

Calhoun: The NPS Institutional Archive DSpace Repository

Development of improved finite elements formulation for shallow water equations.

Woodard, Edward T.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/20493

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

DEVELOPMENT OF IMPROVED

FINITE ELEMENT FORMULATION FOR
SHALLOW WATER EQUATIONS
by
Edward T. Woodward
September 1981

Thesis Advisors:
R.T. Williams
U.R. Kodres

Approved for public release; distribution unlimited.

$$
\begin{aligned}
& T 204559 \\
& T 204560
\end{aligned}
$$

16. OISTRIEUTION STATEMENT (O/ EAIO RODORI)

Approved for public release; distribution unlimited

SUPPLEMENTAMY NOTES
19. KEY VOADS (Conilnu an reveree olde If neceseer ndidenifiy by Meck sumber)

Finite elements	piecewise constant basis function
Shallow water equations	primitive barotropic equations
Voriticity-divergence formulation	Galerkin method
Semi-implicit	numerical prediction model
piecewise linear basis function	variable size elements

The basic principles of the Galerkin finite element method are discussed and applied to two different formulations; one using different basis functions and the other using the vorticity-divergence form of the shallow water equations. Each formulation is compared to the primitive form of the equations developed by Kelley (1976). The testing involves a comparison of three finite element prediction models using variable size elements. Equilateral elements significantly improve the solution and are used in most of the comparisons.

The formulation using different basis functions produces poorer results than the primitive formulation. The vorticity-divergence formulation produces superior results while executing faster than the primitive model. However, it does require more storage and the relaxation parameters are sensitive to the domain geometry. The computer implementation for the vorticitydivergence model is discussed and the source listing is included.

Aoproved for public release; distritution unlirited.

> IEVILCPNENT OEGIPRCVES FINTTEEAVNN FCRNULATICN ECR SEALLON-WATER EGUATIONS
ry

```
Edward T. Hoodward Captain. United Siates Air Force B.A., University of Maine, 1G?
```

```
Submittec in partial sul:illment of the
    requirerents for the degrees of
    MASTER OF SCIENCE IN COMPUTER SCIENCE
                                    and
        MASTER OF SCIENCE IN METEOROLOGY
```

 from the
 NAVAL POSTGRADUATE SCEOOL Sedterber 1 gel

Fine oasic principles o: the Galervin :inite element
Tethod are discussed end applied to two different Eortulations; one using different basis functions and the other usiag the voriicity-divergence form of the shallow water equations. Each Eormulation is compared to the priritive form of the equations developed by Jelley (1G7E). The testing involves a comparison oz three finite element preiiciicn models using variable size elements. Equilateral elements significantly improve the solution and are used in rost of the comoarisons. The formulation using different besis iunctions produces poorer results than the primitive formilation. The vorticity-divergence formulation produces superior results while exeauting-faster than the primitive roiel. Ec*ever, it does require rore storage anc the relaration parameters are sensitive to the domain georetry. The corouter irplementation for the vorticity-tivergence rodel is discussed ald the source listing is included.

MA3IE OF CONTENTS

:. INTPCDUCTION 11
\therefore BACZGRCUNE 12
z. OEJECTITES 15
-. TEESIS STRUCTURE. 17
II. EINTME ELEMENTS 19
A. Sinite glement concept 20
ミ. Gatirain application 25
C. APEA CCORDINATES 31
III. SEALIOW-wATE? MODEL 35
A. GOVERNING EGUATIONS 37
3. ECUATION EORMULATION 39
C. gime ilscretization. 41
\therefore COMPUTATIONAL TECENIQUE 43
․ GRID GEOMETRY. 45
ミ. INITIAL CONLITIONS 47
G. boundary conditions 49
If. COMPUTER IMPIEMENTATION. 52
A. PROGRAM ARCEITECTURE. 53

1. Main Program 55
2. Initialization Phase 56
3. Eorecast Phase $E 4$
4. UMIIITY MODULES 65
V． pRIMINTVE MOLEL EXPERIMENT Es
\therefore MOEIL EESCRIFTION є8
3．RミSULTS 73
V：．LINEARIZEI MOLEL EXPIRIMENT 7ε
A．EUUATION REFORMULATION 78
ミ．RミSULTS 81
VII．VORTICITY－LIVERGENCE MOLEL EXPERIMENTS 84
A．TEST LOMAINS AND INITIAL CONLITIONS 84
3．TEST CASE COMPARISONS 8 ？
1．Regular Case 87
2．Smooth Case 91
3．Abruot Case． 182
c．COMFUTATIONAL SENSITIVITY 185
TIII．CONCLUSIONS 189
APPENEIX A（Source List） 111
A．EEfTNITIONS 111
3．MAIN EROGRAM 114
こ．INITIALIZATICN PEASE 115
こ．EOPECASm pHase． 141
玉．UTILIT？PROGRAMS 151
LISt or remirances $16 ?$
InITIAL DISTRIBUTION LIST 169

IIST OE RIGURIS

Fipure 1．Fiecewise linear basis function 23
Eizure 2．Easis anc test function interactioniuring the piecewise integrationprocess27
EiEure 3．Easis function こor node 28. 32
 こ2
Fisure E．Sransformation to area coordinates 32
Iigure E．Iorrain divided into equilateral triangles 46
Fizure ？． 3 dimensional view of the initial fields 48
Fizure E．Assemble and store the coefficient ratrix for elerreat 3 62
Eigure 9．Iomain divided into right triangles 71
Eifire 10．Initial fields for the primitive －oさel 72
Eizure 11．≤ 8 hour forecast comparison between equilateral and rizht iriangular elements 74
Eigure 12．Iifferenily shaped oasis functions． 77
Eigure 13．Staggering the geopotential about the velocity 79
zizure 14．Initial fields for the linearized Experiment 82
Eizu：e 1E．$\leq \varepsilon$ hour forecast corpariag the primitive vs linearized model． ． 3
Eizure $1 \in$ ．Test domain geometries 85
Eīure 17．Initial Eield for the ？egular Case． 88
EiEure 18． 48 hour forecast corvarison for the ？egula：Case． 39

Fizure 19. Initial field for the Emooth Case $A P A=1.1 \mathrm{r} / \mathrm{s}$ 气2
Eizura 20.48 hour forecast comparison for the spooth Case $A P A=1.1 \mathrm{r} / \mathrm{s}$ 93
Ëzure 21. Initial fields for the Sirooth Case $A \sum A=5.5 \mathrm{~m} / \mathrm{s}$. 95
Eizure 22. 4 E hour forecast comoarison for the Smooth Case, APA $=5.5 \mathrm{~m} / \mathrm{s}$ $\Xi 6$
Eigure zz. Ge hour forecast comparison for the Smooth Case, APA = $5.5 \mathrm{~m} / \mathrm{s}$ 97
Eizure 24. Initial fields for the Smooth Case AEA = $1.1 \pi / \mathrm{s}, 2$ waves 122
ミizure 25. ≤ 8 hour forecest comparison for the Srooth Case, 2 waves 101
Figure 26. Initial fields for the Abrupt Case 123
Iigure 27. ≤ 8 hour forecast comparison for the Abript Case 124
Zizure 28. Computaticnal sensitivity using the 48 hour Vorticity field $12 ?$

Taそle 1. \quad orvarison ci corputational tires for
the 48 hour forecast, ?egular Case.............. Se
Table?. Corparison of computational times for
the 48 hour forecast, Srooth Case................ 1
Tarie 3. Corparison of corputational iires for
the EE hour forecast, Smooth Case...............s.
Table $4 . \quad$ Comparison of corputational times $=0 r$

\therefore CZNOHIEDGEMENTS

The author kelives that rost of the credit should so to ?rofessor … Gilliams for the education that he gave me through his patient teaching and guidance during the entire research and writing of this paper. Acknowledzement is also due Prcfessor U.Z. Jodres for the mang useful suzgestions, enoouragement and reading the manuscript.

Special thayks to each department chairman, Professor G.E. Bradley, Computer Science, Professor R.J. Renard. Neteorclozy, and Professor 子.J. Ealtiner, former Neteorolosy chairman. Eor allowing me to pursue the two degrees and acceptine this thesis as partial fulfillment for the requirereats of both degrees.

Thanks are extended to It. R.G. Kelley whose research was the foreruzner to this investigation and Capt. M. Older for the many useful comments ho offered during the irplerentatioa. Particular thanks to Dr. M.J.P. Cullen whose personal suggestions provided the direction for this work.

I Eive ry love to ry wife, joy, for her infinite ótience, for being the Eirst guinea piz in reading and zreparing this manuscript. Iizally, to my family, Kir, Mark anc Joy thanks for enduring and encouraging me throughout my graduate studies at the Naval postgraduate School.

I. INTPODUCTION

shrman (19?2) olaims that progress in numerical modeling 0: the eeneral circulation has been to some degree dictated : $:$ the oast by the rate of development in the field of computer technology. Eowever, the limited ability to Darameterize the effects of small-scale processes in teris 0 : large scale motions has been an equally important limiting factor. Essentially, the raior problem of nurerical rodeline of the geaeral circulation is simply that of producing a very long range numerical weather forecast.

Certainly the equations used in the models must be more sophisticated to include those physical processes-which are unimportant for a short razge forecast, but may become arucial as the length of the forecast is extended. Another area where concentrated efforts have improved the forecast involves the computational techniques employed to approximate and solve the goveriing equations of the models.

The motivation rehind this thesis is to investigate the application of a relatively new coroutational technique to the field of numerical weather prediction. The Eirite elerent method, long established in engizeering, has been seriously considered only during the past decede in reteorology. This method has great potential for application ir atrospheric prediction models.
A. BACKGROUND

The rost corron zurerical integration procedure for weather prediction has been the iinite difference method in which the derivatives in the differential equations of rotion are =eplaced by finite difference approximations at a discrete set of points in space and time. The resulting set of equations. with appropriate restrictions, can then be solved by algebraic rethods. Until recently, the finite difference method has been the workhorse in atrospheric preciction models, fror their eirst computer implementation to the present.
rifth the introduction of each new generation of corputers. the gap between numerical forecasts and atmospheric observations has decreased. The rate at which this gap decreased has slowed dowa and appears to be leveling of:. This would indicate that computer technology may zot be the primary obstruction to better murerical Pcrecasts. In fact, bigger and faster computers alone bave deronstrated their inability to sigyificantiy improve the rumerical :orecast.

Eor exarple, a rajor limiting factor of finite difserence approximations is the truncation error. The National reather Service 7 Layer Primitive Equation Model (PIPE Model), operational Srom 1966 to 1380. had truncation errors which increased at a rate proportional to tine square 0^{*} the grid spacing. That 15 , the smaller the grid interval,
the smaller the truncation error. To increase its accuracy woulc require iacreasing the grid ratrix deasity. This would require increased corputer storage and corputational time. State of the art corputers are capable of providinj these additional resources.

The problem now soes beyond nurerical techniques and corputer technolozy. Operationally, the National feather service is aot capable (due to mozetary restrictiozs) of providing a denser concentration of atmospheric orservations. Wherefore, with the present density of initial data (observations) and objective analysis techniques (getting the data for grid poicts by interpclating from observed data sources), reducing the grid spacing further oy the PIPE Model does not significantly inorease the accuracy cf the solution.

Chis additional computer capability can not be utilized usinz finite difference rethods. Therefore, new nurerical integration techniques must be investigated, such that siven the sare density of observed data, superior sclutions are produced.

To alternative techniques, the spectral method and the finite elerent rethod, have started to gain attention. Eoth the spectral and finite element methods require more computational time per forecast time step than does the fiafte differeace method. For example, the finite element rethod requires an equation sclver to invert a larger ratrix
at each tire step for each variable. In this sease, these rethods were held back by computer technology, but reaent edvazces in computer technolozy (i.e. larger and faster storase devizes, multi-processors, etc) bave made ihese aliernative zumerical techniques competitive.

Eor lonf range weather predictions, the spectral method apolfed over the globe or hemispiere is a natural method, due to the existence of efficient transforms for the zoalizear terms oa spherical geometry. It also elimizates the trurcation error :or the horizontal space derivatives ay the nomlizear instability (aliasizg). For these reasons, slobal spectral models have been developed and implemented on az operatiozal level, replacias the global finite difference models.

Eowever, because the spectral harmonics are globally rather than locally defined, it is thought that for problems of rore detailed limited area forecasting. the finite elerent method is more suitable. Pioneeriag work to adapt Einite element methods to meteorological applicaticns has been doze by Cullez (1973,1974 and 1979), Stanforth and Mitchell (1977), Einsman (1975) and Zelley (1978). The rost recent fiaite element meteorolosical rodel at the Naval ?osterciuate School was written by Kelley (1976) with the collaboration of Ir. R.S. Willams. It is this studj that will serve as a basis for this thesis. The model witten by Kelley will be altered and used for comparative testing with

improvec finite element forms implemented by this author. Some of the techniques and codes developed by Kelley are alsc erployed in this thesis. Older (1981) developed a technique to smoothly vary the sric geometry in the domain. This technique is also implemented both on Kelley's model ard with the new formulation to give greater versatility When testing the model perfcrmance.
3. C3JECTITES

The objectives for this thesis can be divided into two categories: 1) reteorolosy, 2) corputer science. First, the reteorological objectives of developing imprcved finite elerent forms for shallow water equations are as follows: 1) - Older (1981) after collaboration with Dr. M.J.F. Cullez, showed how equilaterally shaped elerents produced significantly better results than did other triangular elements. ₹elley (197E) used right triangular elerents in the implemertation of a two-dimensional finite elerent rodel using the primitive form of the shallow water equations. A considerable amount of small-scale noise was observed if the solution. Eereafter, this model, which was developed by Zelley (1975), will be reserred to as the priritive rodel. This first objective involves re-implementing the orimitive model using equilaterally shaped elements and corparing the results to those in Yelley's thesis.
2) - Gilliams and Zienkiewicz (1981) presented rew Einite elerent techniques for formulations for the shallow water equations, which use differently shapea functions to approxirate the different depencent variables, which in effect stagger the variables. Schoenstadt (1980) deronstrated the advantage of spatial staggering of dependent Tariables in finite difference models. The apolication of this technique to finite element rodels is a natural extension, and excellent resulis were obtained by willams and Zienkiewicz (1981) fror application of these rew forrulatioas on linearized one dimensional cases. Tine cbjective here is to implement the new forms on the priritive rodel and azain do quanitative comparisons of the resul:s.
3) - The mator emphasis in this study deals with the irylementation and comparison of the vorticity divereance Eort of the shallow water equations, which is descrited in detail 12 Chapter III. This formulation has the following adventages. First, the geostrophic adjustment process is treated better thay ia the primitive form of the equations. Secondly, the velocity and height fields are eraluated at the same grid point, where the best primitive form recuires staggering these dependent variables. And thirdiy, a larger time step is allowed due to the seri implicit form of the Equation. Agaiz comparisons between the results from the vorticity divergence and orimitive model are presented.

