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Development of Laguerre Neural-Network-Based
Intelligent Sensors for Wireless Sensor Networks

Jagdish Chandra Patra, Member, IEEE, Pramod Kumar Meher, Senior Member, IEEE, and
Goutam Chakraborty, Senior Member, IEEE

Abstract—The node of a wireless sensor network (WSN), which
contains a sensor module with one or more physical sensors,
may be exposed to widely varying environmental conditions, e.g.,
temperature, pressure, humidity, etc. Most of the sensor response
characteristics are nonlinear, and in addition to that, other en-
vironmental parameters influence the sensor output nonlinearly.
Therefore, to obtain accurate information from the sensors, it is
important to linearize the sensor response and compensate for the
undesirable environmental influences. In this paper, we present
an intelligent technique using a novel computationally efficient
Laguerre neural network (LaNN) to compensate for the inherent
sensor nonlinearity and the environmental influences. Using the
example of a capacitive pressure sensor, we have shown through
extensive computer simulations that the proposed LaNN-based
sensor can provide highly linearized output, such that the max-
imum full-scale error remains within ±1.0% over a wide tem-
perature range from −50 ◦C to 200 ◦C for three different types
of nonlinear dependences. We have carried out its performance
comparison with a multilayer-perceptron-based sensor model. We
have also proposed a reduced-complexity run-time implementa-
tion scheme for the LaNN-based sensor model, which can save
about 50% of the hardware and reduce the execution time by four
times, thus making it suitable for the energy-constrained WSN
applications.

Index Terms—Autocompensation, harsh environment,
Laguerre neural networks (LaNNs), linearization, smart sensors,
wireless sensor networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have a wide range

of civil and military applications. In civilian applica-

tions, WSNs can be used in the development of smart en-

vironments, such as smart homes, smart utilities, and smart

transport systems. Some other practical applications of WSN

include monitoring of environmental conditions for crops and

livestock, irrigation, forest fire detection, flood detection, pollu-

tion studies, etc. Smart sensor nodes and actuators embedded in
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home appliances, such as vacuum cleaners, microwave ovens,

refrigerators, and video cassette players and recorders in smart

homes, can interact with each other and with any external

network via the Internet, so that the end users can manage their

home devices locally and remotely [1].

A WSN typically comprises an array of sensor nodes (also

called motes) of diverse types interconnected by a wireless

communication network. Sensor data are shared between these

nodes and used as inputs to a distributed estimation system

which extracts relevant information from the environment [1].

Each node consists of three main modules, namely, sensor,

processor, and communication modules. The sensor module

consists of several sensors, e.g., temperature sensor, pressure

sensor, humidity sensor, etc. The analog electrical output of the

sensors in response to the physical environmental changes is

converted to digital form by the analog-to-digital converters and

fed to the processing module. The processor module consists

of a microcontroller or a dedicated processor, and the wireless

module provides wireless interface for communication.

The functions of WSN generally include the measurement

or detection of relevant physical quantities, monitoring and

collecting the data, information processing, and generating nec-

essary alerts. The information needed by smart environments

is provided by distributed sensor motes, which are responsible

for sensing the environment [2]. The important design con-

siderations of a WSN include reliability, accuracy, flexibility,

cost effectiveness, and ease of deployment. One of the major

challenges of WSN is to maximize the battery life by opti-

mizing different stages of information processing, e.g., data

collection, data processing, routing, clustering, and medium ac-

cess control, modulation, and coding [3], [4]. Recently, several

studies have been made on the development of energy-efficient

communication protocols [5], clustering and routing [6]–[8],

power management [9]–[14], fault tolerance [15], and other

issues pertaining to WSN-based systems [16]–[18]. Recently,

various other challenges, including the need of accurate sensor

readout in the integration of RFID and WSN [19] and underwa-

ter sensor networks [20], [21], have been reported. The need of

accurate and reliable sensor output is more prominent in fault-

tolerant mobile robot networks, as the robots may be operating

in hazardous and extreme environmental conditions [22].

Moreover, in order to utilize the precious battery resource

optimally, it is necessary to minimize the hardware and the

computations needed for data processing in the WSN node.

