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ABSTRACT
Motivation: As a starting point in annotation of bacterial
genomes, gene finding programs are used for the predic-
tion of functional elements in the DNA sequence. Due to the
faster pace and increasing number of genome projects cur-
rently underway, it is becoming especially important to have
performant methods for this task.
Results: This study describes the development of joint applic-
ation strategies that combine the strengths of two microbial
gene finders to improve the overall gene finding performance.
Critica is very specific in the detection of similarity-supported
genes as it uses a comparative sequence analysis-based
approach. Glimmer employs a very sophisticated model of
genomic sequence properties and is sensitive also in the
detection of organism-specific genes. Based on a data set of
113 microbial genome sequences, we optimized a combined
application approach using different parameters with relev-
ance to the gene finding problem. This results in a significant
improvement in specificity while there is similarity in sensitiv-
ity to Glimmer. The improvement is especially pronounced for
GC rich genomes. The method is currently being applied for
the annotation of several microbial genomes.
Availability: The methods described have been implemented
within the gene prediction component of the GenDB genome
annotation system.
Contact: fm@CeBiTec.Uni-Bielefeld.DE

INTRODUCTION
Microbial whole genome projects have become quite com-
mon today. Following sequencing and assembly, a functional
description of the sequence is produced in the annotation
phase. For storage, retrieval and processing of the informa-
tion involved, annotation systems such as Artemis (Rutherford
et al., 2000), ERGO (Overbeek et al., 2003), GenDB (Meyer
et al., 2003) and MAGPIE (Gaasterland and Sensen, 1996)
have been developed. In the first step in annotation, gene
finders are usually applied for the prediction of functional

∗To whom correspondence should be addressed.

elements such as coding sequences (CDSs) in the DNA
sequence.

Compared with the more complex genetic organization in
higher organisms, protein coding sequences in prokaryotic
genomes possess a relatively simple structure. The task in
microbial CDS prediction is to separate open reading frames
(ORFs) that correspond to in vivo transcribed and trans-
lated regions of protein-coding sequence from the non-coding
ORFs, which do not constitute functional elements of an
organism’s chromosome. A further issue is the determina-
tion of the correct start position, which, contrary to the stop
position of a coding sequence, is not uniquely defined.

Different classes of microbial gene finders exist. Ab initio
methods rely on the evaluation of intrinsic sequence prop-
erties such as the biased distribution of DNA oligomers in
coding sequences. Programs that implement this approach
include Glimmer (Salzberg et al., 1998; Delcher et al.,
1999), GeneMark.hmm/S (Besemer and Borodovsky, 1999;
Besemer et al., 2001), ZCURVE (Guo et al., 2003) and
EasyGene (Larsen and Krogh, 2003). Extrinsic gene find-
ers additionally use pairwise sequence similarity as ’external
evidence’ for their predictions; examples for these are the
Critica (Badger and Olsen, 1999) and Orpheus (Frishman
et al., 1998) programs. Yet another approach uses a ‘Bio-
dictionary’ of prokaryotic protein sequence patterns for gene
identification (Shibuya and Rigoutsos, 2002). For some gen-
omes, a performance improvement has been achieved by
combining the results from two or more programs (Guo
et al., 2003; Tech and Merkl, 2004). These methods have
been named the Glimmer ∩ ZCURVE (Guo et al., 2003) and
YACOP [Critica ∪ (Glimmer ∩ ZCURVE)] (Tech and Merkl,
2004) strategies. For start site prediction, characteristic fea-
tures of gene starts and the surrounding sequence, such as
preferred start codons and ribosome binding site (RBS) pat-
terns are utilized (Besemer et al., 2001; Guo et al., 2003;
Badger and Olsen, 1999; Suzek et al., 2001).

There is a large number of microbial genome projects
either recently finished or currently under way. It is becom-
ing increasingly important to have performant gene prediction
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methods. These should allow the creation of high-quality
genome annotation data while reducing superfluous human
validation effort. In this study, this is tackled by the develop-
ment of joint gene finding strategies based on the gene finders
Glimmer and Critica. Both have different strengths, are freely
available and can be utilized in automated high-throughput
analysis on a Unix system. Information regarding their per-
formance is currently scarce and available only for smaller sets
of 7 (Tech and Merkl, 2004) or 18 (Guo et al., 2003) genomes.
As this may not give a representative picture for all genomes
available today, initially their performance was evaluated on
113 genome sequences belonging to a wide variety of micro-
bial organisms. Glimmer was found to be the more sensitive
program but its performance decreases strongly for GC rich
genomes. For example, for the genomes of Sinorhizobium
meliloti and Streptomyces coelicolor there are 1507 and 5817
false positive CDS predictions, respectively. Relying on the
results of the program without further modifications results in
an enormous manual validation effort for human annotators in
genome projects. We tackled this problem by developing joint
application strategies for the two programs. Using different
parameters with relevance to the gene finding problem, com-
bined strategies with optimized performance were devised.