The computer science aspect of this thesis was primarily devoted to the implementation $c_{\text {f }}$ the different models and the stile and architecture of the prograir. Finite element rethocis require more computational tire than do fiaite cifference rethods, not oaly in the solution of the eouations, but also in the amount of computation required to evaluate each term in the equations.
mhe implereatatious of tinese two dirensiozal rodels, althouzh corplex when viewed from the surface, have a lot of generality and reduadancy ia the operations required. Versetile modules can be written to ease the irplementation and facilitate chages. The objective here is to efficieytly irplereat these new forms and demonstrate the utility of these versatile modules for future implementations.

C. TEESIS STRUCTURE

This thesis preseats the resulis obtained from tests of the various fiaite element formulations. The resulis are compared to those from the primitive model written by relley (ig7E). Accompanying the results is a detailed discussion of the reformilation and implemertation process.

Chapter II of the thesis presemis a iutorial of the finite elerent retiod and the area coordinates system used I= the evaluation of the elerent integration. The Galerkin Einite elerent rethod used in all the rodels is developed and appiied to the advection equation in one dirension.

Chapter III presents the detailed description of the จoこticity－divergence shallow water model．Eere the ecuations are sicin anc writtan usine tie Galerin metiod．A itscussich of the corputational technique used is presented along with the rodel＇s physical parameters．

こheoter If presents a descriptive overview of the このTouter implementation．The chaoter iacludes a list of ootions available for testing，a brief description of the ratrir cormaction techaique and the formulations of the versatile modules used to implement the complex equations．

Chapters V through VII discuss the results obtained fror the iffeerent experiments．Chapter V briefly describes the priritive model used for all comparisons and the results －rom changing the element shape to equilateral triangles． Chapter V reformulates the primitive model so that the geopotential is staggered with respect to tiae velocity veriabie．F̄or simplicity，the contizuity equation is also IinEarized．Chapter TII compares the results fror the vortiaity－divergence rodel developed in Chapter III to those Erom the primitive model．

The last chapter summarizes the results from all the Erperirents aad identifies whet areas reaurefollow on worir．The source code por the vorticity－divergence rodel is oresented in Appendix A．

As is often the case with an origizal developrent, it is rather difficult to quote az exact date on which the finite element rethod was invented, blit the roots of the retnod can be traced back to these separate groups: apolied Tathematicians. physicists and engineers. Since the early ceveloprents of the finite element method, a larse amount of research has been devoted to the technique. घowever. the fiaite elemeat method obtained its real impetus by the independent developments carried out by engineers. Its esseatial simplicity in toth physical interpretation and mathematical form has undoubtedly been as much-behind its popularity as is the digital computer which today peritis a realistic solution of even the most comolex situations.

The name " finite element " was coined in a pater by ?.\%. Clough, in which the technique was presented for plane stress analysis, as discussed in Eathe (1976). While finite element methods have made a deep impact via the field of solid rechanics, where it can be said that today they represent the generally accepted method of discretizing continuum problems for computer-based soluticn, the same appears zot to be true lu fluia rechanics or atmospheria prediction.

iumerous fiaite element formulations are currently availatie．Strang（1973），Norrie（1973）and zienkifwicz ＇ミ®ア1！present detailed theoretical discussions of each．The Galerxir method．the most popular finite element rethod，is deccribec in detail below and used in the equation こoェmulation later．

A．EINITE ELEMENT CONCEPT
The problem of solving partial differential equations can te specified in one of two ways．In the first，finite difference methods specify the dependent variables at certain grid points in space and tire，and the derivatives are eqaluated using Taylor series approximations．Secondiy． the calculus of variation requires the miaimization of a functional over a domain，where a functional is defined as a variational integral over the domain．

The calculus of variation approach creates a purely physical rodel where the functional equivaleat to the known differential equatiozs are known．Its major disadvantage is that it lirits the method only to those problems for which fuactionals exist．Finite element methods，an extention of tits rethod．derive mathematical approximaticns directly fror the differential equations goveraing the problem．The advantage here is that it extends the rethod to a range of problers for which a functional ray not exist，or has not beer discクvered．

The finite elerent method divides the domain into subdorains or finite elerents (usually of the sare fort). Nodes are located along the boundary of the elements. usually at ibe element vertices and at strategic positions (midside, centroid, etc.) in the interior and on the sides of faces of elerrents.

Commonly used elements are triangular, polygoral or polyhedral in form for two-dimensional problems. The choice Of elements depents on the type of problem, the number of elements desired, the accuracy required and the available computing time. To begin with, the element must be able to represent derivatives of up to the order required in the solution procedure, and to swarantee contizuous first derivatives across the element boundaries to avoid singularities. Triangular elements are erployed in this thesis because they can be used effectively to represent irregular bouncaries, and/or geometry, and also to soncentrate coordinate functions in those regions of the dorain where rapidly varying solutions are anticipated.

Consider the problem 0 : solving approximately the differential equation

$$
I(u)=f(x)
$$

where I is a differential operator, u the dependent variable, and $f(x)$ is a specified forcing function. Suppose that II-1 is to te solped in the dorain a $\leq x \leq b$ and that
(1)

$+$

 (1) (1)
\square

\square $\mathrm{E}=-$
$\mathrm{E}=-\mathrm{Z}$

2
appropriate boundary conditions are provided. The residual R is formed from II-1 as follows:

$$
I(u)-f(x)=?
$$

The critical step is to select a trial farily of apororimate solutions (the members of a trial family are cften celled rasis functions). mhe basis function is prescribed 'functionally) over the domain in a piecewise fashion, element by element, and are generally a corbination of low order oolynominals. A oze dirensional exarple is shown in Eigure 1 , wherein the domain (x axis) is divided Iato six elements (line segments) A throush I. The basis functions are linear and one is shown for node fonly in Figure 1. The :uaction has a value of unity over node 4 , and decreases linearly to is zero at nodes 3 and 5 and zero elsewhere.

Cozsider a series of linearly independent basis functions $\nabla_{j}(x)$, as in Figure 1. Now $u(x)$ can be approximated with a finite series as follcws:

$$
u(x)=\sum_{j} \phi_{j} v_{j}(x)=\phi_{j} \nabla_{j}
$$

where f_{j} is the coefficient of the $j t h$ basis function and has a value equal to u at mode j.

Substitutiag this approximate solution II-3 wherever u appears in the differential equation II-1

$$
I\left(\phi_{j} v_{j}\right)-P(x)=?
$$

The best solution will be oze which in some sense recuces the residual R to a minimum value at all points in the dorain. シy definition, the residual obtained usige the exact differential equation is identically zero everywhere. The residial R, formed in equation II-4, is minimizied when rultipliec with a weighting function, integrated over the domain and set equal to zero. This process is known as the weighted residual method

$$
\int^{r} R W d x=3
$$

a
where ${ }^{\prime}$ is the weighting function and is referred to as the test function ia the following developreat. The weighted residual method minimizes the errors of the residuals, such that the summation of all the positive and legative errors add to zero.

The Galerkin method, the most popular finite-elemeat method, is more general in application and is a special case of the method of weighted residuals, as discussed by pinder and Gray (1977). The requirement imposed on the weifhted residual rethod forming the ralericin method is:

* the test (weighting) function be equal to the basis (trial) function $=V$. This process leads in general to the best approximation of the solution.

The final Galerkir form is obtained by substituting II-4 i:-to II-5, yielding

$$
\int_{a}^{b} \dddot{x}_{i} I\left(\phi_{j} J_{j}\right) d x-\int_{a}^{b} \hbar_{i} f(x) d x=z
$$

If this procedure is repeated for N points in the domain a system with N equations and N unknowns will be generated.
3. GALEPIIN APPLICATION

The following example taken in dart from Haltiner and W111iars (1ge民) applies the Galerkin method to the advection equation with linear elements

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=\tau
$$

This equation is dependent ia both time and space. The treatment of time variation is important for most meteorological prediction problems. The Galerkia method is not applied to the time dependence because it is more convenient to use finite differences in time, as is done with this example later. The same treatment is applied tc the proenosiic equations later, where two finite differencing methods are employed to do the time integration.

The salerkin procedure represents the dependent variable u(x.t) with ar sum of Functions that have the prescribed

spatial structure as in Figure 1 . Approximate $u(x, t)$ with the fialte series as follows

$$
u(x, t)=\sum_{j=1}^{N} \phi_{j}(t) V_{j}(x)=\chi_{j} V_{j}
$$

where the coefficient $\phi_{j}(t)$, a function of tire, is the scalar value of u at mode j. The basis functions, $V_{j}(x)$, are functions of space only and j equals 1 to 7 for the exarple In Figure i. The repeated subscript in this fort implies a sur cver the repeated subscript.

The Galerkia equatioz for the advection equation II-7 is obtained by setting $I=c(\partial() / \partial x)$ and substituting in the aporoximate solution II- 8 wherever u is found.

$$
\sum_{j=1}^{n} \frac{\partial \phi_{j}}{\partial t} \int_{a}^{b} v_{j} \nabla_{i} d x+c \sum_{j=1}^{N} \phi_{j} \int_{a}^{b} \frac{\partial v_{j}}{\partial z} \nabla_{i}=x
$$

where $i=1$ to N, V_{i} the test function and V_{j} the basis furstion. The domain 0 : integration is given by $a \leq x \leq b$. and the iategration is doze in a piecewise fashion, element by element.

In this one-dimensional case, an equation like II-s is writter for each node, i. Consiciering node 4, what are the possible non-zero contributions from equation II-9? Figure 2 Illustrates the basis and the test function interaction during the piecewise integration process. Irot the
(2)

$j=2$

$j=3$

$j=4$

$j=5$

$$
j=6
$$

$j=7$

Figure 2. Basis and test function interaction during the piecewise integration process.

Cefirition of the basis and the test function, locally cefined as unity at node j and linearly decreasiag to zero at : ± 1 anc zero elsewhere, the only non-zero coniributions are made when $:=3$ over element $C, j=\leq$ over elements $=$ and I and $j=5$ over element \mathcal{D}.

The evaluation of II-G for $1=m$. which is given in Ëatiner and filliams (1981), leads to the equation:

$$
\frac{1}{E} \frac{d}{d t}\left(u_{m+1}+4 u_{m}+u_{m-1}\right)+\frac{c}{2 \Delta x}\left(u_{m+1}-u_{m-1}\right)=\theta \quad I I-1 \theta
$$

The bouncary points, which in this example are nodes 1 and \quad, are evaluated in the sare way as the interior nodes, with the exceptioy that cyclic couditious are imposed.

The time discretization of II-10 is done using a finite difserence scheme. Applying leapfrog time dizferencing हives the following equation

$$
\begin{align*}
\frac{1}{12 \Delta t}\left(u_{m+1}^{n+1}-u_{m+1}^{n-1}\right. & \left.+4\left(u_{m}^{n+1}-u_{m}^{n-1}\right)+u_{m-1}^{n+1}-u_{m-1}^{n-1}\right) \\
& +\frac{c}{2 \Delta x}\left(u_{m+1}^{n}-u_{m}^{n}\right)=\partial
\end{align*}
$$

The resultant equation set, in matrix form, contaizs an NrN matilx where N is the number of nodes.

The transition from oze-dimension to two is rathematically identical. The domain is now subcivided into Ei=ite areas, which are triangles in this irplementation and
Rene
the basis functions are linear. Eowever, now they are pyrarid shaped with value unity at the center and decrease to zero at the surrounding nodes, and are zero elsewhere. Iigure 3 shows this basis function for node 28 outlined in heavy black. The value at any node again can be aporoximated by II-3, where j ranges over all nodes connected to node 1 including i itself. The connectivity for noce $1=28$ in Eigure z is $j=15,16,27,28,29,39$ and 40 .

The integration is still over the entire domain. $\begin{gathered}\text { ith }\end{gathered}$ both the basis and the test function zero over the dorain, except locally orer each element, the global integration can be performed by integrating locally over each element. By definition, this integration can be expressed as an inner procuct of both functions (i.e. basis, test) as follows:

$$
\left\langle V_{j}, V_{i}\right\rangle=\iint V_{j} V_{i} d A
$$

Using this definition and the repeated subscript notetion equation II-S becomes

$$
\dot{\phi}_{j}\left\langle\nabla_{j}, \nabla_{i}\right\rangle+c \emptyset_{j}\left\langle V_{j x}, V_{i}\right\rangle=0
$$

where the dot implies differentiation with respect to time, and the secord subscript implies differentiation with respect to the second subscript. The local integration may be calculated directly from exact expressions derived îrom area coordinates described in detail in the next subsection.

Figure 3. Basis function for node 28. The shaded area is the complete basis function and the V_{j}, where $j=15,16,27,28,29,39,40$ are j th node basis functions for node 28 . The dashed line at node 28 has length unity.

In surrary, the Galerkiz procedure involves subdividing the dorain into finite elements, approximating the dependent variables by a linear corbination of low oreer polynorials anci substituting them into the equations. The equation is Tultiolied k a a test function, integrated over the entire domain and finally the resulting system of equations is sclited.
C. AREA COORIINAMES

Vhile the Cartesian coordinate system is the natural choice of coordizates for most two dimensional problems, it is not convenient when working with triangularly shaped elements. It is therefore necessary to define a special set of normalized coordinates for a triangle. Area, or natural coordinates as they are cormonly called, reduce the forridable task of integrating products between the basis and test fuactions and their derivatives over a triangular element and result in easily computable and exact expressions.

The following development is taken in part from the formulation by Zienkiewics (1971). Coasider the triangular elerent illustrated in Figure 4 . There is a one-to-one correspondence between the Cartesian coordinates (X, Y) and the area coordinates $\left(I_{1}, I_{2}, I_{3}\right)$ for the element. Let A denote the area of the triangle and A_{1}, A_{2} and A_{3} the areas of the subtriangles in Figure 4 such that $A=A_{1}+A_{2}+A_{3}$.

F1g 4. Cartesian vs. area coordinates

FMg. 5. Transformation to area coordinates

The relationship between a point $P(X, Y)$ in Cartesian coordinates and $P\left(I_{1}, I_{2}, I_{3}\right)$ in area coordinates can be seen ty the following transformations

$$
\begin{aligned}
& X=L_{1} X+I_{2} X+I_{3} X \\
& Y=I_{1} Y+I_{2} Y+I_{3} Y \\
& 1=I_{1}+L_{2}+I_{3}
\end{aligned}
$$

where

$$
I_{1}=\frac{A_{1}}{A}, \quad I_{2}=\frac{A_{2}}{A} \text { and } \quad I_{3}=\frac{A_{3}}{A}
$$

a 2 d

$$
\begin{align*}
& I_{1}=\left(2 A+b_{1} X+a_{1} Y\right) / 2 A \\
& I_{2}=\left(2 A+b_{2} X+a_{2} Y\right) / 2 A \\
& I_{3}=\left(2 A+b_{3} X+a_{3} Y\right) / 2 A
\end{align*}
$$

where $2 \dot{A}$ is twice the area of the triangle and the $a^{\prime} s$ and b's are defined as in Figure 5.

