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A high-resolution, total variation diminishing (TVD) stable scheme is derived for scalar hyperbolic problems using the method
of �ux limiters. �e scheme was constructed by combining the 1st-order upwind scheme and the 3rd-order quadratic upstream
interpolation scheme (QUICK) using new �ux limiter function. �e new �ux limiter function was established by imposing several
conditions to ensure the TVD properties of the scheme. For temporal discretization, the theta method was used, and values for
the parameter � were chosen such that the scheme is unconditionally stable. Numerical results are presented for one-dimensional
pure advection problems with smooth and discontinuous initial conditions and are compared to those of other known numerical
schemes. �e results show that the proposed numerical method is stable and of higher order than other common schemes.

1. Introduction

Development of stable numerical schemes for modeling
hyperbolic equations has been a crucial topic for decades of
research in the area of computational analysis and simulation.
�is 
eld of study poses several challenging di�culties. One
of the main di�culties is the formation of di�erent types
of discontinuities in the solution. For nonlinear equations
discontinuities can appear even for smooth initial condi-
tions. Di�erent numerical schemes were developed, which
exhibit di�erent stability and accuracy problems near these
discontinuities. First-order schemes, for example, are known
to be stable near discontinuities, but they pose an accuracy
problem due to the large numerical dissipations. On the
other hand, higher order linear schemes are less dissipative
but they are known to exhibit nonphysical oscillations near
discontinuities. �is will be discussed further in Section 2 of
this paper. A general form of a scalar conservation law in one
dimension is given by

���� +
�� (�)
�	 = 0. (1)

Equation (1) represents a hyperbolic problem, with a char-
acteristic speed of ��(�) = ��/��. �is speed represents
the propagation speed of information. �e solution of this
problem is constant along the characteristic curves 	 = 	0 +(��/��)�. For nonlinear problems, the slopes ��/�� (being
dependent on the solution) will not be the same for di�erent
characteristic curves, which implies either an intersection or
divergence in the 	-� plane. �e possibility of intersection
means multiple values of the solution at some points and
discontinuities are most likely to appear even for smooth
initial conditions. In this context it is a necessity to solve
hyperbolic problems using a numerical scheme capable of
handling discontinuities.

Di�erent approaches have been adapted to capture dis-
continuous solutions, one of which is adding an arti
cial vis-
cosity term to the scheme. �e addition of arti
cial viscosity
can be achieved either by explicitly adding additional terms
or implicitly within the numerical scheme used, such as 1st-
order schemes (also calledmonotone schemes; see Section 2).
Other approaches consider adaptive schemes depending on
the smoothness of the solution. One way to achieve an
adaptive scheme is by considering monotone schemes only

Hindawi Publishing Corporation
Journal of Computational Engineering
Volume 2015, Article ID 575380, 10 pages
http://dx.doi.org/10.1155/2015/575380



2 Journal of Computational Engineering

at the regions of discontinuities and higher order schemes
elsewhere. Examples on this approach are the works done
by Harten [1], Sweby [2] and Kadalbajoo and Kumar [3].
Other examples of adaptive schemes are the ENOandWENO
schemes, where the numerical stencils are adaptive in a
way that discontinuities are avoided whenever possible [4–
6]. �e third approach for handling discontinuous solution
is Godunov’s approach, where the nonlinearity property of
the problem is explicitly included in the numerical scheme.
In this approach, an approximation of the solution is con-
structed in the discretized spatial domain, and the evolution
of the solution is solved at the interfaces of the spatial
cells by solving the so-called Riemann problem exactly or
approximately. For more details on the Riemann problem see
[7, 8]. Examples on some numerical methods based on this
approach can be found in [9, 10].

In this paper we present a systematical approach of
deriving an adaptive high-resolution scheme for hyperbolic
equations. In Section 2, we present numerical notation and
concepts useful for our derivation. We proceed with the
derivation in Section 3 and present numerical results for
smooth and discontinuous solutions in Section 4. Some
concluding remarks are posed in Section 5.