Therefore, in a smart sensor, it is important to reduce the

number of computations needed to obtain reliable and accurate

readout. The main problem in obtaining accurate readout of

0018-9456/$26.00 © 2010 IEEE
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the measurand from a sensor is its inherent nonlinear response

characteristics. Therefore, frequent calibration may be needed,

particularly when the operating conditions are changed. An-

other problem is the dependence of sensor characteristics on

the environmental parameters. For example, a pressure sen-

sor’s output depends not only on the applied pressure (the

measurand) but also on the environmental temperature and

humidity. Often, due to the physical properties of the sensor,

the environmental temperature affects the sensor characteristics

nonlinearly, particularly when the environmental temperature

undergoes large variations.

In order to get accurate sensor readout, several DSP- and

hardware-based compensation schemes have been proposed

[23]–[27]. However, the performances of these schemes are

not adequate, particularly when the sensor is operating in a

harsh environment in which there is a large variation in ambient

conditions. Recently, artificial neural networks (ANNs), due

to their adaptability, nonlinear processing, fault tolerance, and

generalization characteristics, have been successfully applied

for solving highly nonlinear problems in pattern recognition,

prediction, system identification, and control [28]. It is shown

that, in general, ANN techniques perform well for fitting trans-

ducer characteristics to measured data [29]. Several interesting

applications of ANN-based intelligent systems in the field

of instrumentation and measurement have been suggested in

[30]–[37]. Using a multilayer perceptron (MLP) network, the

compensation for nonidealities in sensors has been proposed in

[38]–[41]. These studies show the effectiveness of ANN-based

models in providing accurate sensor readout when the sensor is

deployed in harsh environments.

In this paper, we propose a computationally efficient ANN,

named as Laguerre neural network (LaNN), which can pro-

vide similar performance as that of an MLP while involving

much lower computational resources. A LaNN-based smart

sensor with preliminary results has been reported in [42]. In

an energy-constrained wireless sensor node, the computational

complexity of smart sensors is an important issue since power

consumption increases with computational complexity. In the

simulation study, we have taken an example of capacitive pres-

sure sensor (CPS) because it is widely used to sense external

pressure due to its high sensitivity and low power consumption.

However, the problem with CPS is that its response is highly

nonlinear with a large offset voltage and its characteristics

depend on the ambient temperature. We have shown, through

extensive computer simulations, that the LaNN can linearize

the sensor response, with a maximum full-scale (FS) error of

only ±1.0% over a temperature range of −50 ◦C–200 ◦C for

different nonlinear environment models. We have shown that

the performance of the LaNN-based sensor is similar to that

of an MLP-based model, but the former requires much less

computational load than the MLP-based model.

Another major contribution of this paper is the proposed

computationally efficient implementation technique which sub-

stantially reduces the run-time computations of the LaNN-

based sensor. The proposed technique reduces the hardware

requirement by about 50% over the direct implementation.

The computational savings in LaNN-based sensors is of great

advantage in WSNs, as it helps in energy savings as well.

In Section II, we briefly explain the operating principle of a

CPS, its temperature dependence, and the switched capacitor

interface (SCI). In Section III, we describe the theory of the

LaNN and show its effectiveness in two examples of nonlinear

system identification problem. In Section IV, we propose a run-

time implementation scheme which can provide substantial sav-

ings in hardware and execution time. The experimental results

of ANN-based sensor models are provided in Section V, and the

proposed run-time implementation scheme of the LaNN-based

sensor is presented in Section VI. Finally, conclusions of this

study are presented in Section VII.

II. CPS AND INTERFACE

A CPS senses the applied pressure in the form of elastic

deflection of its diaphragm. The capacitance C(PN , TN ) of a

CPS, which is a function of the applied pressure P and ambient

temperature T , is given by [25], [41]

C(PN , TN ) = C0(T0)f1(TN ) + ∆C(PN , T0)f2(TN ) (1)

where the normalized temperature TN = (T − T0)/(Tmax −

Tmin), and T0, Tmin, and Tmax denote the reference room

temperature and the minimum and maximum ambient temper-

atures, respectively. The normalized applied pressure is given

by PN = P/Pmax, where Pmax is the maximum allowed

pressure. The offset capacitance at T0 is denoted by C0(T0).
The functions f1(TN ) and f2(TN ) determine the influence

of ambient temperature on the sensor characteristics and are

given by

fi(TN ) = 1 + κi1TN + κi2T
2
N + κi3T

3
N (2)

where i = 1, 2. The coefficients κij , where i = 1, 2 and j =
1, 2, 3, determine the extent of nonlinear influence of the tem-

perature on the sensor characteristics. Note that, when κi2 =
κi3 = 0, the temperature influences the CPS response linearly.