MATERIALS AND METHODS
Data sets
The EMBL annotations of 114 genomic sequences of eubac-
terial and archaeal microorganisms were used in this study.
A complete list can be found at http://www.CeBiTec.Uni-
Bielefeld.DE/~alice/geneprediction/Sequences. To exclude
annotation ambiguities, CDSs annotated with a non-integer
number of codons or ending without a stop codon were
excluded. Getorf (Olson, 2002) was used for ORF determ-
ination. Critica and Glimmer-2.1 were run with the option
to use RBS information to locate the correct start position.
For comparison of the Glimmer performance for genomes
annotated using Glimmer versus those annotated using other
gene finders, the Glimmer version available at the time of
obtaining the annotation data was used (Glimmer-2.10). In
further analyses, the latest version (Glimmer-2.13) was used,
which uses a novel method for generation of the training set
of CDSs.

Data sets of genes (known function) with known function
or other supporting evidence were prepared for all genomes
based on the information given in the CDS gene product
description. For this, all CDSs described without an indication
of function, experimental confirmation, sequence conserva-
tion or the occurrence of functional domains were classified
as uncertain. Of the total set of 305 613 CDSs annotated for
the 114 genomes, this was the case for 58 889 entries. The gen-
omic sequence data with the corresponding annotated CDSs,
gene finding results and ORFs can be browsed using the
GenDB web front end (http://www.CeBiTec.Uni-Bielefeld.

DE/~alice/geneprediction/gendb_cds.html). The genes con-
sidered as uncertain in this study can be identified by their
‘Status function’, which was set to ‘putative’.

Measuring performance and classification
accuracy
In a two-class classification problem such as discriminat-
ing between non-coding ORFs and CDSs, the classification
performance of a method can be evaluated by determin-
ing the numbers of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) classified items,
where TP + FP + TN + FN = N. Positives correspond to
ORFs described as CDSs in the annotation, and negatives are
the remaining, non-coding ORFs. Based on the sensitivity,
x = TP/(TP + FN), and specificity, y = TP/(TP + FP), the
correlation coefficient,

CC(P , A) = N · x · y − TP

[(N · x − TP)(N · y − TP)]1/2
, (1)

can be determined, which represents the accuracy of the pre-
dictive classification, P , with respect to the annotation A. It
is entirely symmetric in x and y and provides a summary of
gene finding performance based on all four parameters (Baldi
et al., 2000).

In gene finding, the predictive result of a gene finder is usu-
ally not identical to a classification based on a single numerical
measure. Besides a numerical measure of the ‘coding poten-
tial’ of an analyzed ORF, parameters such as overlap with
neighboring predictions are typically employed for the predic-
tion. To determine the discriminatory power of an internally
used scoring methodology, ROC analysis (Swets, 1988) can
be used. The receiver (or relative) operating characteristic
(ROC) is a plot of the sensitivity versus the FP proportion
[FP/(FP + TN)] of the non-coding ORFs for various settings
of the decision threshold. The area under the ROC curve meas-
ures the probability of correct classification and can be used
as a single-valued, general measure of classification accur-
acy (Swets, 1988). ROC analysis was carried out for the
different scoring methodologies used by Glimmer, for which
the scores assigned to the ORFs during the analysis are avail-
able from the output. As the number of non-coding ORFs in
bacterial genomes largely exceeds the number of CDSs, a par-
tial ROC was calculated, similar to that used in performance
evaluation of protein database search methods (Gribskov and
Robinson, 1996; Schaeffer et al., 2001). ROC0.1 corresponds
to the area under the ROC curve up to a FP proportion of
10%. For significance estimation of the difference in overall
performance, sensitivity and specificity between the two gene
finding methods, two-sample t-tests were applied, with the
pooled variance for similar variance samples and the Welch
approximation to the degrees of freedom otherwise.
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Fig. 1. Performance of Glimmer for genomes annotated using Glimmer or other gene finders in the annotation process. (A) Specificity versus
sensitivity of Glimmer for genomes annotated using Glimmer (G, orange squares) and genomes where other gene finders were employed (G,
blue triangles). (B) Decreasing Glimmer performance with increasing GC content. Correlation of Glimmer predictions with annotation data
versus genomic GC content for the G, G and remaining genomes (gray circles). This figure can be viewed in colour as supplementary data at
Bioinformatics online.