2. Numerical Notations

To allow for discontinuities along a discretized spatial and
temporal domain, we need to admit weak solutions for (1) by

integrating over [	�−1/2, 	�+1/2] × [��, ��+1]. �e conservative
form of a numerical scheme in explicit formulation comes
directly from this process; the numerical scheme for (1) can
be written as

��+1� = ��� −
 (F��+1/2 −F��−1/2) , � ∈ [0, 1] , (2)

where

��� ≈ 1Δ	� ∫
�+1/2

�−1/2
� (	, ��) �	

F
�
�+1/2 ≈ 1Δ� ∫

��+1

��
� (� (	�+1/2, �)) ��


 = Δ�Δ	� .
(3)

Other forms of an explicit numerical scheme are the general
form

��+1� = � (���−�, ���−�+1, . . . , ��� , . . . , ���+�) (4)

and the incremental form

��+1� = ��� −��−1/2Δ��−1/2 +��+1/2Δ��+1/2, (5)

where

Δ��−1/2 = �� − ��−1
Δ��+1/2 = ��+1 − ��. (6)

A numerical scheme of the general form (4) is called a
monotone scheme if the operator � is nondecreasing for all
its arguments; namely,

������(���−�, ���−�+1, . . . , ��� , . . . , ���+�) ≥ 0 (7)

for any � in the spatial domain. Monotone schemes are
desired because they have the property of not introducing
numerical oscillationswith new extremanear discontinuities.

�e total variation (TV) is also an important notion that
gives a measure for oscillations due to a numerical scheme.
For a given piecewise grid function �(�, �) that approximates
an exact solution �(	, �), the total variation is given by [7]

TV (��) = ∞∑
�=−∞

������� − ���−1���� . (8)

A numerical method is called Total Variation Diminishing
(TVD) if the total variation does not increase due to the
numerical operator� in (4), mathematically

TV (��+1) ≤ TV (��) . (9)

For a numerical scheme in the incremental form (5), this
condition is satis
ed if [1, 11]

��−1/2 ≥ 0

��+1/2 ≥ 0

0 ≤ ��−1/2 +��+1/2 ≤ 1.
(10)

On the relation between monotonicity and total variation,
Harten suggests that amonotone scheme has a nonincreasing
TV, and a scheme with nonincreasing TV preserves mono-
tonicity [1].

Godunov proved that when numerical schemes are used
for solving the advection equation, monotonicity cannot
be achieved with linear schemes of order higher than one.
�is is referred to as Godunov’s order barrier theorem [12].
�is means that high-order linear schemes such as Lax-
Wendro� [13] and the quadratic upstream interpolation
scheme (QUICK) [14] cannot be TVD, and using such
schemes will introduce nonphysical oscillations whenever
there is a discontinuity in the solution. On the other hand, 1st-
order schemes are TVD, but they exhibit excessive dissipation
and tend to drastically smear the solution, which in turn
masks physical discontinuities and interfaces. To overcome
the drawbacks of the two families of schemes, we seek a
combination of the two in the form of a nonlinear high-order
monotone scheme. �is is achieved by imposing additional
constraints to ensure the TVD properties of the scheme. In
the next section we present our approach for deriving such
schemes.

3. High-Resolution Scheme

In this sectionwepresent a systematical approach for deriving
a high-resolution TVD scheme based on the concept of
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�ux limiters. �is is similar to the work of Sweby [2] and
Kadalbajoo and Kumar [3]. �e main idea is to combine the
TVD 1st-order upwind scheme and the high-order accurate
QUICK schemeby using the 
rst one near discontinuities and
the second one in smooth regions. �e numerical scheme in

(2) is used with a numerical �uxF1±1/2 = F
TVD
�±1/2, where

F
TVD
�±1/2 = F

1st
�±1/2 +��±1/2 [FQUICK

�±1/2 −F1st
�±1/2] , (11)

F
1st
�±1/2 is the numerical �ux associated with a 1st-order

upwind scheme, and F
QUICK
�±1/2 is the numerical �ux associ-

ated with 3rd-order QUICK scheme. Both numerical �uxes
depend on the direction of characteristic speeds and conse-
quently obey the hyperbolicity property of the problem.

