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IMPORTANCE Diagnosing the site of origin for cancer is a pillar of disease classification that

has directed clinical care for more than a century. Even in an era of precision oncologic

practice, in which treatment is increasingly informed by the presence or absence of mutant

genes responsible for cancer growth and progression, tumor origin remains a critical factor in

tumor biologic characteristics and therapeutic sensitivity.

OBJECTIVE To evaluate whether data derived from routine clinical DNA sequencing of tumors

could complement conventional approaches to enable improved diagnostic accuracy.

DESIGN, SETTING, AND PARTICIPANTS Amachine learning approachwas developed to predict

tumor type from targeted panel DNA sequence data obtained at the point of care,

incorporating both discrete molecular alterations and inferred features such as mutational

signatures. This algorithmwas trained on 7791 tumors representing 22 cancer types selected

from a prospectively sequenced cohort of patients with advanced cancer.

RESULTS The correct tumor type was predicted for 5748 of the 7791 patients (73.8%) in the

training set as well as 8623 of 11 644 patients (74.1%) in an independent cohort. Predictions

were assigned probabilities that reflected empirical accuracy, with 3388 cases (43.5%)

representing high-confidence predictions (>95% probability). Informative molecular features

and feature categories varied widely by tumor type. Genomic analysis of plasma cell-free DNA

yielded accurate predictions in 45 of 60 cases (75.0%), suggesting that this approachmay be

applied in diverse clinical settings including as an adjunct to cancer screening. Likely tissues of

origin were predicted from targeted tumor sequencing in 95 of 141 patients (67.4%) with

cancers of unknown primary site. Applying this method prospectively to patients under

active care enabled genome-directed reassessment of diagnosis in 2 patients initially

presumed to havemetastatic breast cancer, leading to the selection of more appropriate

treatments, which elicited clinical responses.

CONCLUSIONS AND RELEVANCE These results suggest that the application of artificial

intelligence to predict tissue of origin in oncologic practice can act as a useful complement

to conventional histologic review to provide integrated pathologic diagnoses, often with

important therapeutic implications.
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T
he clinicalmanagement of cancer is associatedwith its

site of origin, histopathologic subtype, and stage. Even

forpatientswithtumorsharboringatherapeuticallysen-

sitizingmutation that canguidemolecularly targeted therapy,

clinical responses are often associatedwith tumor origin. For

example,BRAFV600Emutationsareobserved incancers aris-

ing from numerous tissue sites, and the likelihood of re-

sponse to RAF inhibitors varies widely as a function of tumor

type.1Although critical for guiding patientmanagement, his-

tologic-based cancer diagnosis remains challenging in many

patients, especially in those initially presenting with meta-

static, poorlydifferentiatedneoplasms inwhichambiguousor

incorrect classificationmayadversely affect choice of therapy

and outcome.2

While conventional cancer diagnosis has benefited from

thorough immunohistochemical evaluation coupled with

high-quality cross-sectional imaging, molecular alterations

highly indicative of the tumor site of origin may further

assist in diagnosis when conventional tools fail. Some

genomic alterations and mutational signatures are associ-

ated with specific individual tumor types, such as APC loss-

of-function mutations in colorectal cancers, TMPRSS2-ERG

fusions in prostate cancers, and a UV-associated mutational

signature of C>T substitutions in cutaneous melanomas. For

other cancer types, combinations of genomic alterations

may commonly co-occur, such as TP53 and CTNNB1 muta-

tions in endometrial cancer. The absence of highly prevalent

alterations in a given tumor type, such as KRASmutations in

pancreatic adenocarcinoma and recurrent gene fusions in

certain sarcomas, can also provide evidence against that par-

ticular diagnostic classification. Both common and rare

genomic alterations across numerous different cancers may,

therefore, guide the inference of tumor origin as an adjunct

to existing diagnostic approaches.

The feasibility of tumor type classification from genomic

data, includingmutations, copy number alterations, gene ex-

pression,methylation, and nucleosome occupancy, has been

demonstrated.3-11Moreover, suchmolecular reassessment of

diagnosis can lead to a change of therapy.12 Yet the system-

atic application of such approaches to prospectively gener-

ated clinical sequencingdata fromoften suboptimal formalin-

fixed paraffin-embedded biopsies, as well as their accuracy

when applied to the targeted cancer gene panels most com-

monly used in the clinic to facilitate treatment selection, re-

main to our knowledge largely unexplored.

Herein, we report a machine learning–based approach to

infer the probabilities of each common solid tumor typediag-

nosis based on a broad array of genomic alterations identified

by targeted tumorsequencing.Toensureapplicability for clini-

cal care, we trained our model on prospective genomic data

from7791 patientswith advanced cancer. Using apopulation-

scale approach allowed us to account for the varying preva-

lence and co-occurrence of genomic features across all tumor

types. The probabilistic genome-based tumor type predic-

tion we establish herein, when considered alongside tradi-

tional immunohistochemical and clinical evaluation, may

enable improved diagnostic accuracy, with important thera-

peutic implications.

Methods

Patients

The training data set was derived from the published Memo-

rial Sloan Kettering–Integrated Mutation Profiling of Action-

able Cancer Targets (MSK-IMPACT) clinical cohort.13 Patients

with rare cancer types or low tumor content were excluded

from analysis, resulting in a total training data set of 7791

patients diagnosed with 1 of 22 cancer types (eTable 1 in the

Supplement). An additional 11 644 patients subsequently

tested by MSK-IMPACT made up an independent test set.