The normalized capacitance CN = C(PN , TN )/C0(T0) can be

written as

CN = f1(TN ) + γf2(TN ) (3)

where γ = PN (1 − τ)/(1 − PN ).
An SCI [25], [43] for the CPS is shown in Fig. 1, where the

CPS is shown as C(P ). The SCI output provides a voltage

signal that is proportional to the change of capacitance of

the CPS due to applied pressure. The SCI output voltage is

given by

VO = K · C(PN , TN ) (4)

where K = VR/CS . By selecting proper values of the reference

capacitor CS and reference voltage VR, the normalized SCI

output VN may be obtained as

VN = CN . (5)

Note that the SCI output changes with ambient temperature

even if the applied pressure is unchanged, thus giving rise to

erroneous sensor readout.



PATRA et al.: DEVELOPMENT OF LAGUERRE NEURAL-NETWORK-BASED INTELLIGENT SENSORS FOR WSNs 727

Fig. 1. SCI for a CPS.

Fig. 2. Schematic diagram of an MLP neural network.

III. LaNN

The operating principle of the LaNN and its computational

advantage over MLP are demonstrated here using two examples

of nonlinear system identification problem.

A. MLP

Fig. 2 shows a schematic diagram of an MLP neural network.

A two-layer MLP architecture is specified by (I − J − K),
where I , J , and K denote the number of neurons (excluding

the bias unit) in the input and the hidden and output layers,

respectively. The MLP is trained using the popular back-

propagation (BP) learning algorithm. Let y(k) be the output of

MLP for a training input x(k) and d(k) be the desired output

at the kth instant. The error at the output layer is found as

e(k) = d(k) − y(k). The network weight updating procedure

is repeated until the related mean square error (mse) is less than

a prespecified value. Details of BP algorithm and MLP training

procedure can be found in [28].

B. LaNN

The structure of a LaNN is shown in Fig. 3. It consists

of a functional expansion block and a single-layer perceptron

network. The main purpose of the functional expansion block

is to increase the dimension of input pattern using the Laguerre

polynomials so as to enhance its representation in a higher

dimensional space. The enhanced patterns are then used for the

modeling of sensor.

The idea of LaNN originated from the functional-link ANNs

proposed by Pao and Philips [44], [45]. Laguerre-polynomial-

based control algorithms have been found to provide better

Fig. 3. Schematic diagram of the proposed LaNN.

performance compared to conventional algorithms because

these polynomials exhibit good approximation capability for

the variances of system time delay, order and other structural

parameters, and low computational complexity [46], [47].

Laguerre’s differential equation, which arises in the treat-

ment of harmonic oscillator in quantum mechanics, is given by

xy′′ + (1 − x)y′ + ny = 0 (6)

where n is a nonnegative integer. The Laguerre polynomials

Ln(x), where n = 0, 1, 2, . . ., are the solutions to the

Laguerre’s differential equation. These polynomials form a

complete orthogonal set on the interval 0 < x < ∞ with re-

spect to the weighting function e−x. The first few Laguerre

polynomials are given by [48]

L0(x) = 1 L1(x) = −x + 1

L2(x) =x2/2 − 2x + 1

L3(x) = − x3/6 + 3x2/2 − 3x + 1

L4(x) =x4/24 − 2x3/3 + 3x2
− 4x + 1. (7)

The higher order Laguerre polynomials may be generated using

a recursive formula

(n + 1)Ln+1(x) = (2n + 1 − x)Ln(x) − nLn−1(x). (8)

Let us denote an m-dimensional input pattern vector by

x = [x1, x2, . . . , xm]. (9)

Each element of the input vector is expanded into several

terms using the Laguerre polynomials (7) to generate an

n-dimensional (n > m) enhanced vector g, given by

g = [g1, g2, . . . , gn]. (10)

The expanded pattern g is then applied to a single-layer percep-

tron. In the LaNN schematic in Fig. 3, we have chosen m = 2
and n = 8, and the bias input is shown as g0 = 1. In some

applications, a few cross-product terms (not shown in Fig. 3)

may be included to improve the pattern representation in the

expanded pattern space. However, it may be noted that there is

no straightforward method to determine the order of Laguerre’s
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TABLE I
COMPUTATIONAL COMPLEXITIES OF MLP AND LaNN

expansion or the selection of cross-product terms. The optimum

selection of these functions is problem dependent, and they

are usually selected after several trial experiments. This is an

important issue which needs further investigation. Since LaNN

has no hidden layer, it is computationally more efficient and

takes less training time compared to the MLP network.

