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Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in
the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and
weather big data as explanatory variables. *e model was developed by applying machine learning techniques such as decision
trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of eachmodel, the AUC value of
the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final
model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each ad-
ministrative region, we can greatly reduce the damage through proactive disaster management.

1. Introduction

*e occurrence of natural disasters such as floods, tsunamis,
and earthquakes is increasing due to the climate change.
Also, the damage is becoming larger and larger due to the
rapid urbanization over the world. In South Korea, about
65% of all damage is due to heavy rain, and thus there is
a pressing need for countermeasures [1]. If the scale and
impact of such damage is estimated quickly in advance, this
makes disaster management more possible at the preventive
and preparatory stages, and this would help to avoid large-
scale damage due to heavy rain like that which occurred in
Hongcheon and Cheongju in the summer of 2017. In par-
ticular, if there is rapid predisaster forecasting of expected
damage by the administrative division for the regions that
will be affected, this can be of great help to policymakers in
setting up and implementing disaster prevention measures.
Moreover, it will be possible to establish a voluntary disaster
management system in which citizens themselves can pre-
pare for disasters and expected damage by receiving fore-
casts about them.

Previous studies that were used in predicting and pre-
paring for natural disaster damage in advance mostly per-
formed linear regression analysis using weather factors such
as precipitation, rainfall intensity, maximum wind speed, and
hurricane central pressure that cause natural disasters and
damage through floods, rainstorms, and hurricanes [2–11].
*ese studies analyzed the relationship between weather
factors and damage extent through regression analysis, and
they used the constructed regression models to attempt to
predict the extent of damage through weather factors alone.
However, it proved difficult for most of these models to
predict the actual extent of damage adequately. In order to
overcome the shortcomings of such studies, others have taken
into account socioeconomic factors such as per capita income,
population density, and imperviousness of an area in addition
to weather factors that directly give rise to natural disasters
[12–16]. Although the inclusion of socioeconomic factors
besides weather factors led to some improvement in the
prediction performance of these linear regression models, the
nonlinear character of disasters and their damage scale
present problems that cannot be solved by them. More
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recently, rapid advances in computing technology and data
processing speed have led to the emergence of studies that
apply big data and machine learning to disaster management
[17, 18]. *e predominant approach in all these studies is to
use just a handful of explanatory variables in a regression
model to estimate the damage scale of disasters. In regard to
disaster management research in Korea, there is in particular
a dearth of studies that use machine learning, which is known
to be able to maximize the prediction performance of models,
and big data, which produce valuable information through
various data that could not previously be taken into account.

Accordingly, the present study relies on the meteoro-
logical big data provided by the Korea Meteorological Ad-
ministration to arrive at a list of various explanatory variables
that account for the occurrence of heavy rain damage and uses
machine learning—known to have higher prediction per-
formance than regression models—to develop functions that
can predict heavy rain damage in advance. For this purpose,
we constructed a response variable and explanatory variables
for the study area of our study and used various machine
learning models such as decision trees, bagging, random
forests, and boosting to develop prediction models for heavy
rain damage based on big data. We used two algorithms in
developing the prediction functions, namely, Algorithm 1 that
uses same-day weather observation data to make predictions
and Algorithm 2 that uses past weather observation to do so.
Models were constructed on this basis, and we thereby de-
veloped a prediction model for heavy rain damage that can be
used immediately in actual practice.

2. Theoretical Background

2.1. Machine Learning. Machine learning is a field con-
cerned with deriving new knowledge by feeding the requisite
data to a computer and making it learn from them like
a human being studying a new subject area. For example,
suppose that there is a set of pairs (x, y) with the data (1, 7),
(2, 14), (3, 21), and (5, 35) already given as members of the
set. Even if a computer does not know the function for y,
machine learning can be used to make it provide, say, the y
values for (7, ?) or (10, ?) after the data are entered and the
computer learns from them. *at is, the computer will give
the answers even without directly programing it with the
function y� 7x. In machine learning, there are two main
types of learningmethod. Onemethod is supervised learning
that is used to infer the function for y, and the other is
unsupervised learning that is used to determine how the data
for x values are distributed. *e present study uses decision
tree learning, which is a representative technique in machine
learning, along with ensemble methods based on decision
tree models such as bagging, random forests, and boosting,
in order to develop a prediction model for heavy rain
damage. All the methods used here are supervised learning
techniques, which use their own algorithms to generate rules
that best explain the response variables.

