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Development of Linear-Parameter-Varying Models for Aircraft

Andrés Marcos∗ and Gary J. Balas†

University of Minnesota, Minneapolis, Minnesota 55455

This paper presents a comparative study of three linear-parameter-varying (LPV) modeling approaches and

their application to the longitudinal motion of a Boeing 747 series 100/200. The three approaches used to ob-

tain the quasi-LPV models are Jacobian linearization, state transformation, and function substitution. Devel-

opment of linear parameter varying models are a key step in applying LPV control synthesis. The models are

obtained for the up-and-away flight envelope of the Boeing 747-100/200. Comparisons of the three models in

terms of their advantages, drawbacks, and modeling difficulty are presented. Open-loop time responses show

the three quasi-LPV models matching the behavior of the nonlinear model when in the trim region. Differ-

ences between the models are more apparent as the response of the aircraft deviates from the nominal trim

conditions.

Nomenclature

c1, . . . , c9 = inertia coefficients
c̄ = wing chord, m
Fdec = decomposition function
m = aircraft mass, kg
q̄ = dynamic pressure, N/m2

S = reference surface area, m2

sα, cα = sine, cosine AoA
w(t) = nonscheduling states
x, zcg = aircraft center of gravity position x, z axis, m
z(t) = scheduling states
zeng = engine position z axis, m
α = angle of attack (AoA), deg
αw = wing design plane αw = α + 2 deg
ρ(t) = scheduling vector

I. Introduction

I N the last decade linear-parameter-varying (LPV) control has
been presented as a reliable alternative to classical gain schedul-

ing for multivariable systems. Gain scheduling is a standard method
to design controllers for dynamical systems over a wide performance
envelope. It yields a global controller based on interpolation of a
family of locally linearized controllers. Drawbacks of this method-
ology are its ad hoc character and more importantly the fact that
the controller obtained comes with no guarantees on its stability
or performance other than at the design points (this is especially
critical for rapid variations in the scheduling parameters). Linear-
parameter-varying synthesis techniques naturally fit into the gain-
scheduling framework, while imbuing it with local stability and
performance assurances. LPV control synthesis techniques have al-
ready been used, with varying levels of success, for a wide array
of dynamical systems. These include high-performance aircraft as
representative as the F-141, F-162, F-183, and the VAAC Harrier;4

turbofan engines;5,6 and missiles;7,8 and, recently, reconfigurable
controllers.9,10 A condition to apply LPV control synthesis is to
transform the nonlinear model of the system into an LPV model;
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hence, LPV modeling becomes a key issue in the design of LPV
controllers.4,11,12 Unfortunately, LPV modeling is not frequently
considered as an independent research topic. Most of the available
literature is only concerned with LPV control and either assumes a
given LPV model or the model obtained is only of interest for the
particular application being studied. Recently, two survey papers on
the area of gain scheduling have appeared that treat the subject of
LPV and quasi-LPV (qLPV) modeling and present detailed analysis
of some of the available methods (see Refs. 13 and 14). A qLPV
model is a particular case of an LPV model, which is characterized
by having a subset of the scheduling parameters belong to the state
space of the system.

Generally, control designers use a family of linear, time-invariant
(LTI) plants at different points of interest throughout the operational
envelope in order to obtain an LPV model.1,3,5,6 This is known as
the Jacobian linearization approach. It is based on first-order lin-
ear approximations with respect to a set of equilibrium points. In
Refs. 4, 11, and 12, state transformations techniques were used to
derive a reliable LPV model. The state transformation approach per-
forms a state transformation based on differentiable functions of the
nonscheduling states and control inputs with the goal of removing
any nonlinear terms not dependent on the scheduling parameter.
A third LPV modeling approach, function substitution, proposes a
substitution of a so-called decomposition function Fdec by a linear
combination of (scheduling parameter-dependent) functions and the
scheduling vector. This decomposition function is formed by com-
bining all of the terms of the nonlinear system that are not both
affine with respect to the nonscheduling states and control inputs,
and function of the scheduling vector alone. It has been used recently
to model the F-16 aircraft dynamics for LPV and receding horizon
control.2,15 Other modeling approaches involve the use of linear
fractional transformations, velocity-based approaches, or different
types of linearizations (see Refs. 13, 14, and 16).

In this paper, the first three approaches—Jacobian lineariza-
tion, state transformation, and function substitution—are used to
model the Boeing 747-100/200 longitudinal motion in the up-
and-away flight envelope. A theoretical examination of the mod-
eling approaches is presented first. The nonlinear aircraft mod-
els, a high- and a low-fidelity model, and the software used,
FTLAB747v61/65, are aintroduced next. The low-fidelity model,
basically a reduction of the stability derivatives, is used for the
qLPV modeling stage to facilitate the modeling task. A discussion
on the qLPV model development and on their respective advan-
tages and disadvantages follows. To validate the qLPV models,
open-loop time responses are obtained and compared to the non-
linear aircraft responses. The results show that for a specific region
in the flight envelope studied, the acceptable trim region, all of the
three qLPV are valid, but that for excursions away from this re-
gion the function substitution qLPV model tends to give a better
match.
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II. Theory

This section introduces background theory and definitions of
LPV and quasi-LPV systems. The class of finite dimensional linear
systems whose state-space entries depend continuously on a time-
varying parameter vector ρ(t) is called linear parameter varying.
The trajectory of the vector valued signal ρ(t) is assumed not to be
known in advance, although its value can be accessed (measured)
in real time and is constrained a priori to lie in a specified bounded
set. The idea behind using LPV systems in lieu of LTI or linear time
varying is to take advantage of the causal knowledge of the dynam-
ics of the system. In the LPV framework, this causal relationship
between the vector value signal ρ(t) and the plant allows the con-
trol designer to restrict the dependence of the controller dynamics to
variations in the plant characteristics. Hence, one is able to take full
advantage of the information provided by the scheduling variables.
The definition of LPV systems follows.

