertility index that 

accomplished the highest genetic gain for reducing fertility cost was composed of DFS and 

pregnancy within 56 d. Authors remarked on the usefulness of recording insemination data 

within a dairy population. The usefulness of these indexes is that it achieved 15% higher 

genetic gain than indexes with information from the milk recording scheme only (calving 

interval and days open) (Gonzalez-Recio and Alenda 2005). However, the correct 

application of these fertility indexes is limited to the adequate recording of reproductive 

data. Although some fertility traits or indexes can be estimates (CI and DO) from the milk 

recording programs, the remaining traits require insemination and pregnancy records. 

These data are not frequently recorded in many countries due to the lack of appropriate 

recording systems (Gonzalez-Recio and Alenda 2005). In that sense, the advantages of 

recording reproductive data should be emphasized.  

Although genetic progress in fertility as previously cited is possible by both direct/indirect 

selection and fertility indexes, genetic progress in fertility requires an extended time due to 

low heritabilities. However, most improvement in female fertility is reached with a 

combination of information from milk recording programs and reproductive performance. 

 

2.4 Economics of Fertility 

Fertility is the most economically important trait in dairy and beef herds. Reproductive 

efficiency impacts directly on revenues associated with milk production per dairy cow per 
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day and offspring born. Moreover, low reproductive performance directly elevates costs 

associated with additional inseminations, higher veterinarian costs (drugs for estrus 

synchronization, pregnancy checks, etc), increased culling, and development cost 

associated with replacement heifers. Therefore, the profitability of dairy farms depends 

directly on the reproductive efficiency of the dairy cows (Plaizier et al. 1997; Meadows et 

al. 2005; De Vries 2006). 

Most studies have evaluated the economic impact of impaired reproduction efficiency 

measured as additional days in which cows are not pregnant beyond the optimal time post-

calving (Holmann et al. 1984, Groenendaal et al. 2004; González-Recio et al. 2004; 

Meadows et al. 2005; De Vries 2006). Furthermore, several factors need to be included 

into the economic analysis since they have a great impact on the results (i.e., stage of 

lactation,  lactation number, milk production, persistency of lactation, prices, breeding and 

replacement decisions (Groenendaal et al. 2004; González-Recio et al. 2004; Meadows et 

al. 2005; De De Vries 2006).  

Plazier et al. (1997) defined economic values as the effect of a marginal unit of increase 

directly associated to a specific trait. This definition measured the economic efficiency of a 

determined trait without considering changes in other traits. Thus, economic values can be 

obtained either as the partial derivative of a profit equation or through simulation 

evaluating the effect of a marginal increase in the trait on production efficiency (Groen 

1989; Plazier et al. 1997; Meadows et al. 2005; De Vries 2006). Computer simulation 

programs for dairy production systems have been used to estimate the economic values of 
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reproductive traits and the financial implications of different levels of reproductive 

efficiency (Congelton 1984, , Marsh et al. 1987, Plazier et al. 1997, Meadows et al. 2005; 

De Vries 2006). 

 

2.4.1 Models for Measuring the Economic Impact of Fertility 

Realistic and complete models that represent the economic benefits of improved 

reproductive efficiency are not simple to estimate (De Vries 2009). Defining real 

assumptions to imitate currents reproductive management practices as well as to predict 

probabilities of pregnancies or culling rates are difficult for evaluating economic impact of 

impaired fertility. However, estimation of the economic impact caused by reduced fertility 

should provide an incentive for identification and correction of the underlying causes of 

reduced reproductive efficiency. Several causes are associated with management practices 

and many others may be associated with selection strategies when reproduction (fertility) 

is ignored. Reproductive efficiency has continued to decline in dairy herds in spite of the 

known importance of fertility traits, improved management, and increased knowledge of 

reproductive biology in the cow (Lucy 2001; Santos et al. 2004). 

Improved reproductive performance in a traditional system provides positive changes in 

cash flow that can be accounted for in the different profit evaluation models (De Vries 

2009). In this analysis, realistic estimates of lactation curves, feed intake, risk of 

involuntary culling, and prices for milk, feed, labor, semen, fertility drugs, calves, 

replacement heifers and cull cows should be accounted for in the model (De Vries 2009).  
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In simplistic terms, cows that become pregnant earlier after calving spend more time in the 

early part of the lactation and have less risk of being culled for reproductive failure (most 

common involuntary culling reason). Consequently, the earlier that cows become pregnant, 

the more profit periods these cows will have since they’ll spend more time during the more 

profitable period (high milk production) of the lactation curve. Conversely, when cows 

become pregnant later after calving, they will spend more time on the tail end (low milk 

production) of the lactation curve which results in loss of profit. In summary, dairy 

producers desire pregnant cows as earlier as possible (profitable first period of the lactation 

curve) to maximize profitability of the herd. Additionally, others important factors such as 

the voluntary culling policy (defined period to continue inseminating non pregnant cows) 

and the efficiency for generating replacement heifers have a high economic impact and 

should be considered in the analysis model (De Vries 2009). 

Therefore, to reproduce and integrate these economically important factors, computer 

programs, spreadsheets, and logic models need to be created to obtain the best possible 

economic estimates of proven reproductive performance (De Vries 2009). Although 

researchers have created and used these models, results still differ for several reasons such 

as variation in prices, management, lactation curves and feed intake, risk of involuntary 

culling, insemination and voluntary culling policy, and method of calculation among others 

(De Vries 2009). 
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2.4.1.1 The Days Open Example  

Various studies have evaluated reproductive performance by estimating the additional cost 

per day open or per calving interval (Table 3; Plazier et al. 1997; Meadows et al. 2005; De 

Vries 2007, 2009). The term Days Open (DO), is an indicator of reproductive efficiency in 

dairy cattle that is widely accepted (Plazier et al. 1997; Meadows et al. 2005; De Vries 

2007). This useful measure is defined as the interval from calving to conception and is 

affected by many components of reproductive management including voluntary waiting 

period, estrus-detection efficiency, and conception rate (CR; Barr, 1975; Esslemont, 1992; 

Pecsok et al. 1994; Meadows et al. 2005). Estimation of the economic cost of an additional 

DO has been frequently reported and involves a decrease in profitability associated with 

reduced milk production and availability of replacements (Plaizier et al. 1997; Meadows et 

al. 2005; De Vries 2007).  

From different approaches that have been developed and used to estimate cost of an extra 

day open, results (estimates) show variation from a slightly negative cost (which implies a 

benefit for additional DO) to decidedly greater positive costs (Meadows et al. 2005). 

Although these variations are published, most of the research implies a negative economic 

impact regarding the financial consequence of inefficient reproduction as measured by 

days open (Meadows et al. 2005).  
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2.4.1.2 Modeling a Dairy Herd: A Tool for Evaluating Days Open and other Fertility 

Traits 

Most tools developed for estimating economic impact of an additional DO simulate life of 

an average dairy cow on a daily basis in a specific scenario, which is a set of inputs that 

describe herd characteristics (Meadows et al. 2005). These tools based both on real records 

and/or simulations require assumptions regarding which revenues and costs will be used 

(Table 4; Meadows et al. 2005). These assumptions can introduce variability; thus, making 

interpretation of appropriate comparisons difficult (Schmidt 1989; Plaizier et al. 1997; 

Meadows et al. 2005). Meadows et al. (2005) simulated each day of the cow’s life, 

estimating a partial cash flow based on these expenses (of inputs) and revenues (from 

products) that are closely related to reproductive performance (Table 4). 

Several outputs and scenarios can be generated with these simulation models (Gonzalez-

Recio et al. 2004; Meadows et al. 2005; Hou et al. 2009). As previously shown in Table 4, 

some input values can generally represent average values across regions, states or 

countries. Also, a great advantage of these simulation models is the possibility to test 

variable and input sensitivity; thus, creating diverse scenarios adaptable to most situations 

in dairy herds. For instance, Meadows et al. (2005) simulated the effect of alternate annual 

culling rates and days open as shown in Figure 5, which illustrates equivalent daily cash 

flow (EAC; adaptation for specific evaluation periods from the net present value; NPV; 

Meadows et al. 2005). This figure shows EAC values estimated for DO from 130 to 190 

and culling rates of 25, 34, or 45%. Briefly, as annual culling rate increases, the modeled 
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dairy herd becomes less profitable. Additionally, for a fixed annual culling rate, profits 

measured as EAC decline as DO increase (Meadows et al. 2005). In summary, the ideal 

scenario is to have lower culling rates and shorter days open. 

Furthermore, the effect of relating days open with milk and feed prices represent an 

interesting scenario to evaluate. Meadows et al. (2005) showed that the model inputs led to 

maximally average daily milk yield near 110 DO, with a marked decline as DO increased 

(Figure 6). 

 

2.4.2 Estimation of the Cost of Impaired Reproduction Efficiency: The DO Example 

In table 3, estimations of costs associated with additional days open are reported and 

expressed per cow per year. In summary of the table, most of the authors reported that the 

cost of days open is not constant and each DO becomes more costly as DO increased 

(Holmann et al. 1984; Dijkhuizen et al. 1985; Schmidt, 1989; Plaizier et al. 1997, 

Meadows et al. 2005). Meadows et al. (2005) suggested that this conclusion is perhaps 

more useful to producers and practitioners than any single estimate of the cost of a DO. 

Meadows and coworkers also suggested that it is important to know greater economic 

opportunities exist when DO are farther from a target or ideal value. These costs in Table 3 

are not adjusted for inflation and reflect the situation at the time of each study. As the cost 

is not uniform and depends on DO, a column with the average DO used for the analysis 

was included in this table. 
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2.4.3 Estimation of the Cost of Impaired Reproduction Efficiency: The Value of a 

Pregnancy 

De Vries (2006) defined the value of a pregnancy for an individual cow as the difference in 

discounted future cash flows when pregnant compared with when not pregnant. The author 

also determined that the economic value of a pregnancy could be easily evaluated as the 

difference in expected future net returns from two identical cows, one pregnant and the 

other non pregnant. DeVries suggested that the Retention Pay-Off (RPO), also called 

future profitability or cow value, of the two cows be compared to calculate the economic 

value of a pregnancy. In simplistic terms, the RPO of a cow is the difference in expected 

total net returns maintaining the cow until her optimal voluntary replacement compared to 

immediately culling upon determination of pregnancy failure and replacing her with a 

heifer (Van Arendonk 1984; De Vries 2006; 2009). 

As previously mentioned for days open, estimations of the value of a pregnancy vary for 

the type of models used, variation in inputs such as prices, management, lactation curves 

and feed intake, the risk of involuntary culling, insemination and voluntary culling policy, 

and method of calculation among others (De Vries 2009). Despite these variations, 

estimations of the value of a pregnancy will be introduced in a summary table (Table 5). 

However, these estimates are not comparable since most of them represent specific 

situations. Despite this consideration, these estimates are intended to illustrate the 

substantial economic impact of a new pregnancy as well as the potential economic loss of 

abortions (De Vries 2006). 
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Using a complete model, De Vries (2006) exemplified the value of a pregnancy during the 

first lactation using average lactation curves (Figure 7). De Vries demonstrated that the 

dynamic of retention payoff (RPO) for non pregnant and pregnant cows with conception at 

61 days in milk (DIM), with the value of pregnancy increasing from $81 during the first 

month of pregnancy to $841 during the last month of pregnancy (Figure 7; De Vries 2006). 

Additionally, in this example, non pregnant cows showed that RPO decreased from $993 

in the first month after calving to less than $0 after 13 months in milk, suggesting that the 

cow should then be culled. 

Other authors have evaluated the economic value of a pregnancy using the value of a 

marginal increase in pregnancy rate (i.e., the economic value of a 1 percentage point 

increase in pregnancy rate). For instance, Pecsok et al. (1994) showed that the value of a 1 

percent increase in pregnancy rate was worth about $0.86 per cow per year when the herd’s 

pregnancy rate was approximately 45%. However, if one decreases this pregnancy rate to 

13%, the 1 percent value increases up to $16.60. Plaizier et al. (1998) reported values of a 

1-percentage-point increase in estrus detection rate had been estimated from a loss of $2 to 

a gain of more than $16 (1998 US dollars). Their results also showed that improving poor 

reproductive performance was the most valuable. United States Department of Agriculture 

(USDA), in its revision of the net merit as a measure of lifetime profit in 2010, reported a 

change of 1% in daughter pregnancy rate was worth $ 27 lifetime (Cole and VanRaden 

2010).   
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2.4.4 Other Economic Values for Fertility 

Interestingly, González-Recio et al. (2004) simulated fertility costs of dairy herds through 

number of inseminations per service period (ISN; Table 6). According to their results, 

doses of semen, hormonal treatment, and culling costs in cows with poor fertility lead to 

lower lifetime production, shorter productive life, and lower profit. They evaluated female 

fertility using a specific reproductive recording scheme. However, they stated that if 

insemination records are not recorded, genetic correlation of CI or DO with INS could be 

used to develop a selection index (González-Recio et al. 2004). Also, they suggested to 

include traits from milk recording schemes (such as CI or DO) could be included in the 

selection index by relating them to economic value of inseminations per service period 

(Gonzalez-Recio et al. 2004). 

 

2.5 Fertility Selection Index 

2.5.1 The Selection Index 

Hazel and Lush (1943) introduced the concept that net merit of the individual, considering 

several traits of economic importance, outperforms other forms of selection including 

single trait selection. The fundamental concept of aggregate genotype described by Hazel 

and Lush (1943) introduces a linear function (selection index) of observations providing 

that the observations of each trait are weighted by the relative economic value of that trait. 

The aggregate genotype permit obtaining a single value for each animal; thus, representing 

an objective valuation integrated by net genetic merit of an animal and the profit associated 
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to these traits (Weaber 2010). Incorporation of breeding values to selection indexes, 

motivated by Hazel (1943) and Henderson (1951), definitely improved genetic prediction 

of economically important traits.  

 

2.5.2 Index Basics 

In simplistic terms, the selection index equation (Hazel 1943) defines the economic merit 

of an animal as a parent since it incorporates breeding values:  

Hi= a1BVi1 +a2BVi2 +….+ anBVin. 

Where:  

Hi = the aggregate economic merit of animal i, as a parent; 

aj = the relative economic weight of trait j, j = 1...n, where n = the total number of traits: 

and 

BVij = the breeding value of animal i for trait j. 

Usually, breeding values are represented by PTAs or EPDs. Thus, animals (as parents) are 

ranked on a prediction of H called (I), the index value defined as (Henderson 1963): 

Ii = a1PTAi1 +a2PTAi2 +….+ anPTAin. 

Where: 

Ii = the predicted aggregate economic merit of an animal, i, as a parent. 

aj = the relative economic weight of trait j, j = l…n, where n = the total number of traits; 

and 

PTAij = the predicted transmitting ability of animal i for trait j. 
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As previously discussed in genetic parameter estimation section, the index is unbiased as 

the genetic predictions themselves are unbiased since they were predicted with Best Linear 

Unbiased Predictions (BLUP) procedures.  

 

2.5.3 Relative Economic Values 

Several studies discussed earlier in this section presented relative economic values 

(weighting factors) for traits in potential development of fertility indexes. However, the 

adoption and implementation of indexes of aggregate economic merit have been limited by 

the absence of economic values in different areas (primarily in functional traits), and as 

such, the actual genetic evaluation could be improved (Golden et al. 2000). 

Economic values or weights (the a’s in the previous equations) reflect the change in profit 

when a trait is changed by a single unit. Several examples were previously introduced that 

could be apply to fertility indexes. To illustrate the selection index theory, an example, 

including different fertility indexes developed by Gonzalez-Recio and Alenda (2005), will 

be briefly presented.  