2.2. Decision Tree Models. Decision tree models can be used
in both classification and regression, and they express results

in the form of tree-shaped graphs. A decision tree finds rules
that best explain values of a response variable by recursively
partitioning the space of each explanatory variable. If the
entire domain of explanatory variables is partitioned intoM
number of domains R1, . . . , RM on the basis of the cri-
terion minimizing the classification error rate, then the Gini
index G and cross-entropy E are mainly used as related
criteria to determine this, as shown in (1):

G � ∑
M

m�1

pmk 1−pmk( ),

E � −∑
M

m�1

pmk · log pmk( ).

(1)

In (1), pmk indicates the proportion of the data in themth
partition that belongs to class k of the response variable. *e
response variable in this study has two classes, 1 and 0, and
thus k has the values 1 and 0. A decision tree grows through
top-down partitioning. After the first split of the domain of
explanatory variables into partitions that minimize the in-
dices given in (1), the resulting partitions are again split into
further partitions that minimize the same indices. *is goes
on until the degree of minimization becomes very minute, or
when a prespecified stopping condition is met. For a de-
cision tree that has stopped growing, pruning is automati-
cally performed to prevent overfitting.

In general, a decision tree can have lower prediction
performance than other prediction models, but it has the
advantage of being relatively easy to interpret. However, if
decision trees are actively used in the ensemble techniques
described below, this will not only compensate for the
weaker prediction performance of a single decision tree, but
it can even exhibit equal or greater prediction performance
than other complex models. Figure 1 shows a schematic of
the decision tree concept.

2.3. Ensemble Methods. An ensemble method constructs
multiple prediction models for a given dataset and then
combines these models into a final prediction model. *e
first ensemble algorithm to be proposed was Breiman’s [19]
bagging, based on the bootstrap method, followed later by
boosting based on Freund and Schapire’s [20] AdaBoost
algorithm. *ere is also the random forest algorithm pro-
posed by Breiman [21]. Various other ensemble methods
have been developed since then, but bagging, boosting, and
random forests are the most popular ensemble methods that
remain widely in use, and many studies have established that
these methods can maximize the prediction performance of
models.

Bagging, boosting, and random forests mainly use a single
model repeatedly to aggregate the results. *e model used is
usually the decision tree model explained above. Since de-
cision trees can be applied to classification as well as re-
gression problems, ensemble methods that use decision trees
can also be applied to both kinds of problems. While a single
decision tree divides the space of explanatory variables into
discrete partitions, ensembles using decision trees as base
models average or vote over several differently partitioned
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decision trees. �us, ensembles have the advantage of nat-
urally learning nonlinear effects in addition to linear effects.

2.3.1. Bagging. Bagging generates multiple bootstrap data
from the original dataset, constructs a prediction model in
a uniform way for each bootstrap data, and combines the
models to arrive at the final model. Here, the term “bootstrap
data” refers to a dataset obtained by random sampling with
a replacement that has the same size as the original dataset.
More formally, let us refer to the original dataset as
D � (X, Y), and B number of bootstrap datasets as D(b) �

(X(b), Y(b)), b � 1, . . . , B. �en, for each bootstrap
dataset D(b) � (X(b), Y(b)), we construct model f(b)(x).
�is yields B number of prediction models whose results in
regard to a classification problem can be combined, as
shown in the following equation:

f(x) � argmaxk ∑
B

b�1

I f(b)(x) � k( ) . (2)

Equation (2) involves voting on the results of the B
number of prediction models. �is indicates that if the
majority of these models predict class k for a response
variable, then class k will be decided as the final prediction
result. Figure 2 shows a schematic of the bagging concept.

2.3.2. Random Forests. Random forests use almost the same
algorithm as bagging, but they differ from the latter in
adding random sampling of explanatory variables in the
process of generating bootstrap data. In the case of bagging,
the models it generates could depend on just a few ex-
planatory variables that are strong predictors, and conse-
quently the predicted values of models in bagging can
become highly correlated with one another, thus posing the
risk of leading to higher prediction variance than a single
model. However, a random forest has the effect of reducing
such prediction variance in bagging by solving the problem
through the random sampling of explanatory variables. Just
like bagging, a random forest also constructs the model
f(b)(x) for each of the B number of bootstrap datasets and
then generates the final model in the same way as (2) given in
Section 2.3.1. Figure 3 shows a schematic of the random
forest concept.

