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Abstract: The paper shows how to convert the 
order-8 cosine transforms into a family of integer 
cosine transforms (ICTs) using the theory of 
dyadic symmetry. The new transforms can be 
implemented using simple integer arithmetic. It 
was found that performance close to that of the 
DCT can be achieved with an ICT that requires 
only 4 bits for representation of its kernel com- 
ponent magnitude. Better performance can be 
achieved by some ICTs whose kernel components 
require longer bit lengths for representation. ICTs 
that require 3 bits or less for representation of 
their component magnitude are available but with 
degraded performance. The availability of many 
ICTs provides an engineer the freedom to tradeoff 
performance for simple implementation in design- 
ing a transform codec. 

1 Introduction 

Transform coding can achieve a high data compression 
rate for image data. A transform coder comprises mainly 
two parts : the first part transforms highly correlated 
image data into weakly correlated coefficients using an 
orthogonal transform and the second part performs 
adaptive quantisation on coefficients to reduce the bit 
transmission rate. It has been widely accepted that 
among the many suboptimal orthogonal transforms the 
discrete cosine transform (DCT) has the best performance 
in both data compression and filtering for image data [ I ,  
21. The DCT has also been shown to be asymptotically 
optimal for a first-order Markov source [3, 41, which is 
regarded as a good stochastic representation of image 
data. As block sizes of 8 and 16 are most appropriate for 
the transform coding of image data, therefore techniques 
for implementing order-8 and - 16 DCTs economically 
and with fast computational time are very important for 
the realisation of a transform codec. 

The DCT can be implemented using either a prog- 
rammable processor or dedicated hardware. For an 
order-n DCT, the magnitudes of the components of the 
0th and (n/2)th basis vectors can be reduced to unity by 
suitably scaling components of these basis vectors. How- 
ever, components of other basis vectors are irrational 
numbers which cannot be reduced to integers by simple 
scaling. Being real numbers, the components cause diffi- 
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culties in both implementation methods. Dedicated hard- 
ware that computes the DCT using floating point 
arithmetic is very complex and expensive. On the other 
hand, a programmable processor which computes the 
DCT by executing a sequence of instructions does not 
usually have instructions that handle real numbers. 
Although floating point co-processors which have been 
specially tailored for processing floating point arithmetic 
can be found on the commercial market, they are also 
very expensive. 

A simple method to eliminate floating point arithmetic 
is to approximate the real magnitudes of the DCT com- 
ponents by M-bit integers, so that the DCT can be com- 
puted using integer multiplications and additions. With 
each pixel represented by 8 bits, the 1-D order-n DCT 
requires n2 (8 + M)-bit multiplication and (8 + M 
+ $ log, n)-bit addition operations. The second stage of 

the 2-D DCT requires n2 (8 + 2M + $ log, n)-bit multi- 
plication and (8 + 2M + log, n)- bit addition operations. 
Guglielomo has suggested that 7 bits should be enough 
to represent the magnitudes of order-16 DCT kernel 
components without causing significant effects on the 
transformed and reconstructued signal [SI. Suppose the 
order-8 DCT also requires 7 bits for representation of the 
components. The 2-D order-8 DCT thus requires 24-bit 
multiplication and 25-bit addition operations, which are 
difficult to implement and introduce a lot of delay in the 
computation. There are other, simpler transforms, such 
as the Walsh transform [6, 71, slant transform [8] and 
the high-correlation transform (HCT) [9], whose multi- 
plication and addition operations require shorter bit 
lengths, but they all perform unsatisfactorily compared to 
the DCT. 