 

2.5.4 Fertility Indices in Dairy Herds 

Gonzalez-Recio and Alenda (2005) studied which traits should be included in a selection 

index to reduce fertility costs. They proposed six different selection indices, the first 2 

fertility indices (FI1 and FI2) were calculated with only information from milk recording 
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scheme (CI and PR, respectively). Using data from insemination records, the next 4 indices 

(FI3, FI4, FI5, and FI6) included days to first service (DFS), interval from first to last 

insemination (IFL), nonreturn rate (P56; P90), and number of inseminations (ISN) per 

service period, respectively.  

The fastest genetic gain was achieved with DFS (as a trait to indicate beginning of 

reproductive performance), and P56 (as a trait to measure conception rate; Gonzalez-Recio 

and Alenda 2005). The fertility index (DFS + P56) lowered DFS (–1.31 days), and reduced 

ISN (–0.03) per generation. This genetic progress would increase profits by $8.60 per cow 

per generation (Gonzalez-Recio and Alenda 2005).  

 

2.6 Genomic Technologies 

2.6.1 The Era of the Genomes 

Starting in the 1980s, genomics technology described the scientific discipline of mapping, 

sequencing, and analyzing genomic level DNA information (Green 2009). Along with 

genomics, another technology, polymerase chain reaction (PCR), allowed one to 

understand the structure of DNA (Mullis and Faloona 1987). Polymerase chain reaction 

along with other complementary technologies, provided the opportunity to investigate the 

genetic code of plants and animals, and to identify locations on the chromosomes that 

might contain genes affecting economically important traits (Green 2009). In 1990’s 

microsatellite markers, found readily throughout the genome, were used to develop linkage 

mapping. Bishop et al. (1994) reported one of the first genetic linkage maps in US cattle. 
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From these early efforts and accompanying technological advances (e.g., radiation hybrid 

and bacterial artificial chromosome maps), more defined and better maps continue to be 

developed (e.g., "composite bovine map"; Snelling et al. 2007). These linkage maps 

motivated researchers to start searching for regions of the genome harboring genes 

containing polymorphisms, which cause differences in phenotypic performances in most 

economically important traits (Green 2009).  Thus, identification of quantitative trait loci 

(QTL; specific region of the genome linkage with different performance of a trait) was an 

important advance in genome technology, motivated in part by its possible application in 

marker-assisted selection (MAS; Dekkers 2004; Green 2009). However, application of this 

technology (MAS) in the industry was overstated and later considered as only an important 

step towards practical technology (Dekkers 2004; Green 2009). 

Taking advantage of the highly funded research associated with diseases on human 

genome, livestock genomics rapidly advanced due to similarities in genomes (85% or 

greater) between mammalian species. Despite this interesting and aggressive approach, 

only a few genes have been mapped to date through the comparative mapping approach 

(Cockett et al. 1994; Casas et al. 2000; Green 2009). 

Due to the slow, expensive and inefficient advance of linkage maps, QTL searches, 

comparative mapping, and some fine mapping, the National Institutes of Health, through 

its National Human Genome Research Institute, designed a plan for sequencing the human 

genome (Human Genome Project). The Human Genome Project refers to international 

studies to discover the estimated 20,000-25,000 human genes and make them accessible 
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for further biological study (Collins et al. 2003; 

http://www.ornl.gov/sci/techresources/Human_Genome/project/hgp.shtml; Green 2009). 

Utilizing the created infrastructure of the National Human Genome Research Institute, this 

organization supported the sequencing of several other genomes chosen based on 

comparative mapping and use as medical models. The draft sequence for the bovine (Gibbs 

et al. 2002; Kappes et al. 2006) was assembled and has been placed in a public domain 

through the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/). Additionally, other species have been sequenced and/or 

are expected to be assembled to the same level (Green 2009).  

Beside development of the draft sequence, another major challenge was development of 

tools that would allow bovine genomics research to move forward quickly (Kappes et al. 

2006; Green 2009). This genomic technology has permitted detection of large pools of new 

SNP, and full-length complementary DNA sequences have been developed for multiple 

tissue systems for the study of gene expression (Green 2009). These efforts and findings 

are being annotated; thus, providing a gene atlas for various species (Green 2009). 

Van Tassell et al. (2008) aided development of high-throughput genotyping platforms to 

determine large numbers of markers (56,000 bovine panels) in a single run in a cost 

effective manner. Additionally, Meuwissen et al. (2001) developed methods to predict 

genetic parameters with a limited number of phenotypic records, based on information 

provided by these high-throughput genotyping platforms, using marker haplotypes. The 

authors suggested that selection based on breeding values predicted from markers could 

http://www.ornl.gov/sci/techresources/Human_Genome/project/hgp.shtml�
http://www.ncbi.nlm.nih.gov/�
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substantially increase rate of genetic gain, especially in traits where accuracy of selection is 

low.  Low accuracy is due mostly to limited number of phenotypic records, primarily in 

traits with low heritability (Meuwissen et al. 2001). In dairy cattle, VanRaden et al. (2009) 

reported significant enhancements in accuracy of breeding values of young bulls when 

obtained by the 56,000 bovine SNP panel compared with pedigree estimates. 

 
2.6.2 DNA, Genes and Markers 

The bovine genome consists of 30 pairs of chromosomes that contain a fundamental 

component know as deoxyribonucleic acid (DNA). Chromosomes and DNA (excluding 

mitochondrial DNA) are stored inside the cell nucleus. DNA encodes information for all 

proteins needed to create and maintain an organism. Information for protein’s synthesis is 

contained within genes. These genes, a DNA segment that contributes to 

phenotype/function, represent only a small portion of a cell’s entire DNA (the genome). 

DNA consists in a double helix of simple units or building blocks know as nucleotides. 

These building blocks are constituted of sugar molecules and organic bases. There are four 

types of bases: adenine (A), guanine (G), cytosine (C), and thymine (T). The sequence of 

these building blocks (nucleotides) provides the order of amino acids required to develop 

proteins. Mutations, changes in the nucleotide sequence, can occur that result in altered 

proteins, contributing to the development of different phenotypes (coat color or height). 

These changes or mutations of single base pairs represent polymorphisms that can be used 

as DNA markers. Many mutations do not result in amino acid and protein changes; 
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however, these changes in single base pairs could still be associated with an altered 

phenotype or increased disease risk.  

 

2.6.2.1 DNA Markers  

DNA markers are sequences of nucleotides with a known location on the genome and 

associated with a particular gene or trait (i.e. increased marbling). Variations in this 

location can be used to identify specific alleles or forms of a particular gene. Genotyping 

(DNA tests) determines which alleles an animal is carrying for a specific DNA marker. 

Although several types of DNA markers exist, one of the most popular used are called 

single nucleotide polymorphisms (SNPs). 

  

2.6.2.1.1 Single Nucleotide Polymorphism (SNPs)  

Single nucleotide polymorphisms (SNPs) are a change in a single base (nucleotide) pair in 

the genome and usually generate two alleles for a specific SNP marker. For example, two 

pieces of DNA sequences from two different calves represented by AAGGCCTA and 

AAGGCTTA contain a difference in a single nucleotide. For this specific location, there 

are two alleles (C and T). Thus, these different alleles for each SNP can be associated with 

traits or phenotypes (i.e. increased tenderness).  

A simply way to understand SNP markers is to think that they are “tags” across the 

genome (DNA) that allows one to identify a piece of DNA and track its inheritance from 

parent to offspring (Weaber 2009). As discussed previously, these markers can be 
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genotyped with modern equipment (SNPs panels). Thus, DNA marker test determine 

which DNA sequence variant (allele) an animal is carrying for a specific DNA marker 

(SNP; Van Eenennaam 2009). These DNA markers, based on SNPs, allow for tracking 

inheritance of “simple” traits controlled by a single gene or “complex” traits controlled by 

several genes (Weaber 2009).    

 

2.6.2.1.2 DNA Markers for Single Traits 

The fundamental point in any DNA marker test is to find the variations (SNPs) in DNA 

sequences that cause variation in the phenotype (weight, height, etc). For example, a wide 

spectrum of genetic tests are used today and available for producers for different genetic 

abnormalities (Arthrogryposis Multiple, Tibial Hemimelia, Pulmonary Hypoplasia with 

Anasarca, etc), coat color (red vs black) and horn status (Table 7). As previously 

mentioned, most of these traits are controlled by a single gene, and a marker associated 

with this gene can predict the phenotypic response of these simple traits. These tests cover 

a variety of anatomic and metabolic genetic defects in cattle where producers can identify 

if their animals are free or carriers of most common genetic defects. These tests are highly 

reliable in identifying genetic diseases since most are single gene mutations. Thus, a 

simple mutation explains most of the variation (if not all) of the trait. These genetic panels 

constitute a group of DNA markers tests that are being actively marketed for the past few 

years and are readily available for producers. 
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2.6.2.1.3 DNA Markers for Complex Traits 

Test for DNA markers of complex traits (most economically important traits) need to track 

several genes in order to explain a large part of the genetic variance. Furthermore, these 

traits are highly influenced by environment and management. Typically hundreds of genes 

are needed to explain most of the genetic variance; although, in some cases, a single gene 

may have a large effect (Goddard 2009). Thus, several markers are need in a DNA test for 

complex traits since each single marker is associated with only one of the many genes that 

control those traits. For instance, a complex trait such as milk production is estimated to be 

affected by more than 1000 genes (Goddard 2009). In general, DNA marker tests with only 

a few markers explain a small fraction of the variation of these traits. Currently, DNA tests 

for complex traits involve a small numbers of SNPs (<100) and explain only a small 

proportion of the genetic variation of the traits (<10%; Van Eenennaam 2009). One novel 

approach to identify and discover markers (SNPs) in single and complex traits is the 

genome wide association study.  

 
 
 
2.6.3 Discovering Markers: Genome Wide Association Studies (GWAS)  

The possibility to identify genes for complex or quantitative traits (measurable traits 

affected by many genes and the environment) would greatly enhance the understanding of 

these genes and their genetic prediction for representing substantial benefits for producers. 

As previously shown in genetic estimation for quantitative traits, the genetics of these traits 
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have been studied without identifying genes involved (Dekkers and Hospital 2002; 

Goddard and Hayes 2009). Thus, the estimated breeding values and genetic parameters 

(heritability), predicted from phenotypic records and pedigrees, have been leading 

successful selection strategies for quantitative traits. However, the progress is slow, 

essentially if traits can only be measured in one sex (i.e., milk yield, fertility), after death 

or late in the life (i.e., meat quality, longevity), or are expensive (i.e., feed requirement or 

disease resistance; Goddard and Hayes 2009). One fresh alternative to improve and speed 

the rate of genetic gain would be to identify genes associated with these traits and select 

animals carrying the desirable alleles (Meuwissen et al. 1996).  

 

2.6.3.1 Candidate Gene vs. GWA Studies  

Both candidate gene and genomic wide association studies (GWAS) have been extensively 

used to discover genes and polymorphisms associated with variation of complex traits 

(McCarthy et al. 2008; Goddard and Hayes 2009). The basic idea behind the candidate 

gene approach is that a major component of genetic variation of the phenotype under study 

is caused by functional mutation of specific genes (Zhu and Zhao 2007). These genes have 

been selected based on their known role in the physiology of the trait. This candidate gene 

approach allows one to confirm if effects of the causative genes are associated with 

variation in the phenotype. This approach has been extensively applied to gene-disease 

research, genetic association studies, biomarker and drug target selection in many 

mammalian species (Tabor et al. 2002; Zhu and Zhao 2007). Although many candidate 
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genes of economically important traits or disease resistance/susceptibility were detected, 

one of the primary disadvantages is the requirement of extensive physiological, 

biochemical or functional knowledge (Tabor et al. 2002; Zhu and Zhao 2007). The absence 

of background knowledge (phenotype) in some traits, low replication of results, limited 

ability to include all possible causative genes, and the complex genetic structure and 

physiology of the quantitative trait have limited this approach and further application 

(Tabor et al. 2002; Zhu and Zhao 2007; Goddard and Hayes 2009). However, with the 

recent availability of large panels of SNPs in cattle, the GWAS approach now has the 

possibility to search for mutations underlying variation in complex traits (Goddard and 

Hayes 2009). The genome-wide association approach can best be defined as an association 

study that surveys the genome for causal genetic variants. In contrast with the candidate 

gene approach, association studies can be performed without knowing the causal genes. 

The basic idea with GWAS is to detect statistical association between the trait (phenotype) 

recorded and the markers analyzed with a genome-wide panel.  

 

2.6.4 Principles and Tools of Genomic Wide Association Studies 

The basic design in GWAS include definition of parameters, number of animals involved, 

and size of the genome wide panel (number of markers; Goddard and Hayes 2009).  

Typically, linear models are used to analyze data from GWA studies where models fit one 

SNP at a time, including the effect of a SNP as fixed effects (Goddard and Hayes 2009). 



 

59 
 

Until now, genome wide association studies have not been feasible due to cost and labor. 

However, recent advances in SNP discovery by sequencing and re-sequencing the genome 

of several domestic species have moved GWAS from futuristic to realistic (Hirschhorn and 

Daly 2005; Goddard and Hayes 2009). Most of these discoveries have been implemented 

with commercial SNPs arrays or SNPs chips. For instance, commercial arrays are available 

in cattle (54,000 SNPs; Illumina BovineSNP54 BeadChip), dogs (22,362 SNPs; Illumina 

CanineSNP20 BeadChip), sheep (56,000 SNPs), pigs (60,000 SNPs; Illumina 

PorcineSNP60 BeadChip), and horses (54,602 SNPs; Illumina EquineSNP50 BeadChip; 

Goddard and Hayes 2009). 

Several strategies have been used to avoid and minimize false positive associations in 

studies that involve thousands of markers. Hirschhorn and Daly (2005) classified the 

source of false positive associations into three categories: statistical fluctuations in testing 

multiple hypotheses resulting in low p-values, biases due to study design, and technical 

artifacts. For the first source of bias (testing multiple hypotheses), strong and conservative 

criteria for declaring significant associations should be taken. For instance, the Bonferroni 

correction is a preventative strategy to avoid these false positive associations when 

examining multiple hypotheses. Another important source of bias in the study design (false 

positive associations) is population stratification due the admixture in samples of 

individuals used. By definition, admixture occurs when samples of individuals are derived 

from more than one breed or race, and have not undergone random mating (Hirschhorn and 

Daly 2005; Goddard and Hayes 2009). Population stratification occurs when multiple 
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subgroups exist within a population that differs in average trait value (phenotype). This can 

lead to differences in one or more subgroups since false positive associations can result if a 

genetic marker has different frequencies in different subgroups (Hirschhorn and Daly 

2005).  When information is available, this problem can be easily avoided by including 

breed in the statistical model (Goddard and Hayes 2009). Conversely, admixture associated 

to the existence of relationships among the animals requires a more elaborate solution. The 

ideal scenario should be to sample individuals unrelated; however, cattle are usually bred 

in half sibling families. For this issue, Goddard and Hayes (2009) suggested inclusion in 

the statistical model of a term for the effect of all other genes affecting the trait (the 

polygenic term). Finally, as in any array test where large numbers of markers are typed, 

source of potential bias and false positive association exists due to technical artifacts.  

 

2.6.5 Number of Single Nucleotide Polymorphisms in Genome Wide Association 

Studies 

The amount of markers (SNPs) in GWAS depends on the distance between the QTL and 

the marker measured as the potential association by linkage disequilibrium. By definition, 

linkage disequilibrium is the non-random association of alleles at two or more loci 

(Goddard and Hayes 2009). For instance, if markers are separated by a long distance, the 

QTL may not be in linkage disequilibrium with the markers, making it necessary to 

increase the density of markers to detect the QTL (Goddard and Hayes 2009).    



 

61 
 

In cattle, Goddard and Hayes (2009) stated that significant associations were found within 

a breed using only 10,000 SNPs, but estimated that 300,000 SNPs would be required for 

between-breed analyses in Bos taurus cattle. They estimated that SNPs need to be spaced 

less than 10 kb apart to show association between the marker and the QTL across breeds. 