2.3.3. Boosting. Boosting is similar to bagging and random
forest in generating multiple single models and aggregating
their results but differs from them in updating the weights of
the observations at each iteration while continuously using
the same original dataset. More formally, at the first stage,
model f(1)(x) is fitted using the dataset D � (X, Y) and
weight assignment W(1) � (w(1)1 , w(1)2 , . . . , w(1)n ), where
the weights are adjusted to sum up to 1. �en, the
predicted results of model f(1)(x) are compared to the
actual values of y, and the weights of well-classified ob-
servations are reduced while those of misclassified obser-
vations are increased to obtain the updated weight
assignment W(2) � (w(1)1 , w(2)2 , . . . , w(2)n ). At the second
stage, model f(2)(x) is fitted using the dataset D � (X, Y)
and weight assignment W(2) � (w(1)1 , w(2)2 , . . . , w(2)n ). In
this manner, B number of prediction models are constructed,
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and the final model is generated in the same way as (2) given
in Section 2.3.1. Figure 4 shows a schematic of the boosting
concept.

2.4. Undersampling. �e response variable Y used in this
study is a binary categorical variable that has two possible
values, 1 and 0. A value of 1 means the occurrence of heavy
rain damage, and a value of 0 means no damage. However,
there is a problem in that the ratio between the two classes is
highly asymmetrical. �at is, the data are unbalanced, class 1
being sparse and class 0 being major. �ere are research
results indicating that an unbalanced class ratio involving
a response variable is detrimental to the performance of
classification models [22]. For instance, if the proportion of
0 is 90%, then a model that predicts 0 in all cases might look
like a good prediction model because it has an accuracy of
90%, but actually this is a model that has no prediction
performance regarding 1. Various sampling techniques have
been proposed to improve the performance of binary
classification models in regard to such unbalanced data.
Among these, the present study uses the undersampling
method to develop its models. Undersampling is a method of
removing imbalance in the original data by adjusting the size
of the major class sample through random sampling to
match the size of the minor class. In other words, it involves
reducing the number of cases in the 0 class to that of the 1
class so as to convert the unbalanced data to a balanced one.
We judged this to be an appropriate strategy to use, given the
considerably large size of the data used in this study and
the appreciable amount of time required for trial and error in
the process of analysis. Figure 5 shows a schematic of the
undersampling concept.

2.5. Model Development Process. When developing the
prediction model, we constructed it by first distinguishing
between training data and test data. After that, a model was
constructed using only the training data and then applied to
the test data that were not used in the model’s training to
evaluate its prediction performance objectively. If this
evaluation determined that the model can be used in pre-
diction, then both the training data and the test data could be
used to update the prediction model. �is updated model
can yield predictions for the response variable in relation to
new sets of explanatory variables in the future.

In this study, the model was developed by reducing the
size of the data through undersampling in its training stage
and then applied to the test data to evaluate its prediction
performance. �us, it was necessary to follow this process of
training and evaluation in training a model to find the
optimum value for some specific tuning parameter of the
model. �erefore, in this study, we implemented the 10-fold
cross-validation method, wherein a model was fitted to the
data refined through undersampling and then applied to the
validation data to test its prediction performance in regard to
a specific tuning parameter, with this process of validation
repeated ten times.

In order to implement the 10-fold cross validation, the
training data were first partitioned into ten nonoverlapping
subsamples of equal size. In the first stage, nine training
subsamples were refined into balanced data through
undersampling, and the model was fitted to the refined data
using specific tuning parameter values. �en, the fitted
model was applied to the remaining validation subsample to
compute the predicted probable values for the occurrence of
heavy rain damage (1), which were then compared to some
specific probability cutoff values to determine the occur-
rence or nonoccurrence of heavy rain damage. Sensitivity
and specificity were calculated in this process. At this point,
by plotting sensitivity against (1− specificity) for all possible
probability cutoff values ranging from 0 to 1, we obtained
a two-dimensional curve called the receiver-operating
characteristic (ROC) curve, with the area under this curve
being called the area under the curve (AUC).