Data are deidentifed. All patients undergoing MSK-IMPACT

testing provided informed consent with a signed clinical

consent form or a consent form for enrollment in a research

protocol approved by the Memorial Sloan Kettering Cancer

Center Institutional Review Board (NCT01775072). Demo-

graphic characteristics of both cohorts are displayed in

eTable 2 in the Supplement.

Genomic Analysis

Tumor andmatched normal DNAswere sequenced in a Clini-

cal Laboratory Improvement Amendments–compliant labo-

ratoryusingMSK-IMPACT,aUSFoodandDrugAdministration–

authorized clinical sequencing assay targeting up to 468

key cancer-associatedgenes.13,14Genomic alterations, includ-

ingmutations, indels, copynumber alterations, structural re-

arrangements, and selected mutation signatures, were re-

ported to patients and physicians to guide clinical care and

aggregated in aHealth InsurancePortability andAccountabil-

ityAct–compliantmanner in thecBioPortal forCancerGenom-

ics for further analysis and visualization.

Random Forest Classifier

To predict tumor site of origin, we constructed a random

forest classifier using the training cohort of 7791 patients.15

Prediction accuracy was determined from 5-fold cross-

validation of the training data as well as the independent

test set. Because many diverse alterations and mutation pat-

terns are associated with different sites of origin, the feature

Key Points

Question To what extent can genomic features revealed by

clinical targeted tumor sequencing enable diagnostic accuracy

of tumor type?

Findings This cohort study usedmachine learning techniques to

construct and train an algorithmic classifier on a cohort of 7791

prospectively sequenced tumors representing 22 cancer types to

predict cancer type and origin from DNA sequence data obtained

at the point of care. In some cases, genome-directed reassessment

of diagnosis prompted tumor type reclassification resulting in

altered therapy for patients with cancer.

Meaning The clinical implementation of artificial intelligence to

guide tumor type diagnosis at the point of care may complement

standard histopathologic testing and imaging to enable improved

diagnostic accuracy.
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set for classification was drawn from the following catego-

ries: mutations and indels (hotspots and gene level), focal

amplifications and deletions, broad copy number gains and

losses, structural rearrangements, mutation signatures,

mutation rate, and sex. Classifier scores were subsequently

calibrated using multinomial logistic regression to match

empirically observed classification probabilities.16 The

source code is available at https://github.com/bergerm1/

GenomeDerivedDiagnosis.

Results

Performance of Tumor Type Predictor

We hypothesized that the information content from clinical

targeted tumor genomic profiling would be sufficiently rich

to predict the tumor site of origin with high accuracy. We

therefore developed a machine learning–based classifier to

determine the ability of DNA genomic alterations (specifi-

cally, mutations and indels, focal and broad copy number

alterations, structural rearrangements, and mutation signa-

tures) to inform the diagnosis in patients with advanced can-

cer (Figure 1A; eMethods in the Supplement). In our training

set of 7791 patients tested by MSK-IMPACT,13,14 the diagnos-

tic cancer type was accurately predicted in 5748 cases

(73.8%) of cases based on 5-fold cross-validation (Figure 1B;

eTable 3, and eTable 4 in the Supplement). The positive pre-

dictive value was highest in tumor types with distinctive

molecular profiles, such as uveal melanoma (95%), glioma

(87%), and colorectal cancer (85%), with predictions driven

by diverse sets of genomic features (eFigure 1 in the Supple-

ment). For other, more heterogeneous, tumor type catego-

ries, prediction accuracy varied among detailed histologic

subtypes (eTable 5 in the Supplement). Applying the full

classifier to predict the site of origin fromMSK-IMPACT clini-

cal sequencing in an independent test set of 11 644 addi-

tional patients, we observed an equivalent accuracy of 74.1%

(n = 8623).

Owing to the importance of high-confidence predictions

for clinical decisionmaking in individual patients, we sought

to estimate the probability associated with each tumor type

prediction. Raw classifier scores were calibrated to match

empirically observed classification probabilities from cross-

validation (log loss, 0.98; eFigure 2 in the Supplement). In

many cancer types, approximately half or more cases were

classified with greater than 95% probability (Figure 1C). In

other challenging cancer types, such as esophagogastric,

ovarian, and head and neck cancer, a minority of cases were

predicted with confidence greater than 50% owing to

increased molecular heterogeneity among tumors and the

lack of distinguishing genomic alterations. Nevertheless,

3388 of all cases (43.5%) were predicted with probability

greater than 95% and an empirical accuracy of 96.6%, indi-

cating an abundance of high-confidence, reliable predictions

enabled by our classifier (eFigure 3 in the Supplement).

Moreover, most of the incorrect predictions were made with

low confidence (probability <50%) and are therefore unlikely

to be a factor in diagnostic or clinical decisions.

Relative Importance ofMolecular Features

Given the diverse categories of genomic features that we

incorporated into our classifier (eTable 6 in the Supplement),

we sought to determine the relative importance of each

molecular alteration type to the overall classification perfor-

mance. Using the Cohen κ metric to represent overall accu-

racy, we found that somatic substitutions and indels had the

highest predictive value, followed by chromosome arm-level

(broad) copy number alterations (Figure 2A). Broad copy

number alterations were especially informative for predict-

ing tumor types with a lowmutational burden and few other

distinguishing features, such as prostate cancers lacking

TMPRSS2-ERG fusions, neuroblastomas, germ cell tumors,

and certain gastrointestinal cancers. Moreover, different fea-

ture categories contributed to prediction accuracy to differ-

ing degrees for individual cancer types, reinforcing the value

of diverse feature categories for broad applicability and pre-

diction accuracy (Figure 2B).