�e limiter function ��±1/2 depends on the smoothness of
the solution in the computational domain and is chosen such
that the scheme in (2) is TVD. To 
nd the TVD region of the
scheme we consider the explicit formulation (� = 0), and we
apply it to the linear scalar equation for simplicity of analysis;
namely,

���� +  ���	 = 0. (12)

For this equation the numerical �ux due to the 1st-oder
upwind scheme is de
ned as

�
�+1/2 = {{{
��  > 0

��+1  < 0
(13)

and for the 3rd-order QUICK scheme

���+1/2 =
{{{{{{{

1

8
(6�� + 3��+1 − ��−1)  > 0

1

8
(6��+1 + 3�� − ��+2)  < 0. (14)

If we substitute the numerical �uxes (for the case  > 0) into
(11) and (2) and use � = 0, we obtain the following scheme:

��+1� = ��� − % [(�� − ��−1)
+ ��+1/2 [18 (6�� + 3��+1 − ��−1) − ��]
−��−1/2 [18 (6��−1 + 3�� − ��−2) − ��−1]] ,

(15)

where % = ( Δ�/Δ	) is the Courant number. With additional
algebraic manipulation, this can be written as:

��+1� = ���
− % [1+ ��+1/2

8
[ 3-� + 1]−

��−1/2
8

[3+ -�−1]]
⋅ Δ��−1/2,

(16)
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Figure 1: Schematic of the TVD region.

where -� = Δ��−1/2/Δ��+1/2 is referred to as the smoothness
parameter. �is is a numerical scheme written in an incre-
mental form (5) with the following parameters:

��−1/2
= (% [1+ ��+1/2

8
[ 3-� + 1]−

��−1/2
8

[3+ -�−1]]) ,
��+1/2 = 0.

(17)

Implementing the conditions for the scheme to be TVD (10),
we obtain the following inequality:

− 8 ≤ ��+1/2 [ 3-� + 1]−��−1/2 [3+ -�−1] ≤ 8(1 − %% ) . (18)

At this point we impose another restriction to our scheme by
requiring 0 ≤ % ≤ 1/2. �is yields the following:

���������
��+1/2 (3 + -�)-� −��−1/2 (3+ -�−1)

��������� ≤ 8. (19)

For our scheme to be TVD at extreme points, we must have�(-) = 0 for - < 0. �is condition along with (19) is satis
ed
for the bounds:

0 ≤ (��+1/2 (3 + -�)-� , ��−1/2 (3+ -�−1)) ≤ 8. (20)

Equation (20) de
nes the TVD region shaded in Figure 1.
�is region is bounded by the function �(-) = min[8-/(3 +-), 8/(3 + -)]. �e same TVD region can be obtained for the
case of negative advection velocity. For the numerical scheme
to be TVD, the limiter function used has to lie in the TVD
shaded area of Figure 1.



4 Journal of Computational Engineering

It is obvious that maximizing the �ux limiter increases
the antidi�usivity of the scheme. �is means that a �ux
limiter function corresponding to the upper boundary of
the TVD region yields the least di�usive scheme possible.
Nevertheless, choosing such a limiter does not guarantee the
highest possible order of accuracy. To ensure high-order of
accuracy we require one additional condition; the limiter
function should be chosen such that the scheme in (16) is 3rd-
order accurate whenever possible. To impose this constraint,
we investigated another numerical scheme and the 3rd-order
upwind scheme. For this scheme, the numerical �uxes are
de
ned as

���+1/2 =
{{{{{{{

1

6
(5�� − ��−1 + 2��+1)  > 0

1

6
(5��+1 − ��+2 + 2��)  < 0. (21)

�e discretization for the advection equation (12) due to this
scheme (for  > 0) is given by

��+1�
= ���
− Δ�Δ	 [5�� − ��−1 + 2��+1

6
− 5��−1 − ��−2 + 2��

6
] .

(22)

With algebraic manipulation, it can be shown that this
scheme is equivalent to the scheme in (16) when the �ux
limiter function is chosen to be � = 4(2 + -)/3(3 + -). Hence,
we de
ne the darker shaded region in Figure 1 as the desired
3rd-order TVD region for our scheme.