It is worth noting that every tuple ($\left.I_{1}, I_{2}, I_{3}\right)$ corresponds to a unique pal: (X, Y) of Cartesian coordinates. $I=F i f u r e 4, I_{1}=1$ at vertex 1 and θ at vertices 2 and 3. A linear relation exists between the area and Cartesian coordinates which implies that values for L_{1} vary linearly over the triangle with a value one at vertex i and a value of zero at vertices 2 and 3 ; and similarly for $\operatorname{ing}_{2} \mathrm{~L}_{3}$. This demonstrates how each component in the tuple (I_{1}, I_{2}, I_{3}) behaves over the triangle as do the linear basis and test functions over the element, as was seen in Figure 4. Clearly

$$
I_{i}=V_{i}
$$

where V_{1} is a linear function of the Cartesian coordinates (1.e. basis, test).

Zienkiewicz (i971) shows that it is possible to integrate any polynomial in area coordinates using the simple relationship

$$
\iint_{A} I{\underset{1}{1}}_{m}^{L_{2}^{n}} I_{3}^{p} d x d y=\frac{m!n!p!}{(r+n+p+z)!} 2 A
$$

where π, and p are positive integers and A is the elementary area. For an example of this integration technique using inner product notation, equation II-1z is evaluated as follows
$\left\langle\mathbb{T}_{j} \cdot \nabla_{i}\right\rangle= \begin{cases}\iint_{A} \nabla_{1}^{2} d x d y=\frac{2!8!\theta!}{(2+\theta+\theta+2)!} 2 A=\frac{A}{\epsilon} & 1=j \\ \iint_{A} \nabla_{j} \nabla_{i} d x d y=\frac{1!1!\theta!}{(1+1+\theta+2)!} 2 A=\frac{A}{12} & i \neq j\end{cases}$

The differential operations in area coordinates follow directly from the differentiation of (II-1E) where

$$
\frac{\partial}{\partial x}=\sum_{i=1}^{3} \frac{b_{1}}{2 A} \frac{\partial}{\partial L_{i}}
$$

and

$$
\frac{\partial}{\partial y}=\sum_{i=1}^{3} \frac{a_{1}}{2 A} \frac{\partial}{\partial L_{i}}
$$

\dot{H} explained earlier (see Equation $I I-16$), V_{i} is a linear function (ie. basis, test) which equals a component L_{i} of the area coordinate tuple. Therefore

$$
\frac{\partial V_{j}}{\partial I_{i}}=\left\{\begin{array}{lll}
0 & \text { if } & 1 \neq j \\
1 & 1 f & i=j
\end{array}\right.
$$

Consequently $\quad \partial V_{j} \partial x \quad$ for $j=1$ is
$\nabla_{j x}=\frac{\partial V_{j}}{\partial x}=\frac{b_{1}}{2 A} \frac{\partial V_{1}}{\partial I_{1}}+\frac{b_{2}}{2 A} \frac{\partial V_{1}}{\partial L_{2}}+\frac{b_{3}}{2 A} \frac{\partial r_{1}}{\partial I_{3}}=\frac{b_{1}}{2 A}$

As an example, consider the inner product $\left\langle V_{j x}, V_{i}\right\rangle$ at vertices $j=2,1=1$. This integration is evaluated as

$$
\begin{aligned}
\left\langle v_{2 x}, v_{i}\right\rangle= & \iint_{A}^{b_{2}} v_{1} d x d y \\
& =\frac{b_{2}}{2 A} \frac{1!\theta!\theta!}{(1+\theta+\theta+2)!} 2 A=\frac{b_{2}}{5}
\end{aligned}
$$

Therefore any inner product in the formulation can be readily evaluated using area coordinates. Another benefit of Msiag this coordinate system is that all of the inner products are functions of space only and need be computed only once.

III. SEALLOW MARER MCDEL

The zoperning equations for this model are derived by rekine several simplifying assurptions on the primitive equations 2 : motion, wish then give the barotropic shallow weter equaticns. Eowever, as rentioned previously, the shaliow water equations describe many significant features of the large-scale motion of the atrosphere, and therefore beve been usec in zurerous experiments over the jears.

The vorticity-divergence form of the equations has several advartages. H1lliams (1981) has shown that the zeostrophic adustment process is treated much oetter with the vorticity divergence formulation than with a direct trectment of the primitive fort oi the shallow water equations, such as was used by Kelley (1e7E). This formulation also allows the velocity components and the heizht to ce carried at the same nodal points, whereas the best schere for the orimitive form of the equations requires staggering of the fields, as seen in Schoenstadt (1980). The vorticity divergence form of the equations is also convenient for the application of semi-implicit differenciag, which saves considerable corputer time.
侸
A. GOVERNING EQUATIONS

The primitive form of the shallow water equations in Cartesian coordinates is

$$
\begin{align*}
\frac{\partial \phi}{\partial t}+D \Phi & =-\frac{\partial}{\partial x}(\phi u)-\frac{\partial}{\partial y}(\phi v) & I I I-1 \\
\frac{\partial u}{\partial t} & =-\frac{\partial \phi}{\partial x}+Q v-\frac{\partial K}{\partial r} & I I I-2 \\
\frac{\partial v}{\partial t} & =-\frac{\partial \phi}{\partial y}-Q u-\frac{\partial K}{\partial y} & I I I-3
\end{align*}
$$

Equation (III-1) is the continuity equation and the II -2 and III-3 are the momentum equations, respectively. The variables are defined as follows:

```
r,j - the spatial coordinates o: the domain
u,v - components of the wind vector
D geopotential = (gravity x free surface height)
I - mean geopotential = 49,000 meters}\mp@subsup{\mp@code{m}}{2}{/}/\mp@subsup{\operatorname{seconds}}{}{2
t time
z - kinetic energy
6 - absolute vorticity = (9 + fo)
S relative vorticity
& - coriolis force (mid-channel f-plane)
I iivergence
```

The shallow water equations can be written in vorticity divergence form as follows:

$$
\begin{align*}
\frac{\partial \phi}{\partial t}+D \phi & =-\frac{\partial}{\partial x}(\phi u)-\frac{\partial}{\partial y}(\phi v) & \text { III }-4 \\
\frac{\partial S}{\partial t} & =-\frac{\partial}{\partial x}(2 G)-\frac{\partial}{\partial y}(v G) & \text { III }-5 \\
\frac{\partial D}{\partial t}+\nabla^{2} \phi & =-\frac{\partial}{\partial x}(v G)-\frac{\partial}{\partial y}(u G)-\nabla^{2} \mathbb{Z} & \text { III-6 }
\end{align*}
$$

where III-s is the same continuity equation as III-1, III-5 is the rorticity equation and III-E is the diveroence equation.

3ecause of the vorticity divergence form of the equations, it becomes necessary to solve the time dependent variables S and $=12$ teris of Ψ, the strear function (rotational part of the wind), and X, the velocity potential ! ifvergent part of the wiad). The initial sields for the model will be in terms of Ψ, x and ϕ.

The followiag diagnostic relationships are defined and used later in the solution of the equation set.

$$
\begin{align*}
u & =-\Psi_{y}+X_{x} \\
\tau & =\Psi_{x}+x_{y}
\end{align*}
$$

Where the subscript imolies differentiation,

$$
\begin{array}{ll}
\mathbb{X}=\frac{u^{2}+v^{2}}{2} & \text { rinetic energy, } \\
\text { un } 6=u\left(9+\hat{i}_{0}\right) . & \text { III- }
\end{array}
$$

$$
\nabla 母=\nabla\left(\beta+\rho_{2}\right), \quad \text { III-11 }
$$

$$
\alpha=\not u_{u}, \quad \text { II I } 12
$$

$$
\beta=\not \emptyset v, \quad \text { III-13 }
$$

$$
\begin{aligned}
& \rho=\nabla^{2} \Psi, \\
& D=\nabla^{2} x .
\end{aligned}
$$

3. EGUATEON FORYUIATION

The Galerkir method described in Chapter II is now apolied to equations III-s through III-15. For ease of comprehension, the shortiand inner product notation as in II-12 will be used to simplify the equations. The detailed Galerkir formulation will be shown for equation III-?, the u component of motion. The rethod follows directly from the exarole in Chapter II of this thesis, which in turn follows in part from Zelley (1976) and Ealtiner and Williams (1981). Consider equation III-7 and assume that each variable u, Ψ and X is aoproximated by

$$
\begin{align*}
u & =u_{j} v_{j}, \\
\Psi & =\Psi_{j} V_{j}, \\
X & =X_{j} V_{j},
\end{align*}
$$

where the repeated sutscripts indicate summation over the razge of the subscript. Substituting these approxirate solutions into III-7 yieles

$$
\left.u_{j}{ }_{j}=\frac{\partial}{\partial y} \Psi_{j} V_{j}\right)+\frac{\partial}{\partial x}\left(X_{j} V_{j}\right)
$$

Since only the basis function V_{j} is a Eunction of space, III-17 rey befurther simplified by factoring out the tire dependent coefficients.

The next step requires multiplying by a test function T_{i} as discussed in Chapter II, and integrating over the area domain

$$
\begin{align*}
u_{j} \iint_{A} V_{j} V_{i} d A= & -\Psi_{j} \iint_{A} \frac{\partial V_{j}}{\partial y} V_{i} d A \\
& +X_{j} \iint_{j} \frac{\partial V_{j}}{\partial x} V_{i} d A
\end{align*}
$$

The final form in finer product notation is

$$
\left\langle u_{j} \nabla_{j}, V_{i}\right\rangle=-\left\langle\psi_{j} v_{j y}, v_{i}\right\rangle+\left\langle X_{j} V_{j x}, v_{i}\right\rangle
$$

where the double subscript implies differentiating with respect to the second subscript.

The three prognostic equations (III-4, III-5 and III-E) are similarly advanced using the Galerkiz technique to become, respectively:

$$
\begin{align*}
\left\langle\dot{\phi}_{j} V_{j}, \nabla_{i}\right\rangle+\Phi\left\langle I_{j} V_{j}, V_{i}\right\rangle= & -\left\langle\alpha_{j} V_{j x}, \nabla_{i}\right\rangle-\left\langle\beta_{j} V_{j y}, V_{i}\right\rangle \text { III- } z \ell \\
\left\langle\dot{\dot{Q}}_{j} \nabla_{j}, \nabla_{i}\right\rangle= & -\left\langle(u Q)_{j} \nabla_{j x}, \nabla_{i}\right\rangle-\left\langle(V Q)_{j} \nabla_{j y}, V_{i}\right\rangle I I I-2 I \\
\left\langle\dot{I}_{j} \nabla_{j}, V_{i}\right\rangle-\left\langle\emptyset_{j} \nabla^{2} V_{j}, \nabla_{i}\right\rangle= & \left\langle(\nabla Q)_{j} V_{j x}, V_{i}\right\rangle-\left\langle(u \in)_{j} V_{j y}, V_{i}\right\rangle \\
& +\left\langle\mathbb{E}_{j} \nabla^{2} \nabla_{j}, V_{i}\right\rangle \quad \text { III -2? }
\end{align*}
$$

where ∇^{2} is the Laplacian operator and the dot implies differentiation with respect to the time dependence in III-4, III-5 and III-モ.

Similarly, Galerkin equations are formulated for Equations III-7 through III-15.
C. MIME IISCREMIZATION

The equation set III-20, III-21 and III-22 is arranged so that all the terms on the left hand side can be treated implicitly, and all the terms on the right hand side can be treated explicitly. The explicit time integration will be done by the leapfrog difference method. To start the time integration, two forward half steps are taken, after which the full leapfrog scheme is used for the remainder of the forecast period.

The vorticity equation III-21 is solved independently from III-28 or III-22. However, III-28 and III-22 (continuity and divergence equations, respectively) are coupled. To explicitly solve either, decoupling of the equations is necessary. In this thesis this is done through algebraic substitution of III-22 (solved for $D(n+1)$) into III-20. Once the tire integration is performed on III-2 α, III-22 can be solved for $D(n+1)$ using the $\phi(n+1)$ value.

The final prediction equations are

$$
\begin{align*}
& \hat{p}_{j}^{n+1}\left[\left\langle\nabla_{j x}, v_{i x}\right\rangle+\left\langle\nabla_{j y}, v_{i y}\right\rangle+C\left\langle v_{j}, v_{i}\right\rangle\right]= \\
& -[\text { BuRY }]^{\mathrm{n}+1}-[\text { ELY }]^{\mathrm{n}-1} \\
& +C \phi_{j}^{r-1}\left\langle V_{j}, V_{i}\right\rangle-A \sum_{j}^{\left.n-\frac{1}{\left\langle V_{j}\right.}, V_{i}\right\rangle} \\
& -\phi_{j}^{n-1}\left[\left\langle v_{j x}, v_{i x}\right\rangle+\left\langle v_{j y}, v_{i y}\right\rangle\right] \\
& -2\left[(\nabla Q)_{j}^{n}\left\langle v_{j x}, v_{i}\right\rangle-(u \sigma)_{j}^{n}\left\langle v_{j y}, v_{i}\right\rangle\right] \\
& -2 \mathbb{z}_{j}^{n}\left[\left\langle v_{j x}, v_{i x}\right\rangle+\left\langle v_{j y}, v_{i y}\right\rangle\right] \\
& -3\left[\left(\phi_{i}\right)_{j}^{n}\left\langle\psi_{j x}, V_{i}\right\rangle+(\phi v)_{j}^{n}\left\langle V_{j y}, V_{i}\right\rangle\right]
\end{align*}
$$

where $A=4 /(2 \Delta t), B=A / \Phi, C=B /(2 \Delta t)$ ard $[B C R Y]$ is the geostrophic roundary contribution, see Section 3 .

$$
\begin{align*}
s_{j}^{n+1}\left\langle\nabla_{j} \cdot \nabla_{i}\right\rangle= & s_{j}^{n-1}\left\langle v_{j}, v_{i}\right\rangle \\
& -2 \Delta t\left[(u G)_{j}^{n}\left\langle v_{j x}, \nabla_{i}\right\rangle+(v Q)_{j}^{n}\left\langle v_{j y}, \nabla_{i}\right\rangle\right]
\end{align*}
$$

$\left.I_{j}^{n+1}, V_{j}, \nabla_{i}\right\rangle=D_{j}^{n-1}\left\langle\nabla_{j}, V_{i}\right\rangle+(\Delta t / 2)\left[\phi_{j}^{n+1}\left\langle\nabla^{2} V_{j}, V_{i}\right\rangle\right.$
$-\phi_{j}^{n-1}\left\langle v^{2} \nabla_{j}, v_{i}\right\rangle+2(v G)_{j}^{n}\left\langle v_{j x}, v_{i}\right\rangle$

$$
\left.-2(u Q)_{j}^{n}\left\langle v_{j y} v_{i}\right\rangle+2 I_{j}^{n}\left\langle\nabla^{2} v_{j}, v_{i}\right\rangle\right]
$$

After these three elliptic equations are solved, the history of the variables III-? through III-15 is updated.
A. large time step can be applied to this form of the shallow water equations due to the semi-implicit nature of the equetions. "his is very importazt since finite element methods generally require more computer ime per time step. The vorticity-divergence formulatica acts as a filter, which slows down the high erequency waves in the solution. The two-dimensional advective stability criterion for a linear element. deriped by Cullen (1973), was used to determine the correct time step,

$$
\Delta t=\frac{\Delta x}{|c| \sqrt{6}}
$$

Whereat is the time step in seconds, Δx the shortest grid spacinz in meters and c the fastest phase velocity.
2. COMPUTATIONAL TECENIGUES

The final prognostic equation set requires the solution of a "elrholtz esuation for $\not \subset$ and Poisson equations for Ψ and T. The rost cormon method of solution used by reteorologists has been the successive over relaxation method (SOR) in which an initial gliess of the solution is rade and then progressively improved until an acceptable level of accuracy is reached. Sok is employed in the solution of the equations, where III- 23 can be represented by

$$
\nabla^{2}[M]\{x\}-C[M]\{x\}=\{b\}
$$

and III 24, III 25 by

$$
\nabla^{2}[M]\{x\}=\{b\}
$$

where ∇^{2} tine Laplacian operator, $[M]=\left\langle V_{j}, V_{i}\right\rangle$ ratrix, $\{x\}$ - the dependent variable in vector notation, C - constant as in III-23 and \{b\} the right hand side of the equation or the forcing function.