Likewise, there was great breadth and variability among

the specific features used to predict different cancer types

(Figure 2C; eFigure 1 in the Supplement). Among all indi-

vidual features, truncatingAPCmutationwas themost infor-

mative overall owing to its high prevalence in and specificity

for colorectal cancer. The TERT promoter mutations oc-

curred at high frequency inmultiple tumor types, but in oth-

ers they were entirely absent, leading to strongly positive

and negative associations for different lineages. In other in-

stances, more subtle patterns were evident, such as the posi-

tion of mutant alleles within genes, as for EGFR-mutant lung

cancers and gliomas.17 The absence of common features also

contributedtopredictionsofcertain tumor types, suchasKRAS

mutations and breast cancer (Figure 2C). In summary, these

results reveal thediversity of individual genomic features and

feature categories that mediate tumor type predictions.

Wenextsoughttodeterminewhethersuchfeaturediversity

and feature interaction coulddiscriminate amongdifferent tu-

mor types thatnevertheless shareacommonmolecular feature

that is therefore not discriminatory. In BRAF V600E-mutant

melanomas,colorectal,andthyroidcancers,whereresponserates

toRAFinhibitor therapiesvary, theclassifiercorrectlypredicted

the tissueoforigin in 162of 195 cases (83.1%).Despite thepres-

ence of BRAF V600E in all cases, high confidence predictions

wereaidedbydistinct,co-occurringmutationsandgenomicfea-

tures, suchasTERTpromotermutations inmelanomaand thy-

roid cancer,APCmutations andmicrosatellite instability in co-

lorectal cancer, and UV-associated signatures in melanoma

(Figure 2D).Misclassificationswere associatedwith either low

tumor purity or rare atypical genomic profiles (eg,melanomas

with APC-truncating mutations). These results highlight the

power of incorporatingmultiple diverse categories ofmolecu-

lar aberrations to guide challenging cancer type classifications

when they share individual alterations.

Application to Cell-Free DNA

While this algorithmic approach was established on training

data from tissue biopsies of solid tumors, the advent of non-

invasive molecular profiling of plasma circulating tumor

DNA (ctDNA) raises the possibility of inferring a suggested
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Figure 1. Classifier Performance Across Cancers
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A, Schematic of randomforest classifier.Molecular alterations fromMemorial SloanKettering–IntegratedMutationProfilingofActionableCancer Targets (MSK-IMPACT)

sequencingof 7791patients diagnosedwith 1 of 22 tumor typeswereused to train the classifier. For a given combinationof genomic features, the classifier returns a

calibratedprobability of each tumor type. B, Performanceof the classifier across 22 cancer types. True (established) cancer types aredisplayedhorizontally andpredicted

cancer types aredisplayedvertically. Thenumberof tumors for each cancer type in the cohort is shownat the top, and sensitivity and specificity of predictions are indicated

at the topand right. C, The fractionof samples (vertical axis)with the correct predictionmadeat or aboveagivenprobability (horizontal axis)within each cancer type.

CNAs indicates copynumber alterations;GIST, gastrointestinal stromal tumor;NSCLC, non–small cell lung cancer; PNET, pancreatic neuroendocrine tumor; Pr, probability;

andSCLC, small cell lung cancer.

Development of Genome-Derived Tumor Type Prediction to Inform Clinical Cancer Care Original Investigation Research

jamaoncology.com (Reprinted) JAMAOncology January 2020 Volume 6, Number 1 87

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985


Figure 2. Predictive Power ofMolecular Features and Feature Classes
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diagnosis in patients receiving cancer screening or with inac-

cessible disease. We therefore tested the predictive power of

our classifier in 2 independent cohorts: 19 patientswith geni-

tourinary cancers and MSK-IMPACT sequencing of ctDNA

and a previously published set of 41 patients with metastatic

breast or prostate cancer and whole-exome sequencing

of ctDNA.18 We correctly predicted the tumor type from

MSK-IMPACT in 12 of 19 patients (63.2%) with prostate, blad-

der, and testicular cancer from among the 22 cancer types in-

cluded inourclassifier, including8of8predictionswithaprob-

ability greater than 85%. Only 1 of 10 predictions with

probability greater than 75% was inaccurate; a prostate can-

cerwithasinglemissensemutation inVHLwas incorrectlypre-

dicted as renal cell carcinoma.Wealso correctly predicted the

tumor type from whole-exome sequencing in 23 of 27 pa-

tients (85.2%)withbreastcancerand in10of 14patients (71.4%)

with prostate cancer, suggesting the general applicability of

our classifier to multiple sequencing platforms as well as its

suitability for diverse specimen types, such as ctDNA.