Jones et al. [lo] found that the order-8 DCT can be 
approximated using the orthogonal C-matrix transform 
[CMT] with small performance degradation. The C- 
matrix transform is computed via the row bit-reversed 
Walsh transform [HI and the C-matrix [CM] as follows: 

[CMT] = [CM] . [HI 

As [ C M ]  is a sparse block diagnonal matrix containing 
only integers 13, 12, 5, 4, 3,  -3, -4 and -5, and as [HI 
contains only + I  and -1, the C-matrix transform can 
be implemented using simple integer arithmetic. The 
work was then extended to orders 16 [11] and 32 [12]. 
These three C-matrices are all derived by trial and error. 
In this paper, we show that it is possible to replace trans- 
form kernel components of the order-8 DCT by a new set 
of numbers. Such a technique can be applied to any 
transform, although solutions are not always guaranteed. 
For the order-8 DCT, infinite new transforms can be 
obtained. Boundary conditions are imposed to ensure 
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that the new transforms, while still resembling the DCT, 
-..,.daii4 A A I ~  iu@m An tho mngnitudo of them integero 
can be very small, the new transforms thus generated are 
simple to implement and will be referred to here as 
integer cosine transforms (ICTs). 

The sign of each component of the ICTs is the same as 
that of the DCT whereas the sign of each component of 
the CMT is the same as that of the Walsh transform. 
Therefore, the basis vectors of the ICTs are closer to 
those of the DCT than the CMT. To access the per- 
formance of the ICTs, the transform efficiency [9] of a 
1-D Markov source, the mean-square-errors [13] of a 
2-D Markov source and real images are used as critieria. 
It was found that the performance of most of the ICTs 
was very close to that of the DCT and better than that of 
the CMT. In fact, some ICTs are even superior to the 
DCT if transform efficiency (see Section 4.1) is used as the 
criterion. In general, better performing ICTs have com- 
ponents that require longer bit lengths for representation. 
The availability of many ICTs therefore provides an engi- 
neer with the freedom to tradeoff performance for simple 
implementation in the design of a transform codec. For 
example, if implementation simplicity is the paramount 
criterion, he can choose an ICT whose components can 
be represented using only 2 bits. 

The kernel component replacement technique is based 
on the principle of dyadic symmetry which has been used 
to generate the HCT and the LCT orthogonal transforms 
[SI, as well as to provide a unified matrix treatment for 
binary Walsh matrices [7]. Details of the theory of 
dyadic symmetry will not be covered here. Interested 
readers may refer to References 7 and 9. 

Unless specified otherwise, all vectors in what follows 
are column vectors. 

2 Dyadic symmetry 

Definition of dyadic symmetry: 

A vector of 2" elements [ a , ,  a , ,  ..., a 2 , , - , ]  is said to 
have the ith dyadic symmetry if and only if a j  = s . a j e i ,  
where 0 is the 'exclusive or' operation, j lies in the range 
[0, 2"' - 11 and i in the range [ l ,  2"' - 13,  s = 1 when the 
symmetry is even, and s = - 1 when the symmetry is 
odd. 

For a vector of eight elements, there are seven possible 
dyadic symmetries. As an example, Table 1 shows the 

Table 1 : The seven vectors H, having Sth even dyadic syrn- 
metrv 

S Vector H, 

vectors H ,  = [ a , ,  a , ,  a , ,  a 3 ,  a 4 ,  a 5 ,  a 6 ,  a , ]  which have 
the seven even dyadic symmetries. 

Theorem of orthogonality: Two vectors U and V are 
orthogonal if U and V have the same type of dyadic sym- 
metry and one is even and the other is odd. 
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Proof: It is obvious that the dot product of vectors U 
and I/ are zero, therefore 11 and I/ are orthogonal. 

3 

Let [TI be the kernel of the order-n discrete cosine trans- 
form whose (i, j)th element is T,,(i, j ) .  'i",,(i, j )  is the jth com- 
ponent of the i-th DCT basis vector and is equal to 

Generation of the  order-8 ICTs 

'i",,(i,j) = 1 / J n  for i = 0 

for i E [l, n - 11 = ( 2 / J n )  cos {(i + 0.5)7cj/n} 

( 1 )  
where 

j E [0, n - 13 

The following describes the steps to convert the order-8 
DCT kernel into ICT kernels. 