RESULTS
Composition of the data set
The current practice in microbial genome projects is to use
one or more gene finders in combination with sequence data-
base search methods such as BLAST (Altschul et al., 1997) to
locate potential coding sequences, followed by an additional
manual effort of validation. It seemed necessary to first evalu-
ate whether any of the utilized annotations mostly reflects the
predictions of the employed gene finder as the CDS content,
which would render it unsuitable as a standard of truth in per-
formance evaluation. For Critica, to the best of our knowledge
we do not know of any annotation in the data set where it has
been applied for gene prediction. Glimmer has been frequently
used. Its performance was thus compared for 22 genomes
annotated using Glimmer (G) with that for 23 genomes where
other gene finders were applied (G; Fig. 1A). Surprisingly,
the mean Glimmer performance is better for the G set than
for the G set [CC(P , A) = 0.89 versus CC(P , A) = 0.82].
Of the 114 sequences, for 14 Glimmer has a performance
between 0.95 and 0.97. Three of the sequences belong to G,
and only one to G. The two for which Glimmer performs
best are the genomes of Clostridium perfringens and Listeria
monocytogenes, which both belong to G. Rather than the gene
finder used, the genomic GC content has the major influence
on prediction quality. Figure 1B shows decreasing Glimmer
performance for genomes with higher GC content, which are
more frequent in G than in G. Thus we did not exlude any gen-
ome because of the gene finder used in the annotation process.

For the genome of the archaebacterium Aeropyrum pernix,
the sensitivity of both gene finders in reproducing the annota-
tion data was found to be rather low (Glimmer, 0.59%; Critica,
0.56%). The A.pernix annotation contains all ORFs longer
than 100 codons annotated as CDSs, which has been estimated
to result in ∼100% overannotation (Skovgard et al., 2001). As
this annotation thus seems not to be a good representation of

CDS content, it was excluded. The remaining 113 genome
sequences constitute the data set used in this study.

Gene finding performance of Glimmer
and Critica
For the complete data set of 113 bacterial and archaeal gen-
omes, the overall gene finding performance of both Glimmer
and Critica is quite high. The mean correlation between pre-
dicted and annotated CDSs is 0.88 for Glimmer and 0.93 for
Critica (Table 2). Glimmer has a statistically significant higher
sensitivity than Critica (+5%, p = 2.2 × 10−12, determined
with a two-sample t-test, see Methods section) but lacks in
specificity (−13%, p = 6.4 × 10−22).

Some exceptions exist. For the Mycobacterium leprae gen-
ome, the specificity of Glimmer is only 22%, compared with
81% for Critica. This may be due to the unusually high con-
tent of pseudogenes among the annotated CDSs (40%). The
resulting coverage of functional CDSs for this intracellular
pathogen is 500 per megabase of genome sequence. This is
about half the usual coverage for bacterial genomes and has
been explained as an extreme case of reductive evolution (Cole
et al., 2001).

Also for a number of GC rich genomes, the perform-
ance of Critica is better (Figure 2A). Examples are the
genomes of Pseudomonas aeruginosa (GC content 67%),
Ralstonia solanacearum (67%) and, most pronounced,
S.coelicolor (72%).

Glimmer(ct): improving gene finding performance
for GC rich genomes
A problem that occurs in high GC content genomes when
using Glimmer is how to obtain an adequate training set of
coding sequences. This is needed for parameter estimation
of the Glimmer Interpolated Context Model of CDSs. By
default, Glimmer applies a script called long-orfs for this.
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Fig. 2. Comparison of tool performance for Glimmer, Critica and the Critica-trained Glimmer(ct) on 113 prokaryotic genome sequences.
(A) and (B) Sensitivity versus specificity for Glimmer (black circles) versus Critica (red triangles) and versus Glimmer(ct) (green squares).
With Glimmer(ct), Critica was used to generate the training set of CDSs for parameter estimation of the Glimmer model. This figure can be
viewed in colour as supplementary data at Bioinformatics online.

Up to and including Glimmer, version 2.10, long-orfs detects
all non-overlapping ORFs longer than 500 bp in a given gen-
omic sequence. But the number of such non-overlapping, long
ORFs decreases strongly with increasing GC content of a gen-
ome. At some point it is too small to be used (Guo et al., 2003).
Recently, a novel version of long-orfs was released that com-
putes an optimal minimum length of ‘long orfs’ to enlarge
the training set. Also with the novel version, a difference in
performance is evident for GC rich (>56%) genomes com-
pared with sequences of lower GC content (Table 2). For the
GC rich genomes, both sensitivity and specificity are reduced
(−3%, −18%). Figure 3A shows decreasing performance
with increasing GC content of the individual sequences.