Definition 1 Linear Parameter Varying Systems17: Given a com-
pact subsetP ⊂Rs , the parameter variation setFP denotes the set of
all piecewise continuous functions mapping R+ (time) into P with
a finite number of discontinuities in any interval. Given continuous
functions, A:Rs → Rn × n , B:Rs → Rn × nu , C :Rs → Rny × n , and
D:Rs → Rny × nu .

A nth-order linear parameter-varying system is defined as

[

ẋ(t)

y(t)

]

=

[

A(ρ(t)) B(ρ(t))

C(ρ(t)) D(ρ(t))

][

x(t)

u(t)

]

(1)

where ρ(t) ∈FP .
Quasi-LPV systems arise when a scheduling variable ρ(t) is

also a state of the system. This state dependency might result in
a nonlinear feedback through the system matrices, and hence the
term quasi is more appropriately used to define this particular class
of systems. By treating the scheduling parameters as independent
variables (at the expense of possibly some conservativeness), the
techniques used to design LPV controllers can be applied to qLPV
models.7

Definition 2 (Quasi-Linear-Parameter-Varying Systems): Given
a linear-parameter-varying system as defined in definition 1, a
quasi-linear-parameter-varying system is obtained if the state vec-
tor x(t) can be decomposed into scheduling states z(t) ∈FP and
nonscheduling states w(t).

x(t) = [z(t) w(t)]T (2)

Thus, the quasi-LPV model is defined by





ż(t)

ẇ(t)

y(t)



 =





A11(ρ(t)) A12(ρ(t)) B1(ρ(t))

A21(ρ(t)) A22(ρ(t)) B2(ρ(t))

C1(ρ(t)) C2(ρ(t)) D(ρ(t))









z(t)

w(t)

u(t)



 (3)

where the scheduling parameter vector is ρ(t) = [z(t) �(t)] and
�(t) ∈Rn p are exogenous scheduling variables.

The selection of scheduling variables that capture the nonlinear-
ities of the system is a task that is not always obvious a priori.
There are several approaches that can be used to obtain a reli-
able LPV/quasi-LPV model.2,13,14,18 This paper focuses on three
techniques: two of them well-known, Jacobian linearization and
state transformation, and one of recent appearance, function sub-
stitution. Assume that the nonlinear model is of the following
class:

[

ż(t)

ẇ(t)

]

= A(ρ(t))

[

z(t)

w(t)

]

+ B(ρ(t))[u(t)] + K (ρ(t)) (4)

y(t) = [z(t) �(t)]⊤ (5)

where z(t) ∈Rnz is the scheduling-states vector, w(t) ∈Rnw the
nonscheduling states, u(t) ∈Rnu is the control input vector, and the
measured output vector is given by y(t) ∈Rny . The states and the
control inputs must enter the system in a linear fashion. In princi-

ple, there might be relaxations on the linearity of any variable by
considering it a scheduling parameter and hence inside the K (ρ(t))
matrix. An example of this type of linear relaxation can be found in
Ref. 19. There are no restrictions with respect to the dependency of
the A, B, and K matrices on the scheduling vector ρ(t). Without loss
of generality, it is assumed that there are no exogenous scheduling
variables [ρ(t) = z(t)]. From this type of system, it is possible to
develop each of the qLPV models, and hence a common departure
point is provided to enable a more reliable comparison. This class
of nonlinear system is sufficiently general; most of the aerospace
systems currently used can be cast in this form with minor assump-
tions. The dependency on time will be dropped from the equations
in the sequel.

A. Jacobian Linearization

The Jacobian linearization approach is the most widespread
methodology used to obtain LPV models. It is also applicable to
the widest class of nonlinear systems. It is valid for any nonlinear
system that can be linearized at its equilibrium points, and there-
fore covers a much richer nonlinear class than the model given in
Eq. (4). It can be used to create an LPV system based on a family
of plants linearized with respect to a set of equilibrium points that
represents the flight envelope of interest. The resulting model is a
local approximation to the dynamics of the nonlinear plant around
this set of equilibrium points. The basis of this method is to use a
first-order Taylor-series expansion of the nonlinear model, Eq. (4),
with respect to a trim point, δ f1 = f1(z, w, u) − f1(z, w, u)|eq:

δ f1 = �z f · δz + �w f · δw + �u f · δu

= �z f · (z − zeq) + �w f · (w − weq) + �u f · (u − ueq) (6)

The term �z f indicates derivative of the function f with respect
to the variable z. Rewrite the resulting equations for the different
class of states in state-space form as follows:

[

δ̇z

δ̇w

]

=

[

�z f1 �w f1

�z f2 �w f2

]
∣

∣

∣

∣

eq

[

δz

δw

]

+

[

�u f1

�u f2

]
∣

∣

∣

∣

eq

[δu] (7)

It is easy to verify that the trim values and all of the elements in the
state-space matrices depend on the scheduling variables, and hence
the model is quasi-LPV. A more detailed theoretical derivation of a
Jacobian model is given in Ref. 18.