C. Training-Time Computational Complexity

Here, we present a comparison of computational complexi-

ties between LaNN- and MLP-based training procedures using

the BP algorithm. A two-layer MLP is represented by (I − J −

K), where I , J , and K denote the number of nodes (excluding

the bias unit) in the input and the hidden and output layers,

respectively. A LaNN is represented by (D − K), where D and

K denote the numbers of input and output nodes, respectively.

Three basic computations, i.e., addition, multiplication, and

computation of tanh(.), are involved for updating the weights

of ANNs. In the case of MLP, the increased computational

burden is mainly due to the computation of tanh() and the

calculation of square-error derivative for each node in the

hidden layer [49].

In each iteration, computations are carried out in three

phases: 1) forward calculation to find the activation value

of all nodes of the network; 2) back error propagation for

the calculation of square-error derivatives; and 3) updating of

weights of the whole network. The total number of weights

to be updated in one iteration in a two-layer MLP is J(I +
1) + K(J + 1), whereas in the case of LaNN, it is K(D + 1).
Table I provides the number of computations, i.e., the number

of additions (NADD), the number of multiplications (NMUL),
and the number of tanh() computations (NTAN) for MLP

and LaNN in one iteration of BP algorithm. It can be seen in

Table I that, due to the absence of the hidden layer in LaNN,

its computational complexity is lower than that of the MLP

network.

D. LaNN-Based Static System Identification

To compare the training performances and to highlight the

computational advantage of LANN over MLP, we have carried

out experiments for the identification of two static systems

taken from [49]. The input–output relationship of the two

systems with x ∈ [−1, 1] is given by

f1(x) = x3 + 0.3x2
− 0.4x

f2(x) =
4.0x3

− 1.2x2
− 3.0x + 1.2

0.4x5 + 0.8x4 − 1.2x3 + 0.2x2 − 3.0
. (11)

A schematic diagram of the system identification is shown

in Fig. 4. The two nonlinear functions f1(x) and f2(x) are

Fig. 4. Schematic diagram of system identification.

identified by using ANN models, first with an MLP and then

with a LaNN. A two-layer MLP with (1-4-1) architecture,

which provides the best results, was selected after several trials.

During training, input x was taken randomly from a uniform

distribution in the range of [−1, 1]. The BP algorithm with a

learning parameter α = 0.2 and a momentum factor β = 0.5
was selected for the training of MLP. The training was carried

out for 50 000 iterations.

In the case of LaNN, the random input x was first translated

to a range of [0, 4] and then expanded to gi, where i =
1, 2, . . . , 6, using the Laguerre polynomials (7), as given in the

following:

x1 = 2(x + 1) x2 = xx1

g1 = L1(x1) g2 = L2(x1) g3 = L3(x1)

g4 = L1(x2) g5 = L2(x2) g6 = L3(x2) (12)

with g0 = 1 as the bias input. Thus, the LaNN architecture is

given by (6-1), where 6 and 1 denote the input dimension (n)
and the number of output nodes of the LaNN, respectively. The

training of LANN continued for 50 000 iterations using the BP

algorithm with α = β = 0.5. During the test phase, an input in

the range [−1, 1] was applied to the ANN model. The estimated

outputs from the MLP and LaNN models are shown in Fig. 5.

The actual system output and the ANN model estimated output

are denoted by “tru” and “ann,” respectively, and the error

between the two are denoted by “err.” The mse in decibels

between the actual and estimated outputs is also shown in this

figure. In the case of f1(), the LaNN model performs better than

the MLP model, whereas in the case of f2(), the performances

of both ANN models are comparable.