Step 1 to express the order-8 DCT kernel [TI in the form 
of a matrix of variables: Let n of eqn. 1 be 8 so that we 
obtain an 8 x 8 matrix 

[IT1 = C k o J o ?  k i J i ,  k 2 J 2 ,  k , J , ,  

k4 J4 9 k 5  J 5  7 k6 J 6  > k7 J711 (2) 
where J i  is the i-th basis vector and ki is a scaling con- 
stant such at I k i  . JiI = 1. Let J(i, j )  be the j-th element 
of J i .  For simplicity, we shall denote T'(i, j) by T(i, j ) .  As 

1) = T(5, 6 )  = - T(7, 3) = T(7, 4), we may represent the 
magnitudes of J(l,O), J(1, 7), 4 3 ,  2), 4 3 ,  5), J(5, l ) ,  4 5 ,  6), 
K ( 7 ,  3) and J ( 7 ,  4) by a single variable, say 'a'. Similarly, 
all eight basis vectors are expressed as variables 'a', 'b', 
'c', 'd', 'e' and 'f' as shown in Table 2. Suppose k:s are 

T(1, 0) = -T(l ,  7) = -T(3, 2) = T(3, 5) = -T(5, 

Table 2 :  The 8 scaled basis vectors in IJI 

i J, 

0 1  1 1  1 1  1 1  1 
1 a b c d -d -c -6 -a 
2 e f -f -e -e -f  f e 
3 b -d -a -c c a d -6 
4 1 -1 - 1  1 1 -1 -1 1 
5 c -a d b -b -d a -c 
6 f -e e -f - f  e -e f 
7 d -c b -a a -b c -d 

chosen such that d andfare  unity, then a, b, c and e are 
varaibles representing irrational numbers whose values 
are approximately 5.027, 4.2620, 2.8478 and 2.4142 
respectively. 

Step 2 to jind the conditions under which Ji and J j  are 
orthogonal: From Table 2, we can see that each basis 
vector has at least one dyadic symmetry. Table 3 lists the 
type of dyadic symmetry present in each basis vector. We 
then examine the condition under which the ith basis 
vector J i  and the jth basis vector J j  are orthogonal for all 
i, j and I I J .  For example, we can see that J ,  and J1 are 
always orthogonal to each other for all a, b, c and d 
because J ,  has odd 7th dyadic symmetry and J ,  has even 
7th dyadic symmetry. Therefore, by means of the theorem 
of orthogonality, J ,  and J ,  are always orthogonal. J ,  
and J ,  are also always orthogonal for all e andfbecause 
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Table 3:  Sth dyadic symmetry type in basis vectorJ, 

Dyadic symmetry S in J, 

i 1 2 3 4 5 6 7  

E and 0 represent even and odd dyadic symmetry respectively. '-' 
implies that J, has no Sth dyadic symmetry 

J ,  has odd 3rd dyadic symmetry and J ,  has even 3rd 
dyadic symmetry. In another example, we can see that J ,  
and J, are orthogonal to each other for all a, b, c, d, e 
and f because J ,  has odd 7th dyadic symmetry while J ,  
has even 7th dyadic symmetry. The conditions under 
which J i  and J j  are orthogonal are summarised in Table 
4. Table 4 reveals that the only condition that the con- 

Table 4: Conditions under which the i th basis vector and 
the j t h  basis vector are orthogonal 

i 

1 2 3 4 5 6 7 1  

*3 *2 *3 *2 *3 *2 *3 0 
*3 *1 *3 *1 *3 *4 1 

*3 *2 *3 *4 *3 2 
*3 *4 *3 *1 3 

*3 *2 *3 4 
*3 *1 5 

*3 6 

*1 i f a . b = a . c + b . d + c . d  
*2 must be orthogonal due to the 3rd dyadic symmetry 
*3 must be orthogonal due to the 7th dyadic symmetry 
*4 must be orthogonal as their dot product equals zero 

stants a, b, c, d and e must satisfy to ensure that the 
transform [ T] be orthogonal is 

a . b = a . c + b . d + c . d  (3) 
Eqn. 3 has four variables and has an infinite number of 
solutions. This implies that an infinite number of new 
orthogonal transforms can be generated from the DCT. 