Because it is a first-order approximation, it could lead to diver-
gent behavior (with respect to the nonlinear model) for large con-
trol inputs. The local nature of the system could be improved by
using higher-order terms in the Taylor-series expansion, but this
could lead to impractical implementations.16 In Ref. 16 it was also
pointed out that a q/LPV model is conceptually different to a family
of linearized systems because the latter is a collection of dynamical
systems defined by perturbations and the former is a single dynamic
system. It is generally impossible to capture the transient behav-
ior of the nonlinear plant by this method, although for a certain
class of nonlinear systems it is possible to account for its essential
features.12

B. State Transformation

The second approach is called state transformation because the
quasi-LPV model is obtained through exact transformations of the
nonlinear states. It basically performs a state transformation based
on differentiable functions of the nonscheduling states and control
inputs with the goal of removing any nonlinear terms not depen-
dent on the scheduling parameter. This technique was introduced
by Shamma and Cloutier,11 and it has been applied to a wide range
of applications.2,4,7,12 The application of this technique is restricted
to the special class of nonlinear systems given in Eq. (4) (also known
as an output nonlinear system). It is required that nz = nu in order
to transform Eq. (4) into a qLPV model whose state-space data are
functions of the scheduling variables ρ. It is also required that the
scheduling parameters are available in real time for measurement.
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Assume there exist continuously differentiable functions weq(ρ)

and ueq(ρ) such that for every ρ ∈FP the system is in steady state:
[

0

0

]

=

[

K1(ρ)

K2(ρ)

]

+

[

A11(ρ) A12(ρ)

A21(ρ) A22(ρ)

][

z

weq(ρ)

]

+

[

B1(ρ)

B2(ρ)

]

[ueq(ρ)] (8)

Unfortunately, there are no assurances about the existence of these
trim functions or their validity within the feasible flight region. It
is only possible to ensure that the model obtained is valid in the
restricted envelope (that with acceptable trim functions). Conse-
quently, before generating the qLPV model it is necessary to inves-
tigate the feasible trim map.

The trim functions defined previously, Eq. (8), can be used to
transform the state definition in Eq. (4). Through some basic alge-
braic manipulations the following qLPV model is obtained:

[

ż

ẇ − ẇeq

]

=





0 A12(ρ)

0 A22(ρ) −
∂weq

∂z

∣

∣

∣

∣

ρ

A12(ρ)





[

z

w − weq(ρ)

]

+





B1(ρ)

B2(ρ) −
∂weq

∂z

∣

∣

∣

∣

ρ

B1(ρ)



 [u − ueq(ρ)] (9)

Note that the nonlinear terms matrix K (ρ) has now disappeared.
The qLPV model represents the nonlinear system generated through
an exact transformation. References 2, 11, 12, 16, 18, and 20 also
provide more discussions and details about this approach.

C. Function Substitution

The function substitution approach was first proposed in Ref. 7
for qLPV systems with nonlinearities in the control input; recall
that qLPV systems must be linear with respect to the nonschedul-
ing states and control inputs. In that reference a transformation of
the nonlinear input parameter was performed to obtain a linear in-
put. The system was casted into an qLPV model, where the real
input was computed through a scheduled inverse of the nonlinear
input. This qLPV modeling approach was further developed and
applied to an F-162,15 and to a Boeing 747-100/200.18,20 The ap-
proach followed in this paper proposes a substitution of a so-called
decomposition function Fdec by (scheduling parameter-dependent)
functions linear in the scheduling vector. This decomposition func-
tion is formed by combining all of the terms of the nonlinear system
that are not both, affine with respect to the nonscheduling states
and control inputs, and function of the scheduling vector alone (af-
ter a coordinate change with respect to a single equilibrium point
has been performed). The decomposition is carried out through a
minimization procedure. The algorithm follows:

Starting from the nonlinear class of systems given in Eq. (4),
choose an equilibrium point (zeq, weq, ueq), and perform the follow-
ing change of coordinates:

ηz = z − zeq ηw = w − weq ηu = u − ueq (10)

Subtract from Eq. (4) its own value at the chosen trim point and
rearrange the terms of the resulting equation as follows (put together
all of those terms that are not linear on the nonscheduling states and
controls, and function of the scheduling vector):
[

η̇z − żeq

η̇w − ẇeq

]

= Aw(ηz + zeq)ηw + B(ηz + zeq)ηu

+Fdec(ηz, weq, ueq) (11)

The last term in the equation is given by

Fdec = Az(ηz + zeq)ηz + [A(ηz + zeq) − A(zeq)]

[

zeq

weq

]

+ [B(ηz + zeq) − B(zeq)]ueq + [k(ηz + zeq) − k(zeq)] (12)

The objective is to decompose Fdec(ηz, weq, ueq) into functions
linear in ηz ∈Rnz and then substitute the result back into Eq. (11).
The function decomposition is defined by

Fdec(ηeq, weq, ueq) = f1(z)ηz1 + f2(z)ηz2 + · · · + fn(z)ηzn (13)

Note that this decomposition is exact if the desired functions fi (z)
are selected as follows (see Ref. 7):

fi (z) = Fdec(z, zeq, weq, ueq)
[

ηzi

/(

η2
z1 + η2

z2 + · · · + η2
zn

)]

(14)

These decomposition functions are required to be smooth and well-
defined to avoid controller synthesis problems arising from discon-
tinuities in the qLPV model.

It is necessary to select grid points for the scheduling param-
eters in order to make the problem finite dimensional (i.e., z =
[z1(1 . . . n) z2(1 . . . m) · · · znz

(1 . . . k)]⊤). Once this is done, it is

straightforward to obtain a particular solution f̃i (z) ∈Rn × m × ··· × k

for each of the decomposition functions given by Eq. (14). It is
necessary to set some additional constraints to ensure the smooth
and well-defined conditions on the functions (i.e., bounds on their
derivatives and coefficients). Also, because the only information
available is the value of the decomposed function, Eq. (12), at the
grid points, a numerical approximation approach is used to obtain

f̃i (z) and their second derivatives. This could lead potentially to
approximation errors that should be avoided or reduced by using
smoothing techniques (see Chap. 3.3 in Ref. 21).

