
https://doi.org/10.1007/s12518-019-00292-5

ORIGINAL PAPER

Development of low-cost remote sensing tools andmethods
for supporting smallholder agriculture

Gonzalo Cucho-Padin1 ·Hildo Loayza2 · Susan Palacios3 ·Mario Balcazar4 ·Mariella Carbajal5 · Roberto Quiroz6

Received: 21 August 2019 / Accepted: 19 November 2019

© The Author(s) 2019

Abstract

Agricultural UAV-based remote sensing tools to facilitate decision-making for increasing productivity in developing

countries were developed and tested. Specifically, a high-quality multispectral sensor and sophisticated-yet-user-friendly

data processing techniques (software) under an open-access policy were implemented. The multispectral sensor—IMAGRI-

CIP—is a low-cost adaptable multi-sensor array that allows acquiring high-quality and low-SNR images from a UAV

platform used to estimate vegetation indexes such as NDVI. Also, a set of software tools that included wavelet-based

image alignment, image stitching, and crop classification have been implemented and made available to the remote sensing

community. A validation field experiment carried out at the International Potato Center facilities (Lima, Peru) to test

the developed tools is reported. A thorough comparison study with a wide-used commercial agricultural camera showed

that IMAGRI-CIP provides highly correlated NDVI values (R2≥0.8). Additionally, an application field experiment was

conducted in Kilosa, Tanzania, to test the tools in smallholder farm settings, featuring high-heterogeneous crop plots. Results

showed high accuracy (>82%) to identify 13 different crops either as mono-crop or as mixed-crops.
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Introduction

Remote sensing techniques play an essential role in agri-

cultural applications including crop and soil monitoring,

natural resource management, irrigation and fertilization

methods, and non-invasive plant diseases detection (Moran

et al. 1997; Chavez et al. 2012). Temporal and spatial

variability in agricultural areas can be assessed through mul-

tispectral aerial images as spectral properties are associated

with physiological responses to crop management and envi-

ronmental conditions. Depending on the area to be covered

and the desired spatial resolution, images can be acquired
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from several remote sensing platforms such as satellites,

airplanes, and drones or unmanned aerial vehicles (UAV)

(Toth and Jóźków 2016). UAV-based remote sensing is very

promising in agriculture applications, particularly for crop

health surveillance and yield predictions. Projected invest-

ments for drones in agriculture in 2016–2020 are $ 5.9 bn

(The Economist 2017). However, smallholder farmers in

developing countries might not benefit from these develop-

ments. Low-cost instrumentation and open-access software,

capacity building and appropriate regulatory frameworks

were cited by a recent analysis about drones for agricul-

ture in developing countries (CTA 2016) as requirements for

widespread use of this auspicious technology.

Although smallholding farming contributes about 70%

of food globally (Wolfenson 2013)], the diversity of their

cropping systems is not accurately captured by national

crop statistics. Indeed, crop statistics are important tools for

planning, policy-making, and timely intervening to address

food insecurity. A data gathering system that can generate

sufficiently accurate crop statistics right from the farm,

rather than from the markets, has the potential to contribute

to improve crop production and inform decision makers to
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act in case of anticipated food shortages or crop surpluses.

The potential of satellite remote sensing for gathering

crop data has been demonstrated (Moran et al. 1997;

Dadhwal et al. 2002). For example, cropland GIS data layers

were generated using 30-m resolution Landsat imageries

in the USA (Hanuschak et al. 2004), high-resolution

images were used to improve statistics for sweet potato

growing areas in Uganda (Zorogastua et al. 2007), and

cropland areas were estimated with 95% accuracy by

unsupervised classification of 30-m resolution satellite data

in China (Wu et al. 2014). Nowadays, satellite products have

different spatial resolutions, i.e., kilometers, hundreds of

meters, or tens of meters. Most of these coarse-resolution

products are open-access but have limited applications for

smallholder farming settings. Although advanced satellite

systems have an unprecedented spatial resolution of a

few meters, and even sub-meter, associated costs are

yet prohibitive for widespread applications in agriculture

and development. Recently, several satellite products have

been made accessible, such as Landsat and Sentinels.

The European Space Agency (ESA)’s Sentinel-2 mission

provides an open-access data product with measurements

in the visible (VIS) and near-infrared (NIR) wavelengths,

specifically designed for vegetation studies. With 10-m

spatial resolution (for VIS and NIR spectral bands), 12-bit

radiometric resolution, five days revisit time, and coverage

of ≈290 km wide, this product is excellent for monitoring

crops at a large scale in an efficient manner. Besides

spatial resolution, satellite systems have other limitations

directly related to their flight height. The large distance

between the satellite and the ground means that the

emission signal reaching the satellite’s sensor is affected by

water vapor, ozone, aerosols, clouds, etc., and this signal

attenuation could significantly affect data quality. The effect

of most of these particles could be sufficiently corrected

by atmospheric models such as FLAASH (Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes)

(Cooley et al. 2002), SMAC (Simplified Method for

Atmospheric Corrections) (Rahman and Dedieu 1994), and

SNAP (Sentinel Application Platform) (SNAP 2019).

