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Abstract: Gypsophila paniculata is the only species in the genus Gypsophila that has been used as cut
flowers, and the sequencing of its genome has just been completed, opening a new chapter in its
molecular genetic breeding. The molecular marker system is the basis for genetic molecular research
in the era of genomics, whereas it is still a gap for G. paniculata. In this study, we constructed a
genome-wide InDel marker system of G. paniculata after genome resequencing of another wild-type
accession with white flowers. Consequently, 407 InDel markers at a distance of ~2 Mb were designed
for all 17 chromosomes. Later, the validation of these markers by PCR revealed that 289 markers could
distinguish alleles of the two wild-type alleles clearly. The predicted polymorphisms of two wild-type
alleles were then transferred to the commercial cultivars, which displayed a rich polymorphism
among four commercial cultivars. Our research established the first genome-level genetic map in
G. paniculata, providing a comprehensive set of marker systems for its molecular research.

Keywords: Gypsophila paniculata; InDel marker; genetic map; polymorphism

1. Introduction

Gypsophila paniculata is a perennial herbaceous shrub from the genus Gypsophila, which
comprises about 150 species of annual, biennial and perennial plants [1,2]. It is usually used
as a filler in flower arrangements, making it an important cut flower in the global market.
Differing from crops, flower type and colour as well as its inner quality and biotic or abiotic
stress resistance are the main goals for ornamental breeding [3]. Although breeding efforts
have been invested in the creation of new varieties and the improvement of desirable
traits, conventional crosses and subsequent phenotypic selection for specific traits remain
the dominant breeding methods used in the breeding of G. paniculata, which has severely
hindered its breeding efficiency [4]. As a consequence, there are currently fewer commercial
varieties on the world floricultural market, such as ‘Million Stars’, ‘Perfect’, ‘Dream Pink’
and ‘Huixing 1′ [5]. In contrast to its important position in the floricultural industry, the
molecular genetics research of G. paniculata is limited, which hinders the improvement of
the cultivars to some extent.

Molecular markers have been widely used in genetic and evolutionary research of
various ornamental species including Rosa, Paeonia, Dendrobium, etc., in their germplasm
characterization, genetic mapping, diversity analysis and molecular marked-assisted se-
lection in breeding [6–11]. In the development history of molecular markers, DNA-based
marker systems such as RFLP (restriction fragment length polymorphism) have been re-
placed progressively by PCR-based markers such as RAPD (random amplified polymorphic
DNA), SSR (simple sequence repeat), SNPs (single-nucleotide polymorphisms) and InDels
(insertions/deletions) [12]. A few pieces of research about the assessment of genetic diver-
sity among wild species and commercial hybrids from Gypsophila using RAPD markers and
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chloroplast simple sequence repeat (cpSSR) markers have been reported [13,14], but the
genetic map or marker system covering the whole genome of G. paniculata lacks. Benefiting
from the recent progress in genome sequencing technology, reference genomes with high
quality have been accessed in various ornamental plants, bringing floral research to a
genome-wide level [15,16]. In addition, the SNP and InDel markers have become the most
used molecular markers for plant research due to their abundant polymorphisms, genome-
wide distribution and co-dominance [17–19]. For instance, high-density genetic maps based
on SNPs facilitate the identification the genetic regulators of key ornamental traits such as
flower type as well as the resistance gene in roses, carnation and chrysanthemum [20–23].
Although powerful, the genotyping of SNPs relies on the KASP assay, which requires a
special machine and is expensive. In contrast, InDel makers are easy to use, low in cost
and efficient, as the InDel marker-based mapping system relies on simple PCR and gel
electrophoresis procedures [24].

This study aims to construct a genome-wide InDel marker system of G. paniculata, pro-
viding a useful tool to facilitate its breeding. Recently, the genome sequence of G. paniculata
has been assembled and released to the public [25], meeting our goal to develop markers
through genome resequencing. Thus, a wild-type accession of G. paniculata with white
flower (WT-W) was re-sequenced using next-generation sequencing technology, and a se-
ries of molecular markers distributed genome-wide were identified, including SNP, InDel,
SV (structure variation) and CNV (copy number variations by comparing with the reference
genome of a wild-type accession with pink flower (WT-P)). As hypothesized, a set of InDel
markers with a high level of polymorphism was developed using the information gener-
ated by genome resequencing. Moreover, the InDel markers also displayed polymorphism
among four commercial cultivars. Our work provides the first genome-wide genetic map of
G. paniculata, supporting the further genetic study and molecular breeding of this species.