Two linear programs (LPs) are used to smooth the decomposition
functions. The first LP minimizes the maximum absolute value of
the second partial derivatives of the decomposition functions across
all of the parameters in z. This first LP basically enforces a second-
derivative continuity condition on the decomposition functions to
ensure their smoothness. Mathematically it can be posed as follows:

min

(

max
i, j

max
z

∣

∣

∣

∣

∂2 fi (z)

∂z2
j

∣

∣

∣

∣

)

(15)

subject to Eq. (13). The second linear program also minimizes the
maximum absolute value but this time of the functions themselves,
while constraining the optimization to a relaxation of the previous
LP objective, that is, a threshold on the maximum second partial
derivative of the functions. This objective is represented by the fol-
lowing minimization problem:

(

min
i, j

max
i, j

max
z

| fi (z)|
)

subject to

max
j

max
z

∣

∣

∣

∣

∂2 fi (z)

∂z2
j

∣

∣

∣

∣

≤ (1 + δi )bi (16)

also subject to Eq. (13). The term δi is a design parameter used to
relax the threshold on the constraint, and bi is set to the maximum
value of the second derivatives obtained from the first optimization
across z and fi (z).

The LP algorithm that follows solves the decomposition problem.
It is assumed that Eqs. (11) and (12) are available.

1) Find the particular solution to Eq. (14), f̃i (z),
corresponding to the chosen grid vectors z =
[z1(1 . . . n) z2(1 . . . m) · · · znz

(1 . . . k)]⊤.
2) Find the null space Ni (ηz) for the vector formed by combining

the grid parameters of the scheduling states coordinate transforma-
tion [ηz1

ηz2
· · · ηznz

]⊤. A singular value decomposition can be
used to obtain the orthonormal basis that spans the null space.

3) Find the second partial derivatives for f̃i (z) andNi (ηz) with re-
spect to the scheduling parameters z. Because all of the information
available is based on data points of the functions at the grid points,
an approximate numerical differentiation technique is required. In
this particular algorithm the Three Points Newton’s Divided Differ-
ence Interpolation Formula (for example, see p. 60 in Ref. 21) is
used.
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4) Solve the initial linear program. It minimizes the second partial
derivatives of the decomposition functions while allowing the value
of the functions at the grid points to vary constrained by a user-
defined bound � · ‖Fdec‖∞.

min
X

ε subject to

|X | ≤ � · ‖Fdec‖∞

∣

∣

∣

∣

∂2

∂z2
· Ni (ηz) · X

∣

∣

∣

∣

≤

∣

∣

∣

∣

∂2

∂z2
· f̃i (z)

∣

∣

∣

∣

+ ε (17)

where � is a user-defined constant to limit the values of the decom-
position functions and ‖Fdec‖∞ is the H∞ norm of the decomposed
function, Eq. (12). The initial guess for the LP is a zero vector of
appropriate dimension. The solution X can then be used to calculate
the new decomposition functions fi (z)new:

fi (z)new = f̃i (z) + Ni (ηz) · X (18)

It will also be used as an initial guess for the second LP and to
calculate a new bound for the second derivatives.

5) Calculate the maximum second partial derivative for the new
decomposition functions fi (z)new.

bi = max
j

max
z

∣

∣

∣

∣

∂2

∂z2
j

· fi (z)new

∣

∣

∣

∣

(19)

This bound is used as a constraint on the derivatives in the following
LP.

6) The second linear program minimizes the decomposition func-
tions using as an initial guess the solution of the first LP and relaxing
the maximum absolute value for the second derivatives by using the
bound obtained in step 5.

min
Y

ε subject to

|Y | ≤ ∞

∣

∣

∣

∣

∂2

∂z2
· Ni (ηz) · Y

∣

∣

∣

∣

≤

∣

∣

∣

∣

∂2

∂z2
· f̃i (z)

∣

∣

∣

∣

+ (1 + δi ) · bi

|Ni (ηz) · Y | ≤ | f̃i (z)| + ε (20)

where δi is a user-defined constant used to relax the gradient con-
straint. The final decomposition functions are then given by

fi (z)final = f̃i (z) + Ni (ηz) · Y (21)

Substituting in Eq. (11) the decomposition function Fdec by its
right-hand side equivalent of Eq. (13) [note that it now contains the
final decomposition functions from Eq. (21)] and noting the earlier
coordinate change (ηz + zeq = z), the function substitution qLPV
model is obtained:

[

ż

ẇ

]

= [Az(z)+ fi (z)final Aw(z)] ·

[

z − zeq

w − weq

]

+ B(z) · [u − ueq]

(22)

where the selected trim condition (zeq, weq, ueq) is fixed.
Disadvantages of this approach include several open questions,

among them the importance of the trim point chosen and its effects
in the subsequent LPV controller synthesis stage. Also, the typical
problem of selecting the grid vector, which is almost endemic to
all of the LPV techniques, is present here. The advantage is that the
dependency of the approach does not rely on the feasible trim region
but on a user-defined grid.

III. Boeing 747-100/200

The aircraft model used in this paper is a Boeing 747 series
100/200. This aircraft was chosen because its wide array of charac-
teristics (leading- and trailing- edge flaps, spoilers, variety of control
surfaces, four fan jet engines, etc.) make of it the perfect represen-
tative for any of the commercial airplanes flying today, and thus an
ideal test bed to prove the versatility of the LPV modeling and design
techniques. The Boeing 747 is an intercontinental wide-body trans-
port with four fan jet engines designed to operate from international
airports.