Step 3 to set up boundary conditions and generate new 
transforms: Eqn. 1 implies that for the DCT 

a > b a c > d  and e > f  (4) 

To make the basis vectors of the new transforms resem- 
ble those of the DCT, inequality exprs. 4 have to be satis- 
fied. Furthermore, to eliminate truncation error due to 
non-exact representation of the basis components a, b, c, 
d ,  e andf, condition expr. 5 has to be satisfied: 

(5) a, b, c, d, e and f are integers 

Transforms [TI that satisfy the conditions of exprs. 3, 4 
and 5 are referred to here as order-8 integer cosine trans- 
forms (ICTs). As an example, ICT(5, 3, 2, 1, 3, 1) refers to 
the order-8 ICT with a = 5, b = 3, c = 2, d = 1, e = 3, 
f = 1. Fig. 1 shows the basis vectors of this ICT together 
with those of the DCT. 

4 Performance of order-8 ICTs 

4.7 Transform efficiency [9] performance 
In the transform coding of pictures, transforms are used 
to convert highly correlated signals into coefficients of 
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low correlation. Such decorrelation ability may be mea- 
sured by the transform efficiency q, which is defined on a 
first-order Markov process of adjacent element correla- 
tion p. A large q implies a high decorrelation ability. The 

Fig. 1 
~ ICT 

DCT 

Basis vectors of the order-8 D C T  and the I C T ( 5 , 3 , 2 ,  I ,  3, I )  

. . . .  

optimal K - L  transform which converts signals into com- 
pletely uncorrelated coefficients has a transform efficiency 
equal to 100% for all p. 

Let the n-dimensional vector X be a sample from a 
one-dimensional, zero-mean, unit-variance first-order 
Markov process with adjacent element correlation p, and 
covariance matrix [C,] where the ( i ,  j)th element of [C,] 
is pl i - j l .  The efficiency of the transform [TI is defined 
on the transform domain covariance matrix [Cy] of 
vector Y where 

Y = [T]X 

[Cy] = E [ Y  . Y'] 

n 

C I sii I 
Efficiency q = i =  c c lspql 

p = l  q = l  

The DCT, which is widely accepted as the best sub- 
optimal transform, has the highest transform efficiency of 
the well-known suboptimal transforms for p close to 
unity. A computer search has been performed to find the 
set of (a,  b, c, d) that gives the highest transform efficiency 
for a less than or equal to 255, and (e, f )  equal to (1,0), (4, 
l), (3, l), (2, 1) and (1, 1). It was found that e = 3 and 
f = 1 always gives a higher transform efficiency for the 
same (a,  b, c, 4. Table 5 lists the twelve order-8 ICTs that 
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have the highest transform efficiencies for p equal to 0.9 
and a less than or equal to 255. It can be seen that all 
twelve ICTs have high transform efficiencies than the 

4.2 Basis restriction mean-square-error performance 
The data compression ability of a transform can be mea- 
sured by means of the basis restriction mean-square-error 

Table 5 :  The twelve order-8 ICTs that have the highest 
transform efficiencies for p equal 0.9 and a less than or 
eaual t o  255 

Transform Transform 
efficiency 

90.221 
90.220 
90.21 9 
90.21 7 
90.21 7 
90.21 5 
90.21 3 
90.21 3 
90.21 2 
90.21 1 
90.21 0 
90.208 
89.836 
86.785 
85.842 
84.097 
77.1 40 

ICT(230. 201, 134, 46, 3, 1 ) 
ICT(175, 153, 102, 35, 3, 1 ) 
ICT(120, 105, 70, 24, 3, 1 ) 
ICT(185. 162, 108, 37, 3, 1) 
ICT(250, 21 9, 146, 50, 3, 1 ) 
ICT(65, 57, 38, 13, 3, 1) 
ICT(55. 48, 32, 11, 3, 1 ) 
ICT(205, 180, 120, 41, 3, 1) 
ICT(140, 123, 82, 28, 3, 1 ) 
ICT(215, 189, 126, 43, 3, 1 ) 
ICT(75, 66, 44, 15, 3, 1) 
ICT(235, 207, 138, 47, 3, 1) 
DCT 
CMT 
slant transform 
H CT 
Walsh transform 