2. Materials and Methods
2.1. Plant Materials

Two G. paniculata wild-type accessions with pink (WT-P) and white flowers (WT-W)
were used in this study (Figure 1). The WT-P plant was used for the de novo genome
sequenced previously, providing the reference genome data thereby. The WT-W plant
was used for genome resequencing to generate InDel markers. Meanwhile, we selected
four commercial cultivars of G. paniculata (‘YX1′, ‘YX2′, ‘YX3′ and ‘YX4′) to identify and
validate the polymorphic InDel markers. ‘YX1′, ‘YX2′ and ‘YX4′ are three representative
commercial varieties of G. paniculata with white petals, and the difference is the flower size
(‘YX1′>‘YX4′>‘YX2′, from large to small’), whereas the flower colour of ‘YX3′ is pink with
a similar size as ‘YX2′ (Figure 1). All of the above plant materials were provided by Yuxi
Yunxing Biological Technology Co., Ltd. (Yuxi, China).

2.2. Variation Detection by Genome Resequencing

The fresh young leaves of G. paniculata WT-W were used for genome resequencing. The
MGISEQ-2000 PE150 sequencer was applied to conduct genome sequencing, after which
the original reads (8.66 Gb) were filtered to generate clean reads (8.05 Gb) for subsequent
analysis. Using in-house scripts, we filtered any sequencing reads with the following:
reads with adapter sequences, consecutive bases on the ends with base quality < Q20,
read length < 50 bp and singletons. The clean reads were then aligned to the G. paniculata
reference genome using BWA mem (v0.7.17) with default settings [26]. The alignment
results were sorted using Samtools (v1.9) [27].

SNP and InDel were called using GATK HaplotypeCaller (v4.1.4.1, Broad Institute,
Cambridge, MA, USA) with default settings [28]. We further filtered the calls using
GATK VariantFiltration with the following parameters: SNP filtering (QD < 2.0, FS > 60.0,
MQ < 40.0, MQRankSum< −12.5, ReadPosRankSum < −8.0); InDel filtering (QD < 2.0,
FS > 200.0, ReadPosRankSum < −20.0). CNV were detected using CNVnator (v0.3.2) with
default settings [29]. SV were identified using Manta (v1.6.0) [30]. Mutational positions,
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genomic regions and potential amino acid changes were assessed using ANNOVAR (v2019,
Wang Kai, PA, USA) [31]. Circos (v0.69, Martin Krzywinski, Vancouver, BC, Canada) was
used to plot the genome-wide distribution of variation [32].
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Figure 1. The phenotype of G. paniculata wild-type accessions and commercial cultivars used in 
this study. (A). The pink flower wild type of G. paniculata (WT-P). (B). The white flower wild type 
of G. paniculata (WT-W). (C). The flower phenotype of four commercial cultivars (‘YX1′, ‘YX2′, ‘YX3′ 
and ‘YX4′, from left to right). Bar = 1 cm. 
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Figure 1. The phenotype of G. paniculata wild-type accessions and commercial cultivars used in this
study. (A). The pink flower wild type of G. paniculata (WT-P). (B). The white flower wild type of
G. paniculata (WT-W). (C). The flower phenotype of four commercial cultivars (‘YX1′, ‘YX2′, ‘YX3′

and ‘YX4′, from left to right). Bar = 1 cm.

2.3. Development of InDel Markers

We selected the InDels that were over 10 bp long and distributed ~2 Mb. The positions
with excess InDels which might interfere with the PCR verification were excluded. After
selecting the suitable InDels, a ~400 bp genome sequence covering each InDel was used as
the template for primer design. The primers were designed on NCBI and named after the
chromosome number and the physical position (N-XX.XX, Table S1).
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2.4. PCR Analyses of InDel Markers

The total DNA of two wild-type plants and four commercial cultivars was extracted
from fresh leaves using the CTAB method [33]. Template DNA was amplified with the
designed primers in a 10 µL system (7.3 µL ddH2O; 1 µL 10× Taq buffer; 0.8 µL dNTPs;
0.2 µL primers; 0.1 µL Taq enzyme; 0.4 µL DNA template) using the following PCR program:
5 min of full denaturation at 95 ◦C; 29 cycles (95 ◦C, 30 s; 56 ◦C, 30 s; 72◦C, 30 s); 72 ◦C
extension for 7 min. After the standard PCR, 3 µL DNA loading buffer was added to the
PCR product. Then, the mixture was separated in 3.5% agarose gel.