The body-axes longitudinal motion of the Boeing 747, not includ-
ing flexible effects, can be described by the following differential
equations (assuming no wind):

α̇ =
[−Fx · sα + Fz · cα]

m · VT AS

+ q (23)

q̇ = c7 · My (24)

θ̇ = q (25)

˙VTAS =
1

m
· [Fx · cα + Fz · sα] (26)

ḣe = VTAS · cα · sθ − VTAS · sα · cθ (27)

The states of the system are angle of attack α, pitch rate q , pitch
angle θ , true airspeed Vtas, and altitude he. Longitudinal control is
performed through a movable horizontal stabilizer σ , four elevator
segments, and the thrust from the four engines T ni . Pitch trim is
provided by the horizontal stabilizer, and under normal operation
the inboard and outboard elevators move together, δE = δE I

= δEO
.

The body-axes aerodynamic forces and moments are given by

Fx = −q̄ · S · [CD · cα − CL · sα] +
∑

i = 1,4

T ni − m · g · sθ (28)

Fz = −q̄ · S · [CD · sα + CL · cα]

− 0.0436 ·
∑

i = 1,4

T ni + m · g · cθ (29)

My = q̄ · S · c̄ ·

{

Cm −
1

c̄
[(CD · sα + CL · cα) · x̄cg

− (CD · cα − CL · sα) · z̄cg] +
c̄ · α̇

VTAS

Cmα̇

}

+ q̄ · S · c̄ ·

{

−
x̄cg

c̄
· CL α̇

· cα

}

+
∑

i = 1,4

T ni · zengi (30)

The aerodynamic data for the Boeing 747-100/200 were obtained
from Refs. 22 and 23. Because the full set of aerodynamic coeffi-
cients is deemed too complex for modeling and control design, a
low-fidelity model of the aircraft is obtained through a two-step
simplification study. First, an analytical study of the importance of
each stability derivative with respect to the nominal value of the
total aerodynamic coefficient is performed. Second, open-loop time
simulations are performed to refine the low-fidelity model and to
ascertain the validity of the final reduced set. In Fig. 1, time re-
sponses for both aerodynamic systems, the high-fidelity (Hi-Fi) and
the final low-fidelity models (Lo-Fi), trimmed at the design point 1
given in Table 1 are shown. The command is a 1.2-deg step input
of the elevator applied at time = 15 s. The difference in the angle
of attack is caused by software constraints, that is, the trim subrou-
tine used the angle of attack as an independent variable. It is noted
that the similitude for the short period mode (the most critical) and
small differences in the period and amplitude for the phugoid. The
details of this reduction can be obtained in Ref. 18, where the six
aerodynamic coefficients were studied. This final low-fidelity model
(Lo-Fi) is used in the LPV modeling stage. Note that the final goal of
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any controller is to control the actual high-fidelity nonlinear model,
but in order to use LPV control techniques an LPV model is re-
quired. These LPV models must capture the main characteristics of
the nonlinear system but yet be sufficiently simple to handle.

The reduced aerodynamic coefficients for the longitudinal motion
are given next (x̃c.g. = 1.45 − 1.8xc.g.):

CL = CLbasic
(αw, M) +

dCL

dq
(he, M) ·

q · c̄

2 · VTAS

· x̃c.g.

+ Kα(αw) ·

[

dCL

dδE I

(he, M) +
dCL

dδEO

(he, M)

]

· δE (31)

CD = CDMach

(

M, C∗
L

)

(32)

Cm = Cmbasic
(αw, M) +

dCm0.25

dq
(he, M) ·

q · c̄

2 · VTAS

+ Kα(αw) ·
dCm0.25

dσ
(he, M) · σF.R.L.

+ Kα(αw) ·

[

∑

i = I,O

dCm0.25

dδEi

(he, M)

]

· δE (33)

The lift coefficient CL depends only on the effects of the pitch
rate, the elevators (which enter linearly), and the basic component
CLbasic

. The pitching-moment aerodynamic coefficient Cm has the
same dependencies as the lift coefficient plus a term to account for
the effect of the horizontal stabilizer, which also enters linearly. The
drag coefficient CD has only one term accounting for the effect of the
Mach number CDMach

(M, C∗
L). This stability derivative depends on

Table 1 Design and trim points

Condition Altitude, m Velocity, m/s α, deg

Design point 1 7,000 203 2.299
Design point 2 10,000 195 3.661
Trim point 1 8,500 175 5.742
Trim point 2 8,500 223 1.895

Fig. 1 Open-loop time response for the high-fidelity and low-fidelity aerodynamic models.

Mach number and the first two terms in the lift coefficient equation
(note the dependency on the pitch rate state q):

C∗
L = CLbasic

+
dCL

dq
·

q · c̄

2 · VTAS

· [1.45 − 1.8xc.g.] (34)

IV. Software

The software used in this project to simulate and analyze the be-
havior of the Boeing 747 is an enhanced version of Flight Lab 747,
FTLAB747, and its predecessor, Delft University Aircraft Simula-
tion and Analysis Tool, DASMAT. These programs were developed
by Delft University of Technology, The Netherlands (see Refs. 24
and 25) as a learning tool to simulate and analyze aircraft dynam-
ics, for example, of a twin-engined business jet, the Cessna Cita-
tion 500. FTLAB747 was developed specifically to study the EL
AL Israel Airlines (ELY) 1862 crash accident on 4 October 1992
near Amsterdam and is a particularization of DASMAT registering
changes pertaining the Boeing 747 and accounting for flight fail-
ures. The version used in this paper, FTLAB747v61/65, has been
enhanced to use the Boeing 747-100/200 as a benchmark aircraft
for fault tolerant and fault detection research (see Ref. 26).