To guarantee all the conditions we imposed are satis
ed,
we derive a family of �ux limiters lying in the 3rd-order TVD
region (darker shaded region) whenever possible. Any �ux
function in that region can be expressed as an arithmetic
average of two limiter functions: � = 1 that corresponds to
the QUICK scheme and � = 4(2 + -)/3(3 + -) for the 3rd-
order upwind scheme; namely,

�∗ = 1+ C (- − 1)
3 (3 + -) , 0 < C < 1. (23)

Intersection points -∗1 and -∗2 are found to be -∗1 = (9−C)/(21−C) and -∗2 = (C + 15)/(C + 3) (see Figure 2). We can see
that for any chosen value of C, the limiter function satis
es
our condition for smooth regions �∗(1) = 1. �e arithmetic
average and the intersection points are shown in Figure 2.

Based on the above, we propose the following family of
�ux limiters characterized by the parameter C:

� (-) =

{{{{{{{{{{{{{{{{{{{{{{{

0 - < 0

8-
3 + - 0 < - < 9 − C

21 − C
1 + C (- − 1)

3 (3 + -) 9 − C
21 − C < - < C + 15C + 3

8

3 + - C + 15C + 3
< -.

(24)
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Figure 2: Arithmetically averaged limiter function.

Equation (24) shows that the proposed limiter function is
continuous and bounded for any value of the smoothness
parameter -. It also satis
es the condition for smooth regions�(1) = 1. �e �ux limiter functions in (24) lie in the TVD
region for any choice of C; hence, the scheme is TVD.

In this paper, the theta method (also called the gen-
eralized Crank-Nicolson method) is used, by considering
a weighted average of explicit and implicit terms in the
numerical scheme of (2). �e scheme can be written as

��+1� = ��� −
 [� (F�+1�+1/2 −F�+1�−1/2)
+ (1− �) (F��+1/2 −F��−1/2)] , � ∈ [0, 1] . (25)

Equation (25) represents a family of schemes characterized
by �. We obtain the explicit scheme for � = 0, the implicit
scheme for � = 1, and the Crank-Nicolson scheme for � =1/2.�e thetamethod is unconditionally stable for any choice
of � ∈ [1/2, 1] [15, 16]. Spatially, the accuracy of the scheme
is determined by the way of calculating the numerical �uxes
F
�
�±1/2.

4. Numerical Results and Discussion

In this section we present two sets of numerical results,
one for the case of smooth solutions and the other for
discontinuous solutions. Both sets of results are shown for
the case of pure advection with positive velocity. Results from
the proposed scheme are also compared to those from other
numerical schemes.

4.1. Smooth Initial Conditions. For this set of results we
consider (12) with a smooth initial condition given by

�0 (	) = 0.5+ 0.3 sin (2F	) . (26)
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Figure 3: Numerical results for smooth solutions with � = 1.

Boundary conditions for this problem are periodic with a
convection velocity  = 1m/s on a 1m domain. Total time
of the simulation was set to 1 sec, so that the solution at the
end of the simulation is the same as the initial condition.

Figure 3 shows a comparison of the new scheme with
other classical schemes and existing high-resolution schemes
for the case of implicit time discretization (� = 1). Compari-
son was made for a grid size of 0.05m and a Courant number
of 0.2.

Excessive dissipation of the 1st-order upwind scheme
can be observed and the solution is smeared out due to
the inherent numerical viscosity of the scheme. For the two
higher order linear schemes (2nd-order upwind scheme and

Lax-Wendro� scheme) dissipative errors were minimized,
but the signal in the numerical solution was either leading
or lagging due to dispersion errors. �is dispersive nature of
the error can be observed by studying the modi
ed equation
for the corresponding schemes. For example, the modi
ed
equation corresponding to the 2nd-order upwind scheme is

���� +  ���	 =  2Δ� (� − 1

2
) �2��	2

+( Δ	2
3

−  3Δ�2
2

(�− 1

3
)) �3��	3 .

(27)
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Figure 4: Numerical results for smooth solutions with � = 1/2.