3. Results
3.1. Genome Resequencing and Sequence Polymorphism Identification

The successful mapping of QTLs relies on the genetic maps with high-density molecu-
lar markers between the accessions. Previously, the genome sequence data of G. paniculata,
a wild-type accession with pink flowers (WT-P), was assembled onto 17 chromosomes [25].
To develop sufficient molecular markers for G. paniculata genetic research, we detected
sequence polymorphisms between WT-P and another wild-type accession with white flow-
ers (WT-W) through genome resequencing by the high-throughput sequencing platform
MGISEQ-2000 PE150. After filtering, a total of 8.05 Gb of clean reads was generated, 82.23%
of which were mapped to the reference genome, displaying an average sequencing depth
of 5.70 (Figure 2B). Different kinds of natural genetic variations were detected between the
reference and resequencing genome, including 2,377,499 SNPs, 1,366,056 InDels, 1403 SVs,
and 28 CNVs, whose densities were shown on the circus map (Figure 2A). Interestingly, the
InDels preferred to distribute at the end of the chromosomes rather than the centromeric
region, as shown by the circus map. Meanwhile, the length of most InDels (>80%) was less
than 5 bp, and the InDels between 5 and 10 bp accounted for 10% of this variation. There
were about ~5% (68,302/1,366,056) InDels over 10 bp which are suitable for genome-wide
marker construction (Figure 2C).

3.2. Construction of InDel Markers for Polymorphism Analysis

To develop InDel markers that can discriminate alleles between WT-P and WT-W,
insertions or deletions over 10 bp were chosen as candidates with the interval of the neigh-
bouring markers set as ~2 Mb. Sequence fragments about 400 bp long that contained either
the insertions or deletions were used as templates to design primers. In total, 407 pairs
of primers were designed for 17 chromosomes (Figure 3). To validate the newly designed
markers, PCR analysis was conducted and the products were analysed by gel electrophore-
sis. Of the 407 markers, 289 markers distinguished the alleles of WT-P and WT-W clearly.
Another 34 markers produced close bands on the 3.5% gel, but could still discriminate the
alleles of WT-P and WT-W. These markers can be used when the chromosome region has
limited markers, probably separated by gel with higher concentration. The success rates of
the designed primers varied across the chromosomes from 40% to 92.9%, and the average
success rate was as high as 71.0% (Table 1). Our data provided the successful establishment
of genome-wide InDel markers based on a genetic map for G. paniculata. Nevertheless,
it has to be acknowledged that for some chromosomes, such as Chr.4, Chr.7, Chr.12 and
Chr.14, there were obvious gaps between two available markers, which was probably due
to the low density of InDels on the centromeric region of these chromosomes. Thus, it
might be essential to develop other molecular markers such as SNPs to compensate for
these empties in the future.
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Figure 2. Resequencing of WT-W based on the WT-P genome sequence. (A) Genomic structure
variation distribution between the two G. paniculata wild-type accessions. a: reference sequence.
b: SNP density distribution. c: InDel distribution density. d: CNV duplication. e: CNV deletion. f: SV
insertion. g: SV deletion. h: SV inversion. i: SV translocation. Abbreviations include SNP: Single
Nucleotide Polymorphism; InDel: Insertion/Deletion; CNV: Copy Number Variations; SV: Structure
Variation. (B) The sequencing coverage depth distribution map of each chromosome of G. paniculata.
The mean of read depth was calculated using the coverage depth (10,000 bp as the statistical window)
by logarithm (log2). (C) The distribution of the InDel length between WT-P and WT-W.
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Figure 3. The physical map of 407 InDel markers distributed across all 17 chromosomes of
G. paniculata genome. The name code of the InDel marker was presented as a chromosome num-
ber with the physical distance. Green markers discriminate alleles between WT-P and WT-W. Red
markers amplified close bands on gel, and black markers were unavailable.

Table 1. The successful rates of InDel markers for all 17 chromosomes.

Chromosome Number of
Markers

Number of
Green Markers

Number of Red
Markers

Successful Rate
(%)

Chr.1 20 14 70.0
Chr.2 18 12 66.7
Chr.3 26 18 3 69.2
Chr.4 26 17 3 65.4
Chr.5 23 12 52.2
Chr.6 25 10 6 40.0
Chr.7 23 12 6 52.2
Chr.8 38 24 1 63.2
Chr.9 27 20 2 74.1

Chr.10 21 18 1 85.7
Chr.11 28 26 92.9
Chr.12 22 18 3 81.8
Chr.13 21 13 4 61.9
Chr.14 24 21 1 87.5
Chr.15 23 21 91.3
Chr.16 19 16 1 84.2
Chr.17 23 17 73.9
Total 407 289 31 71.0

Note: Green markers discriminate alleles between WT-P and WT-W. Red markers amplified close bands on gel.