The program is based in MATLAB®/Simulink and offers a wide
array of simulation and analysis tools (trim, linearization, simula-
tion, and flight visualization). The structure of the program is mod-
ular and exploits the advantage of decoupling general from aircraft
specific dynamics, allowing easy implementation of other aircraft.
The trim subroutine returns the control inputs and the aircraft and
engine states corresponding to a flight condition where the linear and
angular accelerations are zero. It provides six different options for
trimming the aircraft: straight-and-level, push-over/pull-over, level
turn, thrust-stabilized turn, beta trim, and specific power turn (see
Refs. 24 and 27). Each condition requires different constraints and
independent variables that are primarily the main flight controls and
the aircraft/engine states. Because of the specific approach used to
trim the aircraft, there are instances when differences on the states or
control inputs are found between the high- and low-fidelity models.

V. Quasi-LPV Models

In this section the details pertaining the qLPV modeling for the
Boeing 747 aircraft are presented. A comparison and discussion
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of the three modeling techniques is postponed for the following
section.

Generally, the scheduling variables for an aircraft are a combina-
tion of altitude he, velocity Vtas, angle of attack α, and/or variables
that register changes in those parameters such as Mach number M or
dynamic pressure q̄ . In the present case to avoid excessive approxi-
mations and because of the dependencies of the stability derivatives,
the scheduling variables selected are angle of attack α, true airspeed
VTAS, and altitude he. Hence, the corresponding system vectors in
Eq. (4) are z = [α VTAS he]T , w = [q θ ]T , and u = [δe σ T n]T .
Because the scheduling variables are all states of the system, this
results in a quasi-LPV model.

Rewriting the Boeing 747 longitudinal nonlinear equations of
motion as in Eq. (4), some of the nonscheduling states enter the
system in a nonlinear fashion. Specifically, the pitch angle enters
the A and K matrices through trigonometric functions (sθ and cθ )
and the pitch rate the K matrix through the drag coefficient CD .

To transform the nonlinear entries, a linearization with respect
to a trim value is performed for the pitch angle θ , where ∇θ is the
difference between the state and a trim point:

cos θ = cos θeq − sin θeq · ∇θ (35)

sin θ = sin θeq + cos θeq · ∇θ (36)

A similar linearization for the Mach-number effect on drag sta-
bility derivative CDMach

is performed (see Ref. 18 for more details):

CDMach

(

M, C∗
L

)

≡ CDMach
(αw, q, M, he) (37)

CDMach
(αw, q, M, he) ≈ CDMach

(αw, qeq, M, he)

+
∂CDMach

∂q

∣

∣

∣

∣

eq

· (q − qeq) (38)

After these approximations the new dependencies of the equations
of motion are as required18:

ẋlong = A(ρ, θeq) · xlong + B(ρ) · ylong + k(ρ, θeq, qeq) (39)

where the scheduling vector is ρ = (α, VTAS, he), the longitudinal
states xlong = [α q VTAS ∇θ he]⊤, and the longitudinal control in-
puts ylong = [δe σ T n]⊤.

Next, it is necessary to study the feasible trim map since the state
transformation and the Jacobian linearization are dependent on the
equilibrium set. For flight control, it is common to trim by zeroing
out the aerodynamics forces and moments (28 → 30). It is easy to
verify that qeq = 0 and θeq = α (straight-level flight). Figure 2 shows
the acceptable trim region in terms of the angle of attack and the
true airspeed at a given altitude, in this case 7000 m.

Fig. 2 Trim map at 7000 m.

Fig. 3 Control inputs for nonlinear and qLPV simulations.

For the simulation of the high-fidelity nonlinear and qLPV mod-
els, two maneuvers are applied (see Fig. 3). The first command input,
deflection 1, is a small perturbation of the pilot’s column equal to
0.5 deg step starting after 2 s and in effect until the end of the sim-
ulation. The second command, deflection 2, is a deflection of the
column composed by a ±2 deg doublet applied from time = 2 s until
time = 28 s. This second command results in a maneuver that takes
the aircraft sufficiently away from the trim region to compare the
qLPV models behaviour outside that region. The deflection of the
column control by the pilot is equivalent, in this case, to elevator
deflections of 0.61 and 4.45 deg for each of the deflections.

A. Jacobian Linearization Quasi-LPV Model

The Jacobian quasi-LPV model is quite straightforward to obtain
from Eq. (39). The typical approach performs linearizations with
respect to a set of trim points to obtain a family of LTI plants that
form the qLPV model. In the present case, it is possible to obtain
a general state-space description of the model where all of the de-
pendencies are in terms of the scheduling variables by performing
a linearization with respect to a generic trim point. Using the trim
subroutine mentioned before, a trim map in terms of the schedul-
ing vector can be found (although there is no assurance that feasible
trim values exist for a particular flight condition). This general state-
space realization together with the associated trim map compose the
Jacobian qLPV model. In Ref. 18 the quasi-LPV model is given in
detail together with the complete derivation for one of the states.

This general description approach is possible because the preced-
ing generic linearization can be written in an analytical, well-defined
form, and only interpolation of the trim map is necessary. Most com-
monly, only the LTI state-space matrices can be found, and inter-
polation among members of the family of LTI plants is necessary.
A drawback of this analytical approach, besides the tediousness of
deriving the analytical equations, is the requirement to find partial
derivatives for the aerodynamic coefficients look-up tables. This is
a task prone to errors because usually it requires extrapolation of
the available aerodynamic data and numerical differentiation. For
this particular application, the trim map used required quite a dense
grid to avoid numerical extrapolation problems at the boundary of
the trim region. This grid density resulted in a more accurate model
within the trim region albeit with a greater computational demand.