It can be seen from (27) that the 2nd-order upwind scheme
poses two types of errors: dissipation errors due to temporal
discretization and dispersive errors due to both temporal and
spatial discretization. �e latter type of error causes either
leading or lagging of the numerical solution, as shown in
Figure 3.

On the other hand, more satisfactory results can be
observed when implementing high- resolution schemes with
di�erent �ux limiters.�e new scheme with C = 1 resulted in
a better numerical solution as compared to other schemes.

Figure 4 shows a comparison of the same set of schemes
for the case of Crank-Nicolson time discretization (� = 1/2).
By examining (27) it is clear that the dissipative error terms
cease to exist for the case of � = 1/2. �is explains the

reduction in dissipation for the high-order linear schemes
(2nd-order upwind and Lax-Wendro�). On the other hand,
our new scheme continues to produce the best results as
compared to other schemes.

�e exact solution was used to determine the accuracy of
di�erent numerical schemes. Accuracy was assessed on the
basis of the I1 norm, de
ned as

I1 = 1J
�∑
�=1

������ (	�) − �� (	�)���� , (28)

where J is the number of cells and ��(	�) is the numerical
solution at the �th cell. Convergence rate is represented by
a log-log plot of the norm of the error versus mesh size.
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Table 1: Spatial convergence rates of di�erent schemes for smooth
solution.

Numerical scheme Convergence rate

1st-order upwind 0.86

QUICK scheme 1.3

Minbee limiter 1.1

Superbee 0.99

Kumar limiter 1.3

New limiter with C = 1 1.3

Figure 5 shows the results of the spatial convergence for the
case � = 1/2. Convergence rates for several considered
schemes are listed in Table 1. �e results show competitive
rate of convergence for the new scheme as compared to other
schemes.

4.2. Discontinuous Initial Conditions. For this set of results
we consider (12) with a discontinuous initial condition given
by

�0 (	) =
{{{{{{{{{

0.3 for 0.0 < 	 < 0.4
0.8 for 0.4 < 	 < 0.6
0.3 for 0.6 < 	 < 1.0.

(29)

Boundary conditions for this problem are periodic with a
convection velocity  = 1m/s on a 1m domain, and the time
of the simulation is 1 sec.

Table 2: Spatial convergence rates of di�erent schemes for discon-
tinuous solution.

Numerical scheme Convergence rate

1st-order upwind 0.40

Minbee limiter 0.56

Superbee 0.52

Kumar limiter 0.70

Suggested limiter with C = 1 0.82

Two sets of results are shown: implicit time discretization
(� = 1) is shown in Figure 6 and Crank-Nicolson time
discretization is shown in Figure 7. Comparison is made for
a grid size of 0.0125m and Courant number of 0.2.

Results show signi
cantly more dissipation for the case
of implicit discretization. For the 2nd-order upwind scheme
and the QUICK scheme, dispersion error appears in the
formof overshoots and undershoots. For theQUICK scheme,
these oscillations were damped for the case of � = 1
due to dissipation. High-resolution schemes, including the
new scheme, give better results capturing the discontinuity,
especially for the case with � = 1/2 where dissipation is
reduced.

Figure 8 shows results of the spatial convergence study for
di�erent schemes. Results of this study are listed in Table 2.
We can observe a very good rate of convergence for the new
scheme compared to the other schemes.

5. Concluding Remarks

A new high-resolution stable scheme is derived by imple-
menting a hybridization of the monotone 1st-order upwind
scheme and the quadratic upstream interpolation scheme
(QUICK). For temporal discretization, the generalized
Crank-Nicolson method characterized by the parameter �
was used. �e combination of the 1st-order upwind scheme
and QUICK scheme was done by means of a �ux limiting
function, which depends on the smoothness of the solution.
Constraints were imposed to make the resulting scheme
TVD and high-order at smooth regions of the solution. For
the one-dimensional linear case, results from the proposed
scheme for di�erent values of � were compared to classical
and popular high-resolution schemes, and the convergence
rate for the scheme was investigated for smooth and dis-
continuous solutions. �e proposed scheme was shown to
exhibit very good results as compared to other schemes. It
is shown that the high-resolution schemes based on 2nd
order Lax-Wendro� discretization exhibit a convergence rate
of about 1 for smooth solutions and 0.5 for discontinuous
solutions. �e new scheme based on 3rd-order QUICK
discretization exhibits a convergence rate of about 1.3 for
smooth solutions and 0.8 for discontinuous solutions. In the
case of discontinuous solutions, the new method derived in
this paper shows the best convergence rate of all schemes
investigated here.
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Figure 6: Numerical results for discontinuous solutions with � = 1.