Smallholder farmers often grow different types of crops

on small plots creating a highly heterogeneous mosaic

of vegetation, which complicates the crop discrimination

through space-borne data due to their still limited spatial

resolution. Also, satellite imagery analysis can be adversely

affected by landscape factors such as elevation and soil type;

for example, terraced crops versus those planted on a steep

incline (Craig and Atkinson 2013). Thus, the emergence

of remote sensing systems based on UAVs brought with

them an immense potential for agriculture, particularly in

the smallholder farming context. The low flying heights

result in extremely high spatial resolutions (in the order of

a few centimeters) depending on the optical properties of

the on-board sensor (e.g., camera). This extremely detailed

UAV-based data can deal with the complex heterogeneity

of smallholder farming systems. Additionally, UAV-based

systems provide a solution to the cloud cover effect, since

UAVs fly at very low heights <500 m. Also, the air

column between the UAV and the ground is very thin,

resulting in negligible atmospheric effects on the acquired

data. Nonetheless, the major shortcoming of the UAV-

based remote sensing systems is the limited spatial coverage

resulting from short flight times and low flying height,

which ultimately limit the field of view.

UAV-based agricultural remote sensing includes sev-

eral hardware and software components, and our work

intended to reduce overall costs by providing open-source

tools and methods freely available to the scientific com-

munity. Regarding the hardware, we developed a low-cost

multispectral camera that enables the estimation of a spe-

cific vegetation index. Commercial multispectral cameras

are expensive and oriented to perform multiple applica-

tions as they currently include 3 to 5 spectral bands. Once

the images are acquired, pre- and post-processing of data

are needed. Several software packages can be found in the

market that can perform all those tasks; however, they are

less accessible for professionals serving smallholder farm-

ers due to their high cost. We addressed this problem by

developing two pre-processing algorithms: image alignment

and image stitching, and one post-processing algorithm:

crop determination through classification. The hardware

and software described in this paper were designed and

developed in response to the needs expressed by an African

community of practice conformed by potential developers,

application scientists, farmer cooperatives, and policy mak-

ers (Chapter 12 in James 2018). The characteristics listed as

desirable for adopting UAV-based remote sensing platforms

(hardware and software) included the following: low-cost,

flexibility (i.e., adaptable to different conditions and needs),

adaptable and repairable by local professionals, capable of

discriminating mixed crops, and user-friendliness. In sum,

this work presents three main innovations. First, to our

knowledge, there is no scientific report where technology

developers incorporate specific demands of potential stake-

holders to design and implement a UAV-based agricultural

remote sensing system which includes hardware, software,

and signal acquisition methodologies. Second, we propose a

workflow or automated processing chain for UAV imagery

based on open-source tools. Finally, within our workflow,

we present a novel method for multispectral image align-

ment and stitching based on wavelet transform, specifically

oriented to agricultural applications.

In this work we describe the main components in a

UAV-based remote sensing system oriented to agricultural
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applications. Both commercial and our open-source solu-

tions are characterized to help final users to make a sound

selection, considering their needs and budget. We summa-

rize the results of an assessment of our developed tech-

nology through a temporal NDVI analysis of potato crops

against a commercial camera. Then, an application of this

technology to smallholding cropping areas is described.

Finally, we discuss the cost reduction of using open-access

tools, the viability of using hybrid commercial/open-source

options, and their respective pros and cons, as well as the

implications of the use of this technology by professionals

serving farmer communities.

UAV-based technology andmethods

Building a UAV-based remote sensing system

A UAV-based remote sensing system has two main

components: (1) the platform or vehicle that provides

support for a given payload and the stability needed for the

data acquisition, and (2) the sensors, for data acquisition

from a given target. Several options can be found in the

market ranging from specialized ready-to-use systems—

usually associated with high prices—to do-it-yourself (DIY)

solutions that ultimately require the final user to have

technical knowledge in several areas such as electronics,

mechanics, and software usage. Hence, although this section

mainly aims to show the implementation of a low-cost

multispectral camera, we briefly mention the commercial

options for the UAV platforms.