�e AUC value provides the criterion of validation. �e
AUC of a model can take on values from 0.5 to 1, and when
its value approaches 1, the model may be judged as having
superior prediction performance. AUC is widely used as
a representative metric in performance comparisons because
it can compare the relative prediction performance of binary
classification models regardless of the probability cutoff
values used in them. Moreover, by referring to the ROC
curve in the validation process, the probability cutoff value
that maximizes the sum of sensitivity and (1− specificity)
can be used in the developed model to classify 1 and 0 in its
future predictions.

�e abovementioned process was repeated ten times,
and the tuning parameter values corresponding to the
highest of the ten validated average AUC values were se-
lected as optimum tuning parameter values. �e whole
training process was then concluded by refining the entire
set of training data through undersampling and fitting the
model to the data using the optimum tuning parameter
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values. Subsequently, the trained model was applied to the
test data in order to evaluate its prediction performance in
actual future circumstances. Figure 6 shows a conceptuali-
zation of the 10-fold cross-validation process, and Figure 7
shows a conceptual diagram of the ROC curve and the AUC.

3. Methodology

In order to develop our prediction model for heavy rain
damage using machine learning based on big data, we se-
lected the Seoul Capital Area as the study area and con-
structed response and explanatory variables from the data on
heavy rain damage amounts given in the Annual Natural
Disaster Report and the meteorological big data collected
from the Korea Meteorological Administration’s Open
Weather Data Portal (https://data.kma.go.kr).

3.1. Selection of the Study Area. For the purpose of con-
structing the prediction model for heavy rain damage, our
desired study area was the one that has a high incidence of
heavy rain damage. We collected and analyzed the heavy
rain damage data from 1994 to 2015 based on the ten re-
gional divisions used in weather forecasts by the Korea
Meteorological Administration. As shown in Table 1 and
Figure 8, the Seoul Capital Area (i.e., Seoul, Incheon, and
Gyeonggido) had the highest incidence of heavy rain
damage, and this was chosen as the area in our study.

3.2. Constitution of the Response Variable. In order to
construct the response variable of our prediction model for
heavy rain damage, we collected data on heavy rain damage
from 1994 to 2015 from the Annual Disaster Report pro-
vided by the Ministry of Interior and Safety (MOIS) in
Korea. Data on the extent of heavy rain damage were col-
lected by administrative region and disaster period, and they

were converted into “1” on the days when heavy rain damage
occurred and into “0” otherwise. �us, response variable
values of the prediction model for heavy rain damage are in
the form of binary data from 1994 to 2015, and since they are
drawn from daily data across a 22-year period from 66
administrative areas, they constitute a total of around
500,000 data points.

3.3. Constitution of Explanatory Variables. �e Korea Me-
teorological Administration collects large amounts of
weather observation data every day from various sources
such as the sky, the sea, and on the ground and produces
high volumes of prediction data using over ten numerical
weather forecast models. Its weather and climate data satisfy
all of the four major characteristics of big data, namely, size,
diversity, speed, and value, and it makes this meteorological
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big data available for free at the Open Weather Data Portal
(https://data.kma.go.kr). Accordingly, we used the Auto-
mated Synoptic Observing System’s (ASOS) daily weather
observation data from 1994 to 2015 available at the Open
Weather Data Portal, along with data on regional charac-
teristics as the explanatory variables (29 in total) of our
prediction model for heavy rain damage. In particular, we
used a total of 27 variables from the ASOS weather ob-
servation data, excluding variables that are not related to
heavy rain damage, such as daily maximum fresh snow
depth and daily maximum fresh snow depth time. Table 2
shows the list of explanatory variables used in this study.