We thus evaluated how changing the composition of the
training set further can be used to improve the gene predic-
tion performance. An iterative usage, that is using an initial
set of predictions as a training set for another Glimmer run,
did not lead to any improvement (data not shown). With
Glimmer(ct), the more specific Critica CDS predictions were
used as the training set. This results in a statistically signific-
ant 2% performance improvement compared with the standard
application (p = 0.04, Fig. 2C). The Glimmer(ct) prediction
is more specific (+3%, p = 0.02) without losing sensitiv-
ity. For GC rich genomes, the improvement is even more
pronounced (+9% in specificity, +1% in sensitivity; Table 2).

For Critica, there is a slight loss in both sensitivity and
specificity, which results in a 2%(p = 0.027) difference in
overall gene finding performance between GC rich and the
remaining genomes (Fig. 3B).

Gene finding performance for different
gene lengths
To examine the relation between gene length and predic-
tion performance for Glimmer, Critica and Glimmer(ct), the

sensitivity and selectivity for different settings of the min-
imum CDS length were compared (Fig. 3D). The values at
a minimum length of 90 bp correspond to those given in
Table 2. The specificity of all three gene finders decreases for
shorter CDS lengths. This is more pronounced for Glimmer
and Glimmer(ct) than for Critica, which is the most specific
tool for all lengths. Glimmer(ct) has the highest sensitivity in
detecting longer CDSs. Only when considering the complete
set of CDSs longer than 90 bp, it becomes identical to that of
the standard application.

Diagnostic accuracy of the Glimmer scores
Three numerical scores are available from the Glimmer out-
put for the ORFs analyzed. These are a length-normalized
raw log-score, a probability and a vote score, which is the
sum of the probability scores for subregions contained within
the ORF sequence analyzed in other frames. The primary
decision criterion Glimmer uses is the probability score;
optionally ORFs with vote scores above a certain threshold
are also predicted. We were interested in determining which
of these scores allows the most reliable prediction of CDSs.
As a measure of predictive accuracy, ROC0.1 was determ-
ined for the different measures. Figure 4A shows a density
estimate for the ROC0.1 distributions of the raw, probab-
ility and vote scores for the 113 genomes. With a mean
ROC0.1 of 0.93, the vote score allows the most accurate dis-
crimination between CDSs and hypothetical ORFs. The raw
and probability scores are less informative (ROC0.1 of 0.81
and 0.88).

The vote score may be be used to divide Glimmer(ct) res-
ults into probably correct and less certain CDS predictions.
To determine the optimal setting, this was evaluated with dif-
ferent threshold settings. The maximum specificity a subset
of Glimmer(ct) predictions with high vote scores achieves is
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Fig. 3. Relation of gene finding performance to genomic GC content and gene length. (A–C) Performance of Glimmer, Critica and Glimmer(ct)
versus genomic GC content for 113 microbial genomes. (D) Sensitivity (dashed line) and specificity (solid line) of Glimmer (blue), Glimmer(ct)
(green) and Critica (red) for different minimum gene length settings.

99%. The lowest threshold setting where this specificity is
reached is a vote score of 400 (Fig. 4B). About 99% of the
predicted CDSs with vote scores ≥400 are thus correct predic-
tions, which covers 56% of all annotated CDSs (Table 1). The
remaining, lower scoring Glimmer(ct) predictions contain a
high percentage of FPs, which makes their manual validation
seem especially important.

Development of combined strategies
Typical for bacterial genome sequences, the number of non-
coding ORFs largely exceeds the number of CDSs. For the
genomes analyzed, the ratio of CDSs to non-coding ORFs
lies between 0.03 (M.leprae) and 0.17 (Sulfolobus tokodaii)
for ORFs longer than 90 bp. In manual annotation, it is there-
fore considerably less effort to discard FP CDS predictions
rather than check for FNs among the non-coding ORFs. A
gene prediction strategy based on a combination of different
tool results should thus improve the specificity without sig-
nificantly losing in sensitivity compared with the individual
tools. To achieve this, we pursued the following idea for two
parameters with relevance to the gene finding problem: given a

set of very reliable, highly specific CDS predictions (Critica)
and a set of additional, more uncertain ones (Glimmer(ct)),
can parameter settings be determined that allow the removal
of mostly the FP, additional predictions? The parameters we
focused on sequentually were the allowed overlap length of
additional Glimmer(ct) prediction with Critica ones and the
Glimmer(ct) vote score, which was determined to be the most
accurate measure for CDS prediction.

The simple union of Critica and Glimmer(ct) predictions did
not result in any significant change in performance compared
with Glimmer(ct), as the set of Critica predictions is almost
completely contained in the Glimmer(ct) ones (Table 2).