The numbers of weights in LaNN (6-1) and MLP (1-4-1)

are given by 7 and 13, respectively. From Table I, we can find

that, in the case of LaNN, the NADD, NMUL, and NTAN in one

iteration of training are 15, 23, and 1, respectively. On the other

hand, in the case of MLP, the NADD, NMUL, and NTAN are

23, 45, and 5, respectively. Thus, there is a large computational

savings during the training of LaNN. The training of ANNs was

carried out using an Intel Core Duo CPU personal computer

with 3.24-GB RAM operating at 2.20-GHz clock. One iteration

of BP algorithm to train the LaNN and MLP took 0.92 and

1.52 µs, respectively. Thus, LaNN requires nearly 40% less

training time than the MLP.
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Fig. 5. Actual and estimated results of the ANN models. (a) MLP—f1().
(b) MLP—f2(). (c) LaNN—f1(). (d) LaNN—f2().

Fig. 6. Run-time implementation schemes. (a) Direct computation. (b) Modi-
fied computation.

IV. RUN-TIME IMPLEMENTATION SCHEME

In most of the applications, the sensors may be trained

offline; therefore, the computational savings in training phase

may not be of high significance. However, in energy-

constrained WSN applications, computational efficiency is of

prime importance during its operations. In this section, we

propose a computationally efficient implementation technique

for LaNN that will substantially reduce the computations dur-

ing the run-time operations. After the completion of training,

the weights of LaNN are saved in a ROM. The implemen-

tation schemes using direct computation and the proposed

modified computation are shown in Fig. 6. In the direct im-

plementation scheme, the input x is expanded to gi, where

i = 1, 2, . . . , 6, using (12) and (7). The linear output s is

computed as

s =

6∑

i=0

giwi (13)

where g0 = 1 is the bias unit and wi, with i = 0, 1, . . . , 6,

denotes the trained weights of the LaNN. The output of the

LaNN is computed as y = tanh(s).
In order to reduce the run-time computations, we propose the

following scheme to compute the linear sum s. After expanding

(13) and using (7), we can see that s consists of the sum of

several terms, each of which is a product of wi and the sum

of polynomials of x1 or x2. Rearranging the coefficients of the

same power of x1 or x2 together, we can compute s as follows:

s =

6∑

i=0

hivi (14)

where hi consists of powers of x1 or x2, and vi consists of the

sum of different weights, as given by

x1 = 2(x + 1) x2 = xx1

h1 =x1 h2 = x2

h3 =x2
1 h4 = x2

2

h5 =x3
1 h6 = x3

2 (15)

with h0 = 1 as the bias unit and

v0 = w0 + w1 + w2 + w3 + w4 + w5 + w6

v1 = − (w1 + 2w2 + 3w3)

v2 = − (w4 + 2w5 + 3w6)

v3 = w2/2 + 3w3/2

v4 = w5/2 + 3w6/2

v5 = − w3/2 v6 = −w5/2. (16)

Note that the modified weights vi are computed only once

and can be stored in a ROM. The direct computations (13)

requires 29 multiplications and 19 additions to obtain the linear

sum s, whereas using the proposed modified computations

(14)–(16), only 13 multiplications and 7 additions are needed.

Thus, a savings of about 50% hardware is achieved by using

the proposed implementation scheme. Using an Intel Core

Duo CPU personal computer with 3.24-GB RAM operating at

2.20-GHz clock, the direct and modified implementations took

37.9 and 23.9 ns, respectively, thus providing a savings of

nearly 37% of execution time. The most computationally ex-

pensive circuit in LaNN is the computation of tanh(). However,

in LaNN, we need only one such computation. With some

approximations, the computation of tanh() can be carried out

efficiently. We plan to present a more detailed discussion on

various implementation issues of LANN in a future paper.

V. EXPERIMENTS WITH NEURAL-NETWORK-BASED

SENSOR MODELS

A schematic diagram of the ANN-based CPS model is shown

in Fig. 7, in which the pair of inputs to the ANN is the ambient

temperature and the SCI output. To illustrate the effectiveness

of the ANN model for mitigating the nonlinear dependence of

temperature on sensor characteristics, a linear function denoted

by NL0 and three nonlinear functions denoted by NL1, NL2,

and NL3, representing different environmental models, have

been selected. These functions are generated using a set of
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Fig. 7. Schematic diagram of the proposed ANN-based sensor model.