The mass ratrix [M], dimensioned (axn), is a matrix of coefficients whose rows are the equations of the system to be solved. There exists a one to one zorrespondence retween the rows of the mass mairiz and the nodes of the dorain. Each equation has a term (colurn) for each node, where a non-zero term represents conaectivity. Nozes are connected if they are both vertices of the same element. Obviously [M] is a sparse ratrix containing the inner products for the
left hand side. Chapter \leqq of this thesis will describe the ratrix compaction procedure.

The forcing function \{b\}, ditensioned \{nxij, involves $0: 1 y$ variables at the current time step and is easily corputed using four very versatile subroutines described in detail in the next chaoter.

The initial guess to start Sor is the previous time step solution. Ax average of 30 passes per equation are reeded ?or each time step. The sulution is corsidered to have converged to its final value when the residual for each node has been reduced to some acceptably small ralue.

The diagnostic equations III-7 through III-15 must also be solved every time step. Eowever, the same techniaue is not used for these equations. Dr. M.J.P. Cullen suggested an urder relaxation scheme for which three passes over the dcmain should produce a solution of acceptable accuracy, siace the coefilcient matrix is so stromgly diagonally dominant. Nass lumping of the coefficient matrix is used for the first guess. This technique requires replacine the mass matrix [r] by the identity matrix II]. A Eirst 弓uess of this tyoe is able to describe most of the large scale seatures, which in turn reduces the numier of iterative passes over the field. Successire passes coaverge to solutions which describe smaller scale motion, approximately to the same order of magnínde as introduced by computational errcr, so that further iterations are not meeded.

ミ. GRID GEOMETRY
The dorain of this rodel is a cylindrical channel, with total length $0: 50 \leq 5$ 3m and wicth $0: 3583$ In. The channel sirulates a belt around the earth and it proves to be an excellent test bed for comparing with the finite element fortulaiions used by Zelley (1玉r€) and older (1981).

She domain is subdivided into equilateral triargles as shown in Eigure E. Most of the test runs for this thesis use a 1Exiz mesh which bas 156 nodes and 288 elements. This irplementation is not restricted to one grid oattern. The techaicue developed by older (1981) to vary the nodal georetry smoothly to achieve areas of deaser and coarser resolution is also implemented, as in a third grid pattern that varies the nodal geometry abruptiy. A short discussion ©: ihese nodal geometries with accompaning illustrations of each is preseated in Chapter YII, where the different iest cases are described.

Cyclic continuity is assured in the x directicr by wrapoine the corraiz around the earth to form a cyliudrical dorain. This has the advantage of eliminating the east-west boundaries and it simulates the flow around the earth. mhe $0: 1$ y boundaries cn this dormin are the norti-south walls and their treatreat will be discussed shortly.
电

E. INITIAL CONDITIONS

As meationed previously, the reformulation of the ecyerning Equations into the Jortioity-civersence shallow water equation set requires solvine the tire dependent variables in terms $0:$ the stream function and velocity potential. The contiauity equation is not altered, so that its solution is expressed in terms cip.

For the basic testing of the rodel's performance, simple analytic sinusoidal initial conditions are used to insure the rost accurate analysis possible and to simplify the comparisons.

The sinusoidal initial fields are graphically shown in Fipure 7 as 3 -dimensional surfaces. The geopotential field $\not D$ consist of a balf sine wave in the y direction and a single cosine wave in the x direction. The strear function Ψ, calculated by dividiag the geopotential fielc by the coriolis force, has the same physical structure as $\not \subset$. The velocity potential X bas a single size wave in the x direction and a half sine wave in the y direction.

These iaitial conditions are computed as follows

$$
\begin{aligned}
& \not \partial=f_{0} A \sin \alpha_{1} \cos \alpha_{2}-f_{0} \bar{U}\left(y-y_{m}\right)+\Phi \\
& \underline{y}=D / f_{0} \\
& X=\operatorname{cosin} \alpha_{1} \sin \alpha_{2} \quad \text { quasi-geostrophic divergence }
\end{aligned}
$$

Where A - arbitrary amplitude
$£_{0}$ - coriolis value for mid-channel latitude

a) \varnothing and ψ initial sields.

b) x initial field.

Figure - 3-dimersional view of the inital fields.

```
\(\vec{U}\) rean flow
\(y_{m}-\quad\) Tid-latitude value of \(y\)
i - mear free geopotential height
    \(=49,880 \mathrm{~m}^{2} / \mathrm{s}^{2}\)
\(\alpha_{1}-\pi y / \omega\)
\(\alpha_{2} \quad 2 \pi x r / I\)
r - wave mumber
W channel width
I - channel lengtr
\(C--\left(f_{0} \bar{U} \alpha_{2} B A\right) /\left(f_{0}^{2}+\Phi \bar{s}\right)\)
\(3-\alpha_{1}^{2}+\alpha_{2}^{2}\)
```


G. ECUNDARY CONIITIONS

3oundary conditions are only required on the north and south walls of the grid dorain. Due to cyclic continuity, the comain is wrapped around creating a cylinder eliminatirg the east and west boundaries. Eowever, careful attention to detail is needed during the implementation to assure this continuity. Separate boundary conditions are applied to each $0:$ the predictor equations III-23, III-24 and III-25. These conditions are computed for the wall nodes only and are apolied during each pass through the relaxation scheme.

The vorticity equation II-24, the most sensitive of the precictor equations to solve, requires Ψ on the north-south boundaries to remain corstant for the entire zorecast zeriod. Since this equation is solved in ierrs of \neq, the initial north-south Ψ values are saved and assigned to the
bcundery points after each pass through the relaxation subroutiae.

Fhe sroper boundary condition for the diveryence ecuetion III-25 would te $\partial x / \partial n=$. Fowever, for the purpose 0 : this study, there is more interest in the sinusoidal variation in the y direction and not in the region of the walls. Therefore $X=\mathcal{Z}$ is appropriate.

The cortinuity equation III-23, the most complex oredictor equation, requires that there be mo mass flux through the north-south walls. The seostrophic boundary coadition

$$
\frac{\partial \not \partial}{\partial y}=-u f_{0}
$$

Is apolied to the north south boundary nodes for the terms [EIPI] in equeticn III-23. Integrating the inner product $\left\langle\chi_{j} r^{2} V_{j}, v_{i}\right\rangle$ by parts produces the boundary terms
$\iint_{y x} \nabla^{2}\left(\eta_{j} V_{j}\right) \nabla_{i} d x d y=\iint_{y x} \nabla \cdot\left(\nabla \partial_{j} \gamma_{j}\right) V_{i} d x d y$

$$
\begin{aligned}
& =\iint_{j X}\left[\nabla \cdot\left(\nabla_{i} \nabla\left(\phi_{j} \nabla_{j}\right)\right)-\nabla\left(\phi_{j} \nabla_{j}\right) \cdot \nabla \nabla_{i}\right] d x d y \\
& =\oint \nabla_{i} \nabla\left(\phi_{j} \nabla_{j}\right) \cdot \hat{n} d r-\iint_{j x} \nabla \nabla_{i} \cdot \nabla\left(\phi_{j} \nabla_{j}\right) d x d y
\end{aligned}
$$

$$
=\lceil 3 D R Y]-\emptyset_{j}\left[\left\langle V_{j x}, V_{i x}\right\rangle+\left\langle V_{j y}, V_{i y}\right\rangle\right]
$$

where \hat{i} is a unit vector normal to the dorain and dr is the differential distance along the path of integration on the perimeter ci the domain.

The geostrophic boundary condition III-3z is substituted into the contour integral in equation III-31 ana put into Galerxi: fort, in the same way as in the one-dirensional advective equation in chapter II. The resulting term is derived as follows

$$
\begin{aligned}
\left.\oint V_{i} \nabla_{i} \phi_{j} v_{j}\right) \cdot \hat{n} d r & =\oint \frac{\partial}{\partial y}\left(\chi_{j} v_{j}\right) V_{i} d x \\
& =\frac{\hat{D}_{0} \Delta x}{3}\left(u_{j+1}+2 u_{j}+u_{j-1}\right)_{i} \text { III -32 }
\end{aligned}
$$

Equation III-32 appears twice in the continuity equation III 23, for time levels $(n+1)$ and $(\eta-1)$. All values of u are known or time (n-1), since they are saved from the previous calculations. However, $u(1+1)$ has not been computed. To solve fo: $k(n+1)$, both $\Psi(n+1)$ and $X(n+1)$ are needed. $\Psi(n+1)$ is solved first from the vorticity equation. $X(n+1)$ needs $\phi(n+1)$ as part of its solution and $\not \partial(n+1)$ needs $u(n+1)$ in its solution. To avoid this problem, it is assumed that $X\left(n^{+}\right)$has a negligible contribution to the solution of $u(=+1)$ and only $\Psi(2+1)$ is used.

Fhe Eo moulation anc general theory of the finite elerent method was presented in the previous chapters. The objective ir this chapter is to discuss sore important computational aspects perteining to the irplerentation of the finite elerez: prediction syster.

The mair advantage that the finite element method has over other precictioz techniques is its gezerality. Coraeptually, it seems possible by using many elements, to approxirate virtually any surface with corplex boundaries Eac initial conditions to such a degree that an acourate scluticn can be octained. In practice, however, obvious engineering Iimitations arise, a most important one being the cost of the corputation. As the number of elements is izcreased, a lazger arount of computer time is required for a Eorecast. Eurthermore, the limitations of the program and tine computer ray prevent the use of a large number of elements. These limitations may be due to the computer speed arc storage availability, or round-offerrors propagated in tie computations because of fiaite precision arithretic. Also, the malfunction of a hardware component, if tie predictiol is carried out using rayy corputer hours to execute, can be a semious problem. It is tierefore desirable to use efficient finite elerent programs.

The effectiveness of a program depends essentially or the following fectcrs. Eirstly, the use ofeficient finite elerent techniques is important. Secondy, efzicient prograrting rethods and sophisticated use of the available corputer hardware and software are important. The third very irportent aspectin the developrent cf a finite elerent Deozerr is the use of appropricte numerical techniques.

The varticity-dimergence model described in the previous chapter is irplerezted on the I3M 3033 computer located at the Naval Postgraduata Schcol. Some notable features of its architecture are the three trillion bytes of virtual rass stosage, o: which eight mega bytes are available to each user, and the E7 nanosecond machine cycle time. The model is executed rostly using a 12×12 element domain requiring $422 k$ bytes of storage and 37 seconds of CFU tire to execute. Ereeeding execution time and/or available storage is not a problem, in fact the syster allowed a lot of flexioility Curing the irplemeatation phase of the rodel.

The source code is written using FORTaN IV ard compiled 0 コ 2 optimizing Fortran E compiler. Appendix A contains the source code listing. which is divided into five subdivisions delsaeatiag the logical structure of the program.

A. PROGRAM ARCEITECTUZE

Prograr features incorporated in the model are:

1) Modularity. xith orly a few exceptions, each rodule is limited to one page of EORTRAN code. This makes it
easier to comprehend the program．Each module perforns only one task．Fcr example，subroutine CONTEO computes the value 0 ：ine forcing terrs for the aontinuity equation．Iizewise there is also one rodule for the divergence and vorticity equミtions．－O irplerrent a new set of equations，only these rodiles would have to be altered．

E！Eesily controilable switches．Switches ray be set
 rost of tiae available fields．The ability to display intermediate results allows each portion of the algorithm to te ronitored por computational adiustments．This aiso makes it easier ：or unfamiliar users to oecome acouinated with the corputational rodel．

3）Forciag term subroutines．In previous irplementations．each forcing term was calculated by a special subroutine．In this implementation，the calculations are accomplished by general purpose routines which sirplify the irplementation of the corpler prognostic equations．This allows implementation o different equation sets（i．e．子aroclizic Nodel）over tie sare domain with rinimal effort．

〔）Docurentation．Each Jariacle is defined by a short prazse（fopendixA，A．）．The function of eack rodile is described in an introductory paragraph．Shared data is placed in aared commoz blocks and ideatified with each surroutize which uses them．A subroutine index is given．

Fhe main program is short, calling only six modules winch reflect the basic sequential flow of the rodel. It stauts with initialization of all model parareters (i.e. rodel options, dorain, finite element arrays, inner neociucts). It then initializes the input fields (i.e. gEcpotential beights, strear function and velocity potertial! and is followed by initialization of all remaiaing dependent variables. At this time the rodel is totally initialized and time integration begins. As rentioned previously two techniques are employed for time integration, each having its own module. Upon completion of the last forecast, the program terrinates.

Arrays are the only data structures used and are zrouped using is different common clocks. Several arrays are used as statio link lists, as described in detail later, which sirpiffied the algorithms. The commoz block format has the advantage 0 : reducing the overall execution-tine of the prcerar. Nost of the arguments passed during a call to a sıoroutize are comtained in conron. This requires less time :0 Execute since no parameter passing is required for the erfurents. inother bezefit of this format is that the coce beaotes less curbensome and more readable. Each variable and玉r:ag is defined in thefirst subsection of Appendix A along with a paze index for the subroutines.

2. Initialization Phase

Appendi: A. Section C contains all the subroutines used durinz the initializaticn pnase of the program. From the user point of view, the most important suoroutine is IMIGミ, the first subroutine called, winch contains all the Elobal variailes that control the different options arailabie per run. This is the only subroutine that is changec to run the differeat experiments, assuring that no rew computational technique is introduced. The selection of options are:

1) - channel location - the channel may be shifted north or south by presetting the north/south latitude limits in INITG3.
2) - variable geometry - the node positions may te srouped for more dense node patterns to yield higher resolution. Two variatles Ri and 22 set tine ratio used to vary the spacing -along the x and y-axes, respectively.
3) - initial field wave length and amplitude can ke altered to produce varions effects.
4) chaュge the initial mean Ilow.
5) - Eiffusion can ce entered for any of the three prognostic equations.
E) - maximum length of sorecast period may be changed and a priat, plot or harronic
analysis of any deperdent variable may be requested for ayy time interval.