Application to Challenging Clinical Scenarios

Giventhepredictivepowerofourclassifier,wesought toevalu-

ate real-time, molecularly guided classifications in multiple

challengingclinical scenarios.Oneunmetclinicalneed for such

diagnostic resolution is the inference of the tissue of origin for

cancersofunknownprimary site.2Refiningdiagnostic classifi-

cation inthispopulationcanfacilitateselectionofpotentiallyef-

fective routine and investigational therapies. Using our classi-

fier,wepredicteda likely tissueoforiginwithprobabilitygreater

than50%in95of 141patients (67.4%) (eFigure4 in theSupple-

ment).Althoughhistopathologicassessmentwasunable topro-

duceadefinitivediagnosisforthesepatients,molecularlyguided

classifications frequently supported clinical suspicions; for in-

stance,of29patientswithpredictednon–small cell lungcancer

(>50%), 28 individuals (96.6%) had a self-reported history of

smoking. In a separate example, emphasizing the need for tis-

sueoforiginclassificationeven inaneraofmolecularly targeted

therapy, we predicted a colorectal origin for one cancer of un-

knownprimarysitewith96%probabilitybasedonthepresence

of BRAF V600E and biallelic inactivating APC mutations

(eFigure 5 in the Supplement). Because single-agent RAF inhi-

bition has little activity in colon cancer, the inferred diagnosis

suggestedthatcombinedBRAF,MEK,andEGFRtherapymaybe

required to elicit a response.1,19,20

We also hypothesized that our classifier could help to re-

solve thediagnostic uncertainty that often arises betweenpri-

mary brain tumors and metastatic tumors to the central ner-

vous system. Includingboth cohorts,we sequenced299brain

metastases of solid tumors originating outside the central

nervous system, including 133non–small cell lung cancers, 56

breast cancers, 43 melanomas, and 67 other tumors. We ac-

curately predicted the correct tumor type in 248 of 299 cases

(82.9%). Of 51 incorrect predictions, only 2 were predicted as

glioma. These results suggest thediagnostic value of our clas-

sifier for central nervous systemtumors and itspossibleprom-

ise fornoninvasive ctDNAprofiling fromcerebrospinal fluid.21

Another common and complex diagnostic challenge

occurs when patients with a history of cancer present with a

new tumor that may represent either a distant metastasis of

their prior diagnosis or a secondprimary tumor.We therefore

sought to assess the utility of molecularly guided classifica-

tions to clarify such complex diagnostic distinctions. In one

representative case, a 67-year-old woman with a history of

breast cancer presented with a lymph node lesion 3 years af-

ter her initial diagnosis. Histopathologic assessment sug-

gestedmetastatic, poorlydifferentiatedadenocarcinomawith

micropapillary andapocrine cytologic characteristics, and im-

munohistochemistry showed weak to moderate estrogen re-

ceptor staining, collectively leading to a classification of es-

trogen receptor–positive breast cancer andaplanned regimen

of hormonal therapy (eFigure 6 in the Supplement). How-

ever, concurrent clinical sequencing revealed a high muta-

tional burden, includingKRASG12Candothermutations, pro-

ducing ahigh-confidence classificationof non–small cell lung

cancer (99%). These computational findings, acquired in real

time, prompted additional lung cancer–specific immunohis-

tochemistry, leading to a revised diagnosis ofmetastatic lung

adenocarcinoma.To reaffirmthepatient’s initial diagnosis,we

subsequently obtained and sequenced the original primary

breast tumor and identified no shared mutations, a somatic

GATA3 truncatingmutation, and a predicted classification of

breast cancer (99%).The resultingchangeofdiagnosis tometa-

static lung cancer prompted a change in the treatment plan

from hormonal therapy to chemotherapy for this patient.

Two cancers in a single patient may occasionally share

mechanisms of pathogenesis that further complicate the

distinction between metastatic progression and independent

primary tumors. In a representative case, a 77-year-oldwoman

was referred to our center with lesions in the breast and blad-

derandadiagnosisofmetastaticbreast lobularcarcinoma(eFig-

ure6 in theSupplement). Clinical sequencingof thebladder le-

sion revealed 22 somatic mutations, including in the TERT

promoter, CDH1, and RB1, and an APOBEC-associated muta-

tionalsignature,producingapredictionofbladdercancer (74%).

This predictionprompted subsequenthistopathologic analysis

thatconfirmedadiagnosisofplasmacytoidbladdercancerwith

corresponding loss of E-cadherin. Loss-of-function mutations

in CDH1, while not generally predictive of bladder cancer (oc-

curring more often in lobular breast and diffuse gastric can-

cers),are thedefiningfeatureofplasmacytoidbladder tumors.22

We subsequently performed MSK-IMPACT sequencing on the

breast biopsy, which revealed 10 independent somatic muta-

tions, includingadifferentCDH1mutation(X765_splice), that to-

gether were predictive of breast cancer (92%). The realization

that thebladder lesionwasasynchronousprimary tumorrather

than a clonally relatedmetastasis led to consideration of surgi-

cal intervention as well as genetic testing for a cancer-

predisposinggermlinemutation inCDH1.Thediagnosisofblad-

dercanceralsoultimately facilitatedon-label treatmentwiththe

immune checkpoint inhibitor nivolumab, to which the patient

responded. Taken together, these representative clinical cases

suggest howgenome-directed diagnosismayprovide orthogo-

nal diagnostic resolution that, when integrated with conven-

tional pathologic testing, can lead to different therapeuticmo-

dalities, including surgery, hormonal therapy, chemotherapy,

immunotherapy, and targeted therapy.
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Discussion

We have developed and deployed a systematic computa-

tional approach for molecularly guided prediction of the site

of origin of tumors based on targeted DNA sequencing. Al-

though tumor sequencing is rapidly being adopted as a rou-

tine test in clinical cancer care, its use thus far has been lim-

ited to driving new enrollments onto clinical trials and for

the identification of biomarkers of treatment response and

resistance.13,14,23-28 Herein, our findings suggest the poten-

tial utility of such sequencing to informcancerdiagnosis as an

adjunct toconventionalhistopathologicassessment. Inourap-

proach, we incorporated multifaceted molecular alteration

types into a probabilistic prediction and tested its accuracy

for identifying therapeutically significant cancer type differ-

ences under challenging diagnostic circumstances.