TABLE II
VALUES OF κij FOR LINEAR AND NONLINEAR ENVIRONMENTAL MODELS

coefficients κij as given in Table II and using (2). The set of

coefficients was selected arbitrarily to illustrate the effect

of different nonlinear environmental conditions. In this paper,

the temperature information is assumed to be available.

A. Generation of Data Sets

All the parameters of the CPS, such as ambient temperature,

applied pressure, and SCI output voltage, used in the simulation

study, were suitably normalized by selecting appropriate scale

factors. The measured CPS response characteristics at room

temperature (T0 = 25 ◦C) were taken from [43]. The SCI

output voltage (VN ) was recorded at the reference temperature,

with different known values of normalized pressure (PN ) cho-

sen between 0.0 and 0.6 at intervals of 0.05. Thus, these 13 pairs

of data (PN versus VN ) constitute one data set at the reference

temperature.

The CPS response for other temperature values was gen-

erated by using the measured response characteristics at the

reference temperature and applying the selected values of κij

(see Table II) in (3). Twenty-six data sets, each containing 13

data pairs for a temperature range from −50 ◦C to 200 ◦C with

an increment of 10 ◦C, were generated. Next, these data sets

were divided into two sets: training and test sets. The training

set consists of only five data sets corresponding to −50 ◦C,

10 ◦C, 70 ◦C, 130 ◦C, and 190 ◦C, each with 13 pressure

measurement points. We found that, using these training data,

we can obtain satisfactory performance of ANN-based sensors

in terms of FS error and linearization of sensor characteristics.

The remaining twenty-one data sets were used as the test set.

Fig. 8 shows the desired linear response and the actual sensor

characteristics (the SCI outputs) for the four environmental

models (NL0, NL1, NL2, and NL3) at different temperatures.

It can be seen that the sensor characteristics change nonlinearly

over the temperature range. Moreover, the response character-

istics differ substantially between the linear (NL0) and the

nonlinear (NL1, NL2, and NL3) environmental models. The

main objective of the development of an intelligent sensor is

that the CPS should provide linear response characteristics

(bottom straight line denoted as “des” in Fig. 8) irrespective

Fig. 8. (Bottom solid line) Desired linear characteristics and the SCI output
voltage, i.e., the actual CPS response characteristics, operating at −50 ◦C,
0 ◦C, 25 ◦C, 100 ◦C, and 200 ◦C for the four environmental models: (a) NL0,
(b) NL1, (c) NL2, and (d) NL3.

of its nonlinear characteristic, changes in ambient temperature,

and its nonlinear temperature dependence. The focus of this

study is to achieve this objective by using the LaNN modeling

technique with computationally efficient implementation.

B. Training and Testing of MLP and LaNN

A two-layer MLP with (2-5-1) architecture (see Fig. 2) was

chosen in this modeling problem. We have selected this MLP

architecture after several experiments due to its best perfor-

mance results. The TN and VN were used as inputs to the MLP,

and the linear normalized voltage VLin was used as the target

output. Initially, all the weights of the MLP were set to random

values lying within ±0.5. The learning parameter α and the

momentum factor β used in the BP algorithm, were selected as

0.3 and 0.5, respectively. The completion of weight adaptation

for the 13 data pairs of all the five training data sets constitutes

one iteration. For effective learning, 50 000 iterations were run

to train the MLP model. Usually, the learning and momentum

parameter values lie between zero to one and are selected by

trial [28]. Furthermore, it is seen that the learning of ANN

improves when the learning parameter decreases with iteration

[28], [41]. Therefore, we used a slowly decreasing learning

parameter in which the initial value α0 was modified in each

iteration as

αk = α0(1 − k/Nt) (17)

where k is the current iteration number and Nt is the total

number of iterations (in this case, Nt = 50 000).

In the case of LaNN (see Fig. 3), an (11-1) architecture was

selected by expanding the 2-D input pattern to an 11-D pattern,

as given in (19) using the Laguerre polynomials (7). Here, both

TN and PN were expanded using up to fourth-order Laguerre

polynomials. In addition, four cross-product terms were also

included. The training continued for 50 000 iterations with the

initial learning rate and the momentum parameter set at 0.5.
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Fig. 9. Linearized response characteristics obtained by the ANN-based mod-
els. (a) NL0 (MLP). (b) NL1 (MLP). (c) NL0 (LaNN). (d) NL1 (LaNN).