To illustrate these scenarios, the mutation in the DGAT1 gene that affects fat percentage in 

milk segregates only in Bos Taurus cattle (Goddard and Hayes 2009). Conversely, the 

mutations in calpastatin and calpain, associated with meat tenderness, segregate in both 

Bos taurus and Bos indicus breeds (Tantia et al. 2006; Goddard and Hayes 2009). 

 

2.6.6 Number of Animals in Genome Wide Association Studies 

In GWA studies, the estimation of the number of animals involved in the study is crucial 

and depends on the size of the effects that one expects to detect. One of the more important 

parameters to be reported is the proportion of variance explained by the SNP (Goddard and 

Hayes 2009). The explained proportion of variance can be described by combining the 

allele frequency with the mean difference between the SNP genotypes. In simplistic terms, 

Goddard and Hayes (2009) defined how this number (animals required) needs to be 

estimated. For instance, they reported that the correlation (r) between the marker and the 

trait, r(t,m), is equal to r(m,q) x r(q,g) times r(g,t), in which m is the marker genotype 

(usually scored 0, 1 or 2), q is the QTL genotype, g is the genetic value of the animal, and t 

is the phenotypic value of the animal. From these equations, the number of animals 

necessary for completion of GWAS can also be estimated by r2(m,q), which is the 
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conventional r2 defined measure of linkage disequilibrium, r2(q,g) is the proportion of 

genetic variance explained by the QTL, and r2(g,t), that is the heritability of the trait 

(Goddard and Hayes 2009). In an example and using several assumptions, Goddard and 

Hayes (2009) estimated the number of animals required by r2(m,q) = 0.50, r2(q,g) = 0.04, 

and r2(g,t) = 0.25; then r(t,m) = 0.07 and a standard error equal to 0.33; then expected 

number of animals required was 1,800 (Goddard and Hayes 2009). As most of the SNPs 

explain less than 4% of the genetic variance, more than 1,800 animals would be needed for 

GWAS (Visscher et al. 2008; Goddard and Hayes 2009). In the above example, the 1,800 

animals represent both genotypes and phenotypes that must be measured. However, if used 

animals have been progeny tested (using the mean of their progeny instead of their own 

phenotypic value), the number of animals could be notably reduced (Goddard and Hayes 

2009). The formula above still applies but now r2(g,t) is the reliability of the progeny test 

and t is the progeny mean (Goddard and Hayes 2009). 

 

2.6.7 Results of Genome Wide Association Studies 

2.6.7.1 Result for Single Traits 

One of the biggest impacts of GWAS has been identifying genes for single traits. For 

instance, Charlier et al. (2008) reported three genes harboring mutations resulting in three 

recessive abnormalities (Table 8). The number of animals used in the study was low 

because calves suffering from a fatal recessive disorder are homozygous for a large 

chromosome segment containing the causative gene, allowing this segment to be detected 
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using moderately dense markers (Goddard and Hayes 2009).  Larger numbers of animals 

are required for GWAS for complex traits, but the strategy to find genes for those traits is 

similar. 

 

2.6.7.2 Results for Complex Traits with Emphasis on Fertility 

Lately, several mutations have been found through GWAS for various complex traits. The 

characteristics that these traits have are represented by many SNPs significantly associated 

with small effects (explaining a low percentage of the variations; Goddard and Hayes 

2009). In other words, complex traits have contribution of a large numbers of genes with 

small additive effects (Cole et al. 2009). 

As illustrated in Table 9, various GWAS have found SNPs that affect complex traits. 

Emphasizing fertility in the Holstein breed, GWAS are listed according to the phenotypic 

traits used, breed, number of animal’s genotyped, number of SNPs significantly associated, 

and authors.    

 

2.6.8 Validation Studies 

Once a SNP-trait association has been found in a discovery population, this association 

needs to be validated in a different population representing the population where the 

marker or test will be applied. Thus, validation studies from these SNP associations are 

very important and necessary. Goddard and Hayes (2009) suggested three reasons for these 

validation studies; first, the size of the effect of each association is small. The second 
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reason is the linkage disequilibrium between the SNP and the QTL may be present in the 

original sample of animals but not in other samples from a different breed or even from 

different families within the same breed. The final reason is the false discovery rate is high 

in these GWAS, meaning most of the significant associations are expected by chance when 

large numbers of SNPs are tested (Goddard and Hayes 2009). Furthermore, SNPs 

associations are more likely to be validated when GWAS use large numbers of animals, 

when only one breed is utilized, and when selected SNPs are highly significant. Also, 

GWAS are most likely to be validated when the analyses include appropriate protection 

from false discovery rate (Goddard and Hayes 2009). 

In summary, the ideal design of a GWA study depends on the genetic architecture of 

complex traits (Goddard and Hayes 2009). As previously described, many polymorphisms 

of different types affect a typical complex trait and result in small effects having low minor 

allele frequency. Knowledge of this architecture is needed for GWAS involving complex 

traits. Thus, large numbers of individuals are required to have the necessary power to find 

the genes explaining most of the genetic variance (Goddard and Hayes 2009). 

 
2.6.9 Marker Assisted Selection  
 
Marker assisted selection (MAS) is a selection method utilizing results of DNA tests 

(discovered markers) to select parents for subsequent generations. Basically, this selection 

approach improves accuracy of the selection and increases the rate of genetic progress by 

including genotypic information provided by DNA tests. Thus, MAS improves accuracy 
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by identifying animals carrying desirable genetic variants (SNPs) for a given trait, even at 

the time of birth.  

It is possible to categorize use of MAS in two possible alternatives. For the first 

alternative, once a causative mutation has been identified in a gene or regulatory region 

(i.e. mutations with major effects on the trait; single traits), the objective is to eliminate the 

abnormal allele from the population (Goddard and Hayes 2009). Some examples of this 

alternative are numerous recessive abnormalities such as bovine leukocyte adhesion 

deficiency in cattle (Shuster et al. 1992). Although the idea of this alternative is 

eliminating a potential abnormal allele from the population, it can also be used to increase 

the frequency of a specific allele such as introgressing the booroola gene from Merino 

sheep into Border Leicester sheep (Davis 2004). 

The second alternative use of MAS is for SNPs that are in linkage disequilibrium with 

appropriate QTLs (Goddard and Hayes 2009). This approach estimates the effect of the 

significant marker or allele in a different population that is independent from the discovery 

population. Thus, using a combination of pedigree, marker and phenotype information 

breeding values for selection candidates can be estimated. This type of MAS has been 

applied to improve reproduction rate, feed intake, growth rate and body composition in 

various livestock species, meat quality in commercial lines of pigs, muscle development in 

sheep, and milk yield in dairy cattle (Dekkers 2004; Goddard and Hayes 2009). Despite 

great benefit of MAS, improvements in accuracy and genetic gain will depend on the 

amount of additive genetic variation accounted for by the markers. Thus, one of the key 
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criticisms of MAS is the limited ability to predict breeding values, since a low number of 

markers with validated associations will typically explain a small proportion of the genetic 

variance of the trait (Goddard and Hayes 2009; Van Eenennaam 2009).  

 

2.6.10  Genomic Selection  

A better approach to MAS, know as Genomic Selection, was reported by Meuwissen et al. 

(2001). They suggested using genome wide panels of dense markers which included all 

QTLs that are in linkage disequilibrium with at least one marker. This approach differs 

from MAS which concentrates on small number of QTLs that are tagged by markers with 

validated associations.  

One advantage of this approach is that all genetic variance for a trait can be tracked by a 

marker panel. The marker effect does not need to reach a significant threshold to be used in 

predicting breeding values or phenotypes (Goddard and Hayes 2009). An additional 

advantage is that the effect of marker alleles can be estimated on a population basis rather 

than within each family (Goddard and Hayes 2009). 

Thus, genomic selection refers to selection decisions based on molecular or genomic 

breeding values estimated by high density panels. For estimating genome breeding values 

for genomic selection, a large sample of animals needs to be measured (phenotype) for the 

trait and genotyped for markers. This population is usually referred to as a training or 

reference population (Figure 8; Goddard and Hayes 2009). The genotypes coming from 

high density panels, which can be represented by a variable (x), usually has values as 0 or 
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1 or 2 corresponding to the homozygotes, the heterozygote or the other homozygote, 

respectively (Goddard and Hayes 2009). The statistical analysis of the reference or training 

population estimates effects for each marker (w), and a prediction equation can be 

generated that combines all marker genotypes with their effects to predict the breeding 

value of each animal (Goddard and Hayes 2009). These predicted breeding values from 

marker genotypes (i.e. the genomic breeding value) take into account the effect of each 

marker simultaneously with the other markers (Goddard and Hayes 2009). This prediction 

equation can then be applied to a group of animals that have genotypes but not phenotypes, 

usually referred as selection candidates (Figure 8), and the estimated breeding values 

calculated can be used to select the best animals for breeding (Goddard and Hayes 2009). 

Thus, the possibility to include traits that are difficult to record at a young age and the 

achievement of high accuracies for animals at birth has huge implications for animal 

breeding improvement. For instance, Schaeffer (2006) suggested that genomic selection of 

dairy bulls at 1 year of age could greatly reduce the generation interval and speed up rate 

of genetic improvement compared with the traditional selection strategy (progeny test), 

where bulls are 5 years old by the time they can be accurately evaluated on the basis of 

their daughters' milk yields. The simulation results suggest that accuracy of the GEBV for 

a bull calf can be as high as the accuracy of an EBV after a progeny test (König et al. 

2009). Reliable GEBV for both sexes with accuracies greater than 0.70 can be calculated at 

an early stage of an animal’s life (e.g., even for embryos). This implies a huge change from 

BLUP-animal models based on pedigree information toward SNP-based BLUP or other 
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models, but placing less weight on information provided by relatives. This change may 

generate an extreme reduction in generation intervals, thus increasing the annual economic 

genetic gain. 

 

2.6.11 Accuracies in Genomic Selection  

In the original introduction of the genomic selection concept performed by Meuwissen et 

al. (2001), the accuracy of the genomic breeding value was 0.85 with simulated data. The 

concept of accuracy for genomic selection differs from the traditional one. For genomic 

breeding values, accuracy indicates the correlation between the genomic breeding value 

and the true breeding value. Simulation on real data found less accuracy than the analysis 

performed by Meuwissen et al. (2001). For instance, Van Raden et al. (2009), using 3,576 

bulls genotyped for 38,416 SNPs, indicated a correlation of 0.71 in American Holstein 

dairy bulls, averaged across a number of traits. These bulls were used as reference or 

training population and phenotypes for these bulls were the averages of their daughters' 

production records. Other authors such as Harris et al. (2008) and Hayes et al. (2008) have 

reported similar accuracies of genomic breeding value in Holstein and Jersey dairy cattle 

located in New Zealand and Australian. It is important to recall that the accuracy of the 

traditional breeding value based on its pedigree (based on the average of their parents' 

breeding value) is only 0.50 (Goddard and Hayes 2009). 
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2.6.12 Challenges for Genomic Selection 

One of the major challenges for genomic selection includes assembling a large reference or 

training population to accurately estimate the SNPs effects (Goddard and Hayes 2009). 

Few projects have achieved appropriate levels of accuracy. One of these projects is led by 

the USDA, who used a reference population of more than 6,700 dairy bulls and reached 

levels of accuracy in their genomic breeding values of greater than 0.80 (Dalton 2009; 

Goddard and Hayes 2009).  This project allowed some US breeding companies to market 

semen from young bulls with breeding values only estimated on the basis of their DNA 

and pedigree information, not from its progeny. 

Another challenge for these genomic selection technologies is utilization in multiple breeds 

and /or species, primarily in beef cattle and sheep industries. Due to the limited extent of 

the linkage disequilibrium across breeds, genomic breeding values generated for a specific 

breed (reference population) cannot be applied to different breeds. It will be necessary to 

use genomic breeding values within breed (designated to the breed used as reference 

population), or larger multi-breed references population need to be created before genomic 

selection can be applied across the breeds (Goddard and Hayes 2009). Additionally, 

Goddard and Hayes (2009) indicated several unknowns in implementation of genomic 

selection, as frequency with marker effects need to be re-estimated and new markers need 

to be identified.  
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2.7 Appendix: Figures and Tables 
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Figure 2.1. 
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Figure 2.2. 
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Figure 2.3. Trend in PTA daughter pregnancy rate (DPR) for bulls born from 1960 to 1999 

by breed (VanRaden et al. 2004). 
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Figure 2.4. Phenotypic trend of days open for Holsteins by parity (VanRaden et al. 2004). 
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Table 2.1. Comparison between estimated relative conception rate (ERCR) and sire 
conception rate (SCR) 

Category ERCR SCR 

Trait evaluated First service 70-day nonreturn 
rate 

Conception rate 

Breeds evaluated Holstein, Jersey Ayrshire, Brown Swiss, 
Guernsey, Holstein, Jersey, 
Milking Shorthorn 

Lactation numbers 
included 

1st through 6th; >6th  1st  through 5th  

Service numbers 
included 

1st 1st  through 7th  

Bulls included AI (active; inactive), <12 
years old 

AI (active) <13 years old 

Minimum number of 
matings 

≥300 first services ≥300 services in the last 4 
years and ≥100 in the last year 
for Holsteins; somewhat fewer 
services for other breeds 

Minimum number of 
herds 

None 10 for Holsteins and Jerseys, 
somewhat fewer for other 
breeds 

Fertility expression Deviation from mean (nearest 
1%) 

Deviation from mean (nearest 
0.1%) 

Base assigned Published bulls sum to 0 Published bulls sum to 0 

Participating Dairy 
records processing 
centers  

AgSource Cooperative 
Services, DRMS, Minnesota 
Dairy Herd Improvement 
Association 

AgriTech Analytics, 
AgSource Cooperative 
Services, DRMS 

 (Norman, et al. 2008; AIPL research report scr1 (7-08),  
http://www.aipl.arsusda.gov/reference/arr-scr1.htm) 

http://agsource.crinet.com/�
http://agsource.crinet.com/�
http://www.drms.org/�
http://www.mndhia.org/�
http://www.mndhia.org/�
http://www.mndhia.org/�
http://www.agritech.com/�
http://agsource.crinet.com/�
http://agsource.crinet.com/�
http://www.drms.org/�
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Table 2.2. Heritability (diagonal, in bold), genetic (above diagonal), and phenotypic (below 
diagonal) correlations among fertility traits1 with standard errors2 in parentheses 
(González-Recio and Alenda 2005). 

 CI DO PR IFL DFS INS P56 P90 SF 

 

CI 0.04 0.99(0.01) –0.99(0.01) 0.98(0.01) 0.80(0.03) 0.89(0.02) –0.95(0.002) –0.95(0.001) –0.59(0.01) 

DO 0.91 0.04 –0.99(0.01) 0.99(0.01) 0.82(0.03) 0.94(0.01) –0.95(0.001) –0.93(0.02) –0.94(0.002) 

PR –0.91 –1.00 0.04 –0.99(0.01) –0.82(0.03) –0.94(0.01) 0.95(0.001) 0.93(0.02) 0.94(0.002) 

IFL 0.79 0.88 –0.88 0.03 0.50(0.05) 0.91(0.02) . . . . . . . . . 

DFS 0.38 0.42 –0.42 –0.07 0.05 0.11(0.06) –0.44(0.03) –0.18(0.02) –0.52(0.03) 

INS 0.68 0.75 –0.75 0.87 –0.08 0.02 –0.90(0.01) –0.54(0.03) . . . 