Orce the experitent is determined, the options listed above are set. She prograr is ready to be executed.

The largest part of the initialization piase =onsists 0 f establisifg the domain and producing all the finite elerent computational vectors that remain constant throughout the experiment.

The first several steps in setting up the domain are concerned with indexing. Subroutine CORRES is called first, where all the nodes (grid points) and elerents (triangular areas; are numbered consecutivel: starting at the southwest corner of the domain and moving eastward across each row or latitude. For each element, arecordof allof its nodes (vertices) are stored in array ILMINT (M, z), where Mis the totel number of elerents. To facilitate the inner product evaluation later, a local numbering system is required for each elerent. That is, for each element, its nodes are stored counterclockwise in a positive sense. Mhe first node howfver, is arbitrary.
itith the comain divided and nurberec, a connectivity list (the correspordence oetween each noce and the neishbor godes) is coastructed for each mode by subroutine CORRII. Each node is adjacent to four or sit other nodes depending 02 whether it is a boundery or interior node, respectively. These adiacent noces, olus itself, make up the connectivity
list for oze zode. The conyectivity lists are the concatenated sequentially starting with the first nodes coneectivity ilst izto the vector NAME (NN), where $N N$ is the sum of the nodes in each connectivity list. (i.e. for a $12 \pi 12$ dorain with 156 godes, and equilateral elements $N N=$ 1744i. ミor the first time during the initialization phase, spezizl attention is givez to cyclic continuity. As discussed earlier, cyclic continuity is the joining of the east and west boundaries to create a cylindrical channel. The connectirity list for these east/west bcundary nodes rust be corplete to izsure proper contiauity for the calculations later.

The connectivity vector NAME is frequently used during most computations. Two utility vectors ISTART (containing the starting locatica in Naris for a particular node) and NuM (containing the number of nodes in its congectivity list) are used to locate and index through the vector NAME, as will be seez shortiy. mhis same techaque is used to index through the coefficient matrices and used durine most of the mode interaction computations.

The physical properties of the channel are calculated next in subroutine Cヨanal. Fere the north and south latitude boundaries, which were pre-set in INITGE by the user, are used to compute the grid spacing along the x and y axis. Since this channel simulates a belt around the earth. the ragnitudes of both IEITAX and IFITAY (meters) are
proportional to the widt of the channel divided by the zurieer of grid points in the y axis.

The Cartesian coordiaates for each node are computed by subrcutine LCCATE LSing the DIITAK and IEIPAY calculated In CEANAI. If the option to use varyirg orid geometry is desired, subroutine TRANS transforms the grid georetry. TRANS als computes the corresponding new cartesian coordinate values for each grid point and calculates the Tinimur IEITAX and IEITAY within the dorain. When the gecretry is changed to create a sraller DELTAX or IEITAY, the two dimensional advective stability criteria is also charged. A new tire step DT has to be computed using equation III-2E. Siace TRANS transforms the seoretry, it also comprites the new IT.
Another transformation is required as discussed in

Chanter II. The transformation from Cartesian coordinates to area coordinates is needed to perform the area integration 0: the inner oroducts. Sub-routine AREA compries these transformations exactly as outlined in Chapter II, Section C. Again cyoilc continuity is very important and special care is needed to insure proper tramsformation.

Eollowin5 the area transformation is the computation of all the inner products that are required to solve the equations. Fine advantafe of using area coordinates is that the inner prodricts (Eunction of space coordinates only) are corputed and stored cace and used repeatedy without
Clenelen
2

recミloulation. Subroutine INNIR computes and stores these products $u s i n g$ the formulas deriped in Chapter II.

The soefficient matrix, dimensioned $N x N$, where N is the total number of nodes, is a matrix of coefficients whose rows are the equations of the sjster to be solved. As iiscussed in the corputational technique section, the rerters of this sparse matrix are the inner products for the left hend sides of the equations. Three coefficient ratrices are used in the solution of the equations. The diagnostic equetions (III-? through III-15) use a coefficient matrix With the izuer product $\left\langle V V_{j}, V_{i}\right\rangle$ which is constructed by subroutine Ammaxi and stored in compacted form in vector G(NN) by subroutine ASEMBL. Eowever, whem solving the prognostic equations, these coefficient matrices have a DT (tine step in seconds) term, so that these matrices are not asserbled until the time integration begins. The vorticity aュd divereence equations (III-24, III-25) use the coefficieat matriz $\equiv(N i N)$ with inner products $\left\langle V_{j x} \cdot \nabla_{i x}\right\rangle_{0}+\left\langle V_{j y} \psi_{4 y}\right\rangle$ in solviaf the Eoissou equations for the strear function and velocity potertial. respectively. The continuity equation (III-Ez) uses a corbination of ianer products in its coefsicient ratrix I(NN) as Eollows

$$
\left\langle V_{j x}, V_{i x}\right\rangle+\left\langle V_{j y}, V_{i y}\right\rangle+\frac{4}{\Phi(\Delta t)^{2}}\left\langle V_{j}, V_{i}\right\rangle
$$

to solve the Eelrholtz equatioa. At the start of each time integration rodule, subroutine AMTRX2 is called to construct ihe two coefficient ratrices 5 and F.

These kanded and sparse ratrices are corpacted into vectors to save storage during their assemblage by Asimbl. The vectors are dimensioned $N N$, as is NAMP, the connectivity vector, and both use ISTART and NUM to index through ther. Inis corpaction routine was used by $\mathbb{B} \in l l e y ~(1976)$ and Older (19Ei) in their rodels, but was ceveloped by Hinsman (1975).

To illustrate ratrix asserblage using an elerent by elerent techaique, consider Figure 8. Note that this illustratioz is for element number 3 , but all elements are treated il a similar raner. The computational technique required that for each point (node) describing element 3 , namely nodes 2,3 and 14 stored iz arrag ILMENm, the inner groduct $\left\langle V_{j} \nabla_{i}\right\rangle$ between those points be distributed to their proper location in the coefficient ratrix.

Subroutiae AMTREi builds the inner product nodal. interaction and stores it in matrix 3 , dimensioned $3 x 3$. Eigire ε illustrates the 3 matrix for element 3 , where the ianer product $\left\langle V_{j}, V_{i}\right\rangle$ is the multiplicand of the correspording basis and test functions, respectively.

Tine local dispensing of interactious is doae in $A S E \mu E L$. Consicer the second row of [B] in Figure 8. These are the interactions between node 3 of element 3 to the test
duTRX - builds [3] For ore element, passes [3] and the element number associated with [3] to ASEMSL. This process continues $t 111$ all element node interactions are assembled in the coefficient matrix.

$$
[B]_{3}=\left[\begin{array}{lll}
v_{2} v_{2} & v_{2} v_{3} & v_{2} v_{14} \\
v_{3} v_{2} & v_{3} v_{3} & v_{3} v_{14} \\
v_{14} v_{2} & v_{14} v_{3} & v_{24} v_{14}
\end{array}\right]
$$

ELMNBR $=3$

ASEMBL - assembles the node interactions into the coefficient matrix [C] , which has the same structure as NAry. The following diagram assembles incr product $V_{3}{ }^{\gamma}{ }_{14}$ into the coefficient matrix [C], for element 3 .

ELDEST

ASEMEL pseudo-code

$$
\begin{aligned}
& \text { AST(11) } \\
& \begin{array}{r}
2 \\
3 \\
14
\end{array} \\
& f(k k=j j) \text { then } \\
& C(j)=C(j)+B(1, k) \\
& \text { else continue } \\
& \text { do } \\
& \text { do } \\
& 1=1 \rightarrow 3 \\
& \text { do } j=\operatorname{START}(11) \rightarrow \operatorname{LaST}(11) \\
& j=\operatorname{ZAME}(j) \\
& \begin{array}{l}
k=1 \rightarrow 3 \\
k k=\operatorname{ELMLT}(k)
\end{array}\left\{\begin{array}{c}
2 \\
3 \\
14
\end{array}\right. \\
& C(j)=C(j)+B(1, k) \\
& \text { le continue }
\end{aligned}
$$

START (3)

Figure 8. Assembling and storing the coefficient matrix for element 3.
functicas. ASIMBL locates aodes z^{\prime} s connectivity list in NAME usiag ISTART and NUM. In Figure 8 , this iist is deiineated by START(3) and LAST(3). Now ASEMBI steps through the connectivity list for three iterations. Iuring each pass. AS ExEI is searching for one of the three node numbers for element z. When a ratch is found with one of element 3 's nodes (i.e. 2,3 or 14) and node 3 's connectivity iist (i.e. 3.2.14.15 or 4) the proper position, to which this interaction is to be added has oeen found in the coefficient ratrix. Siace NAME and vector C, the compacted coefficient ratixu. are dimensioned identically, the sare pointer (i.e. i 1: Figure ᄅ) is used to index through both arrays. This procedure is repeated for all elements in the domain to esserble the coefficieyt ratrix of the equatiozs. The pseudo-code for ASEMBL is shown in figure 8 to facilitate steppizg through this example.

The domain and all finite element work vectors are initialized at this poizt. Subroutize ERMSDT is called later to compute interpolation points for the harmonic analysis subroutines.

The last Thase of the iaitialization process is the iritialization of the dependent variables. The tinee input fields zeopotential heights, stream function and velocity potortial are computed ir subroutine IC using the equation set III-30. Eowever, the variakles calculated fror the diagnosifc equations have to be computec using the input
fieids. These variables are used during each tire step while solvize the orognostic equations.

The di̇gnostic equations are solved in subroutine DEPViP, first during the izitialization ohase and later durinz the time integration phase. Each diagnostic equation calls its ow = module to compute the value of the forciag Eun-tion ard stores the somputed values in the vector RES. Ghese equations all use the same coefficient matrix whea solving the diagnostic equations. Subroutine SOLVER is sufficiently genereal to solve each equation. SOLVER uses vector RES and coefficient matrix G to under-relax towards the solutioy. As meytioned previously, the coefficient matrix is strongiy diagonally dominant so that three passes over the domaia are sufficient. At the end of DEFVAR, output is generated depending on what prizt, plot, or harmonic ayalysis coatrols were preset.

This corpletes the initialization pase of the model aad the program for the forecast phase will be described rest.

3. Torecast Phase

The forecast phase is accomplished in two steps. The Eirst time step is rade using two half steps by subroutine MAZZNO. Eere ihe prognostic coeificient matrices are constructed using half the ET value by calling AMTRXZ. AMPRXZ uses the same computational technique to construct the coepiicient matrices as described for AMTRYi.

Non

b

$12+2$

+20

Each of the prognostic eouations III－23，III－24 and III－25 calls its own subroutine（CONTIC，VORTEQ and IIVEG Eespectively to compute all the terms on the right hard sice，which are stored in the vector ？ for EES are completed，subroutine PEIAX solves the equations cy cuer－relaxation as described in the computational techniaue 1 ．Chapter 3 ．Once the solutions for the $(n+1)$ tire step are completed，DIPA？is called to update the variables fror the diagnostic equations．Two passes through MATZNO advances the solution fields one time step．

Tie remainder of the forecast period is integrated using the leapfroz scheme．Sujroutine LIAPFR performs this 1ategration usiag the identical format as vapZNO，except that IT equals two DT．At preset ifmes as specifiedin INITGE，the different fields are saved for printing．This prozess continues until the final iorecast time is reached．

き．UTILITY VOIULES
Orce the equation formulation is completed，as in Shapter III，all the inner products and types of integrations are znown．Versatile modules can oe written to perforr these corputations．Consider a term of general form $\left\langle A_{j} J_{j}, V_{i}\right\rangle$ where i is the node about which the term is evalucted and the j＇s are the nodes connected to node i，or the surrounding zodes．The inner product values $\left\langle v_{j}, V_{i}\right\rangle$ are aIready corputed and stored for all the nodes，during the £ュ亡：さまlization grase of the rodel．

The remaining computation to compleie the evaluation of this term is the multiplication of the scalar coefficient of A at node : with the corresponcing inner procuct $\left\langle V_{j}, V_{i}\right\rangle$ for gode \therefore. Fhis requires indering through node i's connectivity list stored in vector NAME, and for each node in the list rultiply anc total the products. The curulative sum of these riltiplications is assigned as node i's contribution for this terr. Subroutine TERMZ performs this exact computation. All thet is passed to PERM3 is the scalar field A and the sipn of the inner groduct, Tarmz then computes the contribution for each node in the domain and accumciates it in the work vector PES.

Ehree other utility modules are; TERM1, which computes the first scalar milifilication for triple inner products (i.e. $\left.\left\langle A_{j} \nabla_{j} 3_{k} V_{k}, V_{i}\right\rangle\right)$. The product $\left\langle V_{j} V_{k}, V_{i}\right\rangle$, is again already corputed and stored by subroutine inNER. TERM1 computes <3 B_{j} ${ }^{7} k . \nabla_{i}>$ and constructs a compacted vector similar to the coefficient matrices. This reduces the effort of multiplying the second scalar to a IERrz somputation. TERMZ computes gode interaction of the following type $\left\langle\hat{A}_{j} \nabla_{j x}, V_{i x}\right\rangle$, where both the basis and the test functions are derivatives. Lastly, subroutine TERM, computes noce interaction for terms as <a $\mathrm{V}_{j x}$, V_{i}, where only the basis function is a derivative.

When eramining the right hand side of the equation sets III-zz, III-24 and III-25, it is obvious this implementation is a subsoripting rightmare; however, the use of tie utility
modules TERM:. TERM2, TERM3 and TERM4 simplifies the irolerentation to only determining what order to call the utility modules. Examination of suoroutines conteg, VCRTEG aこd IIVฐ6, which compute the right hand sides for III-23, III-24 and III-25 respectively, illustrates this fact. No other subroutines or calculations were reauired. Itplementation of these equations required minimal effort.

Y. PRIMITIVE MODEL EXPERIMENT

The previous two chapters presented the detailed formulation and irplementation of the vorticity-divergence. shallow water equation rodel. The resulis frot this model will be compared with the results From the primitive model in Chazter VII. To facilitate interpretation of the corparisons, a brief descriotion of the primitive mociel follows. See Zelley (19?E) for a detalled discussion of the entire rodel.

Also presented in this chapter is an experiment which deronstrates significazt frproverent of the solution from the primitive model. Kelley's implementation used elements wifch were right triangles. Older (ig81) showed that equilateral elements are far superior to triangular elereats. This experiment re implements the primitive rociel Lisine equilateral elements and a comparison is made between the results of both implementations.
A. VOIEL EISCRIPTION

A form of the barctropic, shallow water, primitive equations cereloped by Phillips (1959) is used as the rovernize equation set for this model. In cartesian coordinates the equation set is

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial t}=-\frac{\partial}{\partial x}(u \phi)-\frac{\partial}{\partial y}(v \varnothing) & v-1 \\
\frac{\partial u}{\partial t}=-\frac{\partial \emptyset}{\partial x}-u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}+v f_{0} & v-2 \\
\frac{\partial v}{\partial t}=-\frac{\partial \emptyset}{\partial y}-u \frac{\partial v}{\partial x}-v \frac{\partial v}{\partial y}-u f_{0} & v-3
\end{array}
$$

The finite element formulation of this set of equations evaluates the height and velocity components at the same nodal points. This is an important consideration, because the other models (the linearized model, see Chapter VI, and the vorticity-divergence rodel, see Chapter III) either stagger the dependent variables or have the property of a staggered formulation. When comparisons ara made between the rodels. it is this lattice structure that is being compared.