With the overlap threshold strategy (OTS), additional
Glimmer(ct) predictions are discarded if their overlap length
with Critica predictions exceeds a given threshold. For para-
meter estimation, different settings of maximum allowed
overlap length were tried, and Glimmer(ct) predictions with
more overlap removed. The maximal correlation coefficient
CC(P , A) was achieved with an allowed overlap length of
10 bp. For the individual genomes, the optimal setting
was ≤50 bp for 99 genomes and between 100 and 600 bp
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Fig. 4. Diagnostic accuracy of the different Glimmer scores. (A) Density estimate of the ROC0.1 distribution for the vote (blue), raw (red)
and probability scores (green) for the 113 genomes. (B) Specificity of the remaining Glimmer(ct) predictions for different settings of the vote
score threshold.

Table 1. Using the Glimmer vote score to divide predictions into probably
correct ones and less certain candidates in need of manual validation

Gene finder CC(P , A) Sensitivity Specificity

Glimmer(ct) 0.90 0.95 0.87
Vote score >400 0.56 0.99
OTS 0.92 0.94 0.92
Vote score >200 0.91 0.97

Given is the lowest vote score setting with which the maximal specificity could be
obtained.

for another 11. Only for three genomes (Fusobacterium
nucleatum, Escherichia coli CFT073 and Leptospira inter-
rogans) could the performance not be increased thus. To
account for genomes where the 10 bp setting is too strict,
50 bp was used as the final parameter setting with OTS.
This increases specificity by 4% (p = 6.5 × 10−5) without
significantly losing sensitivity (Table 2).

The vote score threshold strategy (VTS) uses these to fur-
ther improve specificity. Additional Glimmer(ct) predictions
are discarded if their vote score is lower than a given threshold
setting. For determination of the optimal threshold setting, dif-
ferent settings of the vote score threshold between 0 and 1000
were tried. For 90 of the individual genomes, threshold set-
tings were found that led to a performance improvement. The
maximum overall performance was obtained when disregard-
ing all predictions with vote scores <100 (Table 2). Using this
parameter setting further significantly increases specificity by
4% (p = 2.67 × 10−6) but is also associated with some loss
in sensitivity (−2%, p = 0.004).

As disregarding Glimmer(ct) predictions with low vote
scores results in some sensitivity loss, these may instead be
used to single out ‘uncertain’ candidate genes requiring human
attention. Determination of the lowest vote score setting for

which the set of higher scoring OTS predictions retains the
maximum specificity led to a threshold of 200. In combination
with the Critica predictions, the higher scoring Glimmer(ct)
predictions of the OTS strategy cover 91% of the annotated
CDSs, with an associated probability of 0.97 that these are
correct (Table 1). The more uncertain additional Glimmer(ct)
predictions with lower vote scores remaining with OTS should
be given special attention in the manual validation process.

Performance evaluation
Both OTS and VTS exhibit a significant performance
improvement (Figure 5; Tables 2 and 3). Compared with
the Glimmer standard application, for OTS the specificity is
improved by 8% (p = 2.8 × 10−8), without losing signific-
antly in sensitivity (0%, p = 0.45). This is also true for the
more reliable known function genes of the annotations (+4%
in performance, +7% in specificity, no loss in sensitivity).
VTS is even more specific (+11%, p = 2.4 × 10−17) but
has some loss in sensitivity (−2%, p = 3.4 × 10−4). For the
known function genes, there is no significant sensitivity loss
with VTS. The performance improvement of both strategies
is most pronounced for GC rich genomes (Tables 2–4). As
an example, the number of FP predictions for the S.meliloti
chromosome is reduced from 1507 for Glimmer to 100/47
with OTS and VTS (Table 4).

Of the seven genomes used for evaluation of the method,
VTS has the same overall performance as YACOP (Table 5),
which uses a

[
Critica ∪ (Glimmer ∩ ZCURVE)

]
combination

of gene finding results (Tech and Merkl, 2004). OTS performs
slightly worse. But only one of the seven genomes has a GC
content >50%, and the authors state that the performance
decreases for GC rich genomes. Compared with a Glimmer ∩
ZCURVE strategy evaluated on a four genome data set with
two GC rich genomes (Guo et al., 2003), both OTS and VTS
perform better (Table 5).
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Table 2. Mean sensitivity, selectivity and overall performance of different gene finding methods on 113 bacterial and archaeal genomes

Gene finder CC(P , A) Sensitivity Specificity

Glimmera 0.88 ± 0.10 (0.77 ± 0.13)b 0.95 ± 0.08 (0.93 ± 0.16) 0.84 ± 0.12 (0.68 ± 0.11)
Glimmerc 0.88 ± 0.09 (0.78 ± 0.12) 0.95 ± 0.05 (0.93 ± 0.08) 0.84 ± 0.12 (0.70 ± 0.13)
Glimmer(ct)d 0.90 ± 0.06 (0.85 ± 0.07) 0.95 ± 0.04 (0.93 ± 0.03) 0.87 ± 0.08 (0.80 ± 0.10)
Critica 0.93 ± 0.04 (0.91 ± 0.03) 0.90 ± 0.06 (0.88 ± 0.04) 0.97 ± 0.03 (0.96 ± 0.04)
Union 0.90 ± 0.06 (0.85 ± 0.07) 0.95 ± 0.04 (0.94 ± 0.03) 0.87 ± 0.08 (0.80 ± 0.10)
OTS 0.92 ± 0.05 (0.91 ± 0.08) 0.94 ± 0.04 (0.92 ± 0.03) 0.92 ± 0.07 (0.91 ± 0.12)
VTS 0.93 ± 0.04 (0.92 ± 0.06) 0.93 ± 0.05 (0.91 ± 0.03) 0.95 ± 0.05 (0.94 ± 0.09)