P56 –0.64 –0.75 0.75 –0.85 0.04 –0.75 0.05 0.97(0.02) 0.94(0.02) 

P90 –0.59 –0.74 0.74 –0.84 0.03 –0.69 0.76 0.06 0.92(0.02) 

SF –0.54 –0.61 0.61 –0.71 0.06 –0.76 0.63 0.48 0.04 

 

1CI = Calving interval, DO = days open, PR = pregnancy rate, IFL = interval between first 
and last inseminations, DFS = days to first service, INS = number of inseminations per 
service period, P = pregnancy within 56 (P56) or 90 d (P90) after first insemination, SF = 
success in first insemination. 
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Table 2.3. Various reports estimating cost of extra days open. 

Authors The cost per extra day 

open per cow per year  

($, value at time of 

publication) 

Average DO considered 

in the analysis (days) 

Speicher and Meadows 

(1967) 

$0.78 beyond 117 

Louca and Legates (1968) $0.25 to $0.70 NR 

lds et al. (1979) $0.71-$1.18 40-140 

Holmann et al. (1984) $0.04 to $0.23 120 

Dijkhuizen et al. (1985) $1.16  165 

Schmidt (1989) $0.18 and $0.60 85-175 

Plaizier et al. (1997) $0.96, $2.72, and $4.56  85-145 

Meadows et al. (2003) $1.71 190  

French and Nebel (2003) $4.95 175  

Meadows et al. (2005) $1.37 160  
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Table 2.4. Example of inputs and values used in the general model (Meadows et al. 2005). 

Input Value 

Herd characteristics 

    Cull rate 34%/yr 

    Heifer calf survival to lactation 80% 

    Average age at first calving 26.6 mo 

    Services per conception for virgin heifers 2.12 

    Days to first service for cows 96 

    First-service conception rate for cows 45% 

    Heat detection rate for cows 45% 

    Services per conception for all cows 2.33 

    Average weight of cull cow 544 kg 

    Interest rate for alternative use of capital 8%/yr 

Expenses 

    Cost to raise heifers $1.70/d 

    Cost of replacement heifer ready to calve $1600 

    Feed cost for dry cow maintenance $1.50/d 

    Feed cost (above maintenance) for milk $0.169/kg 

    Semen cost $15/service 

    Additional veterinary cost, $/d Not used 

    Additional management cost, $/d Not used 

Revenues 

    Salvage value of cull cow $0.736/kg 

    Market price of milk $0.306/kg 

    Heifer calf value $200 

    Bull calf value $50 
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Figure 2.5. Effect of days open on equivalent annual cash flow (EAC) values estimated by 

the model for different annual culling rates: ( ) 25% annual culling rate; (—) 34% annual 

culling rate, and ( ) 45% annual culling rate (Meadows et al. 2005). 

http://jds.fass.org/content/vol88/issue3/images/large/d4385L-1.jpeg�
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Figure 2.6. Effect of days open (DO) on milk yield ( ), plotted on the left axis, and feed 

cost ( ), plotted on the right axis, per day of life (Meadows et al. 2005). 
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Table 2.5. Various reports estimating the value of a pregnancy.  

Authors The value of a 

pregnancy 

Evaluation of new 

pregnancy or pregnancy 

loss (abortion) 

Stevenson (2001) $253 -$274 New pregnancy 

Eicker and Fetrow (2003) $200 New pregnancy 

De Vries (2006) $278 New pregnancy 

Thurmond and Picanso, 

(1990) 

$640 Pregnancy loss (abortion) 

Eicker and Fetrow (2003) $600 - $800 Pregnancy loss (abortion) 

Pfeiffer et al. (1997) $624 Pregnancy loss (abortion) 

Peter (2003) $600 - $1,000 Pregnancy loss (abortion) 

Weersink et al. (2002) $1,286 Pregnancy loss (abortion) 

De Vries (2006) $555 Pregnancy loss (abortion) 
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. 

 Figure 2.7. Retention payoffs (RPO) for a nonpregnant cow ( ) and a cow that became 
pregnant on d 61 after calving ( ) by day after calving. Cows are in their first lactation 
with average lactation curves. By definition the value of pregnancy is equal to the 
difference between the RPO of the pregnant and nonpregnant cow (De Vries 2006). 
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Table 2.6. Economic values and economic importance relative to protein for actual 
kilograms of milk, fat, and protein (PROT); productive life (THL); mature BW; age at first 
calving (AFC); number of inseminations per service period (INS); calving interval (CI); 
DIM; and dry period (DP; Gonzalez-Recio et al. 2004). 

 
Economic value 

 

 ($/yr per cow) ($/yr per cow)/ SD unit1 

 

Milk (kg) $0.13 $0.95 

Fat (kg) $1.02 $0.30 

PROT (kg) $4.04 $1.00 

THL (days) $0.22 $0.35 

BW (kg) –$0.67 $0.10 

AFC (d) –$0.28 $0.08 

INS –$67.32 $0.24 

CI (d) –$4.90 $0.642 

DIM $1.19 $0.22 

DP (d) –$4.90 $0.40 
 

 
1Economic value per phenotypic standard deviation (SD) unit (from lactating cows from 

1998 to 2001) relative to actual protein. 

 2Corresponding standard deviation was calculated considering 300 <CI <500. An 

economic value per SD of 49 and 89% would have been estimated considering 300 <CI 

<450 and 300 <CI <600, respectively 
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Table 2.7. List of companies and web site with associated genetic test. 

COMPANIES DNA tests 
AgriGenomics, Inc Tibial Hemimelia (TH), Pulmonary Hypoplasia with 

Anasarca (PHA), Idiopathic Epilepsy (IE), 
Arthrogryposis Multiplex (AM; or Curly Calf Syndrome 
analysis), Dilution (DL),  Black/Red Coat Color (CC) 

Biogenetic Services BSE resistance, Johne’s disease, Bovine Viral Diarrhea 
(BVD-PI), freemartin, leptin, meat quality, parentage, 
coat color,  

GeneSeek AM, BVD-PI, Seek-Black, Seek-Tender, identity 
tracking, parentage, coat color, 50 K SNP CHIP 
genotyping 

Genetic Visions Prolactin (CMP), BLAD, Citrullinemia, DUMPS, 
Kappa-Casein, Beta-lactoglobulin, Complex Vertebral 
Malformation (CVM), Calpain 316/530, Freemartin, 
Coat color,  

Igenity AM, Neuropathic Hydrocephalus (NH), IE, 
Osteopetrosis (OS), PHA, TH, BVD-PI, Igenity Profile 
Analysis (tenderness, marbling, quality grade, fat 
thickness, ribeye area, hot carcass weight, yield grade, 
heifer pregnancy rate, stayability, calving ease, weaning 
weight, docility, residual feed intake, and average daily 
gain), DoubleBLACK coat color, dilution (DL), horned-
polled, identity tracking, parentage, Myostatin 

MMI Genomics AM, NH, OS, Parentage, Tru-Marbling™, Tru-
Tenderness™, MMIG Homozygous Black, 
polled/horned 

Pfizer Animal Genetics  AM, NH, OS, GeneSTAR® MVP™ (feed efficiency, 
marbling, tenderness), GeneSTAR® Elite Tender, 
GeneSTAR® Quality Grade, GeneSTAR® Tenderness 
2, GeneSTAR® Feed Efficiency, GeneSTAR® 
BLACK, parentage, identity tracking 

Quantum Genetics Leptin 
Repro Tec Inc. Fertility Associated Antigen (FAA)   

Veterinary Genetics 
Laboratory (UC Davis) 

Parentage, freemartin, coat color, Dexter Cattle 

Viagen Breed identification (AnguSure™) 

This list is provided, updated and maintained at the following web address 
http://animalscience.ucdavis.edu/animalbiotech/Biotechnology/MAS/index.htm (Van 
Eenennaam 2009). 

http://www.biogeneticservices.com/�
http://www.geneseek.com/prod_cattle.php�
http://www.geneticvisions.net/�
http://us.igenity.com/�
http://www.pfizeranimalgenetics.com/�
http://www.quantumgenetics.ca/�
http://www.reprotec.us/�
http://www.vgl.ucdavis.edu/�
http://www.vgl.ucdavis.edu/�
http://www.viagen.com/�
http://animalscience.ucdavis.edu/animalbiotech/Biotechnology/MAS/index.htm�
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Table 2.8. Genes with identified mutations affecting single traits cattle discovered by 
genome-wide association studies 

 Population Mapping 

Defect Breed Casesa Controlsa Chrom. Interval Gene 

Congenital 

muscular 

dystonia 1 

(CMD1) 

Belgian 

Blue 

12 (81) 14 

(2,000) 

25 2.12 Mb ATPA2

A1 

Congenital 

muscular 

dystonia 2 

(CMD2) 

Belgian 

Blue 

7 (21) 24 

(2,000) 

29 3.61 Mb SLC6A

5 

Ichthyosis 

fetalis (IF) 

Chianin

a 

3 (3) 9 (96) 2 11.78 

Mb 

ABCA1

2 

Crooked tail 

syndrome 

(CTS) 

Belgian 

Blue 

8 (36) 14 

(2,000) 

19 2.42 Mb – 

Renal 

lipofuscinosis 

(RL) 

Holstein 

Friesian 

Danish 

Red 

6 (16) 6 

(27) 

24 (141) 

14 

17 0.87 Mb – 

   
aNumbers correspond to sample sizes used to perform the genome-wide scan, whereas the 
numbers in brackets correspond to the total number of samples available. 

Adapted from Charlier et al. (2008) 

http://www.nature.com.proxy.lib.utk.edu:90/ng/journal/v40/n4/fig_tab/ng.96_T1.html#t1-fn1�
http://www.nature.com.proxy.lib.utk.edu:90/ng/journal/v40/n4/fig_tab/ng.96_T1.html#t1-fn1�
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Table 2.9. Various reported GWAS have found SNPs that affect complex traits in cattle. 
 

Traits  Breed # genotyped 

animals  

# SNPs 

found 

Authors 

Conformation, mammary system, 

feet and legs, dairy strength 

overall rump, udder texture, 

median suspensory, foot angle, 

bone quality, stature, angularity, 

herd life, daughter fertility, 

milking speed, milking 

temperament, direct calving ease 

Canadian 

Holstein 

Bulls 

462 196 Kolbehdari 

et al. 2009 

Somatic cell score, daughter 

pregnancy rate, type, stature, 

strength, body depth, dairy form, 

rump angle, thurl width, rear legs 

side view, rear legs rear view, foot 

angle, feet leg score, fore udder 

attachment, rear udder height, rear 

udder width, udder cleft, udder 

depth, front teat placement, teat 

length, Calving ease, productive 

life, male fertility 

Holstein 

Bulls 

6 8 Schnabel et 

al. 2005 

milk, fat, and protein yields; fat 

and protein percentages; 

productive life; SCS; daughter 

pregnancy rate; sire  and 

daughter calving ease; final score; 

stature; strength; body depth; dairy 

form; foot angle; rear legs (side 

and rear views); rump angle and 

width; fore udder; rear udder 

height; udder depth and cleft; front 

teat placement; teat length; and net 

merit 

Holstein 

Bulls 

5,360 3 

(larger 

effects)  

Cole et al. 

2009 
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Table 2.9. Continued. 

Traits  Breed # genotyped 

animals  

# SNPs 

found 

Authors 

305-d lactation milk, fat, and 

protein yield; somatic cell score; 

herd life; interval of calving to 

first service; and age at first 

service. 

Holstein 

bulls 

427 144 Daetwyler 

et al. 2008 

Feed intake (residual food intake; 

RFI); daily gain and body-weight 

measurements 

Angus, 

Brahman, 

Belmont 

Red, 

Hereford, 

Murray 

Grey, 

Santa 

Gertrudis, 

and 

Shorthorn 

1472 

animals  

161 Barendse et 

al. 2007 

Conception rate Holstein 

bulls 

20 97 Feugang et 

al. 2009 

Fertilization rate and blastocyst 

rate 

Holstein 

cows 

233 cows 

and 34 bulls 

27 Huang et 

al. 2010 

Twinning rate Holstein 

Bulls 

200  13 Kim et al. 

2009 

Non return rate Holstein 

bulls 

926  N/A Druet et al. 

2008 

Milk yield Holstein  

and 

Jersey 

bulls 

1615 23 Hayes et al. 

2009 
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Table 2.9. Continued. 

Traits  Breed # genotyped 

animals  

# SNPs 

found 

Authors 

 

Number of inseminations; 56 

day non-return rate; interval 

from first to last insemination;  

interval from calving to first 

insemination; veterinary 

treatments of reproductive 

disorders;  fertility index 

 

Danish 

and 

Swedish 

Holstein 

bulls 

 

2531 

 

74 

 

Sahana et 

al. 2010 

Milk, fat, and protein yields, fat 

and protein concentration (as a 

percentage) in milk, and female 

fertility 

Holstein 

bulls 

780 1573 Pryce et al. 

2010 
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Figure 2.8 

 

 

Figure 2.8.  Diagram illustrating how prediction equations are used to generate genomic 
breeding values (Goddard and Hayes 2009). 
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CHAPTER 3 VALUES OF EXPECTED PROGENY DIFFERENCE AND 

HERITABILITY FOR EMBRYO TRANSFER TRAITS 
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7.  Abstract 

Genetic selection has made tremendous progress on economically important traits in the 

beef industry. Most of the progress has been from quantitative genetics through use of 

expected progeny differences (EPD). These values allow prediction of differences in 

progeny of a sire compared to progeny of other sires. Development of EPD for male and 

female reproductive traits has largely been ignored because of low heritability of 

reproductive traits, even though reproduction plays a vital role in the economics of beef 

operations. Therefore, continued research in the area of genetic selection for fertility is 

becoming increasingly important. Critical limiting factors for animal breeding programs 

using MOET nucleus schemes include variability in superovulatory response of donor 

animals and resulting pregnancy of transferred embryos. Thus, the overall objective of this 

research was to develop genetic parameters associated with MOET to assist producers in 

identifying animals with greater genetic merit for these protocols. Records were examined 

from a large-scale MOET system in beef cattle that contained data only for cows in which 

at least one transferable embryo was obtained. Data on these animals were extracted and 

analyzed on 10 425 transferred embryos (2900 collections) from 611 donor animals 

(Angus, Brangus, and Charolais) utilizing semen from 215 bulls. Phenotypic traits 

examined included pregnancy status of the recipient following transfer (ET-preg; 

determined by rectal palpation at 60 days post-transfer and/or confirmed calving date of 

recipient), number of transferable embryos per collection (ET-trans), and number of 

unfertilized ova at collection (ET-UFO). Basic statistical analysis and pedigree/trait files 
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were developed using procedures in SAS (SAS Institute, Cary, NC). Genetic parameters 

were estimated for a single-trait animal model using restricted maximum likelihood 

(REML) procedures in Wombat (Meyer 2007). Wombat also computed EPD and standard 

errors for each trait evaluated. The model included fixed effects of year as well as random 

animal and residual effects. The EPD for ET-preg ranged from –6.1 to 4.4% (SE = 2.2 to 

4.2) for semen sires (sires of the transferred embryos) and –5.3 to 3.8% (SE = 3.2 to 4.2) 

for donor animals. Additionally, the heritability estimated for ET-preg was 0.03. 

Heritability estimated for ET-trans was 0.00, indicating minute genetic variation and thus, 

EPD were not presented. Heritability estimated for ET-UFO was 0.05 with EPD values 

(deviation of the number of UFO from the mean) ranging from –0.6 to 0.8 (SE = 0.3 to 

0.6) for semen sires and –0.4 to 1.1 (SE = 0.5 to 0.6) for donor cows. As previously shown 

for reproductive traits, heritability of ET-preg, ET-trans, and ET-UFO was low. Genetic 

improvement in fertility by selection on embryo transfer traits is possible, but progress 

would be slow. Further studies are underway on a larger dataset to refine these estimates 

and to examine repeatability. 
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3.2.  Introduction 

The use of statistical parameters for genetic improvement of multiple ovulation/embryo 

transfer (MOET) technology in cattle, primarily through quantitative genetics and selective 

breeding, is an area of rapidly developing research. Although significant genetic variation 

for fertility is generally accepted, development of breeding values for fertility traits has 

mostly been ignored due to low heritability and unfavorable genetic correlation with 

production characteristics (Olds et al. 1979; Berger et al. 1981; Clay and McDaniel 2001; 

Lucy 2001; VanRaden et al. 2004; De Vries and Risco 2005; Melendez and Pinedo 2007). 