This for of the shallow water equations includes gravity waves as a solution. Sravity waves have a raximum phase speed of about $3 \varnothing 0$ reters/second. When the correct time step is calculated using equation III-26, a constierably smaller tire step is obtained corpared to the larger time step permitted in the vorticity-divergence Cormulation. This is an important ieature. If solutions from all rodels are equally as good, the best formulation would be deterrined using the computational time required to procuce the desired forecast.

All Todels use the same domain structure. In Aact, the dcrain described in Chapter III was patterned after the domain implemerted by Zelley. Azaia. this domain simulates a belt arouad the earth, with oyclic continuity which eliminates the east-west boundaries. Rigí boundary walls Exist at the equator and at zo degrees north latitude. The comain is composed of a $12 x 12$ point mesh and subcivided into the rigtt triaggular elements illustrated in figure Θ. Notice that the 弓rid points are not shifted as in the Equilateral element implementation shown in Figure \in.

The sollowing boundary conditions are imoosed:

1) - 20 cross chanzel flow at the latitude boundaries.
2) - a geostrophic balaace at the channel walls irposed on the continuity equation $V-1$.

This rodel has a simple second order diffusive term in the equations of motion $V-2$ and $V-3$. However, for the purpose o: evaluating these different formulations, this ootioz was not irplerreated during the comparison phase.

Initial conditions consist of a single wave in the x direction and a half waveiu the J direction. The initial fields ?or the three dependent variables are shown in Eizure 12. She raxitum zoyal wizc perturbation of 5.5 meters/second is superimposed on a mean zonal flow of 10 meters/second.

Figure 10. Initial fields for the primitive model. Both the x and y axes are multiplied by $10^{4} \mathrm{Km}$.

This Gursory description of the primitive rodel mentions coly those significant features that will weigh heavily in the corparisions later. The Galerkin implementation of this rociel is sirilar to that preseated in Chapters II and III and the system of equations is solved using a Gauss-Seidel iterative procedure. Further details concerning this primitive model are giver in Zelley (1976).
E. 2ISULTS

This experiment involves the shape of the elements. As rentioned previously, Kelley's implementation subdivides the domain into right triangular elements, as illustrated in Fifure \subseteq. Considerabie smali-scale noise was observed by zelley in the 43 hour forecast solution.

The transition from right triangles to equilateral triazgles changes the size of the comain. hith right triangles. the Δx ard Δy grid spacings are equal (J $\lambda 0$ KM). A 12×12 grid matrir has a leagth add width of 360 JM. With equilateral trianzles, thesx and Δy grid spacings are no lozzer equal. Arbitrarily, the Δy grid spacing is held constant ($3 \partial \partial$ zM) and a new Δx sid spacing computed by

$$
\Delta I=\Delta y / \cos (30)
$$

A 12 ± 12 grid ratrix with equilateral elerents has a widh of 3680 RM and a leagth of 5845 RM.

Eigure 11 contains the 48 hour forecasts produced using both types of elements. The three depeadeat variables fields

Figure 11. 48 hour forecast comparison from the primitive model using both right triangles and equilateral triangles for element shapes. Arbitrary perturbation amplitude of $5.5 \mathrm{~m} / \mathrm{s}$.
are compared for each. The small-scale noise that Eelley cbserred is present. The three fielcis show varyine degrees oz iistortions, which are especially noticeable alorg the boundarís.

Older (1981) found that theroot rean square error (RMSE) was reduced 22 percent by using equilateral shaped elements. mhis irprovement is appareat on viewing Figures 113, dand :. The contours are smooth and the boundaries are noise free. Zelley showed excellent treatment of wave propazation by this primitive model. The lowest resolution 5:id 'Ex6) tested by Zelley was within four percent of the true phase velocity. Changing the Elerent shape nad no apparent effect on the phase velocities.

Eecause the outcore of this experiment was a sigaificaztly irproved forecast solutiou, future comparisoas With the primitive model will be rade usigg equilateral elereats.

Mife revious chayter jeronstrated how the sreve of ine

 on ミ íreanizec eguatior set th aroauce exaellent solutions When シpplied to the gecstrophic adiustrent wrotler．

ミŋミtial stageorine of iepenaent variables in finite ¿ifニerence formulztions has given Muca better solutions to the zeostrophic aciustrent orocess，and these forrs are ＊itel＂used in reteo：olosy．Schoenstact il98民）シound sirinar resuits with finite elerent formulations with piecewise lingan basisf：nctions．シ̈onever，stazjering nodal points is Act a convenient reirod to implerent，espeaialiy in too－qitersionswith inregular opundaries，so aliennaこive snheres are needed．
－ne irglerentation of the alternative sonere intrciucei Ky Oilliars ane Zienkiewicz（1ミ\＆1）are presented ia tais

 0 the besis functions is ziecewise linear，while the other is piE－EAiseccostant，as is illustratecin Eipure 1？Ecr a ore írensioral domain．

a) Piecewise linear basis function.

b) Piecewise constant basis function.

Figure 12. Different shaped basis functions.

$$
=1
$$

A. IGUATION piformulation

The primitive form of the shallow water equations oresented in Chapter $V(V-1, V-2$ and $V-3)$ is used to derive the linearized equations needed for this experiment. The velocity equations $V-2$ and $V-3$ remain unchanged and a linear basis function (j_{j}) is used to approsirate the u and v variables.

The continuity equation $V-1$ is linearized as follows:
where is the average geopoteatial over the domain. A ofecewise constant basis function (${ }_{j}$) is used to approximate the geopotential. This linearization is reasonable in this case because the Rossioy radius of de?ormation $\$^{1 / 2} /$ ois ruch larger than Δx [see Williars and Zienkiewicz (1981)]. The Galerkin method= is applied to this linearized equation set using a piecewise linear test function for $7-2$ and $V-3$, and a piecewise constant test function for ∇ i-1.

The ofecewise constant basis function has the property of displacing the geopotential to the centroid location of the elements, which should give the same eefect as stagering the grid points, as seez ia Figure 13. The density of geopotential data in the domain is now greater

Figure 13. Staggering of the geopotential
about the velocity. The a symbol are the
actual grid point locations and the symbol
the centroid location of each element.
than the density of the velocity data. Instead cf a geopoten:ial value for eack noce, there is one averajea value crer each Elerent.

The fina! form of the Galerkin equation for VI-1, $V-2$ and V-z after performing the time differencing is:

$$
\left.-v_{j}^{n} u_{k}^{n}\left\langle v_{j}, v_{k y}, v_{i}\right\rangle-f_{0} v_{j}^{n}\left\langle v_{j}, v_{i}\right\rangle\right]
$$

$$
\begin{align*}
\nabla_{j}^{n+1}\left\langle V_{j} \cdot V_{i}\right\rangle & =\nabla_{j}^{n-1}\left\langle V_{j}, V_{i}\right\rangle-\Delta t\left[\partial_{j}^{n}\left\langle V_{j y}, V_{i}\right\rangle+u_{j}^{n} v_{k}^{n}\left\langle V_{j}, V_{k x}, V_{i}\right\rangle\right. \\
& \left.+\nabla_{j}^{n} v_{k}^{n}\left\langle V_{j}, \nabla_{k y}, V_{i}\right\rangle-f_{0} u_{j}^{n}\left\langle V_{j}, V_{i}\right\rangle\right]
\end{align*}
$$

This linearized set of equations VI-2, VI-3 andVI-4 is solvec using a jauss Seidel iterative orocedure. It is worth Pentioning that the coeficicient matrix 〈'N, $\left.N_{i}\right\rangle$ in equation TI-z has all non zero coefficients equal to one, since the integration of the inner product $\left\langle\mathfrak{x}_{j}, W_{i}\right\rangle$ involves piecewise constant functions.

Fhis equation set is implemented rather than the Eouction set $\because-1, \quad T-2$ and $v-3$ using all of the existing orimitive rodel vode. The major mocificaiion involved the way that the geopotential was referenced. iith an average goopotential over each element instead of a value at each node for a $12 \mathrm{z12}$ resh, there are 288 geopotential points versus the 1三e velocity (u,v) poi=ts.
E. PESULTS

The results from this linearized model are compared to those from the primitive model. The initial field for this experiment, Fizure 14 has a maximium perturbation zonal wiad that is one fifth of the value used in Chapter V, Figure 10. The reaz zonal wind remains 10 meters/second. The 48 hour forecast solutions for each ileld are compared in Figure 15.

This alternative formulation shows some promise, althourh there are some minor perturbations in these contours compared to those in the primitive solution. No explanation is offered for this small-scale yoise, although possibly the other forfulations preseated by willams and Zienkiewicz (1981) would improve the solutions.

Figure 14. Initial fields for both the primitive model and the linearized model.

NOT AVAILABIE
B) \varnothing LINEARIZED

Figure 15. 48 hour comparison between the primitive model and the Linearized model. ($A P A=1.1 \mathrm{~m} / \mathrm{s}$)

サII．VORMICITYーIIVERGENCE MCZEエ EXPERIMENM

\therefore í the nrevicus two chapters，a corparison retween ：wo models will be presentec．The results from the vorticity－divergence rodel are corpared to the resultsform the primitive model．To fully exploit the differences between the models performances and indicate the strengths and weaknesses of each formulation，three domain feometries and three initial conditions are ised．All solutions are at Łe hou：．except Eor one case which was extended to go hours． Eror these two finite elerent forrulations sore additional insight is obtained converning the erecution time recuired as the grid resolution chages．Lastiy，a brief むiscussion on the sensitivity o the computational technique is ziren．

A．IES：ZOMAINS ANE INIMIAL CONIITIONS
The three dorain georetries used in the model evaluation are illustrated in Figure 1E．All dorains consist of a 1zx 12 Elerent resh with equileteral shaped elements（1Ee grid ooints anc \quad äclic continuit：is iroosec on tie east anc west boundaries．Fhe domain has dimensions of 4045 ZM $\exists 10 \mathrm{ng}$ the x Exts and 3543 KM alone the y axis．

The regular zomain（Iiguro 1धa）has a uniform iistribution of zrid points，with a rinimur grid spacing

Figure 16. Test domain geometries.

Zlong the x axis of 337 KM. Whis is the rost ongeridal dotein and orocuces the best results.

Fine smocth dorain (İzune 103) has a smoothly varinng Ziscibution of grid zoints. Tris techaique allows a srooth va:iation of resolution. It was developed by older (1ミع1). Who showed kow it significantly recuced roise at all reọuencies compared with other variable jriz domains.

Fhe degree of resclution variation is accorplisted by selecting an appropriate value for the ratio of raximum stretch to minirum shrinz along both axes. The experirents gresenied in this chepter use a z.E ratic for both directions. This produces a grid point concentration in the -ight center o: Fizure leb and soarse resclution at the top ard bottor left of the domain. The minimum grid spacing

The third dorain was the least hospitajle eeoretry for both rodels. The abrupt dorain (Figure 1ec) has a dense Erid point concentration on the left and coarse spacing cn the right of the dorain. The minirur grid socang along the x axis is 1モe $K M$ in the area on theleft. The grid spacings
 Altough these three domains are simplein structure. ihey are adequate to test botr models zerformance. To further enhance some disserentiating characteristios between the two forrulations, three initial conditions are used. wo have greviousl: jeen described in Chapters V and VI. Their
rain iistinguishing :eature is the arbitrary perturbation arol:iuce (AEA) razaitude. The neariy linear case kas ar APA $=1.1 \mathrm{~T} / \mathrm{s}$ combarei tc $5.5 \mathrm{~m} / \mathrm{s}$ for the rore roniinear case. A1. Initial concitions have a il mis mean slow component.
ifith the neerly linear case both roaels jerave well. The introduction of the roze nonlinear initial disturbance filustreted the boundery aṅ computational tecinigue sensitivito. The third initial condition is the aearly linear initial field with the wave lergth equal to haif the Comain length. This has the effect of producing two waves with the domain.

3. TEST CASE COMPAEISCNS

The corpa=isons between models are divided according to the domain zeoretry. The primitive model has three fields; geopotential, \because and v. The ronticity-divergence model has seven sields: geocotential, stream function, velcoity poier:ial, u, $\begin{gathered}\text {, vorticity and divergeroe. Mhe geopotential, }\end{gathered}$ u and v will be the only fields used for the comparison.

1. Tez:ilar Case

The regular dorain Reoretry (see Eipure lea) is used O- this first compariscr. The initial conditions have an $\therefore 2=1.1 \mathrm{~T} / \mathrm{s}$, 玉s shown iz the contour plots ir Figure 17.

The ≤ 8 hour solutions for both models are preserted in Eizure 18. As anticipated, all of the solutiors have

Figure 17. Initial fielċs for both the primitive and vorticity-divergence models using the regular domain and perturbation amplitude of $1.1 \mathrm{~m} / \mathrm{s}$.

Figure 18. L8 hour forecast comparison between the primitive model and the vorticity-divergence model using the regular domain. (APA = $1.1 \mathrm{~m} / \mathrm{s}$).
sroothly ontoured fields with no noticeble noise and their こhase velocities are comerarable．
iith the nearly iientical solutions, the
distinzuishing seature between the nodels is the corputational iire．The computational tire is determinec by the size of the tire stex each model is allowed to use as indicaied on ecuation III－2E．Eor this domair the gria s放ine is z3T ？${ }^{*}$ ．The raxirum phase velocity possible is ifferert for each model．The primitive model allows suavity waves so $c=30 \pi \mathrm{r} / \mathrm{s}$ whereas the vorticity－divergence rodel Eilters out these hizh frequency waves．$\leq=10 \mathrm{r} / \mathrm{s}$ is used for this formulation．

Table 1

＂oこ̇el	$\frac{\Delta x}{(\langle v)}$	$\begin{gathered} c \\ (\Gamma / s) \end{gathered}$	$\begin{gathered} \Delta t \\ (s e c) \end{gathered}$	$\begin{aligned} & \# \text { of steps } \\ & (\text { iterations) } \end{aligned}$	$\begin{gathered} C P: \quad \text { units } \\ (\mathrm{sec}) \end{gathered}$
？	337	320	455	376	148．
$\nabla-\Sigma$	337	18	13，758	13	33.8

comoarisons of the \quad omputational times for a ≤ 8 hour Porecast tetweer the primitive rodel and the vorticity－diverzence rodel．

Table 1 compares the results of the corputational iires for both rodels．The vorticity divereence rodel こroduced as eccurate results over ine reqular domain lising 22\％of the computational ifre needed br the primitive rocel． In fact ：rom geostrcphic recsoning the vorticity－divergence rocel should produce better forecasts when small scaie features are present．

2. Smooth Case

 this second comparison. The initial fields shown in Eigure \therefore have a disturbance amplitude of $1.1 \pi / s$.