B. State Transformation Quasi-LPV Model

For the qLPV modeling of the Boeing 747-100/200 longitudinal
motion, the starting point is Eq. (39), equivalent to the class of
nonlinear systems given by Eq. (4). The equilibrium functions and
their derivatives are quite easy to obtain because qeq(ρ) = 0 and
θeq(ρ) = α, and for any value of ρ = (α, VTAS, he) their derivatives
are







∂qeq(ρ)

∂ρ

∂θeq(ρ)

∂ρ







=

[

0 0 0

1 0 0

]

(40)
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Therefore, the qLPV system for the longitudinal motion of
the Boeing 747 using the state transformation approach is a ba-
sic reorganization of the state-space coefficients in the nonlinear
equation (39). The trim map used for the Jacobian qLPV model
is also used in this approach. The map is required because it is
not possible to calculate an analytical equation for the equilibrium
functions, that is, the trim map is a de facto numerical representa-
tion of the equilibrium functions weq(ρ) and ueq(ρ) for a given ρ.
Hence, this approach has the same shortcomings and advantages as
the previous modeling technique in terms of grid density.

C. Function Substitution Quasi-LPV Model

The same nonlinear equation for the Boeing 747-100/100 used
in the other two approaches, Eq. (39), is also the departure point
for this method. This approach models the nonlinear system around
a unique trim point, and, as it was seen before, there are two suc-
cessive minimizations: one for the second partial derivatives of the
desired decomposition functions and the other for the decomposi-
tion functions. There are four main designer knobs that can affect
the resulting qLPV model: the trim point, the grid of the particular
solution (step 1 in the function substitution algorithm), the first LP
bound � (step 4), and the second LP bound δi (step 6).

Before applying the algorithm, the requirement is to rewrite the
nonlinear system as in Eqs. (11) and (12), the latter is the function
to be decomposed Fdec. This is done using Eq. (39) and the selected
trim point. After selecting the grid and the bounds, application of
the algorithm yields the function substitution qLPV model in the
form of Eq. (22).

The selection of the trim point for the design of the function
qLPV model seems to be not that critical (at least for this case and
looking at the open-loop time responses). Models are obtained at
several trim points in the flight envelope although only two are used
in this paper (see the design points in Table 1). To appropriately
compare them, the resulting qLPV models are trimmed at different
points in the flight envelope (see the trim points in the same table).
Figure 4 shows the time responses for deflection 2 for the nonlinear
models and the two function qLPV models’ all trimmed at trim
point 1. It is observed that both qLPV models follow quite closely
the nonlinear models although the model designed at the design

Fig. 4 Function qLPV models: design point variations (trim point 1, grid 1, deflection 2).

point 2 is slightly better. This is mostly because of its closeness in
speed to the trim point selected. Figure 5 show the time responses
for the same deflection and models but trimmed at trim point 2.
This time the qLPV models’ responses seem to be slightly off with
respect to the high-fidelity model for the phugoid mode. But when
compared to the low-fidelity (which was the baseline model for the
qLPV modeling stage), it is noticed that this is a shortcoming of this
nonlinear model rather than of the qLPV models. Indeed, the qLPV
model designed closer in speed to the trim point, design point 1,
is closer this time to the low-fidelity nonlinear response. The final
selected design point for the qLPV model for the sequel is design
point 1.

The choice of grid in the first step of the qLPV modeling algo-
rithm is found to be more significant. Table 2 shows three of the
grids used to assess this influence. It is natural to assume that a
finer grid will yield better results. This seems to be actually the
case although some of the scheduling parameters have more im-
pact than others and there is interplay among them based on the
modes they excite. Specifically, the angle of attack (short period)
and airspeed (phugoid) are the predominant parameters, with im-
provements in one mode adversely affecting the other. Using a very
fine grid yielded models of a more oscillatory nature. It is suspected
that the computational demand of these refined grids might have
introduced undesirable errors. Figure 6 shows a comparison with
respect to the high-fidelity nonlinear model of the qLPV obtained at
the selected design point, design point 1, and using the grids given
in Table 2. Observe how the model for grid number two is closer for
the angle of attack (improved short period) but further away for the
altitude and speed (phugoid). The grid number 3 is selected because
it shows the best overall fit to the nonlinear model.

The user-defined bounds � and δi affect, in a proportional man-
ner, the maximum value of the coefficients in the first LP and the

Table 2 Scheduling grids, a:b:c => from a to c every b

Grid Altitude, m Velocity, m/s α, deg

1 [800:600:11,000] [80:10:300] [−2:3:30]
2 [0:1000:11,000] [80:20:300] [−2:5:30]
3 [5000:500:11,000] [80:10:300] [−2:5:30]
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Fig. 5 Function qLPV models: design point variations (trim point 2, grid 1, deflection 2).

Fig. 6 Function qLPV models: grid variations (design point 1, deflection 1).

maximum value of the second derivatives in the second LP, respec-
tively. It is observed that unless both bounds are selected to be of
great dimension the succession of the two linear programs tend to
downplay their effects to the point of making them negligible.

VI. Comparison Study

This section provides a comparative study of the three qLPV
modeling approaches. Open-loop time responses are used to com-
pare the qLPV models and the high-fidelity (Hi-Fi) nonlinear model.

A comparison between the qLPV models is also drawn based on the
difficulty of the modeling technique and the qLPV models advan-
tages and shortcomings.