From Table I, we find that, in the case of MLP, NADD, NMUL,

and NTAN are 38, 70, and 5, respectively. On the other hand,

in the case of LaNN, they are 25, 38, and 1, respectively. Using

an Intel Core Duo CPU personal computer with 3.24-GB RAM

operating at 2.20-GHz clock, it took 83.02 and 43.54 µs to train

the MLP and LaNN, respectively, for each iteration. Note that

the numbers of weights in the MLP and LaNN are 21 and 12,

respectively.

C. Linear Response Characteristics

The results obtained for the two environmental models

(linear NL0 and nonlinear NL1) at different temperatures

are shown in Fig. 9. The linearized response characteristics

for NL2 and NL3 are shown in Fig. 10. For comparison

purposes, the sensor characteristics (the SCI output) at the

reference temperature (T0 = 25 ◦C) are shown as the upper

curve in these figures. As can be seen from these figures, the

response characteristics of the MLP- and LaNN-based models

are almost linear. Both the MLP and LaNN are able to transform

the nonlinear SCI output voltages (upper curves in Fig. 8)

to linearized values quite effectively, over a wide range of

temperatures, for the linear and the three nonlinear models.

D. FS Error

The FS percent error is defined as

FS Error = 100(ylin − yest)/yfs (18)

where ylin and yest denote the desired linearized sensor readout

and the ANN-model output, respectively. As all the values are

normalized to ±1.0, the yfs is selected as 1.0. The FS errors for

the linear (NL0) and nonlinear (NL1) environmental models

over the full range of temperature at different PN values are

shown in Fig. 11. Those for NL2 and NL3 are shown in

Fig. 10. Linearized response characteristics obtained by the ANN-based mod-
els. (a) NL2 (MLP). (b) NL3 (MLP). (c) NL2 (LaNN). (d) NL3 (LaNN).

Fig. 11. FS percent errors at PN = 0.0, 0.2, 0.4 and 0.6. (a) NL0 (MLP).
(b) NL1 (MLP). (c) NL0 (LaNN). (d) NL1 (LaNN).

Fig. 12. From these figures, one can observe that, in the case of

linear dependence (NL0), the FS error remains within ±0.5%

for both ANN models. However, for the nonlinear environ-

mental models (NL1, NL2, and NL3), the FS error becomes

slightly higher but remains within ±1.0%. Note that both the

MLP and the LaNN were trained using only five data sets

corresponding to −50 ◦C, 10 ◦C, 70 ◦C, 130 ◦C, and 190 ◦C.

The FS errors between the estimated and desired responses

at specific values of temperature are shown in Fig. 13 (for NL0
and NL1) and in Fig. 14 (for NL2 and NL3). From these

figures, one can see that the FS error remains within ±0.5% for

NL0. On the other hand, in the cases of NL1, NL2, and NL3,

the FS errors remain within ±1.0% for both ANN models.
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Fig. 12. FS percent errors at PN = 0.0, 0.2, 0.4 and 0.6. (a) NL2 (MLP).
(b) NL3 (MLP). (c) NL2 (LaNN). (d) NL3 (LaNN).

Fig. 13. FS percent error at −40 ◦C, 100 ◦C, 150 ◦C, and 200 ◦C. (a) NL0
(MLP). (b) NL1 (MLP). (c) NL0 (LaNN). (d) NL1 (LaNN).

However, in the case of NL2, only at 200 ◦C, the FS error

approaches 1.5% for PN = 0.

VI. RUN-TIME IMPLEMENTATION OF SENSOR

In the preceding section, we have shown that LaNN-based

CPS models are capable of effectively compensating for

nonlinear characteristics and nonlinear environmental depen-

dence. Consequently, they provide the sensor readout with the

desired accuracy. Due to limited battery life in a wireless mote,

the LaNN may be trained offline. During the actual use, the

trained weights of LaNN are stored in the ROM of the micro-

controller of the mote. Since the computational complexity of

LaNN is much less than that of MLP, the LaNN-based sensor

model is preferable in the wireless mote.

Fig. 14. FS percent error at −40 ◦C, 100 ◦C, 150 ◦C, and 200 ◦C. (a) NL2
(MLP). (b) NL3 (MLP). (c) NL2 (LaNN). (d) NL3 (LaNN).