96 r 

+ 70 
68 
66 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

adjacent element correlation 

Fig. 2 
correlation 
A DCT 
x Walsh transform 
0 ICT(230, 201, 134,46) 
+ ICT(55,48, 32, 11) 
0 ICT(IO,9,6,2) 
V CMT 

Transform efficiency for different values of adjacent element 

order-8 DCT. Fig. 2 shows how the transform efficiency 
of various transforms varies with adjacent element correl- 
ation p. As shown in Fig. 2, the transform efficiencies of 
the DCT and the ICTs are very close to each other and 
are always better than those of the CMT and the Walsh 
transform for adjacent element coefficients between 0.1 
and 0.9. 

0.15 
0.14 
0.13 
0.12 
0.11 

g 0.1 
Y 0.09 
$ 0.08 
0.07 

? 0 0 6  
'0 005 

0.03 
0.02 
0 01 

E OOL 

number of coefficients retained 

Fig. 3 
element correlation p equal to 0.95 
0 ICTs 
0 KLT 
A DCT 
x Walsh transform 
V CMT 

Basis restriction mean-square-errors of transforms for adjacent 

[ 131. Consider a two-dimensional zero-mean unit- 
variance nonseparable isotropic Markov process with 
covariance function 

4 ( i - p ) *  + ( j - q P  Cx(k j ;  P, 4) = E C x i ,  j ' x p ,  q l  = P 

where p is the adjacent element correlation in the vertical 
and horizontal directions. Let the n by n matrix [ X I  be a 
sample of the Markov process. Suppose [ X I  is trans- 
formed into [C]  by transform [TI, i.e. 

CCI = [TI . [XI . [TI' 

where the elements of [XI and [C] are x i ,  and c,,,, 
respectively. The covariance function of [C] is 

CAU, U ;  I ,  4 = a c , .  U ' cr,  ,I 
= 1 C Cx(i,.j; P, 4) 

i j p q  

. T(u, i) . T(u, j )  . T(r, P )  . T(s, 4 
Hence, we have the variance of c,,, equal to 

a,(& 4 = C A U ,  0 ;  U, 4 
Let R be the set containing M index pairs (U, U) corre- 
sponding to the largest M a,(#, U). The basis restriction 

Table 6: Basis restriction mean-square-errors for adjacent element cor- 
relation equal to  0.95 

no. of KLT DCT ICT(230, ICT(55, ICT(l0, CMT Walsh 
coefficients 201, 134, 48, 32, 9, 6, 2, 
retained 46, 3, 1) 11, 3, 1) 3, 1) 

2 0.1 372 0.1 381 0.1 381 0.1 381 0.1 382 0.1 387 0.1 468 
6 0.0567 0.0572 0.0573 0.0573 0.0573 0.0587 0.0785 

10 0.0406 0.0409 0.041 0 0.041 0 0.041 0 0.0431 0.0541 
14 0.0320 0.0322 0.0323 0.0323 0.0323 0.0348 0.0441 
18 0.0263 0.0264 0.0266 0.0266 0.0266 0.0287 0.0361 
22 0.0221 0.0222 0.0223 0.0223 0.0224 0.0238 0.0300 
26 0.01 89 0.01 89 0.01 90 0.01 90 0.01 90 0.01 98 0.0251 
30 0.01 60 0.01 60 0.01 62 0.01 62 0.01 62 0.01 65 0.0205 
34 0.01 36 0.01 36 0.01 37 0.01 37 0.01 37 0.01 40 0.01 70 
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Table 7:  Mean-square-errors (MSE) of the ICTs that have 
the highest transform efficiencies 

Transform or Transform MSE of MSE of MSE of 
ICT(a, b, c, d )  efficiency ‘Girl’ ’House‘ ’Stone’ 