Figure 7 presents the open-loop responses to deflection 1 of the
four models: Jacobian qLPV (dotted), state transformation qLPV
(dashed), function substitution qLPV (solid with circle marker),
and the Hi-Fi nonlinear model (thick solid). All of the qLPV mod-
els are obtained at design point 1. The Jacobian and state trans-
formation qLPV models are indistinguishable because of the use
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Fig. 7 qLPV and nonlinear models (design point 1, deflection 1).

Fig. 8 qLPV and nonlinear models (design point 1, deflection 2).

of the same dense trim map. With respect to the nonlinear model,
they are closer in magnitude for the angle of attack although the
function qLPV model is able to capture better the dynamic behav-
ior for that state. For the rest of the states, it is easily seen that the
function qLPV model almost perfectly matches the nonlinear model
behavior.

In Fig. 8 the time responses for deflection 2 are given. This ma-
neuver results in a stronger model behavior that takes the aircraft

outside its trim region. Again, the Jacobian and state-transformation
qLPV models are indistinguishable although it is clear that they do
not provide a good response (neither in magnitude nor periodic-
ity) compared to the nonlinear model modes. The function qLPV
model does not seems as close to the Hi-Fi nonlinear model as in
the preceding simulation, but it is able to capture the dynamic be-
havior much better than the other two models. Indeed, the offset in
the function qLPV is not so much a shortcoming of the modeling
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procedure as a limitation of the Lo-Fi nonlinear model used for the
qLPV stage (see preceding section).

In terms of the difficulty of obtaining the quasi-LPV models, it
is noted that once the nonlinear equations are transformed into the
class of nonlinear systems characterized by Eq. (4) all of the quasi-
LPV models are relatively easy to obtain. The Jacobian approach
presented an additional difficulty because of the approach taken,
which involved representing the qLPV model through a general
analytic equation and a trim map. This approach required obtaining a
number of partial derivatives for the aerodynamic coefficients look-
up tables, which resulted in a simple but tedious task. This can be
avoided by simply using one of the many available linearization
routines to find a family of LTI plants. The state transformation, for
the Boeing 747 case, was almost a simple reshuffling of the terms in
Eq. (4). The function substitution involved an optimization routine
aimed at decomposing the nonlinear function given by Eq. (12).
This optimization is for the major part a systematic routine except
for the initialization stage that needs to be adapted for the particular
aircraft considered (an easy, straightforward process).

Summarizing the advantages of each model, it is observed that the
Jacobian linearization approach is the most widespread methodol-
ogy, and it has a proven theoretical base. Indeed, the typical Jacobian
LPV modeling approach is the easiest of the three techniques pre-
sented. Transfer of knowledge and technology is also natural for
this approach. It is also applicable to the widest class of nonlinear
systems because it is valid for any nonlinear system that can be lin-
earized at its equilibrium points. The state transformation provides
an exact LPV model of the nonlinear system, which can be critical
for systems where approximations are not feasible. The function
substitution is not constrained by the feasible trim region, and in
overall terms (for this present case at least) it better characterizes
the behavior of the nonlinear model. All of the approaches allow the
use of LPV control synthesis techniques.

With respect to the disadvantages and limitations of the different
modeling approaches, the Jacobian LPV approach is a first-order
approximation of the system to equilibrium points, and generally it is
not possible to capture the transient behavior of the nonlinear model.
Similarly, the state-transformation model depends on the existence
of continuously differentiable trim functions for the nonscheduling
states and inputs weq(ρ) and ueq(ρ). Unfortunately there are no
assurances of their existence. Both approaches, the Jacobian and
state transformation, are limited in their usefulness (the fidelity to the
nonlinear model) by the range of the feasible trim map. If this region
is small, as it is in the present case, the simulation can be hampered
by the limited range in which the qLPV model is meaningful. Also,
in the case the LPV model is obtained by forming a family of LTI
plants evaluated at selected trim points, the required interpolations to
model the behavior of the system in between trim points can result
in approximation errors. This is true for both Jacobian and state
LPV models. The function substitution method still suffers from
several open questions, for example, the influence that the choice of
the design point has on the LPV model and LPV control synthesis,
the correct characterization of the smoothness of the decomposition
functions and the effect on the qLPV model, and numerical effects
of the grid and their influence.

VII. Conclusion

In this paper three quasi-linear-parameter-varying (LPV) model-
ing techniques have been studied and their application to the Boeing
747 longitudinal motion presented. Each approach differs in the non-
linear class of models they cover, theoretical knowledge, easiness
of model design, and trim restriction mainly.

The Jacobian linearization and the state transformation ap-
proaches to LPV modeling are better known and the necessary the-
oretical developments more straightforward, but they are the most
restrictive in terms of operational envelope because they require the
existence of trim functions or points. The theory for the function
substitution still has several open questions to be addressed, but this
approach provides the widest envelope for the model. The easiness
of model design is relatively similar for all of them; probably the
typical Jacobian approach is the easiest, although this is problem

dependent and hence is difficult to measure. The function substi-
tution qLPV seems to be the more accurate model for the Boeing
747-100/200 aircraft.

The final goal of developing LPV/qLPV models is to enable the
use of LPV control techniques, which will be applied at the end to the
high-fidelity nonlinear system. Because the true nonlinear system
operates at trim and nontrim points in the operational envelope, it is
noted that qLPV models that capture the behavior of the nonlinear
model for the widest envelope have a greater chance of providing
with the necessary tools for the control designer. Also, there are
no theoretical results quantifying which LPV model is optimal for
control design. This is an inherently difficult problem because the
LPV model is meant to be an approximation of the nonlinear system.
It is unclear how to select the “best” LPV model, which results in
the best LPV controller for the nonlinear system.
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