Fertility traits are the most economically important traits in the livestock industry. 

However, fertility has declined over the past decades, especially in the dairy industry, due 

to the steady increase in milk production and the associated increased metabolic demands. 

Since it is assumed that declining fertility cannot be arrested by improving management 

alone, elevating fertility in cattle by means of genetic (genomic) selection will become 

increasingly important. Genetic gain of fertility traits may be accelerated by combining 

genomic selection with advanced reproductive technologies to increase genetic 

contributions of superior animals.   

Multiple ovulation/embryo transfer (MOET) technology and artificial insemination (AI) 

have had a major impact on livestock breeding over the past several decades (Mapletoft 

and Hasler 2005). MOET technology rapidly increases genetic progress, reduces risk of 

disease transmission, eliminates cost/difficulty of animal transport, and expands number of 

progeny that can result from genetically superior parents. However, critical limitations of 
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animal breeding programs using MOET include variability in superovulatory response of 

donor animals and pregnancy success from transferred embryos (Mapletoft et al. 2002). 

These unpredictable responses create tremendous logistical problems that reduce 

availability of embryos and profitability.  Therefore, to mitigate the variability in 

superovulatory response of donor animals and resulting pregnancy of transferred embryos, 

continued research in the area of genetic selection for fertility is becoming increasingly 

important. Thus, the overall objective of this research was to develop genetic parameters 

associated with MOET to assist producers in identifying animals with greater genetic merit 

for these protocols. 

 

3.3.  Materials and methods 

Records were examined from a large scale MOET system in beef cattle which contained 

data only for cows in which at least one transferable embryo was obtained. Data on these 

animals were extracted and analyzed on 10,425 transferred embryos (2,900 collections) 

from 611 donor animals (Angus, Brangus, and Charolais) utilizing semen from 215 bulls. 

Standard superovulation procedures included FSH injected twice daily for 4 days in 

decreasing doses. Donor animals were artificially inseminated 2-4 times at estrus, 12, and 

20 hours later. Phenotypic traits examined included pregnancy status of the recipient 

following transfer (ET-Preg; determined by rectal palpation at 60 days post transfer and/or 

confirmed calving date of recipient), number of transferable embryos per collection (ET-

Trans) and number of unfertilized ova at collection (ET-UFO). Basic statistical analysis 
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and pedigree/trait files were developed using procedures in SAS. Genetic parameters were 

estimated for a single-trait animal model using Restricted Maximum Likelihood (REML) 

procedures in Wombat (Meyer 2007). Wombat also computed EPDs, standard errors and 

heritability for each trait evaluated. The model included fixed effects of year as well as 

random animal and residual effects.  

The statistical model was:  

 

where:  

was the trait of interest in this example pregnancy rate after embryo transfer;  

 was year of the embryo transfer;  

 was the random genetic effect;  

 was the residual error term.  

 

Heritability was estimated using the variance components by the following formula:  

 

 

Where: 

 = heritability; 

= genetic variance component; and 

= phenotypic variance component (Tonhati et al. 1999). 
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Following the rationale of Falconer and Mackay (1996) and Saxton (2004), rate of genetic 

gain was estimated using  

 

where the expected change in the mean of a trait per unit of time is a function of: 

= selection intensity; 

= heritability; 

= phenotypic standard deviation; and 

= the length of a generation interval.  

 

3.4. Results 

Phenotypic means and descriptive statistics are summarized in Table 1. Results for EPD 

values and standard errors (SEM) for ET-Preg, ET-Trans and ET-UFO, for sires and 

donors cows respectively, as well as heritabilities are introduced in Table 2. Expected 

predicted distribution for sire pregnancy rate (ET-Preg), donor pregnancy rate (ET-Preg) 

and sire unfertilized oocytes (UFO) are illustrated in Figures 1, 2, and 3, respectively. 

Moreover, the heritability estimated for number of transferable embryos (ET-Trans) was 

0.00, indicating minute genetic variation and thus, EPD distribution and maximum and 

minimum values are not presented. A summary of the genetic parameter estimated for the 

different embryo transfer traits is given in Table 2. 
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As previously mentioned for reproductive traits, heritability of ET-preg, ET-trans, and ET-

UFO was low. Given the predicted breeding values determined by BLUP and expressed in 

this manuscript as EPD (expected progeny difference), genetic improvement would be 

accomplished for breeders by selecting superior animals as parents based on those 

predictions. For any trait, estimating rate of genetic gain depends upon three factors: 

heritability (h2), selection differential and generation interval. Selection differential is 

determined by selection intensity (i = standardized mean deviation of selected parents) and 

phenotypic variation (SD) present in the population. Utilizing the above methodology, we 

estimated a genetic gain of 1.16 % per generation in pregnancy rate (PR) following embryo 

transfer assuming 50% selection for PR, estimated by the formula 

(i=0.8)*(SD=49.962)*(h2=0.029). 

3.6.  Discussion 

Estimates of genetic parameters for MOET traits in Angus, Brangus, and Charolais breeds 

utilizing relatively large datasets are restricted to a few publications. Veerkamp and Beerda 

(2007) indicated that low heritability of MOET traits is a consequence of large 

environmental variation, and does not necessarily indicate a lack of genetic variation. 

Generally, studies have reported heritability for number of transferable embryos ranging 

from 0.01 to 0.59 (Liboriussen et al. 1998; Tonhati et al. 1999; Peixoto et al. 2004; König 

et al. 2007). The calculated heritability in this study for number of transferable embryos 

was much lower (0.00) compared with values reported previously. Although not an 
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uncommon value of heritability (very close to zero) for fertility traits (Khun et al. 2008), 

differences with the reported studies could be explained by the variation in the 

experimental population used. For instance, Liboriussen et al. (1998), Tonhati et al. (1999) 

and König et al. (2007) used Holstein data for the MOET genetic parameter estimation; 

whereas, Peixoto et al. (2004) utilized Nellore data for the analysis. As previously 

mentioned, this study estimated genetic parameters from records of Angus, Brangus, and 

Charolais cattle. Additionally, variation in the genetics models, number of records utilized 

(collections, donors, and sires) and rules for validating MOET data could explain the 

differences. Similar to the genetic evaluation of sire conception rate (Khun et al. 2008), the 

number of transferable embryos estimated in the present research is a phenotypic 

prediction (not a genetic evaluation) of the bull’s or donor’s number of transferable 

embryos. Variation in phenotypic values is large enough to suggest that culling of low 

performing cows or sires should result in higher performance in the remaining herd. 

Although statistical models and heritability values for transferable embryos differ from 

previous reports, heritability values for number of unfertilized ova and pregnancy rate were 

in the same range and consistent with data previously reported in the literature.  To date, 

just one research study has reported direct heritability for recipients to establish pregnancy 

after transfer of viable embryos (König et al. 2007) in Holstein cattle. Thus, the present 

work is the first reported heritability value for pregnancy status of recipients following 

embryo transfer in beef breeds. Despite differences models and breeds (Holstein vs Angus, 
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Brangus, and Charolais), heritability values for pregnancy status of the recipient following 

embryo transfer procedure were very similar between values from the present work (0.049) 

and from König et al. (2007; 0.056). Additionally, König et al. (2007) indicated similar 

results when comparing heritability results for pregnancy status of the recipient with the 

general range for nonreturn rates in dairy cattle reported in the literature (Jamrozik et al. 

2005; Di Croce et al. 2009). Therefore, pre-selection of recipients according to a 

recipient’s fertility status must be taken into account to improve efficiency of MOET 

schemes.  

3.6.  Conclusions 

Multiple ovulation embryo transfer schemes have great potential for enabling rapid genetic 

change by increasing reproductive capacity of animals. However, growth of this 

technology has become limited by high variability in donor response as well as the high 

percentage of donors which do not produce any progeny. According to the current study, 

genetic selection of donors or sires appears to be a potential approach to improve 

efficiency of MOET procedures. Although low heritability would slow genetic progress, 

results shown in this work suggest that genetic improvement in fertility by selection for 

embryo transfer traits is possible. Moreover, genetic gain estimate was 1.16% per 

generation suggesting a useful tool for genetic improvement and the feasibility of 

including MOET traits in future breeding strategies. However, further studies to estimate 
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genetic parameters would give more reliable estimates and allow more accurate assessment 

of the possibility for genetic improvement. 

Additionally, the use of molecular genetics in parameter estimation may aid in identifying 

individuals that improve efficiency of MOET traits.  Schaffer (2006) reported that a 

genome-wide selection scheme using genome-wide estimated breeding value could 

produce a genetic change two times greater than current progeny testing schemes. 

However, to apply this scheme, it will be necessary to identify informative markers 

(SNPs), especially in the case of MOET and fertility. Further studies for identifying 

markers for MOET traits, along with available technology (e.g., Bovine SNP Chip), may 

create an even more effective approach for improving efficiency of MOET schemes and 

overall fertility of the livestock industry. 
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8. Appendix: Figures and Tables 
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Table 3.1. Descriptive statistics of analyzed traits of embryo donor and recipient cows 
including phenotypic means, standard deviations, minimum and maximum for all traits. 

Traits Mean Standard 
Deviation 

Minimum Maximum 

Pregnancy 
(%) 

52.005 49.962 0 100 

Transferable 
(n) 

7.243 7.214 0 63 

UFO (n) 2.516 5.192 0 55 

 
Pregnancy (%) = calving rate of fresh and frozen embryos; Transferable (n) = number of 
transferable embryos per collection (Grade 1 to 3 embryos, IETS classification); UFO (n) 
= number of unfertilized oocytes per collection.  
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 Figure 3.1. Expected predicted differences distribution for pregnancy rate trait for sire 
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Figure 3.2. Expected predicted differences distribution for pregnancy rate trait for donor 
cows 
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Figure 3.3. Expected predicted differences distribution for unfertilized oocytes (UFO) trait 
for sire 
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Figure 3.4. Predicted progeny difference distribution for unfertilized oocytes (UFO) trait 
for donor cows 
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Table 3.2. Maximum and minimum EPD values and standard errors (SEM) for ET-Preg, 
ET-Trans and ET-UFO, for sires and donors cows respectively, as well as heritabilities. 

Trait EPD 
Minimum 

EPD 
Maximum 

SEM 
Minimum 

SEM   
Maximum 

h2 

ET-Preg (%) Sire -6.1 4.4 0.022 0.042 0.029 

ET-Preg (%) Donor -5.3 3.8 0.032 0.042  

ET-Trans (n) Sire -0.000 0.000 0.001 0.001 0.000 

ET-Trans (n) Donor -0.000 0.000 0.001 0.001  

ET-UFO (n) Sire -0.564 0.801 0.342 0.570 0.049 

ET-UFO (n) Donor -0.420 1.053 0.447 0.570  
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CHAPTER 4 GENETIC APPROACH TO IMPROVE FERTILITY IN CATTLE 
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4.1. Abstract 

 In spite of the economic importance of fertility and increased knowledge of reproductive 

biology in the cow, efficiency of reproductive performance has continued to decline in 

dairy cattle. Improvements in fertility through genetic selection may be a possible 

approach to increase reproductive efficiency. While progress may be slow due to low 

heritability of fertility traits, ignoring fertility in genetic improvement programs has 

contributed to the current reproductive inefficiency.  The objectives of this study were to 1) 

estimate genetic parameters and breeding values for fertility traits based on data from milk 

recording programs in a Holstein population, located in Argentina and 2) develop a multi-

trait selection index (dollar fertility; $F) based on estimated breeding values. Data 

representing 3,282,843 lactations and 1,622,088 animals (cows and bulls from 1936 to 

2007) were used for analysis and obtained from official records maintained by the 

Argentinean Holstein Association (ACHA). Data were collected from official milk records, 

and lactations were standardized to 305 DIM for milk, protein and fat. Gestation period 

was considered to be 282 days and restrictions were applied to ensure the quality of data 

(days open <40 and >350 days; calving interval <300 and >600 days; and contemporary 

groups with <25 lactations were eliminated). Days open (DO), calving interval (CI), age to 

first calving (AFC), and daughter pregnancy rate (DPR) were traits chosen for genetic 

parameter estimation.  Daughter pregnancy rate was calculated from DO as PR = 0.25 x 

(233 – DO; Kuhn et al. 2004). Animal models by lactation for each fertility trait included 

contemporary group (dairy herd and calving year), calving month, animal effect, milk 
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production as a covariate and error term. Multiple Trait Derivative-Free Restricted 

Maximum Likelihood (MTDFREML) was used to estimate covariance components 

(Boldman et al. 1995). Solutions for fixed effects, breeding values, and sampling variances 

(accuracies) were obtained for each trait. The proposed selection index (dollar fertility; $F) 

included AFC and CI with economic weights from $-0.28 and -4.90/day per cow for AFC 

and CI, respectively (Gonzalez-Recio et al. 2004). Heritability for DO and DPR ranged 

from 2% to 7%; 3% to 8% for CI; and 16% for AFC. Predicted transmitting ability (PTA) 

values across different lactations ranged from -16.3 to 11.4 days, -24.7 to 15.1 days, -2.4 to 

4.0% and -120.3 to 76.2 days for DO, CI, DPR and AFC, respectively.  Values for $F 

ranged from -$76.6 to $139.4 in the current Holstein population. Results indicate 

substantial variation in fertility traits, suggesting that genetic selection may be effective in 

improving declines in fertility. 

 

4.2. Introduction 

Impaired fertility is the primary reason for culling dairy cattle in United States (US; 26.5% 

of all disposals; USDA 2007; Norman et al. 2007). Even with improved advances in 

reproductive technologies (ART), reproductive efficiency in dairy cattle has steadily 

declined in the US (Lucy 2001; VanRaden 2004; Hare et al. 2006; Norman et al. 2009) and 

other dairy countries (Royal et al. 2000; 2002; Evans et al. 2006) during the past 30 years. 

Conception rates have been reported to be declining by 0.45 to 1.0% per year (Beam and 

Butler 1999; Royal et al. 2000; 2002; Evans et al. 2006). A complex list of factors that 
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impacts reproduction includes management, nutrition, diseases, milk production, genetics, 

lameness, and environmental stress among others. 

Many studies (Olds et al. 1979; Berger et al. 1981; Clay and McDaniel 2001; Lucy 2001; 

VanRaden et al. 2004; De Vries and Risco 2005; Melendez and Pinedo 2007) have 

consistently reported a negative association between fertility and milk production in dairy 

cattle. The Animal Improvement Programs laboratory (2009) reported that the relationship 

between milk production and reproductive performance appears to explain most of the 

decline in fertility, since genetic merit for milk has increased by 120 kg/year. However, a 

few studies have not observed the negative correlation between milk yield and fertility 

and/or reported a positive association between both traits (Rothschild et al. 1981; Hansen 

et al. 1983; Hillers et al. 1984). 

Fertility directly impacts revenues associated with milk production and offspring born. 

Decreased or delayed reproductive efficiency reduces the percentage of cows in their peak 

production period, which decreases herd milk production (Norman et al. 2009). Moreover, 

low reproductive performance increases involuntary culling (USDA 2007) and elevates 

costs associated with multiple inseminations, veterinarian expense (pharmaceuticals for 

estrus synchronization, pregnancy diagnosis, etc), and replacement animals.  