The results of this studyhavepossiblewide-ranging clini-

cal implications.Genome-directeddiagnosis, as typifiedby the

representative casespresentedherein,maybeable to alter pa-

tient eligibility for various clinical modalities. As liquid bi-

opsy is increasingly used as a screening tool for cancer recur-

rence andnew cancers, our approach possibly can inform the

siteoforiginwhenctDNAisdetected.Therearealsomanyways

inwhichpredictionsmaybeused clinically, especially in light

of ourdevelopmentofprobability estimateson individualpre-

dictions. In cases inwhich traditional diagnosis is ambiguous

or challenging, computational predictions fromgenomicdata

apparently canexcludepossibilities even if thepredictions are

notdefinitive. Inothercases, ahigh-confidenceprediction that

disagreeswith thedefinedor suspecteddiagnosis canprompt

pathologic and clinical reevaluation, allowing additional test-

ing that may help to support an alternative diagnosis. While

messenger RNA–based tissue classification has been used ex-

tensively to predict the site of origin for cancers of unknown

primary site, an advantageof our approach is its ability to enu-

merate the discrete genomic features aiding individual pre-

dictions, therebyprovidingpathologistsandoncologistsanop-

portunity to rationally interpret discordant results.

Limitations

This studyhas limitations.Key limitationsofour approachwill

require continued improvement and investigation to expand

theclinicalutilityof suchgenome-directeddiagnosis.First,we

initially limitedourclassifier to trainingdata fromonly22com-

mon cancer types. As our prospective cohort grows, we will

have the opportunity to include rare cancer types as well as

molecularly or histologically distinct cancer subtypes. Sec-

ond, our work is based on targeted clinical sequencing of es-

tablished cancer-associated genes but canbe extended toun-

biasedwhole-exomeor genomesequencing as thesemethods

are introduced into clinical practice. The accuracy of our clas-

sifier, trainedonMSK-IMPACTdata, for predicting tumor type

from ctDNA whole-exome sequencing data suggests broad

applicability to other panels with shared genomic targets.

Third, although the application to cancers of unknown pri-

mary site represents one of the greatest clinical opportuni-

ties, the absenceof aprecisehistopathologicdiagnosis in such

cases makes it difficult to benchmark the accuracy of predic-

tionsandalter therapeuticdecisions.Ultimately, the trueclini-

cal importance and frequency with which this approach re-

solves challenging diagnostic scenarios, alters established

diagnoses (via prompting of additional pathologic assess-

ment), and affects therapeuticmodalitieswill require further

prospective clinical investigation. Such studies could focuson

a broader assessment of the performance and utility of non-

invasive, molecularly guided diagnosis from ctDNA.

Conclusions

Overall, as ourunderstanding improvesofhow lineage is a fac-

tor associatedwith response to thenewestgenerationof thera-

pies in cancer, this systematic approach tomolecularly guided

diagnosis coupledwith conventional clinical histories, histo-

pathologic assessment, and imagingmay improve diagnostic

and treatment decisions. Our results appear to illustrate the

emerging and powerful role of artificial intelligence in medi-

cine for clinical decision support.29,30

ARTICLE INFORMATION

Accepted for Publication: June 25, 2019.

Published Online:November 14, 2019.

doi:10.1001/jamaoncol.2019.3985

Author Affiliations:HumanOncology and

Pathogenesis Program, Memorial Sloan Kettering

Cancer Center, New York, New York (Penson,

Camacho, Chandarlapaty, Abeshouse, Schultz,

Ladanyi, Solit, Taylor, Berger); Marie-Josée and

Henry R. Kravis Center for Molecular Oncology,

Memorial Sloan Kettering Cancer Center, New York,

New York (Penson, Camacho, Zheng, Vakiani,

Shady, Tsui, Abeshouse, Schultz, Solit, Taylor,

Berger); Department of Epidemiology and

Biostatistics, Memorial Sloan Kettering Cancer

Center, New York, New York (Penson, Abeshouse,

Schultz, Taylor); Department of Pathology,

Memorial Sloan Kettering Cancer Center, New York,

New York (Camacho, Zheng, Al-Ahmadie, Vallejo,

Vakiani, Shady, Tsui, Syed, Zehir, Ladanyi, Klimstra,

Berger); Department of Medicine, Memorial Sloan

Kettering Cancer Center, New York, New York

(Varghese, Razavi, Chandarlapaty, Gilewski,

Rosenberg, Solit, Hyman); Clinical Research

Administration, Memorial Sloan Kettering Cancer

Center, New York, New York (Reales); Weill Cornell

Medical College, Department of Medicine, Cornell

University, New York, New York (Solit, Hyman);

Weill Cornell Medical College, Department of

Pathology and Laboratory Medicine, Cornell

University, New York, New York (Klimstra, Berger).