The 48 hour solution comparison is eresentedin Ėzure 2q. All fields again have smooth contoured plats. Close inspection of the two u fields, Eizunes $20 c$ and . shows that the primitive u field has small kinks along some contours and a weak til: near the central boundary nodes, althouzh this may be a function of the plotting routine. Notice the good symmetry for the voriicity-divergence u field.

As in the regular case, this smooth experiment produced in o acceptable solutions. Again, the sorputaticnal tiro is the differentiating criteria.

Table 2

 betimes the primitive riel and the vorticity-iivergence model using the smooth domain.
mable 2 compares the computational times for doth models. The vorticity-divergence has a 33.8% saving of C?U tire.

Figure 19. Initial fields for both the primitive and vorticitydivergence models using the smooth domain and perturbation amplitude $0 _1.1 \mathrm{~m} / \mathrm{s}$.

Figure 20. L 8 hour forecast comparison between the primitive model and the vorticity-divergence model using the smooth domain. (APA = $1.1 \mathrm{~m} / \mathrm{s}$) c：the rodels，this experirent is rejeated using the more

 reslected in the zreaier seopotential arplitude anz raenitudes of the cortcur lines．

Einure 22 shows the 4 hour solution corpdrison．As in the rore linear case presented aoove，all of tio olots have smooth contours with no noticeable noise．Mhe Foriicity－divergence gecpotenticl field，Jigure 220，has ihe ridae ertending farther north，and ilattening of the scuthernrost contour，than does the priritive geopotential fielà，छizuze 22a．The rean zeopotential heizhts for both roiels have also incressed．The primitive mear öeopotertial
 ：S \leqslant SEOZ 2DM．

These two discrepancies inaicate that the bounzaries are not handled accuratelg．Iuriag the impleroatation of the vorticity－divergence rodel，treatrient of the courdaries was the rost troutlesore phase．mhe vorticity－divergence formulaticn is a corplex equation set and time liritations restricted further iavestifation o：mcre soonisticated bounda \quad conciticns．

Mhis same initial condi：ion is now extended to a §E hour iorecast，which is shown in Figure 23．whe mean ソCTticity－divergence zeopotential increased to çS\＆x RpT，

Figure 21. Initial fielcis for both the primitive and the vorticitydivergence models using the smooth domain and perturbation amplitude of $5.5 \mathrm{~m} / \mathrm{s}$.

Figure 22. 48 hour forecast comparison between the primitive model and the rorticity-divergence model using the smooth domain. (APA $=5.5$ m / s)

Figure 23. 96 hour forecast comparison between the primitive model and the vorticity-divergence model using the smooth domain. (APA = $5.5 \mathrm{~m} / \mathrm{s}$)
whereas the rean primitive eeopotential remaized constant. All fields hayesmooth contours. Close inspection of coth u fielic, $\overline{\text { figure zzc azz a, shows a slight skewing of the }}$ aortours along the central channel grid points. The vortiai:g divergeace $य$ field has the rost pronounced deviations. A hypothesis for this skewing, explaired further Eelow, is that it is caused by the computational technigue employed. The relaxation schemes are extremely sensitive and sine tuning of the relaration coefficient would have required more time thar was available.

$$
\text { Table } 3
$$

Moė?	$\begin{gathered} \Delta X \\ (\mathbb{X}) \end{gathered}$	$\begin{gathered} c \\ (T / 5) \end{gathered}$	$\begin{gathered} \Delta t \\ (\leq \in c) \end{gathered}$	\# of steps (iterations)	$\begin{aligned} & \text { CPU units } \\ & (\text { sec) } \end{aligned}$
?	$1 こ 9$	322	271	1276	504.2
V-I	139	18	8124	42	31.8

Corjarisol of the corputational tires for a ge hour forecast between the \quad rimitive model anc the vorticity-divergence rodel using the smooth dorain.

Table z shows the corparison between toth rodels for the $\subseteq \in$ hour forecast. A savinzs of 35 perceat is realized with the vor:icity divergence model.

The above Experirent pcints out the two areas where the vortici:y-divergence rodel is presently weak, the trorease of the geopotential and the sensitivity of the relaration coefficients. 3oth these weakyesses can be frproved ard are rot a result of the formulation but of the frplerentation. At מresent, their iffluence is not detected
er－ept in extremely long forecasts，such as in the ge rour eratple．छurther experirents may still be required if they demonstra：e signizicant differences in the solutions ou the ：w rozels．

The last experiment ou the smocth dorain uses the rose linear initial condition APA＝ $1.1 \mathrm{~T} / \mathrm{s}$ ，kut its wave lenミih is divided b：T two，so that two shorter waves are propazated through the channel．The initial $=0$ aditions are shown ia Eizure 24．Lecreasine the wave length has the same effect as decreasing the density of grid poirts．In this case six grid points are used to describe the wave structure versus the 12 used in the previous aases．

The $\leqslant 8$ hour corparisons are shown in Pigure 25．As in all previous cases，a computational time savin弓 of 84% is zained with the vorticity－diverefnce model．ifth fewer grid points describing the wave structire，more smali－scale roise is introdnced into the solution．Comparing the primitive geopotential ：ield，ミizure 25a，to the initial geopotential． ミizure 2́a，shows a darpening of the wave arplitude，whereas the rortiaity－divergence geopotential．Iigure 25b， correlated well with the initial geopoteatial．

The high frequency noise is evident or both u fields，Eizures $25 c$ and d．mhe primitive rodel u field is poo－1y defined along the boundary anc becomes irregular orer the interior grid points．

Figure 24. Initial fields for both the primitive and the vorticitydivergence models using the smooth domain. There are two waves embeded in the fiow and $A P A=1.1 \mathrm{~m} / \mathrm{s}$.

Figure 25. 48 hour forecast comparison between the primitive model and the vorticity-divergence model using the smooth domain. Two waves are emceded in the flow and $A P A=1.1 \mathrm{~m} / \mathrm{s}$.

The smooth cortain allows a variatle resolution of z-id points anc produces excellent results. As the rave leñth zets shorter, or the Eorecast length ごe:s lazger. sore small-scale noise is apparent, especially with the primitive formulation.

3. intruat Case

The arriot case comparison uses the ebrupt domein georetry (see Eigure 16c). This zrid point confizuration is used to surther illustrate the effects of spatial resolution. The orevious case using the smooth dorain and hal: wave length introduced noise into the sclution, but the spatial resolution chaneed slowly and gradually.

Consider the transition necessary in an operational rodel, where the luxury of having a~long sroothtransition into the region of high resolution ray not be dossitle. The abrupt dorain is an exarple of the results ottained when spatial resolution is decreased rapidly.

The initial fielcs are shown in Fioure 20. The more linear case, $A Z A=1.1 \mathrm{~m} / \mathrm{s}$, is used to eliminate effects due to ihe initial field, so that only the ef:ects iue to the gria zeoretry are seen.

The $4 \in$ hour corparisons are shown in Figure 2?. 3oth solutions are effected by this geometry, but the primitive solutions are totally disorganized and unacceptable.

Teble 4 shows the comparison of computational times for both models for a ≤ 8 hour forecast. An GE\% saviags in $^{\circ}$

Figure 26. Initial fields for both the primitive and vorticitydivergence models using the abrupt domain and perturbation amplitude of $1.1 \mathrm{~m} / \mathrm{s}$. Note that the element shapes are not equilateral triangles.

Figure 27. 48 hour forecast comparison between the primitive model and the vorticity-divergence model using the abrupt domain. (APA = $1.1 \mathrm{~m} / \mathrm{s}$).

EVU time is cbtained using the vorticity－divergence model． Vo：only is there a corputational savings with the roこticity－ifyergence nodel．but the solution is siznificantly better than the primitive model．

$$
\text { Table } 4
$$

nozel	$\begin{aligned} & \Delta X \\ & (\because \sim) \end{aligned}$	$\begin{gathered} c \\ (T / S) \end{gathered}$	$\begin{gathered} \Delta t \\ (\mathrm{sec}) \end{gathered}$	\＃onsteps （iteretions）	$\begin{gathered} \left.C P U u^{\prime} \in \mathrm{nit}\right) \end{gathered}$
こう	16ะ	320	228	756	3E8．9
$\because-I$	168	12	6858	25	55.7

Comoarison of the comoutaionai times for a 48 hour forecast between the primitive rodel and the vorticity－divereence rocel using the abrupt domain．

C．COMPUTATIONAL SENSITIVITV
Onis section will offer an explanation for the skewing 0^{*} the contours in the ge hour foreast solution over the srooth domaiz íigure 23）．As mentioned previousiy，there Was rot enough time available for fine tunirg the overrelaxation coefficient，which is used while solving the syster of equations．The overrelazation coefficient may be 7ery sensitive and small changes can，on occasion，radically change the rate of convergence．The odimal value oi the cverrelaxaiion coefficient depends on the specific fcrm of the onefficients of the equation and the arror distribution． The equation set to be solved consists of ihree envetions and each equation required its owa relaxation coesficient．Hen solping the ecuations over the reguler dorain，the entire syster is well behaved ani an ootimur
relexation coefficient is easily determined. However, as the さorミin zecre:ry changes, the syster of equations do not converge as zaolily and the relaxation soefficient reouires surther fine tuning.

The ge hour forecast uses the smooth domain. She rid-latitudinal grid points are compacted, creates a jenser belt in the midale of the channel. The coefficients originally computed using the zegular domain need adjustrents to procerly solve the equations.

To illustrate the significance for fine tunizg the releration coefficient, consider the series ofplotsin Eifure 28. Mhe vorticity divergence equation set can be simplified by assuming the flow is non-diversent, so that only the vorticity equation meeds to be solved. Fizure zea is the 48 hour rorticity field using this equation over the resular coraiz with à overrelaxation zoefficient of 1.3. The field is well defined with smooth contours.

Iizure 2eb is similar to the case in Figure zea ercept that the srooth domain is used. Notice the $\begin{aligned} & \text { Hoshaped kink in }\end{aligned}$ the jettern with a steeper slope in the upper half. Mhis inc-eased bias in the toper half is caused by relaxing the field in the sare direction during each ocss over the domain. ${ }^{\prime \prime} h e n$ the direction is reversec after each pass. the exazgerated bias in the upper half disappears, as is seen in

Fisure 28. Computational sensitivity using the 48 hour vorticity fields. Fis. 28 A) the 48 hour forecast using the regular domain, 28 B) the same forecast using the smooth domain relaxing in one direction, 28 C) same as 28 B) except alternate the direction of relaxation after each pass over the domain, and 28 D) same as 28 C) except the relaxation coefficient was Sine tuned Form 1.3 to 1.297.

Varying the relaxation coefficient from 1.z to 1.2§? orocuces the much improved solution in Figure zed. If the Eeleration soe:sictents for the other two equations could also be fine tuned, it appears that improved solutions would resit. There are also other relaxation techniques available that have potential for improving the solution while also こorverマing at a Easter rate. Some of these techniques will be tested in the futuer using this model.

VIII. OONCLÜSIONS

This research investigated different finite elerent fortulations for the shallow water guations. The two-dimensional dorain was a channel which simulated a telt around the earth. Azalytic iaitial conditions were used to sitelify the corparisons. Two fortulations were examired; one using different shaped basis functions and the other nsing a different form of the equation. Iach was compared to the oriritive form of the shallow water equations that was developed by Kelley (1975).

The use $c f$ equilateral shaped elements which was su弓gested by Ir. M.J.E. Cullen significantly improved the solutions compared to Zelley's rodel. which originally used Eizht triargles as basis Eunctions. Most of the other studies in ihis thesis used the equilateral triangles.
hilliams and Zien'xiewicz (1Э81) subgested the use of piesewise linear basis functions for the velocity field and piecewise constant iunctions for the height eield. This formulation was tesied with a linearized continuity equation. The results were poorer than those ootained with Jelley's rodel.

Yost of the effort in this thesis was devoted to irpleTEntatige and testing a vortiaity-divergence model
siritar to the ones developed by Staniforth and Mitchell (19?7) ミnd Culien and Hall (1979). Several tests were presented which corpare this formulation with Jelley's rodel. It was found thet this rodel executes approximately oneorder of magnitude faster than does the orimitive Eorrulation nsed by Zelley. Secondly, as the spatial resclution between grid points ácreases, this formulation orocuces a solution that is far superior to the prinitive Sorr. A disadvantaze is its computational sensitivity, which requires fine tuaing in solviag the elliptic equations for certain zeoretries. It also requires 25 percent rore computer storage, due to the more complex equation set and the additional variables that are treated.

Itolementation of finite element models is no: easy. Fowever, there is a lot of eenerality and redundancy i-bedded in the computations. Versatile modules were written wich siznificantiy recuced the effort in irolerenting the vorticity-diverzence rodel.

Further research is suggested using this finite element forrulation. It has accurate phase prodagation, is able to handle rariable grid geometry, reduce the small-scale roise and decrease the rodel's erecuticn ine. syecificaliy more advanced methods of solving the elliotic equations should be investigated. Finally, the formulaticn should be tested with srall-scale forcing, where its advantages should be most € vident.

$$
\begin{aligned}
& \cdots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { •.... ! }
\end{aligned}
$$

, 11-5...


```
i.:` !.!!1:! ! | 21ij%
```



```
\because:ur,ijT , &i;二
```



```
; i;
```

$$
\begin{aligned}
& \text { コ, - JT! ! ! ! - 〕 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { U ! ! }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
: & =1 \\
\vdots & =1:
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 「-T! = 1.) }
\end{aligned}
$$

$$
\begin{aligned}
& \because \cdot=1 \cdot 2=j \cdot / / 0 \cdot 7
\end{aligned}
$$

$$
\begin{aligned}
& \because, 011=\therefore=.1 \\
& { }^{+}=(1-i) .: \\
& \text { - } \quad=\text { ? } \\
& =\quad=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ir }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 三 } \because \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& =1 \text {, ji', } \quad \therefore \text { 了。 } \\
& =
\end{aligned}
$$


```
\therefore.
```



```
#!;"
```

$$
\begin{aligned}
& \text { •1!!! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \cdot 1=1+j+1+\cdots=1
\end{aligned}
$$


```
\(\angle D S T=V 541\) VOO
```


[^0]

\because

？ju j，（j）
ミ「ノく！

？：＝．．．．．：i

$=$	
$=$	L

JHLTAX＝）ELTAY／：US（TIETさう）
〈＂I才＝洰LTJK

CL＝xLCSS（THETAJ）

4こ「！つり

$1:=:=Y 11 . i) 1$

$\prec=1$
$i=v, \quad T$
$\jmath_{i=i,}^{j} \quad i=L, L+i x$

$R 1=10(<)=x x$

$!!\Gamma(\alpha)=\vee$

$Y=Y+j F L \bar{T} A Y$

.