3.4. Matching of Response Variable and Explanatory Variable
Data. Since the ASOS weather observations used as ex-
planatory variable data are values measured at different
observatories, they need to be matched one to one with
response variable data collected from cities, counties, and
districts. For this purpose, we determined the boundaries of
each administrative region (cities, counties, and districts),
the locations of ASOS observatories, and the �iessen areas,
as shown in Figure 9. Ideally, there should just be one set of
weather observation values for any one administrative di-
vision at a given period of time, but we found that there were

several sets of weather observation values with the same
properties for the same administrative region measured at
different adjacent observatories. �e �iessen polygon
method—used to obtain precipitation in catchment areas by
treating the area close to an observation point as weighted
(�iessen area)—is used in the field of water resources to
calculate areal precipitation, and the same methodology was
used in this study. Accordingly, the observations measured
for the same administrative region by different adjacent
observatories were combined as a weighted average that
takes into account the �iessen area ratio. �at is, obser-
vation values with the same properties for a given day were
combined as a weighted average that takes into account the
�iessen area ratio. We processed the ASOS weather ob-
servation data in this way for all the cities, counties, and
districts. Also, if there are missing values in the data mea-
sured by some observatories, it is not easy to modify such
observation data arbitrarily, nor is it easy to verify the
modified data. �erefore, in such cases, we only considered
the weights (�iessen area ratio) for data from observatories
without missing values, readjusting their values to sum up to
1 before calculating the weighted average. However, if the
data from all observatories had missing values, then we
treated the corresponding sample (row of observations) as
missing since the weighted average could not be obtained in
such cases. A total of 530,317 samples were obtained by
matching the response variable data with the explanatory
variable data. Among these, there were 1,796 samples with
missing values, but we found that none of them had a re-
sponse variable value of 1 (occurrence of heavy rain dam-
age). Since samples that have missing data from all
observatories ended up being deleted in the process of
constructing the prediction model, we removed the samples
with missing data in order to facilitate the analysis and used
a total of 528,521 samples for the analysis.

3.5. Types of Data. �e types of data used in the analysis are
shown in Table 3. �e response variable has only two values,
1 (occurrence of heavy rain damage) and 0 (no heavy rain
damage), and there were a total of 6,651 cases with value 1,
corresponding to about 1.3% of the total number of cases.

First, for the purpose of developing the model, we used
data from 1994 to 2011 as training data and data from 2012
to 2015 as test data. We have selected data from the year 2012
as the test data since there were many occurrences of heavy
rain damage that year, thus allowing us to impose a stricter
test of the prediction performance of models. �e ratios
between values 0 and 1 for the training data and the test data
are shown in Table 4.

As shown in Table 4, there is a great imbalance in the
ratios between values 1 and 0 for both the training and the
test data. As explained in Section 2.5, the model is developed
using the training data, and then its prediction performance
is evaluated in terms of the AUC value using the test data.

3.6. Definition of Prediction Models. �e kinds of data used
in this study are the daily data on whether there was heavy
rain damage and the corresponding weather observation

Table 1: Incidence of heavy rain damage.

Division Incidence of damage

Seoul Capital Area (Seoul, Incheon,
and Gyeonggido)

1,044

Gangwondo (Yeongseo) 193
Gangwondo (Yeongdong) 66
Chungcheongbukdo 210
Daejeon, Sejong, and Chungcheongnamdo 345
Jeollabukdo 250
Gwangju and Jeollanamdo 461
Daegu and Gyeongsangbukdo 343
Busan, Ulsan, and Gyeongsangnamdo 428
Jeju 34
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Figure 8: Incidence of heavy rain damage.
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data. *e algorithms for developing a model from these data
can be sorted into two kinds according to the kind of weather
observation data they use. First, let us stipulate that the
algorithm using the weather observation data on a given day
to predict heavy rain damage on that same day is Algorithm
1. Let the actual occurrence or nonoccurrence of heavy rain
damage on a given day be yt, let that same day’s weather
observation data be the vector xt � (x1t, x2t, . . . , xpt), and
let the predicted occurrence or nonoccurrence of heavy rain
damage for the same day, computed by entering that day’s
weather observation data into model f(·), be ŷt. *en,
Algorithm 1 can be expressed as

ŷt � f xt( ). (3)

Using weather observation data on a given day to predict
whether or not there will be heavy rain damage that day is
the ideal case of prediction, and it is expected to have a high
prediction performance. However, even if the prediction
performance of the model based on Algorithm 1 is evaluated
highly, it will be almost impossible in practice to use weather
observation data on a given day in the same-day forecasting
of heavy rain damage due to the physical time difference.*e
practical problem is that the weather observation data to be
used in the same-day prediction cannot be observed because
it lies in the future from the standpoint of analysis. To

overcome this problem, we can consider using weather
prediction data that predict the weather for the target area,
but the weather forecast data being provided in Korea are
very limited in number and are known to have very high
uncertainty. Figure 10 conceptualizes Algorithm 1, the ideal
kind of prediction model.