Author Contributions:Drs Penson and Camacho

contributed equally to this work. Drs Taylor and

Berger had full access to all of the data in the study

and take responsibility for the integrity of the data

and the accuracy of the data analysis.

Concept and design: Penson, Camacho, Solit,

Klimstra, Taylor, Berger.

Acquisition, analysis, or interpretation of data:

Penson, Camacho, Zheng, Varghese, Al-Ahmadie,

Razavi, Chandarlapaty, Vallejo, Vakiani, Gilewski,

Rosenberg, Shady, Tsui, Reales, Abeshouse, Syed,

Zehir, Schultz, Ladanyi, Solit, Hyman, Taylor, Berger.

Drafting of the manuscript: Penson, Camacho,

Zheng, Abeshouse, Syed, Zehir, Solit, Taylor, Berger.

Critical revision of the manuscript for important

intellectual content: Penson, Camacho, Varghese,

Al-Ahmadie, Razavi, Chandarlapaty, Vallejo, Vakiani,

Gilewski, Rosenberg, Shady, Tsui, Reales, Zehir,

Schultz, Ladanyi, Solit, Klimstra, Hyman, Taylor,

Berger.

Statistical analysis: Penson, Camacho, Zheng, Syed,

Taylor.

Obtained funding: Solit, Taylor, Berger.

Administrative, technical, or material support:

Camacho, Varghese, Al-Ahmadie, Chandarlapaty,

Vallejo, Vakiani, Rosenberg, Tsui, Reales,

Abeshouse, Syed, Solit, Klimstra, Hyman.

Supervision: Varghese, Zehir, Solit, Taylor, Berger.

Conflict of Interest Disclosures:Dr Varghese

reported participation in industry-sponsored trials

with Eli Lilly, Taiho, Verastem, Biomed Valley,

Silenseed, and Bristol-Myers Squibb. Dr Al-Ahmadie

Research Original Investigation Development of Genome-Derived Tumor Type Prediction to Inform Clinical Cancer Care

90 JAMAOncology January 2020 Volume 6, Number 1 (Reprinted) jamaoncology.com

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2019.3985?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985
http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985


reported receiving personal fees from AstraZeneca

and Bristol-Myers Squibb and compensation for

consulting and advisory board activities with

Bristol-Myers Squibb, EMD Serono, and

AstraZeneca outside the submitted work. Dr Razavi

reported receiving personal fees fromNovartis and

grants from Grail Inc outside the submitted work.

Dr Chandarlapaty reported receiving grants from

Daiichi Sankyo; research funding from Genentech,

Sanofi and Eli Lilly; personal fees and nonfinancial

support fromNovartis; personal fees from Eli Lilly,

Revolutions Medicine, Sermonix, Chugai Pharma,

and Context Therapeutics; and nonfinancial

support from Sun Pharma outside the submitted

work. Dr Rosenberg reported receiving personal

fees and other stock ownership fromMerck; stock

ownership in Illumina; and personal fees from

AstraZeneca, Astellas, Chugai Pharma, Seattle

Genetics, Roche Genentech, Bayer, Bristol-Myers

Squibb, Eli Lilly, EMD Serono, Inovio, Sensei, Adicet

Bio, BioClin Therapeutics, Fortress Biotech,

Pharmacyclics, Western Oncolytics, and

GlaxoSmithKline outside the submitted work; in

addition, Dr Rosenberg had a patent to ERCC2 for

platinum sensitivity issued. Dr Tsui reported

receiving travel sponsorships and honoraria from

Nanodigmbio and Cambridge Healthtech Institute

outside the submitted work. Dr Ladanyi reported

performing advisory board activities with

Boehringer Ingelheim, AstraZeneca, Bristol-Myers

Squibb, Takea, and Bayer, and receiving research

support from Loxo Oncology and Helsinn

Healthcare. Dr Solit reported receiving personal

fees from Pfizer, Loxo Oncology, Illumina, Vivideon

Therapeutics, and Lilly Oncology outside the

submitted work. Dr Klimstra reported receiving

personal fees from Paige.AI, Merck, American

Registry of Pathology, and UpToDate outside the

submitted work. Dr Hyman reported receiving

personal fees from Pfizer, CytomX Therapeutics,

Chugai Pharma, Genentech/Roche, and Boehringer

Ingelheim; grants and personal fees from

AstraZeneca and Bayer; and grants from Puma

Biotechnology outside the submitted work.

Dr Taylor reported receiving grants from Illumina

during the conduct of the study. Dr Berger reported

receiving grants from Illumina during the conduct

of the study and personal fees from Roche outside

the submitted work. No other disclosures were

reported.

Funding/Support: This work was funded in part by

Illumina; the Marie-Josée and Henry R. Kravis

Center for Molecular Oncology; Cycle for Survival;

National Cancer Institute awards P30-CA008748

and R01 CA204749 (Dr Taylor), and R01 CA227534

(Dr Berger); the American Cancer Society; Sontag

Foundation; Prostate Cancer Foundation, and the

Josie Robertson Foundation (Dr Taylor).

Role of the Funder/Sponsor: The funding

organizations had no role in the design and conduct

of the study; collection, management, analysis, and

interpretation of the data; preparation, review, or

approval of themanuscript; and decision to submit

themanuscript for publication.