Hence, to mitigate the economic impact and the high prevalence/incidence of infertility, a 

strong need exists to identify and select animals according to their reproductive potential 

(daughter pregnancy rate, calving interval, etc).  Improvements in fertility through genetic 

selection may be a possible approach to increase reproductive efficiency in dairy cattle. 
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While progress may be slow due to low heritability of fertility traits, ignoring fertility in 

genetic improvement programs has contributed to the current reproductive problems.  The 

objectives of this study were to 1) estimate genetic parameters and breeding values for 

fertility traits based on data from milk recording programs in a Holstein populations 

located in Argentina 2) develop a multi-trait selection index (dollar fertility; $F) based on 

estimated breeding values. 

 

4.3. Material and Methods 

4.3.1  Data 

Data representing 3,282,843 lactations and 1,622,088 animals (cows and bulls from 1936 

to 2007) were obtained from official records maintained by the Argentinean Holstein 

Association (ACHA; http://www.acha.org.ar/). Pedigree information (genealogy) included 

animals (bulls and cows), sires and dams for these animals, calving year, sex and origin. 

Lactation data included entity of official milking test, owner, dairy, birth month and year 

of the cows, calving month and year of the cow, calving age, lactation number, days in 

milk, days open considering last and current calving, calving interval, and milk, protein 

and fat standardized to 305 days on milk.  

 

4.3.2 Description of herd management and dairy industry 

Milk production in Argentina is from 15,520 dairy farms with a total of 3,510,318 head of 

which 1,495,551 are milking cows (Castignani et al. 2008). Argentina’s dairy industry is 
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concentrated in the central and east-central parts of the country (Buenos Aires, Santa Fe 

and Córdoba provinces). The states/provinces with the highest number of dairy farms 

includes Santa Fe with 4,020 dairies and 1,012,356 dairy cows, Córdoba with 3,835 dairies 

and 1,247,729 dairy cows, and Buenos Aires with 3,117 dairies and 900,968 dairy cows. 

Mean size of dairy farms and herds is 271 hectares and 157 head, respectively (Castignani 

et al. 2005). 

Argentina ranks 12th among countries in milk production, with a production of nearly 9.5 

million tons, and registered growth of 8% between 1995 and 2005 (Meirelles de Souza 

Filho et al. 2008). Dairy pastures compete with soybeans, corn, and wheat production for 

land. Many dairy farms are diversified operations devoting between 10% and 50% of their 

land to crop production. Alfalfa, tall fescue, rye grass and clover are typically used as dairy 

pastures and are included in rotational systems to preserve soil fertility. In general terms, 

dairy farms in Argentina are pasture-based operations, and cows are not confined when 

lactating. Producers supplement cattle diets with corn silage and some grain concentrates. 

Typically, diet composition across the year includes 67% grazing pastures, 22% 

concentrate, and 11% of silage (Zehnder and Gambuzzi et al. 2003). 

In each province, production practices range from the least capital intensive (100 percent 

pasture) to the most capital intensive (100 percent confinement) with a shift from pasture 

to confinement occurring with increase in herd size. Most small and medium dairy farms in 

Argentina use pastures extensively, with animal confinement limited to twice a day during 

milking. Supplemental feeding tends to increase with size of the operation, ranging from 
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600 kg/head per year on small farms to 2,500 kg/head per year on larger operations in the 

Buenos Aires province. The primary dairy cattle breed in Argentina is Holstein, and milk 

output per animal averages 7099 kg of milk adjusted to 305 days in milk (Casanova et al. 

2007). The genetic source (semen) of the Holstein population comes primarily from United 

States (59%), Argentina (24%) and Canada (13%; Casanova et al. 2007).  

The official milking test is available since 1981 and lead by the Argentinean Holstein 

Association, which is a member of the International Committee for Animal Recording 

(ICAR). The current milking test description is shown in Table 1.   

   

Table 1. Official milking test in February 2010 

Entities by 

region 

Owners Dairies Totals cows  Milking cows Milk in liters 

89 1,543 
 

2,050 
 

512,602 
 

343,150 
 

6,992,563 
 

(http://www.acha.org.ar/) 

 

4.3.3 Traits definition and rules for validations  

Days open (DO), calving interval (CI), age to first calving (AFC), and daughter pregnancy 

rate (DPR) were traits selected for genetic parameter estimation. Days open was 

considered the period between calving and conception in cows and was estimated by 

subtracting 282 days from the total days of calving interval. Calving interval included the 
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time between one calving and the next. Age to first calving was defined as the time from 

birth to calving for the first time. Data were collected from official milk records, and 

lactations were standardized to 305 DIM for milk, protein and fat. Records with <305 DIM 

were adjusted as fixed effects by four fixed periods. Gestation period was considered to be 

282 days and restrictions and rules for validations were applied to ensure quality of data. 

For instance, records with days open less than 40 days or longer than 350 days were 

eliminated. Calving interval between 300 and 600 days were considered acceptable 

(Gonzalez-Recio and Allenda 2005). Similarly, appropriate contemporary groups (CG) 

were defined base on the structure of the population to remove variation due to changes in 

herd environmental conditions over time, and CG with <25 lactations were eliminated. 

This restriction differs from Gonzalez Recio et al. (2004) where only 5 records were 

required for inclusion in the statistical model. 

 

4.3.4 Daughter Pregnancy Rate 

Daughter pregnancy rate (DPR) measures how quickly cows become pregnant after 

calving (VanRaden et al. 2004).  The DPR measures the percentage of eligible cows 

becoming pregnant within each 21-d opportunity period. The DPR by definition is 

calculated as “the number of cows that became pregnant during a given 21-day period 

divided by the number of cows that were eligible for breeding at the beginning of the 

period” (VanRaden et al. 2004; Weigel 2006). These groups are integrated by cows that 

are not yet pregnant and have completed the voluntary waiting period (VanRaden et al. 
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2004).  In other words, the pregnancy rate for an individual daughter indicates the number 

of 21-day opportunity periods required to achieve pregnancy (Weigel 2006). In recent 

years, many reproductive specialists have recommended this measure of reproductive 

success over the more traditional measure of days open. Furthermore, calculations of 

pregnancy rate are more current, cows that do not become pregnant are included in 

calculations more easily, and larger rather than smaller values are desirable; thus, 

simplifying selection by producers. 

VanRaden et al. (2004) defined pregnancy rate as: 

. 

The voluntary waiting period, the initial phase of lactation during which no inseminations 

occur, may vary across herds or seasons but would not affect genetic evaluations unless it 

differed for cows within the same herd-year-season (VanRaden et al. 2004). The constant 

factor of 11 centers the measure of possible conception within each 21-d time period such 

that cows conceiving during the first 21-d period receive 100% credit on average and so 

on. As an example (assuming a voluntary waiting period of 60 days), a herd that averages 

154 DO has a pregnancy rate of 20%, while a herd averaging 133 DO has a pregnancy rate 

of 25%. 

Similar to the Animal Improvement Programs Laboratory (AIPL; USDA), daughter 

pregnancy rate was one of the fertility trait defined for this study. Records of days open 

were transformed to pregnancy rate using the simple linear function: 
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(Khun et al. 2004; VanRaden et al. 2004). Genetic evaluations are expressed as deviations 

from a base pregnancy rate within each breed.  

 

4.3.5 Animal Model 

Animal models allow simultaneous genetic evaluation for male and female dairy animals 

with all relationships included. Data were processed by lactation for the genetic evaluation 

through the animal model. 

The statistical model was:  

 

 

 

where:  

 was the trait of interest in this example days open;  

 was contemporary group which included E=entity, O=owner, 

D=dairy and Yr=year of calving;  

 was calving month;  

 was days in milk;  

 was the random genetic effect;  

 was milk production as a covariate;  and 

 was the residual error term.  
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4.3.6 Variance component estimation and software 

Multiple Trait Derivative-Free Restricted Maximum Likelihood, denoted as MTDFREML, 

was used to estimate covariance components (Boldman et al. 1995). Solutions for fixed 

effects and breeding values were obtained for each trait. MTDFREML is a set of programs 

used to estimate (co)variance components involving animal models and derivative-free 

REML (Boldman et al. 1995). These programs can be used for single trait, bivariate, and 

multiple trait animal models with repeated records including traits with sex-limited 

expression (Boldman et al. 1995).  Solutions for fixed effects, breeding values, and 

uncorrelated random effects, sampling variances of solutions (accuracies) can also be 

obtained (Boldman et al. 1995). The programs were developed by Drs. Keith Boldman and 

Dale Van Vleck and available at the Multiple Trait Derivative Free REML home page 

(http://aipl.arsusda.gov/curtvt/mtdfreml.html).  

The MTDFREML software package consists of three executable programs: MTDFNRM, 

MTDFPREP and MTDFRUN. The first program (MTDFNRM) (1) calculates the inverse 

of the relationship matrix to be used in mixed model equations and makes use of the 

Henderson (1975) and Quaas (1976) rules to calculate the inverse of the relationship 

matrix directly from a list of animals and their parents (forms non-zero elements of A-1 

using an ASCII pedigree; reorders animal, sire and dam identification), (2) provides 

individual identification for matching phenotypic records to individuals, (3) determines 

inbreeding coefficients, and (4) calculates the logarithm of the determinant of the 

relationship matrix needed to calculate the log of the likelihood function (Boldman et al. 
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1995). The second program of the set (MTDFPREP) prepares coefficients for mixed 

models equations based on the statistical model (fixed and random factors) for single and 

multiple trait analyses (Boldman et al. 1995). The third (MTDFRUN) and last element 

program solves mixed model equations and finds variance component estimates (using the 

SIMPLEX algorithm) from coefficients of MME formed in MTDFPREP, which maximize 

the restricted likelihood given the phenotypic data. Additionally, MTDFRUN finds 

solutions for covariates, fixed and random effects, and sampling variances (accuracies; 

Boldman et al. 1995).  

Additionally, SAS (SAS Institute Inc. 2008) was used for recoding the original files, 

validating data, and creating files that MTDFREML requires for the estimation (pedigree 

and trait/production file). 

 

Computer System (language), operations and other tools 

The operations were computed on a Linux cluster computer system operated by the UNIX 

Systems Group of Office Information Technology (OIT), designed for use by researchers 

at the University of Tennessee, Knoxville 

(http://hpc.usg.utk.edu/bin/view/Main/WebHome). 

The OIT Newton Linux Cluster serves as a high performance computational resource for 

the UT research community. The 69-node cluster consists of 290 Xeon Intel 64-bit 

compute cores, 407.4 GB of total memory and 10 TB of disk space. Each node runs a 64-

bit x86_64 Linux 2.6 kernel. Nodes are interconnected with gigabit Ethernet and 
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InfiniBand interconnects. Each processor has from approximately 4 GB to 8 GB of random 

access memory and 100 GB of local disk space (Note: description of OIT Newton Linux 

Cluster serves was extracted from http://hpc.usg.utk.edu/bin/view/Main/WebHome for the 

purpose of this dissertation). 

Additionally, a free (MIT-licensed) software and SSH (secure shell protocol) client, 

PuTTY, is a terminal emulator application which can act as a client for the SSH, allowing 

the connection of Windows computers with UNIX (LINUX) systems. PuTTY was utilized 

to open the UNIX account on Newton Linux Cluster from a Windows computers and 

PuTTY FTP (Secure File Transfer Protocol) allowed the transferring of files from 

Windows to UNIX accounts. 

(http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html). 

 

4.3.7 Multi-trait selection index ($ Fertility)  

Hazel and Lush (1943) introduced the concept that the net merit of the individual 

considering several traits of economic importance, outperforms other forms of selection 

including single trait selection. The fundamental concept of aggregate genotype described 

by Hazel and Lush (1943) introduces a linear function (selection index) of observations 

permitting that the observations of each trait were weighted by the relative economic value 

of that trait. Thus, the aggregate genotype allows calculating a single value for each 

animal; representing an objective evaluation integrating the net genetic merit of an animal 

and the profit associated with these traits (Weaber 2010). The incorporation of the breeding 
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values in the selection indexes motivated by Hazel (1943) and Henderson (1951) definitely 

improved the genetic prediction of the economically important traits.  

 

4.3.8 Index Basics 

In simplistic terms, the selection index (Hazel 1943) defines the economic merit of an 

animal as a parent which also incorporates breeding values 

. 

Where:  

 = the aggregate economic merit of an animal, i, as a parent; 

 = the relative economic weight of trait j, j = 1...n, where n = the total number of traits; 

and 

= the breeding value of animal i for trait j. 

Usually, breeding values are substituted by PTAs or EPDs as in the index for dollar 

fertility ($F). Thus, animals (as parents) are ranked on a prediction of H called (I), the 

index value defined as: 

 

 (Henderson 1963). 

 

Where: 

 = the predicted aggregate economic merit of an animal, i, as a parent; 
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 = the relative economic weight of trait j, j = l…n. where n = the total number of traits; 

and 

 = the predicted transmitting ability of animal I for trait j. 

 

As previously discussed, the index is unbiased as genetic predictions themselves are 

unbiased since predictions are the Best Linear Unbiased Predictions (BLUP).  

The relative economic values or weights (the a’s in the above equations) reflect the change 

in profit when a trait is changed by single unit.  

The proposed selection index included calving interval (CI) and age to first calving (AFC) 

with their corresponding economic weights. These economic models are available in the 

literature for those traits (Gonzalez-Recio et al. 2004; Gonzalez-Recio and Allenda 2005) 

and their economic estimations were used for the $F index.  

The $F index was estimated with the following model: 

. 

Where: 

 was the proposed $F value;  

 = the relative economic weight of trait AFC and CI, respectively; and 

 = the predicted transmitting ability of animal AFC and CI. 

Traits for $F were selected from available data in an attempt to combine genetic merit of 

animals that reach early puberty (precocity; measured as AFC) and develop efficient 

overall fertility (shorter anestrous postpartum; measured as DO, DPR and CI). In the 
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second term of the $F, three traits are valid options to integrate the index (CI, DPR and 

DO), but only CI was used. Calving interval was selected because it showed high 

correlation with other fertility traits such as interval between first and last inseminations 

(.98), days to first service (.80), number of inseminations per service period (.89), 

pregnancy within 56d (-.95), pregnancy within 90d (-.95), success in first insemination (-

59), days open (.99) and daughter pregnancy rate (-.99; Gonzalez-Recio et al. 2005). 

Furthermore, CI to 1st lactation showed 5% heritability; thus, outperforming DO and DPR, 

achieving requirements for the index, and had available economic information. 

Additionally, SAS (SAS/STAT® 9.2 User’s Guide, Cary, NC, USA: SAS Institute Inc. 

2008) was used for creating the proposed index ($F) and ranking bulls from the pedigree 

file. Pearson correlation coefficients were used to determine the strength of the relationship 

between fertility traits, index and lactations.  

 

4.5.3 Results and Discussion 

Fertility traits are presented by partitioning a specific trait into 6 sub-traits according to 

corresponding lactation or parities.  Lactations were analyzed individually for days open, 

calving interval and daughter pregnancy rate except lactations 6 through 10 that were 

considered as one (lactation group 6th-10th). Hence, 19 fertility traits are introduced and 

analyzed separately by lactation (six lactation groups per traits) including days open, 

calving interval, daughter pregnancy rate, and age to first calving. For estimation of fixed 

effects (milk testing entities, dairies, owners and calving years), a total of 35,610 
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contemporary groups (CG) were created to remove variation due to changes in herd 

environmental conditions. However, due to different restrictions applied, total number of 

CG was reduced to 25661. Additional solutions for fixed effects included grouping for 

calving months and days in milk with a total of 12 and 6 levels, respectively.  

 

 

4.4.1 Descriptive statistics of fertility data 

Descriptive statistics of fertility data utilized in the present study are illustrated in Tables 1 

through 4. These tables are organized by the four major traits (DO, CI, DPR and AFC) 

including lactations, number of records, mean, and SD. 