Appendix

Finding the TVD Region for a Negative
Velocity ( < 0)

�e numerical scheme is given by

��+1� = ��� − Δ�Δ	 [�
�+1/2− �
�−1/2
+��+1/2 [���+1/2 − �
�+1/2] − ��−1/2 [���−1/2 − �
�−1/2]] .

(A.1)

From (13) and (14), we substitute the numerical �uxes to get

��+1� = ��� − Δ�Δ	 [��+1 − ��
+ 1

8
��+1/2 [3�� − 3��+1 + ��+1 − ��+2]

− 1

8
��−1/2 [−3�� + 3��−1 + �� − ��+1]] = ��� − Δ�Δ	



Journal of Computational Engineering 9

0.5

1

0
0

0.5 1

q

x

0.5

1

0
0

0.5 1

q

x

0.5

1

0
0

0.5 1

q

x

0.5

1

0
0 0.5 1

q

x

0.5

1

0
0 0.5 1

q

x

0.5

1

0
0

0.5 1

q

x

0.5

1

0
0

0.5 1

q

x

0.5

1

0
0

0.5 1

q

x

1st-order upwind 2nd-order upwind

QUICK scheme Minbee limiter

Vanleer limiter Superbee limiter

Kumar limiter

Numerical

Exact

Numerical

Exact

Suggested scheme with delta = 1

Figure 7: Numerical results for discontinuous solutions with � = 1/2.

⋅  [1
− ��+1/2

8
[3+ (��+2 − ��+1)(��+1 − ��) ]

+ ��−1/2
8

[3 (�� − ��−1)(��+1 − ��) + 1]] (��+1 − ��) .
(A.2)

De
ning the smoothness parameter -� = (��+2 − ��+1)/(��+1 −��) the above equation can be written as

��+1� = ��� − Δ�Δ	

⋅  [1− ��+1/2
8

[3+ -�] + ��−1/2
8

[ 3-�−1 + 1]]
⋅ (��+1 − ��) .

(A.3)

�is is an incremental form of the numerical scheme with

��−1/2 = 0,
��+1/2
= − Δ�Δ	 [1−

��+1/2
8

[3+ -�] + ��−1/2
8

[ 3-�−1 + 1]] .
(A.4)
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Figure 8: Spatial convergence rates for discontinuous solutions.

Let % = − Δ�/Δ	 > 0; we implement conditions in (10) to get

0 ≤ % [1− ��+1/2
8

[3+ -�] + ��−1/2
8

[ 3-�−1 + 1]] ≤ 1

− 1 ≤ − ��+1/2
8

[3+ -�] + ��−1/2
8

[ 3-�−1 + 1] ≤ 1 − %%
− 8 ≤ ��−1/2 [ 3-�−1 + 1]−��+1/2 [3+ -�]

≤ 8(1 − %% ) .

(A.5)

For % ≤ 1/2,����������−1/2 [
3-�−1 + 1]−��+1/2 [3+ -�]

�������� ≤ 8. (A.6)

One condition we require for the limiter function is

� (-) = 0 for - < 0. (A.7)

�is condition yields the following:

0 ≤ (��−1/2 [ 3-�−1 + 1] , ��+1/2 [3+ -�]) ≤ 8. (A.8)

From which we obtain the two inequalities:

0 ≤ ��−1/2 ≤ [ 8-�−1
3 + -�−1 ] M→ 0 ≤ � ≤ 8-

3 + -
0 ≤ ��+1/2 ≤ [ 8

3 + -� ] M→ 0 ≤ � ≤ [ 8

3 + -] .
(A.9)

�is is the same result as found for the case of a positive
velocity.
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