Additional Contributions:Donavan Cheng, PhD,

SamNg, PhD, YumengWang, PhD (Illumina), and

members of the Berger and Taylor Laboratories

contributed to helpful discussions. We also

acknowledge themembers of theMolecular

Diagnostics Service in the Department of Pathology

of Memorial Sloan Kettering Cancer Center. There

was no financial compensation outside of salary.

REFERENCES

1. Hyman DM, Puzanov I, Subbiah V, et al.

Vemurafenib in Multiple Nonmelanoma Cancers

with BRAF V600mutations. N Engl J Med. 2015;373

(8):726-736. doi:10.1056/NEJMoa1502309

2. Varghese AM, Arora A, CapanuM, et al. Clinical

andmolecular characterization of patients with

cancer of unknown primary in themodern era. Ann

Oncol. 2017;28(12):3015-3021. doi:10.1093/annonc/

mdx545

3. Golub TR, Slonim DK, Tamayo P, et al. Molecular

classification of cancer: class discovery and class

prediction by gene expressionmonitoring. Science.

1999;286(5439):531-537. doi:10.1126/science.286.

5439.531

4. Greco FA, Spigel DR, Yardley DA, Erlander MG,

Ma XJ, Hainsworth JD. Molecular profiling in

unknown primary cancer: accuracy of tissue of

origin prediction.Oncologist. 2010;15(5):500-506.

doi:10.1634/theoncologist.2009-0328

5. Marquard AM, Birkbak NJ, Thomas CE, et al.

TumorTracer: a method to identify the tissue of

origin from the somatic mutations of a tumor

specimen. BMCMed Genomics. 2015;8:58. doi:10.

1186/s12920-015-0130-0

6. Moran S, Martínez-Cardús A, Sayols S, et al.

Epigenetic profiling to classify cancer of unknown

primary: a multicentre, retrospective analysis.

Lancet Oncol. 2016;17(10):1386-1395. doi:10.1016/

S1470-2045(16)30297-2

7. SohKP, SzczurekE, Sakoparnig T, BeerenwinkelN.

Predicting cancer type fromtumourDNAsignatures.

GenomeMed. 2017;9(1):104. doi:10.1186/s13073-017-

0493-2

8. Ferracin M, Pedriali M, Veronese A, et al.

MicroRNA profiling for the identification of cancers

with unknown primary tissue-of-origin. J Pathol.

2011;225(1):43-53. doi:10.1002/path.2915

9. Kang S, Li Q, Chen Q, et al. CancerLocator:

non-invasive cancer diagnosis and tissue-of-origin

prediction usingmethylation profiles of cell-free

DNA. Genome Biol. 2017;18(1):53. doi:10.1186/

s13059-017-1191-5

10. Hao X, Luo H, KrawczykM, et al. DNA

methylationmarkers for diagnosis and prognosis of

common cancers. Proc Natl Acad Sci U S A. 2017;114

(28):7414-7419. doi:10.1073/pnas.1703577114

11. Snyder MW, Kircher M, Hill AJ, Daza RM,

Shendure J. Cell-free DNA comprises an in vivo

nucleosome footprint that informs its

tissues-of-origin. Cell. 2016;164(1-2):57-68. doi:10.

1016/j.cell.2015.11.050

12. Chapman JS, Asthana S, Cade L, et al. Clinical

sequencing contributes to a BRCA-associated

cancer rediagnosis that guides an effective

therapeutic course. J Natl Compr Canc Netw. 2015;

13(7):835-845. doi:10.6004/jnccn.2015.0101

13. Zehir A, Benayed R, Shah RH, et al. Mutational

landscape of metastatic cancer revealed from

prospective clinical sequencing of 10,000 patients.

Nat Med. 2017;23(6):703-713. doi:10.1038/nm.4333

14. Cheng DT, Mitchell TN, Zehir A, et al. Memorial

Sloan Kettering–IntegratedMutation Profiling of

Actionable Cancer Targets (MSK-IMPACT):

a hybridization capture-based next-generation

sequencing clinical assay for solid tumor molecular

oncology. J Mol Diagn. 2015;17(3):251-264. doi:10.

1016/j.jmoldx.2014.12.006

15. Breiman L. Random forests.Mach Learn. 2001;

45:5-32. doi:10.1023/A:1010933404324

16. Bella A, Ferri C, Hernández-Orallo J,

Ramírez-QuintanaMJ. On the effect of calibration in

classifier combination. Appl Intell. 2013;38(4):

566-585. doi:10.1007/s10489-012-0388-2

17. ChangMT, Asthana S, Gao SP, et al. Identifying

recurrent mutations in cancer reveals widespread

lineage diversity andmutational specificity.Nat

Biotechnol. 2016;34(2):155-163. doi:10.1038/nbt.3391

18. Adalsteinsson VA, Ha G, Freeman SS, et al.

Scalable whole-exome sequencing of cell-free DNA

reveals high concordance with metastatic tumors.

Nat Commun. 2017;8(1):1324. doi:10.1038/s41467-

017-00965-y

19. Flaherty KT, Infante JR, Daud A, et al. Combined

BRAF andMEK inhibition in melanomawith BRAF

V600mutations. N Engl J Med. 2012;367(18):

1694-1703. doi:10.1056/NEJMoa1210093

20. Long GV, Stroyakovskiy D, Gogas H, et al.

Combined BRAF andMEK inhibition versus BRAF

inhibition alone in melanoma. N Engl J Med. 2014;

371(20):1877-1888. doi:10.1056/NEJMoa1406037

21. Pentsova EI, Shah RH, Tang J, et al. evaluating

cancer of the central nervous system through

next-generation sequencing of cerebrospinal fluid.