aVersion 2.10.
bThe values in parentheses are for the 27 genomes with a genomic GC content >0.56.
cVersion 2.13, using a new version of long-orfs for training set creation.
dVersion 2.13, using Critica for training set creation.

Table 3. Mean sensitivity, selectivity and overall performance of different gene finding methods for genes of known function or with other confirmation

Gene finder CC(P , A) Sensitivity Specificity

Glimmer 0.79 ± 0.12 (0.72 ± 0.13)a 0.98 ± 0.04 (0.96 ± 0.08) 0.68 ± 0.16 (0.59 ± 0.15)
Glimmer(ct)b 0.81 ± 0.10 (0.79 ± 0.10) 0.98 ± 0.02 (0.98 ± 0.02) 0.71 ± 0.15 (0.67 ± 0.14)
Critica 0.86 ± 0.10 (0.87 ± 0.09) 0.95 ± 0.03 (0.94 ± 0.03) 0.81 ± 0.15 (0.83 ± 0.15)
Union 0.81 ± 0.10 (0.79 ± 0.10) 0.98 ± 0.02 (0.98 ± 0.01) 0.71 ± 0.15 (0.67 ± 0.14)
OTS 0.84 ± 0.10 (0.85 ± 0.11) 0.98 ± 0.02 (0.97 ± 0.02) 0.74 ± 0.15 (0.78 ± 0.17)
VTS 0.86 ± 0.10 (0.87 ± 0.10) 0.97 ± 0.02 (0.96 ± 0.02) 0.79 ± 0.15 (0.80 ± 0.16)

aThe values in parentheses are for the 27 genomes with a genomic GC content >0.56.
bUsing Critica for training set creation.
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Fig. 5. Performance of the combined strategies. (A) and (B) Sensitivity versus specificity for OTS (light blue circles) versus the union set
(black triangles) and versus VTS (dark blue squares). This figure can be viewed in colour as supplementary data at Bioinformatics online.

DISCUSSION
This work describes the development of joint application
strategies for two microbial gene finders, which combine the
strengths of both tools to improve the overall gene finding
performance. The comparative sequence analysis approach
that Critica employs ensures its high specificity in the detec-
tion of similarity-supported genes. In the interpretation of

the results of pairwise DNA sequence comparisons, Critica
makes use of the degeneracy of the genetic code to discrim-
inate conserved coding regions from conserved non-coding
regions (Badger and Olsen, 1999). Similar approaches are
also increasingly becoming popular in the field of euka-
ryotic gene prediction (Rogozin et al., 1999; Moore and
Lake, 2003). Compared with approaches that use similarity
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Table 4. Sensitivity and FP proportion of predictions (1 − specificity) for Glimmer, Glimmer(ct), OTS and VTS for 27 genome sequences with a
GC content >0.56

Organism GenBank Glimmer Glimmer(ct) OTS VTS
acc. no. sens. 1 − spec. sens. 1 − spec. sens. 1 − spec. sens. 1 − spec.