*erefore, we need another algorithm that is more re-
alistic and whose prediction performance is not much lower
than that of Algorithm 1. For this purpose, the present study
also considered Algorithm 2, which can be used to develop
a model that uses past observation data (from one to k days

Table 2: List of explanatory variables.

Category Variables

Temperatures
Average temperature (°C)
Minimum temperature (°C)
Maximum temperature (°C)

Precipitation

Precipitation duration (hr)
10-minute maximum precipitation (mm)
1-hour maximum precipitation (mm)

Daily precipitation (mm)

Humidity

Average dew point temperature (°C)
Minimum relative humidity (%)
Average relative humidity (%)
Average vapor pressure (hPa)

Insolation and
insolation duration

Possible duration of sunshine (hr)
Duration of sunshine (hr)

Fog Fog duration time (hr)

Evaporation
Large evaporation (mm)
Small evaporation (mm)
9-9 precipitation (mm)

Wind

Maximum instantaneous wind speed (m/s)
Maximum wind speed (m/s)
Average wind speed (m/s)

Wind match (100m)

Atmospheric
pressure

Average local pressure (hPa)
Maximum sea-level pressure (hPa)
Minimum sea-level pressure (hPa)
Average sea-level pressure (hPa)

Cloud
Average total cloud amount (1/10)

Average middle and lower layers cloud
amount (1/10)

Regional
characteristics

Administrative area (km2)
Area classification category variable

0 25 50 100 150 200
(km)

ASOS in the metropolitan area

Thiessen area of the metropolitan area

Thiessen area of the total area

Figure 9: Administrative boundary and ASOS location.

Table 3: Types of data for analysis.

Division Explanation Period Remarks

Response
variable

Whether heavy rain
damage occurred

1994–2015

Binary data
of 1 and 0
1: 6,651

0: 521,870

Explanatory
variables

Weather observation
data

1994–2015
Continuous

data

Table 4: Types of training data and test data.

Division 0 (no damage) 1 (heavy rain damage)

Training data 426,654 (98.62%) 5,987 (1.38%)
Test data 95,216 (99.30%) 664 (0.70%)

Advances in Meteorology 7



ago) to predict heavy rain damage on a given day, and this
algorithm can be expressed as

ŷt � f xt−1, xt−2, xt−3, . . . , xt−k( ). (4)

*e reason for developing the prediction model using
Algorithm 2 is that past weather observation data are rel-
atively highly reliable and offer a rich variety of usable data.
*erefore, if we develop a prediction model based on Al-
gorithm 2 that has almost the same prediction performance
as a model based on Algorithm 1, then Algorithm 2 can be
a good alternative to Algorithm 1. In the process of de-
veloping such a model, we also performed an analysis on
howmany days ago we have to look back to in the use of past
weather observation data for optimal prediction perfor-
mance. Figure 11 conceptualizes Algorithm 2 as a realistic
kind of prediction model.

4. Results and Discussion

We developed the prediction model for heavy rain damage
based on big data by constructing machine learning models
for each of the two algorithms. *e prediction performance
of the models was evaluated by computing the AUC value
for each algorithm and model, and the final model was
selected on this basis. We checked whether this final model’s
AUC value is maintained at a constant level by examining
the variability in results that can occur during the sampling
process.

4.1. Development of Prediction Models for Heavy Rain
Damage. *e models based on decision tree learning and
related ensemble techniques such as bagging, random for-
ests, and boosting were trained on the training data. *e
models used in the training all had their own tuning pa-
rameters. *e optimum tuning parameter values that must
be trained for each model are as follows: decision trees must
have optimal depth for pruning, random forests must have
an optimal number of explanatory variables, and boosting
must have optimal depth and learning rate. In order to
develop a model with high prediction performance, there
needs to be appropriate training in these tuning parameters,
and the 10-fold cross-validation method described in Sec-
tions 2.2 through 2.5 was used to train the optimum tuning
parameter values. Next, the model was fitted to the entire
training dataset using the optimum tuning parameter values
and then applied to the test data to evaluate its prediction
performance.