D CT 89.8 10.6 22.3 17.3 
CMT 86.8 10.8 22.9 17.7 
slant transform 85.8 10.6 22.7 17.7 
H CT 84.1 12.0 24.8 19.2 
Walsh transform 77.1 15.8 32.3 25.1 

a is 255 or less and needs 8 bits or less for representation 
ICT(230 201 134 46) 90.2 10.8 22.4 17.3 
ICT(175 153 102 35) 90.2 10.8 22.4 17.3 
ICT(120 105 70 24) 90.2 10.8 22.4 17.3 
ICT(185 162 108 37) 90.2 10.8 22.4 17.3 
ICT(250 219 146 50) 90.2 10.8 22.4 17.3 

a is 127 or less and needs 7 bits or less for representation 
ICT(120 105 70 24) 90.2 10.8 22.4 17.3 
ICT( 65 57 38 13) 90.2 10.8 22.4 17.3 
ICT( 55 48 32 11) 90.2 10.8 22.4 17.3 
ICT( 75 66 44 15) 90.2 10.8 22.4 17.4 
ICT( 85 75 50 17) 90.2 10.8 22.4 17.3 

a is 63 or less and needs 6 bits or less for representation 
ICT(55 48 32 11) 90.2 10.8 22.4 
ICT(10 9 6 2) 90.2 10.8 22.5 
ICT(55 51 34 11) 90.1 10.9 22.6 
ICT(45 39 26 9) 90.1 10.7 22.4 
ICT(45 42 28 9) 90.1 10.9 22.6 

a is 31 or less and needs 5 bits or less for representation 
ICT(1O 9 6 2) 90.2 10.8 22.5 
ICT(25 24 16 5) 89.9 11.0 22.7 
ICT(25 21 14 5) 89.8 10.7 22.4 
ICT(24 21 15 4) 89.6 10.8 22.5 
ICT(26 24 15 6) 89.6 10.8 22.6 

a is 15 or less and needs 4 bits or less for representation 
ICT(1O 9 6 2) 90.2 10.8 22.5 
ICT(15 15 10 3) 89.4 11.1 22.9 
ICT(15 12 8 3) 89.1 10.7 22.3 
ICT(14 12 9 2) 89.1 10.9 22.6 
ICT(12 10 6 3) 88.3 10.6 22.5 

17.3 
17.3 
17.4 
17.3 
17.4 

17.3 
17.4 
17.3 
17.3 
17.4 

17.3 
17.6 
17.3 
17.4 
17.4 

a is 7 or less and needs 3 bits or less for representation 
ICT(6 6 3 2) 83.2 11.3 23.4 18.0 
ICT(5 3 2 1) 81.1 11.0 23.4 18.3 
ICT(7 4 3 1) 80.0 11.0 23.6 18.4 
ICT(3 2 1 1) 80.0 11.5 24.3 19.0 

e = 3 ; f =  1 

mean-square-error is defined as 

4w = 1 - { 1 C r T ( U ,  .)2/c a&, V I 2  
U . V E R  U L’ 

Fig. 3 and Table 6 show comparisons of the basis 
restriction mean-square-errors of various transforms for 
p equal to 0.95. The ICTs being tested are ICT(230, 201, 
134, 46, 3, l), ICT(55, 48, 32, 11, 3, 1) and ICT(10, 9, 6, 2, 
3, 1) whose basis restriction mean-square-errors, as 
shown in Table 6, are nearly the same and so are rep- 
resented using one curve in Fig. 3. Fig. 3 shows that the 
basis restriction mean-square-errors of the ICTs, the 
KLT and the DCT are very close and always smaller 
than those of the CMT and the Walsh transform. Table 6 
shows that the basis restriction mean-square-error of the 
KLT is in fact smaller than that of the DCT which in 
turn is smaller than those of the ICTs. 