3.3. InDel Marker Polymorphisms among Commercial Cultivars

The wild and commercial cultivars possess excellent agronomic traits, for example,
wild types are generally more resistant, while the commercial varieties display larger
flowers and more petals. However, limited research focuses on the genetic regulators
underlying these traits, causing the relative mechanisms to remain unknown. To explore
the applicability of the InDel markers designed in distinguishing the alleles between wild-
type and commercial varieties, PCR amplification was conducted using the genomic DNA
of WT-P and four commercial varieties (YX1-4) as templates. Out of the 407 pairs of
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primers, 191 were able to discriminate alleles between WT-P and commercial cultivars. The
polymorphism of the InDel markers between WT-P and commercial cultivars was then
analysed by pairwise comparisons (Table 2). In total, the number of available markers
for each pair of accessions ranged from 31 (YX1 vs. YX4) to 173 (YX1 vs. WT-P), with
an average of 92. The InDel markers were suitable to discriminate alleles between WT-
P and commercial cultivars (an average of 171 markers available) since a high degree
of polymorphism was observed (Figure 4), whereas the markers available between the
commercial cultivars were no more than 50. This implies that the commercial cultivars are
closely related, which is consistent with the observation that all four commercial cultivars
bloom white flowers but differ only in flower size.
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Table 2. Number of InDel markers that were polymorphic in pairwise comparison of five
G. paniculata accessions.

Cultivars WT-P YX1 YX2 YX3

YX1 173
YX2 172 49
YX3 170 43 45
YX4 171 31 33 38

4. Discussion

The elaboration of the key regulatory mechanism underlying one or several traits as
well as the fast selection of elite progenies is crucial for plant breeding. When obtaining
a certain mutant, the identification of the allele(s) related to the phenotype is usually
performed by the forward genetics, in which F2 rough mapping provides an approximate
location of the mutation causative allele(s) on chromosomes without the requirement
of a large amount of samples and high-throughput sequencing, narrowing down the
targets for further fine mapping. In the last decades, the development of PCR-based
markers such as RAPD, SSR and amplified fragment length polymorphisms (AFLPs) have
fulfilled the shortage of map-based cloning [34]. In the field of ornamental breeding, these
sequence-related amplified polymorphisms (SRAP) markers have been applied to the vase
life-associated or disease-resistant QTL mapping and analyse chrysanthemum, carnation
and lily, to cite a few [35].

Nevertheless, the development of such markers is labour intensive, and their appli-
cation is limited in certain situations, since they are usually not genome-wide. Earlier,
benefiting from the availability of an annotated reference genome and sequenced acces-
sions, genetic markers based on InDels have been developed in Arabidopsis, accelerating
the identification of the mutated allele(s) [36]. With the booming of sequencing technology
and the following drop in sequencing expense, plentiful plant genomes were released for
crops and horticultural plants [37–40]. The resequencing-based InDel makers were then
developed in cotton [41], rice [42], Brassica [43], buckwheat [44], jute [45], melon [46], chick-
pea [47], cucumber [48], etc., used for research such as disease-related gene identification
or accession discrimination. However, the systematic development of such markers has
not been reported in ornamental species.

In this study, we constructed a genome-wide InDel marker system for G. paniculata
through genome resequencing. Similar to the early report in jute [45], InDels detected
in the G. paniculata genome are quite abundant, but most of them are shorter than 5 bp,
which makes them hard to use as markers. Regardless, the number of the ~5% InDels that
are longer than 10 bp is as large as 68302, equivalent to 91 InDels per Mb, which is more
than needed. To meet the demand for mapping (1 maker/2 Mb), 409 InDels distributed
on 17 chromosomes were selected, and the relative primers were then designed. Of these,
289 can discriminate alleles from 2 wild types donating the genome sequence data, coming
to a success rate of 70.6%. Although we expected to obtain an available marker every 2 Mb,
the outcome was barely satisfactory. There were usually missing available InDel markers
in the middle (calculated by physical distance) of the chromosome, such as Chr. 4, 7 and
14 (Figure 3). The same situation happened during the development of InDel markers in
rice [42] and Capsicum spp. [49]. It might be dissolved by adding other molecular markers
when mapping a certain QTL, or the InDels shorter than 10 bp can also be developed as
markers based on a high-resolution melting curve, as reported [50]. Since the discrimination
of genetic resources and extension of the application of markers are crucial in the breeding
process [44], we then detected the polymorphisms of the designed InDel markers in four
best-selling cultivars. Over 170 makers were available to differentiate each commercial
cultivar and WT-P, whereas only less than 50 markers worked for discrimination between
the 4 commercial cultivars. It makes sense, since all the commercial cultivars bloom with
white flowers and may share more common genetic information rather than WT-P.
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Used not only as the filler flower but also as a preserved flower which decorates
the environment after colourful staining, the status of cut flower G. paniculata is rising,
leading to a massive demand for the innovation of this species. Molecular genetics play
a more and more important role in floricultural breeding, in which a molecular marker
system covering the whole genome is the basis for genetic molecular research in the era
of genomics. However, it is still a gap for G. paniculata. Here, we provide the first genetic
map of G. paniculata in this study, consisting of a comprehensive set of InDel markers
for the molecular research of G. paniculata. The success in our case also implies that the
development of InDel markers covering the whole genome is cost- and labour-effective
with a high success rate, deserving to be applied in other ornamental species for which
cross-breeding is the main method for cultivar innovation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/horticulturae8100921/s1, Table S1: Primers used in this study.
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