4.2. Evaluation of Prediction Performance. In order to
evaluate the prediction performance of a model in regard to
the binary data of 1 (occurrence of heavy rain damage) and

0 (no heavy rain damage), the model developed using the
training data was applied to the test data to compute its AUC
value. *e model’s AUC value in regard to the test data
affords an evaluation of the model’s prediction performance
in relation to actual future situations and provides a measure
for comparing the real-world performance of different
models.

In this study, we developed prediction models based on
Algorithm 1 and Algorithm 2, and each of these models was
applied to the test data to compute its AUC value. Now, if the
AUC value of an Algorithm 2 model is equal to that of an
Algorithm 1 model, then it is possible to conclude that the
Algorithm 2 methodology proposed in this study can be
used in the development of an actual prediction model.
Figure 12 is a conceptualization of the process of comparing
the two kinds of models through evaluation of their pre-
diction performance.

4.3. Selection of the Final Model through Evaluation of Pre-
diction Performance. *e decision tree, bagging, random
forest, and boosting models based on Algorithm 1 and
Algorithm 2 were trained on the training data using 10-fold
cross validation. *en, the trained models were applied to
the test data to yield their AUC values, as shown in Table 5.

On the whole, it can be seen that the prediction models
based on Algorithm 1 that predict heavy rain damage using
same-day weather data have high AUC values. However, as
described in Section 3.6, Algorithm 1 is not usable in
practice. Consequently, we need to find a model based on
Algorithm 2 with an AUC value closest to that of the Al-
gorithm 1 models. Among the evaluations of the prediction
performance of Algorithm 2 models, it was shown that the
boosting model fitted to weather observation data of 1 to 4
days ago has the highest AUC value (95.867%). In the case of
the random forest model based on Algorithm 2, it is sus-
pected that the model is overfitting the training data because
its AUC value gets lower as it uses more past data, and it is
shown in all the cases that the random forest model has
a lower prediction performance than the boosting model.
*erefore, the present study selected the boosting model
fitted to weather observation data of 1 to 4 days ago as the
final prediction model. Although it does not have as high an

Whether damage
occurred on

that day

Weather
observation data

on a given day

Figure 10: Algorithm 1 concept.
Whether the

damage occurred
on that day

Weather
observation data

of 1 day ago

Weather
observation data
of 1-2 days ago

Weather
observation data
of 1–k days ago

Figure 11: Algorithm 2 concept.
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AUC value as those of the Algorithm 1 models, it can replace
thesemodels in the sense that, generally speaking, anAUCvalue
above 95% guarantees the prediction performance of a model.

4.4. Validation of Undersampling. In this study, models are
developed by reducing the size of the data through
undersampling during the training process, and then they
are applied to the test data to evaluate their prediction
performance. Since there is the possibility that a model with
high prediction performance may have been developed by
chance during the sampling process, the prediction per-
formance of the final model was evaluated several times in
order to examine the variability of results that could occur
during the sampling process and to check whether the
model’s AUC value is maintained at a constant level. For this
purpose, we trained the final model that is, the boosting
model fitted to weather observation data of 1 to 4 days ago,
20 times in the same way. Since random undersampling is

applied during the learning process, the 20 resulting models
will differ in their prediction performance. It is possible to
determine whether the prediction performance is main-
tained at a constant level by using the test data on the 20
models to compute their AUC values. As shown in Table 6,
the mean AUC value was 95.55%, and the standard deviation
was 0.25%, thus indicating that there was not much vari-
ability. �erefore, although the final model in this study was
developed not by using the entire training dataset but
through undersampling, we may conclude that it is a su-
perior model with a high prediction performance that is
guaranteed.

4.5. Summary. �e main results of this study can be sum-
marized as follows:

(1) To develop our prediction model for heavy rain
damage using machine learning based on big data,

Ideal model

Algorithm 1

Algorithm 2

�at day
weather

observation
data

AUC

AUC

Best model

Test data

AUC

Decision tree

Bagging

Random forest

AUCBoosting

AUC

AUC

AUC

Decision tree

BaggingWeather
observation data

of 1 day ago Random forest

AUCBoosting

Weather
observation data
of 1-2 days ago

AUC

AUC

AUC

Decision tree

Bagging

Random forest

AUCBoosting

Weather
observation data
of 1–k days ago

AUC

AUC

AUC

Decision tree

Bagging

Random forest

AUCBoosting

Determining
whether

it can be replaced

Figure 12: Predictive evaluation concept.