Deinococcus radiodurans AE000513 2521 (0.98) 1107 (0.31) 2483 (0.96) 517 (0.17) 2423 (0.94) 156 (0.06) 2415 (0.94) 135 (0.05)
Mycobacterium tuberculosis AE000516 3910 (0.93) 758 (0.16) 3873 (0.93) 621 (0.14) 3780 (0.9) 300 (0.07) 3671 (0.88) 209 (0.05)
Deinococcus radiodurans AE001825 338 (0.95) 124 (0.27) 334 (0.94) 83 (0.2) 330 (0.92) 28 (0.08) 329 (0.92) 25 (0.07)
Pseudomonas aeruginosa AE004091 4814 (0.87) 3323 (0.41) 5375 (0.97) 1315 (0.2) 5323 (0.96) 165 (0.03) 5303 (0.95) 135 (0.02)
Caulobacter crescentus AE005673 3584 (0.96) 1156 (0.24) 3476 (0.93) 584 (0.14) 3427 (0.92) 175 (0.05) 3404 (0.91) 155 (0.04)
Chlorobium tepidum AE006470 2013 (0.89) 452 (0.18) 1942 (0.86) 352 (0.15) 1912 (0.85) 116 (0.06) 1829 (0.81) 80 (0.04)
Agrobacterium tumefaciens AE008688 2579 (0.93) 846 (0.25) 2548 (0.91) 620 (0.2) 2520 (0.9) 193 (0.07) 2506 (0.9) 134 (0.05)
Agrobacterium tumefaciens AE008689 1753 (0.93) 489 (0.22) 1721 (0.92) 373 (0.18) 1708 (0.91) 100 (0.06) 1698 (0.91) 61 (0.03)
Brucella melitensis AE008917 1926 (0.94) 688 (0.26) 1895 (0.92) 461 (0.2) 1878 (0.91) 134 (0.07) 1858 (0.9) 58 (0.03)
Brucella melitensis AE008918 1061 (0.93) 293 (0.22) 1055 (0.93) 245 (0.19) 1039 (0.91) 72 (0.06) 1037 (0.91) 28 (0.03)
Xanthomonas campestris AE008922 4083 (0.98) 2033 (0.33) 4010 (0.96) 943 (0.19) 3946 (0.94) 231 (0.06) 3933 (0.94) 122 (0.03)

Pv. campestris
Xanthomonas axonopodis Pv. citri AE008923 4160 (0.96) 2320 (0.36) 4036 (0.94) 1105 (0.21) 3942 (0.91) 254 (0.06) 3931 (0.91) 113 (0.03)
Methanopyrus kandleri AE009439 1660 (0.98) 322 (0.16) 1661 (0.98) 269 (0.14) 1639 (0.97) 180 (0.1) 1620 (0.96) 117 (0.07)
Brucella suis AE014291 1913 (0.9) 677 (0.26) 1828 (0.86) 456 (0.2) 1819 (0.86) 147 (0.07) 1781 (0.84) 112 (0.06)
Brucella suis AE014292 1033 (0.9) 325 (0.24) 1009 (0.88) 275 (0.21) 999 (0.87) 122 (0.11) 973 (0.85) 95 (0.09)
Bifidobacterium longum AE014295 1612 (0.93) 625 (0.28) 1592 (0.92) 482 (0.23) 1592 (0.92) 217 (0.12) 1589 (0.92) 174 (0.1)
Pseudomonas putida AE015451 5240 (0.98) 1768 (0.25) 5099 (0.95) 1107 (0.18) 5063 (0.95) 263 (0.05) 5006 (0.94) 213 (0.04)
Pseudomonas syringae pv. tomato AE016853 5253 (0.96) 1359 (0.21) 5174 (0.95) 959 (0.16) 5152 (0.94) 346 (0.06) 5059 (0.92) 254 (0.05)
Ralstonia solanacearum AL646052 2747 (0.8) 2204 (0.45) 3227 (0.94) 766 (0.19) 3182 (0.93) 64 (0.02) 3160 (0.92) 40 (0.01)
Mesorhizobium loti BA000012 6649 (0.98) 2468 (0.27) 6457 (0.96) 1460 (0.18) 6348 (0.94) 320 (0.05) 6257 (0.93) 180 (0.03)
Corynebacterium efficiens BA000035 2740 (0.93) 738 (0.21) 2713 (0.92) 488 (0.15) 2670 (0.91) 94 (0.03) 2656 (0.9) 54 (0.02)
Bradyrhizobium japonicum BA000040 7930 (0.95) 3971 (0.33) 7665 (0.92) 2337 (0.23) 7563 (0.91) 765 (0.09) 7528 (0.91) 431 (0.05)
Halobacterium Sp. NRC-1 HSPNRC1XX 1990 (0.97) 793 (0.28) 1925 (0.94) 446 (0.19) 1871 (0.91) 89 (0.05) 1844 (0.9) 74 (0.04)
Mycobacterium leprae MLEPRAE 1527 (0.94) 5438 (0.78) 1533 (0.94) 3285 (0.68) 1526 (0.94) 3150 (0.67) 1503 (0.92) 1603 (0.52)
Mycobacterium tuberculosis MTBH37RV 3786 (0.97) 886 (0.19) 3776 (0.97) 692 (0.15) 3710 (0.95) 385 (0.09) 3687 (0.94) 215 (0.06)
Streptomyces coelicolor SCO645882 4546 (0.58) 5817 (0.56) 7393 (0.95) 1473 (0.17) 7165 (0.92) 165 (0.02) 7114 (0.91) 105 (0.01)
Sinorhizobium meliloti SME591688 3249 (0.97) 1507 (0.32) 3237 (0.97) 872 (0.21) 3227 (0.97) 100 (0.03) 3201 (0.96) 47 (0.01)