そう」，

IF (I? <1T(2).E2.1) こALL JUTPUT(う)

$$
\{i j=10\rangle j+\rangle
$$

$$
\angle \therefore \because \because T 10 E
$$


```
* \(110=x^{4}\) !
```



```
こうケ121
```


$\begin{aligned} y \partial= & =\text { OELT: } \\ y= & =\text { OETAX } \\ \because L i & =1\end{aligned}$

, ifl = $=$

\because

 - ir 心


```
i\jci= =
```



```
O 1) J=1,3
/j<(J,!)=\mp@code{(J,I)/う.}
lこ!(J,l)=A(J,I)/夕.
```

) $-\mathrm{C}_{1}$) $<=1$,

JJYIY(J,N,I) $=\therefore(J, i)=\Lambda(n, i) / 1+$
$\grave{\vdots}=1$.

! J J $(J, K, \because, I)=1(1,!) \times x \times$

Cil
\vdots

（．1）
$x_{1}=-$

io ま己（NJ）

三！！！

つもう，リビここし

$i=1$
$i=1 .+i+1$

$\therefore=$ ！

$\because 1=Y x z Y$ ，

\because

1： $2=\langle+1,1 E$

$+i 31=1$ v？U！！


```
    j,_ ji!!: ,.):!:
```



```
    <ET:, fORT!C!TY (UCLま*2)*PSI
    GHLL YJKrS (PSI,IFLJ, 
```



```
    !}=T\therefore(.NOLE,UL)=2T\therefore(|C)-
    &j(|j)E,NL)= )!Vij(iv,jE)
```



```
    #\mp@code{A, J&DH!}
```



```
    CaLL jJLVEス (jETd,1, )
```


＝
IA＝．ji \because ）
しょし－150


```
    j.\.1-[.L \1j)
```



```
~-;!!
\because
```

$$
\text { , } \therefore \therefore, \text { TI }=j \text { ILAR } \because, \text { EV, [TIrL三) }
$$

$$
\begin{array}{ccc}
i & -1 & -i \\
i & i & i \\
i & i & i
\end{array}
$$

$$
T
$$

$$
\text { (ç } 1
$$

$$
\therefore \text { il a } \bar{i}[T L=(i)
$$

$$
; 1 \Gamma:
$$

$$
\begin{aligned}
& T i F L=1 \\
& T=3 \\
& =0 \cdot 5=251
\end{aligned}
$$

$$
\left[\begin{array}{l}
1+i+1=3 \\
i L+j 5251
\end{array}\right.
$$

－くし，TT いJE

$=$

$$
\begin{aligned}
& 2 \bar{T} \\
& \text { E }
\end{aligned}
$$

ju! T, \mathbb{B} İ
(1) 1 V) $)^{2}=1, N(.3-6$
[STKT = jRANT (:JEE)

$1:: 2: 1 j=$

：以1－－ 51

```
ioj \(j_{i}=\therefore\)
```


! ! T $=1 F I$ こうT + リリリ (VUE) -

\therefore COUT: $\because 1 \mathrm{E}$

きになった。

$\because: L$ - 1S)

\therefore Si , j E) $=S:=\left(1 n^{\prime}\right.$)E, 2)

$\left.\therefore+0!!+1+1=31+3)^{\prime}, r_{1}(1)++\right)$
こん ，，ijo
（：

$L D S T=[F I S J T+N J M(J 1 O L)-1$

$+: C, N T!J E$
2：NS（：
这厂！

$1 /$
$1 j!$

 (.1. : 15)
 $1:=(!)=1=1,11$

2: Oi, ! MJE

J／ALF＝OT／2．

ここL 洰アリンス

\bar{i}
\therefore if：$=2$
ご よ

こ．$\because 1$ に $5 \quad \therefore \mid T=\times 2(こ T)$

CuLL (3)

joj = -

$$
E^{-}{ }^{-j}
$$

=1,

\vdots

ㄴ．

 そごに！」ごった。

3）\rightarrow ，ISDE $=1$ ，ソL

$\because(!!こ こ)=$ ））

S.らけ

$$
-\therefore)=(\leqslant x k E j \cdot v j\langle, v i\langle \rangle+\langle x<E J \cdot| j y,|[v,)
$$

$$
\begin{aligned}
& \text { 2E JRO }
\end{aligned}
$$

伶

导分うく。

$$
\text {)E, }!
$$

$$
\Gamma_{1}^{1} ; \mathcal{B}_{1}^{\prime},
$$

$$
i_{i}+i
$$

$$
\text { y, ‘, } 21
$$

\therefore ILL 15

$+: \because=1\langle\uparrow\langle E J \cdot \cdot J\langle, V I X\rangle+\langle\langle K E J \cdot V J Y, \mid: Y\rangle)$

＋〈）iv！－－1）」．（j，ノ！＞

$\begin{array}{ll}\therefore-514 & 1 \\ \vdots & 1\end{array}$

$$
\begin{aligned}
& \begin{array}{ll}
\therefore 1 \\
\hdashline 1 \\
1 & -1 \\
\hdashline-15 & 5
\end{array} \\
& +/
\end{aligned}
$$

T．．．JT＝2．）＊DT

こ ILL Jミアリ」？

$Y_{1}=1$
$y=1=101$
1：こ丁口1

ぶ「）（レ．う，ここ），10【15！

$=x$ Mr $1\left(\cdots \frac{1}{2}\right)$
$\vdots=-1$ 1y $1(15)$

いい
c

三た」った。

$\therefore=1$,
- H... - . 1 .

.

$1:$

[^1]
$$
j \ldots ;(20,031, \quad 1)!45:
$$

$$
\because \dot{y}: i j 1 J=
$$
$\stackrel{C}{6}$

 はいこごっだ。

\[

$$
\begin{aligned}
& \vdots \\
& \vdots \\
& \vdots \\
& =1 \\
& =1
\end{aligned}
$$,
\]

$$
\begin{aligned}
\partial 1 & =1(1050) \\
i & =3(1025) \\
- & =j(10053)
\end{aligned}
$$

$\therefore-12!$


```
    \;
                            3i
    <.
    <-1, 1/\
    L:=,1
```



```
* )
    OFI.T THE こ.,VE:TIVITV ITTRIX JJVE OMR:EL >
2i &2!TE(G,2l)
```



```
j+C-iLdJE
```



```
    --i,!!,!, , ! j
```



```
        (j, , i
```



```
        M
```



```
j:\mp@code{za!-=(i,5i)}
```



```
    2 FL{'JT(LX,L2FL).1)
```



```
    J!.T 「IELJ PS:
    CiHI Ai._ SHI <IC>
lo,
```



```
o FE.1AT(LX,LこE!L.4)
```



```
    Z
```



```
    MO',\)
= 
```



```
    F
    :/)
```



```
    M, (%,M,
```



```
    C)
```



```
-ヤ-1-1 1-1-コー-ー-1, -1-1-1-1
\(-1-1\)
\(,-1-1-1, \ldots, \ldots, \ldots, 1,1-1,1-1\)
```



```
\(1)\)
\(\vdots\)
2
3
\(.120=13 j<Y\)
\(\begin{aligned}= & =12 \\ ; & =-13\end{aligned}\)
\(i=-() 0,), j\).
\(i \leq=-3(1), j)\)
```



```
ここちノく。
```



```
        <1=
```



```
j)
```



```
」)
```


号塄罗

背に
oi

手 $=1-7 \equiv+1$.

$$
\text { =j i-j) = }{ }^{j}
$$

$\therefore \begin{gathered}0 \\ \vdots\end{gathered}$

$$
\begin{aligned}
& \text { ういコ, こ.JT以゙に - +VはL }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text {; 二 心 itivaE }
\end{aligned}
$$


```
!!
```



```
}= {
!): ==21ir(1, , בI',TFL?.3)
```



```
    GZ= =![EL)(こ)
    #2 = [-1.j(3)
    joz= = (GL)(i+)
    \prime2= = = =L)(下)
    * L)= F!(LL)(G)
    FL, = FIEL)(7)
    = L
    I= 2FL!! ! 
    FL(J1): (), 1),:27
L2
```



```
    F(1)=2.)
```



```
        &! J!i!!,! ; - ! ! ! 
```



```
    HAد(j)= ?ん&うこ(J) - lo)
    A2!(J)= - `MPL(J)
    CEVTI.JE
```



```
? こT Jr."!
```

 Cullen，M．J．P．，＂A Simple Finite Element Metiod for ＂eteorological Problers，＂Journal Institute of Maths \＆oplies，v．11，ग．1き 31，1973． ：＂A Iinite Element Method for a Non－Iinear Initial ïalue ？robler．＂Journal Institute of Math Apply，V．13， D．233－2 57 ， 1974.
and Eall，C．I．，＂Forecasting and General Circulation ？esults from Einite Elerent Models，＂Guarterly Journal of the Royal Meteorology Society，v．185，p．571－593， こuly 19？9．

Ealtiner．G．J．and williams，R．T．，Numerical Prediction and Ejnamic＂eteorolozi，2nd ed．．John diley and Sons，Inc．， 1988．

Einsman，I．., Apolication of a Finite Flerent Method to the 3arotropic Primitive Fouations，M．S．Thesis，Naval Scstzraduate Schcol，Moaterey，California，116p．，． 1975.

Zelle：？．G．，A Finite Ilement Prediction Model with「ariable Ilement Size，M．s．Thesis，Naval Postgraduate Echocl，Monterey，California， 189 p．， 1976.

Norrie，E．E．and de Vries，G．Mhe Finite Ilement Methods， Acミderic Press， 1973.

Older．M．，ATwo Zimensional Finite Element Advection Model ？ostgracuate school，Monterey，California， $84 \mathrm{D} ., 1981$.
？hillios．N．A．，＂Numerical Integration of the Primitive iquations cn the Eerisphere，Monthly weather Review，p． ころ3 34ミ，Septerber 195¢．

Pincer．G．F．and Gray，${ }^{\text {G．Finite Ilement Simulation in }}$ Surface and Subsurface Fydrology，Acaderic Press，1977．

Schoenstact，A．，＂A Transfer Function Analysis of Numerical Scheres Used To Sirulate Geostrophic Adjustrent， Nonthly leather Review，v．128，no．8，p． 1248 1259，

Sturan, E.G., "Numerical Neatrer Prediction," 3ulletin frericay "etecrolcer society, v. 59, no. 1, p. 5-17,

Stanizortr, A.N. and Mitchell. H.L.,." A Semi-Implicit Einite Ilement Earotropic Model," Vonthly weather ?eview, ∇. 125, p. 154-169, February 1ミ77.

Strミng, G. and Eix, J.J., An Analysis of the Finite Element Method, Freatice Eall, Inc., 1G73.
iillicrs. $\therefore . T$. "On the Formulation of Finite Element Prediction Models," Moythly ieather Review, v. 10s, no. 3. כ. $563-4$ ह6, March 1581.
and Zienkiewicz, O.C., "Irproved Finite Element Forms Fo: The Shallow Water Equations, International journal jov Numerical Methods in Fluids, v. 1, no. 1, p. 81-9?, January "arch 1981.

Zientiewicz, O.C. The Finite Ilerent Method in Engineering Science, Mciraw Eill, 1571.

3．Ir．2．T．
－eon＝trent of Neteorology

＊onterej，るalifor：ic こるこ
؛．
い！1it天ry Airlift Jorrand
＂nited siaies sir ミorce

$4 \leftrightarrows$ Felene＝．

E．－ミŋiain Erian \because ミュ Orrà
ミミロッハエミミ

－＝I．Iavid A．Archer

EィE0 Ciscvy Chase
EOLSton．TExas ケrきこ？
ミ．ミrof．Gordor 3railey，こode 523z
Eepartrent of botputer Science
\therefore ミval こostonacuate School
＊cnterey．Californie ミふことて
ミ．Iャ．J．J．ミレrジミr，ラocき るこ

いa＂al ？ostgrauuate Schocl
ソクユtereそ，Californic ころこちも
：2．2nc．Silles Caniin，vode Eここi
こenartrent 0：＂Echanical Enéineモrineo

＂cntミrev．Califcrıia $33 G 40$

```
İ. こ=, v.J.こ.Nil11en
```



```
1ミ. ご. ミ.I. J!sberry, こoce Ezミs
```



```
    `ョ"aう こosむz=acuatc ミchool
    vっッ!ere%, Califocnia こるこちゃ
Z. IF: J.A.GंcIt
    \こ!4 ?aっvar ミnvir Ia}
    Mnive=sity o= iashirston
```



```
1!. =-. ?.-. \Xïaney, sode €з%y
    -Epartrent of Meteorology
    N^val こostzraduate School
    *onte=ey, valizornia \subseteq3\subseteq\leqか
15. ICE: DonaldE.Einsman, Code z5
    #Evミ=tment of veteorolosy
    Ne"al Postz=aduate School
    vonterev, Jalifornia \subseteqz\subseteq\leqú
```



```
    IEpartren: cf Somこuter Science
```



```
1?. Fr. Rc⿱ert L. Lee
    ATOsnh\inriz and Geophysical Science Iivision
    "!iversity of california
    ว.C. इ0T E\S
    Ive:more, Califorria E4\Xi5Z
    1E. Irc&. \therefore.I. MecPherson
    IE\igh UnIversit!
    こきこま:tтer: 0! Nechanical Inふineeninる
    まetr:eem, こ. 13&15
```



```
    Cr=irra\eta. Devartrent o: Oceancerayny
    "ミval ?ostsrraduate Scrool
    Nonterev, Calisornia ここ\subseteq&&
？ย．2ros．
```



```
Naッal Postzracinte School
vorterey．うelifcrnie ヨろこちむ
```

```
21. \because. \.A. ごillips
```



```
    \becauseミsにing゙この.こ.こ. こ223.3
ミミ. =r. -. こosmonc
    Neral EnvinonTental Prediction ミesearご Eacilit?
    `o\etaterey, こalisornia ミ3S\leqslant0
zz. ミొos. =. Selinas, Coce cszo
    こeこaこちmen: c? vechaniこal Enパireering
    \コ"a` ?csignEduate Scncol
    vontere:, California \subseteq3\subseteq4\imath
24. 2%. Y. Sasc!xi
    zepartreyt of Moteorclo ##
    University of Oklahota
    \0rren. 0klahore 7326Э
z5. בrof. A.L. Schoerstad:, Code ミコ2h
    Iepantment 0: Matheratics
    i:c"el ?cstgradrate School
    vontere%, Califorzia \subseteq3\subseteq&&
    2E. Dr. Andrew Staniforth 1
    Derherce en Previston Nurerigue
    G=s: Isle Office Oower, 5 i mere etage
    212! route Irans-Canada
    Zorval,Gu&bec ESPluz, Sanacia
27. Dr. \because.C. Thačror
    "etional Cceanic anc Atrosoheric Aciministretion
    if Ei=venjacker Cavseway
    "&ari, ミlcricz ここi4ق
    ここ. Ir.A. %Einctein
    N゙きサal ミnvinonnental Predictian Reseancn Facility
```



```
    voこterミサ, Calizonnia ころこ4る
    z?. Prof. O.C. Zienyiewicz
    #eac o" C:\becauseil \Xiagineering ZepertTent
```



```
    S^nElミ!0.2 こcr!
```



```
    Onite% ジ口ngどom
```


thesW834
Development of improved finite elements

32768001906076 DUDLEY KNOX LIBRARY

[^0]:

[^1]: | $=1$ |
 | :---: |
 | $1 j$ |