Table 5: Evaluation of prediction performance by model.

Division Time Decision tree (%) Bagging (%) Random forest (%) Boosting (%)

Algorithm 1 �at day 94.072 96.371 96.518 96.345

Algorithm 2

1 day ago 90.923 95.048 95.028 95.408
1-2 days ago 90.914 94.775 94.971 95.646
1–3 days ago 90.357 94.420 94.698 95.516
1–4 days ago 90.438 94.632 94.666 95.867

1–5 days ago 90.154 94.678 94.445 95.772
1–6 days ago 90.120 94.233 94.244 95.511
1–7 days ago 90.719 92.915 93.117 94.914
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we selected the Seoul Capital Area as the study area
and constructed the response and explanatory var-
iables by collecting relevant data from the Annual
Natural Disaster Report provided by the Ministry of
the Interior and Safety and the meteorological big
data provided at the Open Weather Data Portal.

(2) Two algorithms were derived, namely, Algorithm 1
that predicts heavy rain damage on a given day using
same-day weather observation data and Algorithm 2
that predicts heavy rain damage on a given day using
past weather observation data. Each of these algo-
rithms was used in machine learning (decision tree,
bagging, random forest, and boosting) to develop
a prediction model for heavy rain damage.

(3) Evaluation of the prediction performance of each
algorithm and model showed that most of these
models have high prediction performance with AUC
values greater than 90%. Algorithm 1 models had the
highest AUC values, but they were not significantly
different from the AUC values of Algorithm 2
models.

(4) *erefore, it was determined that Algorithm 2 can
substitute for Algorithm 1, and the boosting model
using past weather data from one to four days ago,
which had the highest prediction performance
among Algorithm 2 models, was selected as the final
model.

(5) *e final model maintained its average AUC value of
95.55% at a constant level in a test of its variability in
repeated sampling, and thus it was deemed to be
a superior model with guaranteed prediction
performance.

5. Conclusion

We developed a model for the prediction of heavy rain
damage based on the big data provided by the Korea Me-
teorological Administration and machine learning that can
maximize the prediction performance of the model, and the
model could be used in implementing a proactive disaster
management system. However, this study has some limi-
tations on the number of damage data and the use of hy-
drometeorological data. We used heavy rain damage data of
22 years from 1994 to 2015, which were provided in Annual
Natural Disaster Report published by the Korean govern-
ment, as the dependent variables of the model. Actually,
there are more damage data but the reliable data were used
in this study. *erefore, if we have more data, we can get
better prediction performance of the model. Also this study
just used hydrometeorological data such as temperature,
precipitation, humidity, and so on as the independent

variables of the model. *erefore, we may need more data
which are related to disaster prevention projects, disaster
recovery budget, and socioeconomic factors such as in-
creasing ratio of impervious area, per capita income, and
ratio of vulnerable populations of local governments. Taking
into account such damage-related factors in addition to
hydrometeorological factors will make it possible to develop
a more reliable prediction model for heavy rain damage.

Previous studies have mostly considered just one to three
independent or explanatory variables and have used only
linear methods such as linear regression analysis. *e
present study, however, applies the technique of machine
learning along with big data for development of heavy rain
damage model, and we believe that the results of this study
represent a tangible advance in this area. *e prediction
model for heavy rain damage presented in this study can be
utilized to provide a heavy rain damage prediction service
without much additional cost and the occurrence probability
of heavy rain damage for each administrative region or local
governments.

*e proposed service comprises three main stages. First,
it collects weather observation data of one to four days
before predicting heavy rain damage occurrence. *en, the
collected data are entered into the prediction model de-
veloped for heavy rain damage prediction. In the final stage,
the prediction is made for local governments. Say, if the
developed model predicts the heavy rain damage occurrence
in a city, county, or district, then the specified region will be
able to take preparation for disaster and disaster manage-
ment measures in advance (inspection of vulnerable areas
and facilities, placement of emergency personnel, an-
nouncement of emergency evacuation instructions, and so
on), thus resulting in a significant reduction of heavy rain
damage.
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