Phenotypic means for days open by lactation number ranged from 144.35 to 147.18 days 

(Table 1). The highest mean value for DO was observed during the first lactation. These 

mean values were somewhat higher compared with those reported in other studies (US, 

135 d, Pszczola et al. 2009; Spain, 117 d, Gonzalez-Recio and Alenda 2005). Furthermore, 

phenotypic means for calving interval by lactation ranged from 403.32 to 409.54 days 

(Table 2). Similar to DO, first lactation means were higher than subsequent lactations. 

Also, mean values for calving interval were slightly higher than some reported in the 

literature.  

For instance, phenotypic means of 385 and 400 days were reported in United Kingdom and 

Spain, respectively (Pryce et al. 2000; Gonzalez-Recio and Alenda 2005). However, 

Norman et al. (2009) reported CI values ranging from 410 to 428 days for Holstein breed. 
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In 2006, the US value for CI was 422 days, slightly higher than phenotypic means found in 

the present study (Norman et al. 2009).  

Daughter pregnancy rate showed phenotypic means ranging from 21.50% to 22.21% 

(Table 3).  Third lactation had the highest DPR. Norman et al. (2009) reported an average 

DPR for US Holstein of 24.9% utilizing data from nearly 8 million lactations from 5 

million cows in over 23,000 herds. Furthermore, Animal Improvement Program 

Laboratory (AIPL; US Department of Agriculture; USDA) reported an average DPR value 

of 28.14% for 2010. Similarly, Gonzalez-Recio and Alenda (2005) observed a 29% DPR 

for Holstein herds in Spain. 

Phenotypic means for age to first calving averaged 985.72 days (32.32 months) on 965,137 

Holstein heifers. This value was higher than those (839.36 days or 27.52 months) reported 

by Powell (1985) in an extensive study evaluating AFC in US Holstein herds from 1960 to 

1982. Moreover, more recent data from US Holsteins herds showed that phenotypic mean 

for AFC averaged 788 days (Cole and Null 2010). Interestingly, Gonzalez-Recio et al. 

(2004) showed 854 days from 1988 and 2001 in Holstein herds in Spain.  

 

4.5.4 Breeding values of fertility data 

Predicted transmitting abilities (PTA’s) for fertility data including 19 fertility traits are 

depicted in Tables 5-8 corresponding to DO, CI, DPR, and AFC, respectively. Solutions 

for fixed effects, breeding values, and sampling variances (accuracies) were obtained for 

each trait and presented by lactation, including number of animals with predicted 
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transmitting ability (PTA), mean PTAs, SD, PTA minimum and maximum, heritability (h2) 

and standard error.     

Heritability for DO and DPR ranged from 1 to 3% across different lactations (Tables 5 and 

7). Heritability for CI ranged from 3 to 6% across different lactations (Table 6). The 

highest heritability values among fertility traits were those for AFC which reached 16% 

(Table 8). In general, low heritability for these fertility traits is consistent with reports in 

the literature (Dematawewa and Berger 1998; Veerkamp et al. 2001; VanRaden et al. 2004; 

Gonzalez-Recio et al. 2004; Gonzalez-Recio and Alenda 2005; Veerkamp and Beerda 

2007). 

Furthermore, values for predicted transmitting ability (PTA) across different lactations 

ranged from -16.3 to 11.4 days for DO (Table 5). Mean PTA values for DO fluctuated 

between 0.12 and -1.34 (Table 5). For CI, PTA values ranged from -24.7 to 15.1 days with 

means PTAs of -3.11 and -0.72 days across different lactations (Table 6). The PTA values 

for DPR varied from -2.4% to 4.0% with mean PTA values ranging from -0.02% and 

0.33% across lactations (Table 7). These values for DPR are consistent with the literature 

(VanRaden et al. 2004). Age to first calving presented PTA values ranging from -120.3 to 

76.2 days with a genetic mean of -5.81 days (Table 8).  

Results of these different fertility traits across lactations indicate substantial genetic 

variation, suggesting that genetic selection may be effective in improving declines in 

fertility. 
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Fertility index 

The predicted selection index (Dollar Fertility Value; $F) included AFC and CI with 

economic weights of $-0.28 and -4.90/day per cow, respectively (Gonzalez-Recio et al. 

2004; Gonzalez-Recio and Allenda 2005). Using predicted transmitting ability from age to 

first calving and calving interval during first lactation, values for dollar fertility ($F) 

ranged from -$76.61 to $139.47 (Figure 1) and -$67.36 to $105.08  (Figure 2) for bulls and 

cows, respectively. These results indicate considerable genetic variation in the proposed 

fertility index. Selection based on this fertility index would have considerable influence on 

genetic gain; hence, reducing fertility costs. These results suggest that dollar fertility ($F) 

benefits by including AFC as a measure of initial reproductive efficiency followed by the 

inclusion of CI which measures success of inseminations. 

 

4.5.5 Genetic correlation of fertility data 

Table 9 presents heritability and Pearson genetic correlations among fertility traits and the 

fertility index ($F). First lactation/parities were utilized for estimating correlations among 

BLUPs for DO, CI, DPR, AFC and $F. Tables 9 - 11 display Pearson correlation statistics 

for pairs of analyzed variables. The Pearson coefficients are a parametric measure of 

association between two continuous random variables. By definition, Pearson correlation 

measures both the strength and direction of a linear relationship. Negative genetic 

correlation means that an inverse, linear relationship exists between these two variables. 

For instances, as days open increases (days), daughter pregnancy rate (percentage) 
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decreases. Same is true for positive correlations where a positive, linear relationship exists 

between two variables (i.e., days open with calving interval). 

In general, moderate and high genetic correlations were observed (from 0.238 to 0.999; 

P<0.001; Table 9; Figure 3).  Days open and calving interval showed high negative 

associations with DPR (-0.999, -0.648) and $F (-0.612, -0.981; Table 9; Figure 3). Age to 

first calving showed moderate correlations with all other traits (from 0.238 to 0.522; 

P<0.001; Table 9; Figure 3).   

Results from the correlation analysis suggest that CI and $F are qualified indicators of 

fertility in lactating dairy Holstein and relate well with other traits (Table 9; Figure 3). For 

instance, $F showed high correlations (both positive and negative) with days open (-

0.612), calving interval (-0.981), daughter pregnancy rate (0.614) at first lactation, and age 

to first calving (-0.676; Table 9; Figure 3). In simplistic terms, producers should reduce 

DO, CI, and AFC and increase DPR to improve $F.   

In general, these results agree with low heritability and strong genetic correlations 

estimated by other researchers (Dematawewa and Berger 1998; Veerkamp et al. 2001; 

VanRaden et al. 2004; Gonzalez-Recio et al. 2004; Gonzalez-Recio and Alenda 2005; 

Veerkamp and Beerda 2007). Gonzalez-Recio and Alenda (2005) suggested that CI, DO 

and DPR had genetic correlations near 1.00 with each other, suggesting that analyzing one 

of them would be sufficient. Results from present research agree with Gonzalez-Recio and 

Alenda (2005) except for CI which showed a genetic correlation of 0.647 with days open 

and -0.648 with daughter pregnancy rate (Table 9; Figure 3). According to the present 
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study, CI represents a different trait compared with DO and DPR. Figure 3 shows a 

symmetric matrix plot for the fertility traits and $F analyzed. First lactation/parities were 

utilized for estimating correlations among BLUPs for DO, CI, DPR, AFC and $F.   

Table 10 illustrates Pearson genetic correlations among different lactations for calving 

interval traits. CI-1, CI-2, CI-3, CI-4, CI-5, CI-6+ represent BLUP values for calving 

interval at 1st , 2nd , 3rd , 4th , 5th and 6th-10th lactations, respectively. Calving interval at first 

lactation showed moderate and high genetic correlation with second, third, fourth, fifth and 

sixth to tenth lactations (0.753, 0.688, 0.613, 0.593, 0.494, respectively; Table 10; Figure 

4). These results indicate that CI-1 has a high positive, linear relationship with CI-2, 

suggesting CI-1 as a good predictor of subsequent lactation. However, this relationship 

observed between CI-1 and CI-2 decreases across subsequent lactations (3rd, 4th, 5th and 

6th-10th) at an average rate of 6.4%. 

The highest correlation among different lactations in calving interval trait was 0.881 

between fourth and fifth calving interval. Interestingly, the highest correlations were 

observed between subsequent lactation averaging 0.814 (Table 10; Figure 4). Moreover, 

these relationship values increase for each additional and subsequent lactation (Table 10) 

where values increased from 0.753 to 0.881.  

Table 11 depicts Pearson genetic correlations among different lactations for daughter 

pregnancy rate. DPR-1, DPR-2, DPR-3, DPR-4, DPR-5, DPR-6+ represent BLUP values 

for daughter pregnancy rate at 1st , 2nd , 3rd , 4th , 5th and 6th-10th lactations, respectively. 

Daughter pregnancy rate at first lactation had moderate and high genetic correlation with 
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second, third, fourth, fifth and sixth to tenth lactations (0.593, 0.492, 0.322, 0.309, 0.208, 

respectively; Table 11; Figure 5). Similar to calving interval, this relationship between 

DPR-1 and DPR-2 decreases across the subsequent lactations (3rd, 4th, 5th and 6th-10th) at an 

average rate of 9.6%. The highest correlation among different lactation in daughter 

pregnancy rate trait was 0.814 between fourth and fifth lactations. The highest correlations 

values were found between subsequent lactation averaging 0.691 (Table 11; Figure 5). 

Moreover, these relationships increase for each additional and subsequent lactation (Table 

11) where values increased from 0.593 to 0.814.  

Figure 5 illustrates a symmetric matrix plot for calving interval traits analyzed. BlupDPR2, 

blupDPR3, blupDPR4, blupDPR5, blupDPR6 represent BLUP values for calving interval 

at 1st , 2nd , 3rd , 4th , 5th lactations, respectively.   

Figure 6 illustrates a scatter plot among calving interval at first lactation and age to first 

calving. This figure is separated in 4 squares according to the “0” means of BLUPs and the 

minimum and maximum values for both traits. Each blue dot/circle represents the BLUP 

value for each individual animal (n= 1,628,844). 

From the fourth squares created on the scatter plot among calving interval and age to first 

calving (Figure 6), the top left square represents those animals which have negative values 

of CI (desired) but positive values of AFC (undesired). The top right square characterizes 

those animals that have positive values for both CI and AFC (undesired; low fertility 

group). These animals are not desired because more time is needed to become pregnant as 

heifers but also take longer to become pregnant again. The bottom right square depicts 
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those animals that perform well for AFC (negative values; desired) but have longer calving 

intervals (positive values; undesired). Finally, the bottom left square represents those 

animals that have desired reproductive attributes indicated by shorter CI and AFC (high 

fertility group).  

4.5.6 Genetic trends for fertility traits 

Genetic trends for fertility traits and $F are depicted in Figures 7 through 11 for CI, AFC, 

DO, DPR and $F, respectively. These figures show genetic trends for Holstein sires and 

dams born from 1970 to 2000.   

Figure 7 depicts the genetic trend for calving interval in sires; indicating an initial increase 

in CI BLUP values until the middle 1980’s, then decreasing CI BLUP values through the  

1990’s and 2000’s (increasing fertility values). On average, genetic trends for CI resulted 

in decreases of 0.45 days per year between 1970 and 2000 for sires. In dams, Holstein 

genetic trend for calving interval became nearly flat before 1993, where CI values 

decreases steadily. On average, CI Holstein dams decreased at a slower rate than sires, 

falling by 0.08 days per year. Results found in the present study agreed with investigations 

performed by Norman et al. (2009) where CI increased throughout the early years but have 

stabilized or are declining in recent years. In the present study, these decreasing trends start 

earlier and reduce CI at faster rates. However, other studies in United States and United 

Kingdom revealed a steady increase of genetic trend in calving interval associated with 

increased milk yield (Royal et al. 2000; Lucy 2001). 



 

132 
 

The genetic trend for AFC showed a decrease of 2.76 and 0.73 days per year (Figure 8; P-

value <.0001) between 1970 and 2000 for sires and dams, respectively. Similar to CI, the 

genetic trend for AFC had become nearly flat before 1980 and 1993 in Holstein bulls and 

cows, respectively.  After these years the genetic tendency for AFC in both sires and dams 

steadily decrease. These results suggest an increased genetic merit for heifers to attain early sexual 

maturity (reduced AFC). Moreover, these results agree with conclusions made by Makgahlela 

et al. (2008) and Cole and Null (2010). Estimating by regression, Cole and Null (2010) 

reported a decreasing US genetic trend for sire PTA for AFC of 0.09 days per year.  

Figures 9 and 10 depict genetic trend for DO and DPR during first lactation for sires and 

dams. Due to similarities in estimation and high correlation between DO and DPR, they 

are discussed together. Sire genetic trend for DO shows an initial increased in BLUP 

values until the late 1980s where values start steadily decreasing (Figure 9). In dams, DO 

genetic trend had become nearly flat before 1997 where this tendency sensible decreased 

(Figure 9). In general, the genetic trend for DO of sires and dams decreased slightly at a 

rate of 0.07 and 0.02 days per year, respectively. During the same period, the genetic trend 

for DPR, estimated by regression, increased by 0.02 percent per year in sires (Figure 10). 

However, in cows, DPR had a slight decrease of 0.006 percentage by year (Figure 10). 

Similar to other fertility traits, DPR showed an initial decline but progressively recovered 

during the late 1980s in the sires and early 1990s in dams (Figure 10).  Similar to other 

traits (CI and DO), the analyzed Holstein population showed increases after 

implementation of genetic evaluations for productive life in 1994 (VanRaden and Wiggans 
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1995; Norman et al. 2009) and DPR in 2003 (VanRaden et al. 2004; Norman et al. 2009). 

Norman et al. (2009) suggested that the use and implementation of productive life 

evaluations helped reverse the initial genetic decline in DPR because of the negative 

relationship between DO and productive life (genetic correlation of −0.59; VanRaden et al. 

2004).  

As shown in Figure 11, the genetic trend for $F of sires and dams increased $2.99 and 

$0.60 per year for sires and dams, respectively. In summary, results indicate progress in 

the genetic trend for fertility traits and fertility index ($F) in the Holstein population of 

Argentina with higher improvement in sires compared to dams.  Not surprisingly, genetic 

trends in sires are preceded by dam’s trends. Trends visually showed faster improvement 

after 1980, possibly due to selection for productive life introduced in 1993, and extensive 

importation of US and Canadian bulls (72% of bulls born after 1986).  

The amount of change from 1980 and 2000 in unit traits for calving interval (CI-1); age to 

first calving (AFC); daughter pregnancy rate (DPR-1); and dollar fertility ($F) for sires and 

dams is shown in Table 12.   

In conclusion, results indicate substantial variation in fertility traits, suggesting that genetic 

selection may be effective in improving declines in fertility. Furthermore, evaluation of 

data tends to suggest improvement in certain fertility traits over the past decade that may 

be the result of selection strategies using productive life. 
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4.5 Appendix: Figures and Tables 
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Table 4.1. Descriptive summary and phenotypic mean values for days open across 
lactations   

Traits  Lactations No. of Records  Mean  SD  

DO (d)  1st  545,663  147.18  81.85  

DO (d)  2nd  401,956  144.49  81.47  

DO (d)  3rd  275,153  144.35  81.32  

DO (d)  4th  173,299  144.97  81.05  

DO (d)  5th  99,605  145.61  80.67  

DO (d)  6th - 10th  90,623  145.27  79.57  

DO (d): days open expressed in days; No. of records: number of animals utilized in the 
analysis. Mean: phenotypic mean per this trait. SD: standard deviation. 
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Table 4.2. Descriptive summary and phenotypic mean values for calving interval across 
lactations. 