Table 5. Comparison with the YACOP and Glimmer ∩ ZCURVE combined
strategies

Gene finder CC(P , A) Sensitivity Specificity

Ia

Glimmer 0.91 ± 0.03 0.97 ± 0.01 0.87 ± 0.04
YACOP 0.96 ± 0.01 0.98 ± 0.01 0.95 ± 0.02
OTS 0.94 ± 0.02 0.97 ± 0.02 0.91 ± 0.03
VTS 0.96 ± 0.01 0.95 ± 0.01 0.97 ± 0.01

IIb

Glimmer 0.82 ± 0.11 0.94 ± 0.05 0.75 ± 0.14
ZCURVE ∩ Glimmer 0.94 ± 0.02 0.97 ± 0.01 0.92 ± 0.03
OTS 0.95 ± 0.02 0.96 ± 0.01 0.94 ± 0.04
VTS 0.96 ± 0.01 0.95 ± 0.00 0.97 ± 0.01

aFor the seven-genome data set used in Tech and Merkl (2004).
bFor the four-genome data set used in Guo et al. (2003).

at the amino acid level, an advantage of this is the inde-
pendence from the existing accurate annotation, which is
used to generate the content of protein sequence databases.
If using comparisons at the amino acid level, genes may

be missed whose homologs have not been annotated or
annotated too short. In our analyses, we found Critica to
be very robust. It performs well on sequences with a high
GC-content and also on the M.leprae genome, which con-
tains a large number of pseudogenes. Its strength is its high
specificity, which is also evident in the detection of known
function genes. It is also the most specific in predicting short
genes.

The gene finder Glimmer relies completely on an ab initio
approach in gene identification. It uses a very sophisticated
model of sequence properties of prokaryotic CDSs (Delcher
et al., 1999). It is also highly sensitive in the detection of
genes supported by additional evidence. For GC rich gen-
omes, it loses in prediction performance, mainly due to a
specificity loss. We found that by using the very specific
Critica predictions as a training set for the Glimmer CDS
model, performance in terms of both sensitivity and specificity
can be significantly improved.

A troublesome issue is the unknown quality of many CDS
entries in the current annotation data. The annotation describes
the CDS content of a genomic sequence and thus is by
definition the standard of truth against which gene finding
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performance is evaluated. In its creation, considerable human
effort is often involved to achieve high quality. Still, for
no genome are all annotated CDSs supported by experi-
mental or other convincing evidence. A comparison of the
length distribution of annotated genes with genes matching
a known protein led to the conclusion that many genomes
might currently be over-annotated, especially concerning
short genes (Skovgard et al., 2001). Because of the size of the
data set analyzed, the results deduced in this study are unlikely
to be influenced much by the varying strategies of individual
annotation projects. The performance improvement achieved
by the combined strategies was also observed in evaluation
with the more reliable known function genes of the annota-
tions. For all methods, the sensitivity in detection of these
more reliable subsets was found to be even higher than for the
complete set of annotated genes.

In the development of combined gene prediction strategies,
the very specific Critica predictions were initially set as
fixed and combined with different subsets of additional
Glimmer(ct) predictions to improve the overall performance.
For specification of this additional subset, the use of two
different parameters with relevance to the gene finding prob-
lem was evaluated. The first is the allowed overlap length
of neighboring genes, as genes of longer overlap length
are generally considered unlikely for prokaryotic organisms,
although there is no systematic research on this issue. From a
biological perspective, this may be explained by the extreme
constraints that are placed on a sequence that is coding in
two different frames. We found that by removing additional
predictions with long overlaps, the specificity in gene iden-
tification can be considerably improved without a significant
loss of sensitivity. The second parameter is the Glimmer(ct)
vote score, which was determined to be the Glimmer scor-
ing method that allows the most accurate discrimination
between non-coding ORFs and CDSs. Discarding low vote
score predictions results in a further gain in specificity but
is accompanied by a slight sensitivity loss. However, for the
known function subsets of genes, there is no significant sens-
itivity loss. The additional genes missed by VTS are thus
both low-scoring, according to sequence composition, and
without indication of function or biological activity, accord-
ing to the annotation data. They are either falsely annotated or
real genes that are difficult to determine, such as the genes
contained in prophage DNA. Using OTS allows a consid-
erable reduction of the necessary manual validation effort
of the gene finding results for the human annotators, espe-
cially for GC rich genomes. As an example, with OTS the
false positive prediction rate for the S.meliloti chromosome
is reduced from 32% for Glimmer to 2%, without a loss of
sensitivity.

The methods described have been implemented as the
Reganor auto-annotation component of the GenDB genome
annotation system and are currently being applied in sev-
eral bacterial genome projects. We hope that the software

and additional information presented in this work will be
helpful to annotators in producing high-quality genome
annotation.
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