J Clin Oncol. 2016;34(20):2404-2415. doi:10.

1200/JCO.2016.66.6487

22. Al-Ahmadie HA, Iyer G, Lee BH, et al. Frequent

somatic CDH1 loss-of-functionmutations in

plasmacytoid variant bladder cancer. Nat Genet.

2016;48(4):356-358. doi:10.1038/ng.3503

23. Beltran H, Eng K, Mosquera JM, et al.

Whole-exome sequencing of metastatic cancer and

biomarkers of treatment response. JAMA Oncol.

2015;1(4):466-474. doi:10.1001/jamaoncol.2015.1313

24. Sholl LM, Do K, Shivdasani P, et al. Institutional

implementation of clinical tumor profiling on an

unselected cancer population. JCI Insight. 2016;1

(19):e87062. doi:10.1172/jci.insight.87062

25. Hirshfield KM, Tolkunov D, Zhong H, et al.

Clinical actionability of comprehensive genomic

profiling for management of rare or refractory

cancers.Oncologist. 2016;21(11):1315-1325. doi:10.

1634/theoncologist.2016-0049

26. Frampton GM, Fichtenholtz A, Otto GA, et al.

Development and validation of a clinical cancer

genomic profiling test based onmassively parallel

DNA sequencing. Nat Biotechnol. 2013;31(11):

1023-1031. doi:10.1038/nbt.2696

27. Roychowdhury S, Iyer MK, Robinson DR, et al.

Personalized oncology through integrative

high-throughput sequencing: a pilot study.

Sci Transl Med. 2011;3(111):111ra121. doi:10.1126/

scitranslmed.3003161

28. Singh RR, Patel KP, Routbort MJ, et al. Clinical

validation of a next-generation sequencing screen

for mutational hotspots in 46 cancer-related genes.

J Mol Diagn. 2013;15(5):607-622. doi:10.1016/j.

jmoldx.2013.05.003

29. Topol EJ. High-performancemedicine: the

convergence of human and artificial intelligence.

Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-

018-0300-7

30. Shortliffe EH, SepúlvedaMJ. Clinical decision

support in the era of artificial intelligence. JAMA.

2018;320(21):2199-2200. doi:10.1001/jama.2018.

17163

Development of Genome-Derived Tumor Type Prediction to Inform Clinical Cancer Care Original Investigation Research

jamaoncology.com (Reprinted) JAMAOncology January 2020 Volume 6, Number 1 91

© 2019 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://dx.doi.org/10.1056/NEJMoa1502309
https://dx.doi.org/10.1093/annonc/mdx545
https://dx.doi.org/10.1093/annonc/mdx545
https://dx.doi.org/10.1126/science.286.5439.531
https://dx.doi.org/10.1126/science.286.5439.531
https://dx.doi.org/10.1634/theoncologist.2009-0328
https://dx.doi.org/10.1186/s12920-015-0130-0
https://dx.doi.org/10.1186/s12920-015-0130-0
https://dx.doi.org/10.1016/S1470-2045(16)30297-2
https://dx.doi.org/10.1016/S1470-2045(16)30297-2
https://dx.doi.org/10.1186/s13073-017-0493-2
https://dx.doi.org/10.1186/s13073-017-0493-2
https://dx.doi.org/10.1002/path.2915
https://dx.doi.org/10.1186/s13059-017-1191-5
https://dx.doi.org/10.1186/s13059-017-1191-5
https://dx.doi.org/10.1073/pnas.1703577114
https://dx.doi.org/10.1016/j.cell.2015.11.050
https://dx.doi.org/10.1016/j.cell.2015.11.050
https://dx.doi.org/10.6004/jnccn.2015.0101
https://dx.doi.org/10.1038/nm.4333
https://dx.doi.org/10.1016/j.jmoldx.2014.12.006
https://dx.doi.org/10.1016/j.jmoldx.2014.12.006
https://dx.doi.org/10.1023/A:1010933404324
https://dx.doi.org/10.1007/s10489-012-0388-2
https://dx.doi.org/10.1038/nbt.3391
https://dx.doi.org/10.1038/s41467-017-00965-y
https://dx.doi.org/10.1038/s41467-017-00965-y
https://dx.doi.org/10.1056/NEJMoa1210093
https://dx.doi.org/10.1056/NEJMoa1406037
https://dx.doi.org/10.1200/JCO.2016.66.6487
https://dx.doi.org/10.1200/JCO.2016.66.6487
https://dx.doi.org/10.1038/ng.3503
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamaoncol.2015.1313?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985
https://dx.doi.org/10.1172/jci.insight.87062
https://dx.doi.org/10.1634/theoncologist.2016-0049
https://dx.doi.org/10.1634/theoncologist.2016-0049
https://dx.doi.org/10.1038/nbt.2696
https://dx.doi.org/10.1126/scitranslmed.3003161
https://dx.doi.org/10.1126/scitranslmed.3003161
https://dx.doi.org/10.1016/j.jmoldx.2013.05.003
https://dx.doi.org/10.1016/j.jmoldx.2013.05.003
https://dx.doi.org/10.1038/s41591-018-0300-7
https://dx.doi.org/10.1038/s41591-018-0300-7
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2018.17163?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jama.2018.17163?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985
http://www.jamaoncology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaoncol.2019.3985