4.3 Mean -square-error performance on real images 
Tests have also been performed using real images. Images 
are first divided to form horizontal order-8 vectors and 
then transformed. With five high-sequence coefficients 
truncated, the transformed vectors are inverse trans- 
formed back into the spatial domain. The mean-square- 
error between the original and the processed image is 

used as the critierion for assessing the performance of a 
transform. Table 7 lists the results for the mean-square- 
error test performed on the three images shown in Fig. 4. 

a 

C 

Fig. 4 
a Girl 
h House 
c Stone 

T h e  three images used in the mean-square-error test 

It was found that the mean-square-error performance 
of the transforms varies slightly from image to image. For 
image ‘Girl’, the slant transform has the smallest mean- 
square-error and is followed by ICT(12, 10, 6, 3, 3, l), the 
DCT and then ICT(15, 12, 8, 3, 3, 1). For image ‘House’, 
the DCT has the smallest mean-square-error and is fol- 
lowed by ICT(15, 12, 8, 3, 3, 1) and ICT(25, 21, 14, 5, 3, 
1). For image ‘Stone’, ICT(25, 21, 14, 5, 3, l), ICT(45, 39, 
26, 9, 3, 1) and ICT(55, 48, 32, 11, 3, 1) produce the 
smallest mean-square-errors. 

ICT(10, 9, 6, 2, 3, l), whose implementation complexity 
is about the same as that of the CMT, has smaller mean- 
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square-errors than the CMT, for all three images. The 
Walsh transform, which has the smallest transform effi- 
ciency and the largest basis restriction mean-square- 
error, has the largest mean-square-error for all three 
image. In general, transforms having larger transform 
efficiencies and smaller basis restriction mean-square- 
errors usually have smaller mean-square-errors in the 
real-image test. However, it should be noted that results 
drawn from the real-image test are only used to confirm 
the results based on the stochastic processes and should 
not be generalised. 

5 Implementation 

Let [TI be an ICT. From eqn. 2, we have 

[TI = CKlCJl (7) 

[TI- '  = [ T I ' =  [J]'[K] (8) 
where [K] is a diagonal matrix whose (i, i)th element is ki  
and [J] is a matrix whose ith basis vector is given by 
Table 2.  As [TI is an ICT, therefore [J] contains only 
integers. Fig. 5 shows an adaptive 1-D transform coding 

channel 

-0 iJ? 

decoder # 0 

decoder # 1  

adaptive 
scheme 

chip. The complexity of the chip depends on the magni- 
tude of the basis vector component a (see Table 2)  
because a determines the maximum number of shifts 
required in each multiplication. For example, multiplica- 
tion operations within ICT(10, 9, 6, 2, 3, 1) require only 
three shifts, whilst the multiplication operations within 
the DCT require six shifts if its kernel components are 
represented using seven bits [SI. With fewer shift oper- 
ations, an ICT(10, 9, 6, 2, 3, 1) chip is not only simpler 
but also faster. As shown in Sections 4.1 to 4.3, the per- 
formance of the ICT(10, 9, 6, 2, 3, 1 )  with respect to trans- 
form efficiency, basis restriction mean-square-error and 
mean-square-error is better than that of the CMT and is 
very close to that of the DCT. Therefore, ICT(10, 9, 6, 2, 
3, 1) is a good substitute for the order-8 DCT. In cases 
where simplicity and speed of the transform chip are of 
paramount importance, ICT(5, 3, 2, 1, 3, 1) and ICT(3, 2, 
1, 1 ,  3, 1) are other choices. A transform codec designer 
can therefore tradeoff transform compression ability for 
computation speed and implementation simplicity by 
choosing an appropratie transform. Furthermore, as 
shown in Fig. 6, all ICTs can also be computed using a 

x o  

x l  x ::_:i 2 c6  
x 2  

x 3  

Fig. 6 Fast computational algorithm for order-8 I C T  where 
p = ( b  + c)/2a and q = (a - 4J2c 

fast computational algorithm which is very similar to 
that of the DCT [3] and has 4 iterations. 