Traits  Lactations No. of Records  Mean  SD  

CI (d)  1st  642,393  409.54  69.49  

CI (d)  2nd  490,038  404.43  66.79  

CI (d)  3rd  344,968  403.32  66.93  

CI (d)  4th  223,219  404.06  67.23  

CI (d)  5th  131,669  405.78  67.91  

CI (d)  6th - 10th  126,509  408.20  68.58  

CI (d): calving interval expressed in days; No. of records: number of animals utilized in the 
analysis. Mean: phenotypic mean per this trait. SD: standard deviation. 
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Table 4.3.  Descriptive summary and phenotypic mean values for daughter pregnancy rate 
across lactations.   

Traits  Lactations No. of Records  Mean  SD  

DPR (%)  1st  545,663  21.50  20.47  

DPR (%)  2nd  401,956  22.17  20.38  

DPR (%)  3rd  275,153  22.21  20.34  

DPR (%)  4th  173,299  22.05  20.27  

DPR (%)  5th  99,605  21.90  20.18  

DPR (%)  6th - 10th  90,850  21.97  19.90  

Daughter pregnancy rate (%): daughter pregnancy rate expressed in percentage; No. of 
records: number of animals utilized in the analysis. Mean: phenotypic mean per this trait. 
SD: standard deviation. 
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Table 4.4.  Descriptive summary and phenotypic mean values for age to first calving.   

Traits  Lactations No. of Records  Mean  SD  

AFC (d)  1st  965,137  985.72  146.01  

AFC (d): age to first calving expressed in days; No. of records: number of animals utilized 
in the analysis. Mean: phenotypic mean for this trait. SD: standard deviation. 
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Table 4.5. Mean values and ranges for predicted transmitting ability (PTA) of days open 
across lactations.  

Traits  Lactations No. of 

Records  

Mean  SD  PTA 

Min.  

PTA 

Max.  

h2  SE  

DO (d)  1st  1,209,991  0.12 1.58 -16.09 9.27  0.02  0.002  

DO (d)  2nd  1,144,030 -0.06 1.84 -16.36 11.45 0.02  0.002  

DO (d)  3rd  1,072,363 -0.55 1.85  -14.31  8.09  0.02  0.003  

DO (d)  4th  1,003,261 -1.34 2.34  -15.03  9.63  0.03  0.004 

DO (d)  5th   943,626 -0.99 1.78  -12.53  6.95  0.02  0.006  

DO (d)  6th - 10th   910,594 -0.54 0.91  -5.51  4.11  0.01  0.004  

No. of records: number of records (animals) with predicted transmitting ability (PTA), 
Mean: Mean PTAs for trait, SD:  standard deviation, PTA minimum: minimum PTA value 
across lactation, PTA maximum: maximum PTA value across lactations, h2: heritability 
(h2), SE: Standard Error  
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Table 4.6. Mean values and ranges for predicted transmitting ability (PTA) of calving 
interval across lactations. 

Traits  Lactations No. of 

Records 

Mean  SD  PTA 

Min.  

PTA 

Max.  

h2  SE  

CI (d)  1st  1,263,058 -0.72 3.09 -24.75 15.16  0.05  0.003  

CI (d)  2nd  1,197,520 -1.00 2.61 -23.59 13.16 0.03  0.002  

CI (d)  3rd  1,120,682 -1.46 2.71  -18.18  10.53  0.03  0.003  

CI (d)  4th  1,043,127 -2.55 3.14  -19.18  9.00  0.04  0.004 

CI (d)  5th  972,604 -2.72 3.05  -20.13  7.52  0.04  0.007  

CI (d)  6th - 10th  931,628 -3.11 3.04  -19.05  11.27  0.06  0.005  

No. of records: number of records (animals) with predicted transmitting ability (PTA), 
Mean: Mean PTAs for trait, SD:  standard deviation, PTA minimum: minimum PTA value 
across lactation, PTA maximum: maximum PTA value across lactations, h2: heritability 
(h2), SE: Standard Error  
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Table 4.7. Mean values and ranges for predicted transmitting ability (PTA) of daughter 
pregnancy rate across lactations. 

Traits  Lactations No. of 
Records 

Mean  SD  PTA 
Min.  

PTA 
Max.  

h2  SE  

DPR (%)  1st  1,209,627 -0.02 0.39 -2.31 4.00  0.02  0.002  

DPR (%)  2nd  1,143,706 0.03 0.35 -2.36 3.33 0.02  0.002  

DPR (%)  3rd  1,072,108 0.14 0.46  -1.97  3.56  0.02  0.003  

DPR (%)  4th  1,003,049 0.33 0.58  -2.41  3.76  0.03  0.004 

DPR (%)  5th  943,451 0.25 0.44  -1.70  3.16 0.02 0.006  

DPR (%)  6th - 10th  910,519 0.14 0.22  -1.03  1.35  0.01  0.004  

No. of records: number of records (animals) with predicted transmitting ability (PTA), 
Mean: Mean PTAs for trait, SD:  standard deviation, PTA minimum: minimum PTA value 
across lactation, PTA maximum: maximum PTA value across lactations, h2: heritability 
(h2), SE: Standard Error  
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Table 4.8. Mean values and ranges for predicted transmitting ability (PTA) of age to first 
calving. 

Traits  No. of 

Records 

Mean  SD      PTA 

Min.  

PTA 

Max.  

h2  SE  

AFC (d)  1,396,894 -5.81 13.35 -120.33 76.23  0.16  0.003  

No. of records: number of records (animals) with predicted transmitting ability (PTA), 
Mean: Mean PTAs for trait, SD:  standard deviation, PTA min: minimum PTA value 
across lactation, PTA max: maximum PTA value across lactations, h2: heritability (h2), SE: 
Standard Error  
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Figure 4.1. Distribution of the Dollar Fertility PTA values for bulls. 
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Figure 4.2. Distribution of the Dollar Fertility PTA values for cows 
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Table 4.9. Heritabilities (diagonal, in bold), Pearson correlation coefficients (above 
diagonal) among first lactation BLUPs values of fertility traits1 and fertility index values1 
($F) with p-value2 immediately below coefficients  

 

 DO-1    CI-1     DPR-1     AFC        $F 

DO-1   0.02  0.64710  -0.99958 0.23872  -0.61256 

     <.0001  <.0001  <.0001  <.0001 

CI-1         0.05  -0.64829  0.52253 -0.98130 

    <.0001  <.0001  <.0001 

DPR-1                0.02  -0.24121   0.61414 

           <.0001   <.0001 

AFC                     0.16  -0.67688 

             <.0001 

1 DO-1: days open at first lactation; CI-1: calving interval at first lactation; DPR-1: 
daughter pregnancy rate at first lactation; AFC: age to first calving; $F: dollar fertility.  
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Figure 4.3. Scatter plot matrix for first lactation BLUPs of fertility traits (DO, CI, DPR, 
and AFC) and fertility index ($F). DO-1: days open at first lactation; CI-1: calving interval 
at first lactation; DPR-1: daughter pregnancy rate at first lactation; AFC: age to first 
calving; $F: dollar fertility.  
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Table 4.10. Heritability (diagonal, in bold), Pearson correlation coefficients (above 
diagonal) among BLUPs values of calving interval traits1 with p-value2 immediately below 
coefficients 

 CI-1   CI-2   CI-3   CI-4   CI-5   CI-6+ 

CI-1  0.05  0.75389  0.68809  0.61391  0.59364  0.49435 

<.0001  <.0001  <.0001  <.0001  <.0001 

CI-2     0.03  0.78280  0.72743  0.69043  0.60441 

       <.0001  <.0001  <.0001  <.0001 

CI-3            0.03  0.81879  0.79292  0.70253 

          <.0001  <.0001  <.0001 

CI-4              0.04  0.88199  0.81959 

             <.0001  <.0001 

CI-5                  0.04  0.83289 

                <.0001 

CI-6+                   0.06 

1 CI-1: calving interval at first lactation; CI-2: calving interval at second lactation; CI-3: 
calving interval at third lactation; CI-4: calving interval at fourth lactation; CI-5: calving 
interval at fifth lactation; CI-6+: calving interval at sixth to tenth lactations. 2 p-value 
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Figure 4.4. Scatter plot matrix for calving interval BLUP values across lactations. CI-1: 
calving interval at first lactation; CI-2: calving interval at second lactation; CI-3: calving 
interval at third lactation; CI-4: calving interval at fourth; CI-5: calving interval at fifth 
lactation. 
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Table 4.11. Heritability (diagonal, in bold), Pearson correlation coefficients (above 
diagonal) among BLUPs values of calving interval traits1 with p-value immediately below 
coefficients. 

   DPR-1  DPR-2  DPR-3  DPR-4  DPR-5  DPR-6+ 

DPR-1 0.02  0.59322  0.49225  0.32267  0.30950  0.20853 

<.0001  <.0001  <.0001  <.0001  <.0001 

DPR-2      0.02  0.62319  0.54148   0.47556  0.36225 

       <.0001  <.0001  <.0001  <.0001 

DPR-3         0.02  0.72337  0.71799  0.53905 

          <.0001  <.0001  <.0001 

DPR-4              0.03  0.81436  0.72376 

              <.0001  <.0001 

DPR-5                0.02  0.70208 

                <.0001 

DPR-6+                   0.01 

1 DPR-1: daughter pregnancy rate at first lactation; DPR-2: daughter pregnancy rate at 
second lactation; DPR-3: daughter pregnancy rate at third lactation; DPR-4: daughter 
pregnancy rate at fourth lactation; DPR-5: daughter pregnancy rate at fifth lactation; CI-
6+: daughter pregnancy rate at sixth to tenth lactations.  
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Figure 4.5. Scatter plot matrix for daughter pregnancy rate BLUP values across lactations. 
DPR-1: daughter pregnancy rate at first lactation; DPR-2: daughter pregnancy rate at 
second lactation; DPR-3: daughter pregnancy rate at third lactation; DPR-4: daughter 
pregnancy rate at fourth; DPR-5: daughter pregnancy rate at fifth lactation. 
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Figure 4.6. Scatter plot of BLUP values between calving interval at first lactation and age 
to first calving. AFC: age to first calving; CI-1: calving interval at first lactation 
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Figure 4.7. Trend in BLUP calving interval at first lactation (BLUP CI-1) for sires (SEX 1-
blue line) and dams (SEX 2-red line) born from 1970 to 2000 in Argentinean  Holsteins.  
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Figure 4.8. Trend in BLUP age to first calving (BLUP AFC) for sires (SEX 1-blue line) 
and dams (SEX 2-red line) born from 1970 to 2000 in Argentinean Holsteins.  
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Figure 4.9. Trend in BLUP days open at first lactation (BLUP DO-1) for sires (SEX 1-blue 
line) and dams (SEX 2-red line) born from 1970 to 2000 in Argentinean Holsteins.  
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Figure 4.10. Trend in BLUP daughter pregnancy rate at first lactation (BLUP DPR-1) for 
sires (SEX 1-blue line) and dams (SEX 2-red line) born from 1970 to 2000 in Argentinean 
Holsteins.  
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Figure 4.11. Trend in BLUP Dollar Fertility ($F) for sires (SEX 1-blue line) and dams 
(SEX 2-red line) born from 1970 to 2000 in Argentinean Holsteins.  
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Table 4.12.  Amount of change in mean BLUP values of Argentinean Holstein sires and 
dams born from 1980 to 2000 for fertility traits1 and dollar fertility. 

 Mean 1980 Mean 2000 Difference 1980-2000 

CI-1 Sires 3.401 -11.498 14.899 

CI-1 Dams 0.739 -3.495 4.235 

AFC Sires 10.843 -67.331 78.175 

AFC Dams 3.741 -19.026 22.768 

DPR-1 Sires -0.205 0.671 0.876 

DPR-1 Dams -0.027 0.067 0.094 

$F Sires -19.702 75.194 94.896 

$F Dams -4.673 22.456 27.129 
1 CI-1: calving interval at first lactation; AFC: age to first calf; DPR-1: daughter pregnancy 
rate at first lactation; $F: dollar fertility. Means 1980 and 2000 are the average BLUP value 
for bulls and dams born in 1980 and 2000, respectively.  
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CHAPTER 5 SUMMARY AND CONCLUSION 
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Numerous assisted reproductive technologies (i.e. artificial insemination (AI), multiple 

ovulation and embryo transfer (MOET), cryopreservation and sperm/embryo sexing 

strategies) have provided fundamental tools for rapid genetic improvement of livestock, 

particularly in dairy and beef cattle. These reproductive technologies protocols have 

greatly increased efficiency of animal agriculture to provide high quality, low cost to 

consumers. However, significant needs still exist to provide economical, “decision-

making” tools for producers and sustainability to the animal agricultural sector.  

Improvements in fertility through genetic selection are a possible approach to increase 

reproductive efficiency. While progress may be slow due to low heritabilities, ignoring 

fertility in genetic improvement programs has contributed to the current fertility problems. 

Hence, to mitigate the deterioration of fertility and variability in superovulatory response 

of donor animals, a strong need exists to identify and select animals according to their 

future reproductive potential. Therefore, our general approach encompassed understanding 

of how genotype contributes to phenotypic variation in fertility. In order to accomplish this 

approach, estimation of genetic parameters and development of multi-trait selection 

indexes for fertility traits were performed. Hence, it was hypothesized that utilization of 

breeding values and fertility indexes can predict genetic merit in a bovine population.  

As a first step, we developed genetic parameters associated with multiple ovulation and 

embryo transfer schemes in an attempt to assist producers in identifying animals with 

greater genetic merit for these protocols. Our study confirmed that genetic selection of 

donors or sires appears to be a potential approach to improve efficiency of MOET 
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procedures. Although low heritability would slow the progress, results shown in this work 

suggest that genetic improvement in fertility by selection for embryo transfer traits is 

possible. Moreover, genetic gain estimate was 1.16% per generation suggesting a useful 

tool for genetic improvement and the feasibility of including MOET traits in future 

breeding strategies. Further studies for identifying markers for MOET traits, along with 

available technology (e.g., Bovine SNP Chip), may create an even more effective approach 

for improving efficiency of MOET schemes and overall fertility of the livestock industry. 

In our second experiment, we developed a genetic evaluation for fertility traits in 

Argentinean Holstein cattle. In order to develop fertility genetic predictors for utilization in 

breeding strategies, we estimated genetic parameters, breeding values, and developed a 

multi-trait selection index (dollar fertility; $F). We developed a $F that included age to 

first calving (AFC) and calving interval (CI), with economic weights of -0.28 and -4.9 

$/day per cow for AFC and CI, respectively. Thus, $F benefits by including AFC as a 

measure of initial reproductive performance as well as CI, which measures conception rate 

and an early successful insemination. Also, $F showed high correlations (both positive and 

negative) with days open (-0.612), calving interval (-0.981), daughter pregnancy rate 

(0.614) at first lactation, and age to first calving (-0.676). Heritability for days open (DO) 

and daughter pregnancy rate (DPR) ranged from 2% to 3%; 3% to 6% for CI; and 16% for 

AFC. Predicted transmitting ability (PTA) values across different lactations ranged from -

16.3 to 11.4 days, from -24.7 to 15.1 days, -2.4% to 4.0% and -120.3 to 76.2 days for DO, 

CI, DPR and AFC, respectively.  Values for $F ranged from -$76.6 to $139.4 in the current 
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Holstein population. Results indicated substantial variation in fertility traits, suggesting 

that genetic selection may be effective in improving declines in fertility. To our 

knowledge, this is the first report of genetic evaluation for fertility traits in Argentinean 

Holstein cattle. 

In conclusion, this research provided evidence of substantial genetic variation in cattle 

fertility traits. First, we developed genetic parameters associated with multiple ovulation 

and embryo transfer schemes to assist producers in identifying animals with greater genetic 

merit for MOET traits, suggesting a potential approach to improve efficiency of MOET 

procedures in cattle. Second, using a large Holstein population we were able to develop 

genetic predictors of fertility traits for utilization in breeding strategies. Consistently, we 

observed substantial genetic variation suggesting that genetic selection is highly effective 

in improving fertility. 
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