In Section IV, we have proposed a computationally efficient

scheme for the implementation of LaNN. Here, we describe the

run-time implementation of LaNN-based sensor model. Let us

denote the two inputs of the LaNN sensor model (see Fig. 7) VN

and TN by x and t, respectively. In the run-time implementation

scheme (Fig. 6), there will be two inputs x and t. Using the

Laguerre polynomials (7), the 2-D input pattern is expanded to

11-D pattern gi, where i = 1, 2, . . . , 11, as follows:

g1 = L1(t) g2 = L2(t) g3 = L3(t)

g4 = L1(x) g5 = L2(x) g6 = L3(x)

g7 = L4(x) g8 = xt g9 = g5t

g10 = g5g2 g11 = g6t. (19)

After the completion of training, let the weights of the LaNN

be given by wi, where i = 0, 1, . . . , 11. The linear sum s
[see Fig. 6(a)] is given by

s =
11∑

i=0

giwi (20)

where g0 = 1 is the bias unit.

In order to improve the run-time computational effi-

ciency, the modified implementation scheme, as proposed in

Section IV, is carried out. Referring to Fig. 6(b) and using (22)

and (23), the linear sum s is computed as

s =

12∑

i=0

hivi. (21)

The modified expansion is carried out as follows:

h1 = t h2 = x h3 = t2

h4 = x2 h5 = t3 h6 = x3

h7 = x4 h8 = xt h9 = x2t

h10 = xt2 h11 = x2t2 h12 = x3t (22)
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with h0 = 1 as the bias unit. After grouping the coefficients of

hi together, the modified weights vi are computed as follows:

v0 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w10

v1 = − w1 − 2w2 − 3w3 + w9 − 2w10 + w11

v2 = − w4 − 2w5 − 3w6 − 4w7 − 2w10

v3 = w2/2 + 3w3/2 + w10/2

v4 = w5/2 + 3w6/2 + 3w7 + w10/2

v5 = − w3/6 v6 = −w6/6 − 2w7/3

v7 = w7/24 v8 = w8 − 2w9 + 4w10 − 3w11

v9 = w9/2 − w10 + 3w11/2

v10 = − w10 v11 = w10/4 v12 = −w11/6. (23)

Note that the modified weights vi are computed only once us-

ing the known values of the trained weights wi and then stored

in the ROM of the microcontroller. The direct computation of

s (20) involves 49 multipliers and 41 adders, whereas using the

modified scheme (21), the numbers of multipliers and adders

needed are 22 and 12, respectively. This saves about 50% of

hardware requirements. Using an Intel Core Duo CPU personal

computer with 3.24-GB RAM operating at 2.20-GHz clock, the

execution times for the direct and modified implementations are

found to be 193.9 and 48.1 ns, respectively. Thus, the proposed

implementation scheme provides a computational advantage by

a factor of four over the direct implementation, which makes it

more attractive for WSN applications.

VII. CONCLUSION

We have proposed a novel Laguerre ANN-based computa-

tionally efficient smart sensor model, which could be used with

less computational complexity in WSNs. By taking an example

of a CPS, we have shown that the proposed model can provide

accurate linearized readout and is able to autocompensate for

the nonlinear influence of the environmental parameters on its

characteristics. We have compared its performance with that

of an MLP-based model and shown the effectiveness of the

LaNN-based model under linear and nonlinear influences of the

ambient temperature. We have considered a temperature range

varying from −50 ◦C to 200 ◦C and shown that the FS error

of the linearized readout of the ANN models remains within

±1.0% under four different forms of temperature dependences.

In order to enhance the battery life of the wireless mote, we

have also suggested an implementation scheme of the LaNN-

based sensor, which can reduce the run-time computational

complexity by a factor of four and save hardware requirements

by more than 50% compared to the direct implementation.

One of the issues to be further considered in this modeling

technique is the effect of noise, as most of the sensors operate in

noisy environments. Another issue is to improve computational

efficiency by approximating the tanh() function. We intend

to probe into these aspects in our future study. Because of

the computational efficiency, flexibility, fault tolerance, and

effectiveness to adapt to dynamic environments, the LaNN-

based models may be used for optimizing other aspects of

WSNs.
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