Fig. 5 Adaptive 1-D transform coding system utilising an order-8 
I C T  [ J ]  

system that utilises an order-8 ICT. In the transmitter, 
signal vector X is first transformed by [J] and then each 
transformed coefficient is multiplied by the corresponding 
ki to form ci. Coefficient ci is then quantised by quantiser 
# i  under the control of an adaptive scheme to form the 
quantised coefficient c;, which is then multiplexed to the 
channel. At the receiver, each c{ is demultiplexed and 
decoded separately into a form suitable for the multipli- 
cation process and the inverse transform. The quantisa- 
tion process at the transmitter and the decoding process 
at the receiver are most likely performed using micro- 
processors by means of table-lookup. This implies that 
the multiplication processes at the transmitter can be 
easily incorporated into the quantisation process by 
modifying the input entries of the quantisation lookup 
table; the multiplication processes at the receiver can be 
incorporated into the decoding process by modifying the 
output entries of the decoding lookup table. Therefore, 
real number multiplications may be completely elimi- 
nated in an ICT transform coder. 

To speed up the transformation process, the integer 
transform [J] should be implemented using a dedicated 
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An order-2n orthogonal transform T2,,(i, j )  can be gener- 
ated from an order-n 7',,(i,j) transform as follows: 

Generalisation t o  larger block sizes 

(a) the first n basis vectors of T2,,(i, j ) :  

T2,,(i, 2j) = T,,(i, j )  

and 

T2,,(i, 2j + 1) = T,,(i, j )  f o r j  E [0, n - 11 

(b)  the last n basis vectors of T2,,(i,j): 
(i) T2,,(i + n, 2j) = T,,(i, j )  

T2,,(i + n, 2j + 1) = - T,,(i, j )  

and 

for j E {O, 2, 4, ..., n - 2 )  

(ii) T',,(i + n, 2j) = - T,,(i, j )  

T2,,(i + n, 2j + 1) = T,,(i, j )  

and 

f o r j E  {I, 3, 5 ,..., n -  1) 

It was found that the basis vectors of T2,,(i, j )  generated 
using the above method resemble those of the q(i, j ) .  The 
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order-8 ICT may therefore be generalised to any order-2m 
ICT for m > 3. Computer programs have been used to 
search for order-16 ICTs whose transform efficiency is 
the highest for a limited to 7, 15, 31, up to 255 and e 
equal to 3 andfequal  to 1. It was found that ICT(246, 
222, 147, 50, 3, 1) has the highest transform efficiency for 
a less than or equal to 255 and ICT(10, 9, 6, 2, 3, 1) has 
the highest transform efficiency for a less than or equal to 
128. However, as given by Table 8, the transform effi- 

Table 8: Transform efficiency of the order-16 ICTs and 
other well known transforms 

Transform (a, b, c ,  d) 
efficiency 

82.3 DCT 
74.1 slant transform 
73.9 (246, 222, 147, 50) 
73.8 (10, 9. 6. 2) 
73.7 CMT 
68.4 H CT 
60.9 Walsh transform 

ciency performance of the order-16 ICTs is inferior to 
that of the other well known order-16 orthogonal trans- 
forms. This could be because the order-16 ICTs have 
only eight levels in their kernel whilst the DCT and the 
slant transform have 16 levels. 

7 Conclusion 

In this paper, the concept of dyadic symmetry has been 
used to modify the order-8 DCT and generate many new 
integer orthogonal transforms which are called the 
integer cosine transforms (ICTs). The basis vectors of 
these transforms are similar to those of the DCT and all 
ICTs can be implemented by integer arithmetic. The 
implementation complexity of an ICT depends on the 
number of bits required to represent the magnitude of its 
kernel components. In comparison with the CMT, which 
is an integer approximation of the DCT, an ICT whose 
transform kernel contains only 10, 9, 6, 2, 3, and 1 has 
similar implementation complexity but higher decorrela- 
tion ability and better mean-square-error performance. 
Even better performance can be achieved by some ICTs 
whose kernel components require longer bit lengths for 

representation. ICTs that require three bits or less for 
representation of their component magnitudes are avail- 
able but have a less satisfactory performance. The avail- 
ability of many ICTs thus provides an engineer with the 
freedom to tradeoff performance for simple implementa- 
tion in designing a transform codec. The order-8 ICT can 
be computed using a fast computational algorithm which 
is similar to that of the order-8 DCT but requires only 
integer multiplication and addition operations. The 
order-8 ICTs can be generalised to transforms of larger 
block sizes, however the performance cannot match that 
of the order-8 transforms. 
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