There are several well-known UAV platforms in the

market, such as Mikrokopter (http://www.mikrokopter.de),

DJI (http://www.dji.com), and Parrot (http://www.parrot.

com). As a descriptive example, our field applications in

smallholder farming was conducted with the multicopter

Okto-XL (Mikrokopter, HiSystems GmbH, Germany), an

8-rotors UAV that includes an Inertial Measurement Unit

(IMU), a GPS, eight motor controllers, and flight and

navigation control boards. The payload capacity is 1.5 kg

and its flight duration ranged from 15 to 18 min. The

flight control board handles digital signals to control other

devices such as servo motors or cameras. Mikrokopter

UAVs bring specialized software to set flight plans through

GPS positions (waypoints) as well as to receive telemetry

data that show UAV position, speed, altitude, battery status,

among other important variables for the pilot. The price

of this system is ≈ $4,500 without considering shipping

fees. A significant advantage of commercial solutions is the

reduced implementation time-frame. Furthermore, the final

user does not need any technical or specialized background

to handle the platforms, which make them appealing for

remote sensing applications.

There are also several affordable navigation systems that

allow entrepreneurs and scientists to build a UAV platform.

The most widely used are Ardupilot (http://www.ardupilot.

org) and PixHawk (http://www.pixhawk.org). A navigation

system is an electronic device in charge of rotor control

that provides stability to the mechanical structure during the

flight, useful to keep the sensor (camera) within a fixed line-

of-sight. It also allows the user to remotely control the UAV

from the ground. The average cost is ≈ 500$. Mechanical

parts and rotors are not included and the additional cost to

build a DIY 8-rotors UAV ranges between ≈ USD $400 and

USD $750.

It is important to mention that the essential component

of a UAV-based system for agricultural applications is the

sensor or multispectral camera. Most common commercial

options include RedEdgeMX from Micasense (http://www.

micasense.com), ADC-micro from Tetracam Inc. (http://

www.tetracam.com), and Sequoia+ from Parrot (http://

www.parrot.com), with prices ranging from ≈USD $3, 000

to USD $5, 500. The application cited in this manuscript

was conducted with the ADC-micro model, a 3-band

Agricultural Digital Camera (ADC) manufactured by

Tetracam (the term TTC is used to refer to this device). It

is a 90-g RG-NIR (red, green, and near-infrared) camera,

specifically designed for operation aboard UAVs due to its

small dimensions (75 mm × 59 mm × 33 m). Its sensor

provides 3.2-megapixel (2048×1536 pixels) images that are

stored along with meta-data such as GPS coordinates and

attitude information (pitch, roll, and yaw).

The Integrated Multi-spectral Agricultural (IMAGRI -

CIP) camera system that we developed was designed to

measure high signal-to-noise ratio (SNR) red and NIR

images and thus obtain a reliable normalized difference

vegetation index (NDVI) estimation. IMAGRI-CIP imple-

mentation followed the multiple camera approach given by

Yang (2012). Thus, the system is composed of a pcDuino1

embedded computer, two identical monochrome cameras

(Chameleon, Point Grey, Canada), two lenses (Edmund

Optics, Barrington, NJ), and two filters (Andover Corpo-

ration, Salem, NH) (see Fig. 1). The pcDuino1 is a 1-Ghz

ARM Cortex A8 processor-based system with the Lubuntu

Linux (12.04) operating system. It has two USB 2.0 ports

which are used to handle the two cameras. This mini PC

platform was chosen due to its light weight (< 200 g), con-

venient for UAV applications. Each monochrome camera is

based on the Sony ICX445 CCD image sensor whose quan-

tum efficiencies are: 64% in 525 nm, 16% in 650 nm and

5% in 850 nm (ICX455,Technical Application Note). The

fixed distance between the cameras optical axes is 45 mm.

Both cameras are configured with a zero gain and 4-pixel

binding to improve the signal to noise ratio (SNR = 49 dB)

of the images. The binding generates a reduced spatial res-

olution image equal to 640 × 480 pixels. Moreover, due
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Fig. 1 Integrated Multi-spectral
Agricultural (IMAGRI-CIP)
Camera system. a Monochrome
cameras with interference filters
in the red and NIR spectral
bands. The white circuit board
next to the cameras is the
PCduino1 embedded system
utilized for image acquisition
and storage. b The 3-D printed
case which supports the
cameras, PCduino1, and the
battery. For image acquisition, it
is assembled to the UAV
platform with a nadir viewing
geometry

to the pcDuino1’s computational limitations, the images are

acquired with a radiometric resolution of 8 bits per pixel.

The two bandpass interference filters have a diameter of

25 mm with center wavelengths 650 nm (red) and 850 nm

(NIR) and their Full-Width at Half-Maximum (FWHM) are

80 nm and 100 nm, respectively. The lenses have a focal

length of 8.5 mm and a numerical aperture scale that ranges

from f/8 to f/16. A C-language based software was imple-

mented to control the camera parameters such as shutter

time, gain, image resolution, and frame rate, and to capture

images from both cameras. The overall system is mounted

over a 3-D-printed modular plastic case (i.e. each part can

be removed for maintenance or replacement) with fixed dis-

tance between the cameras. The CCD cameras together with

mount adapters, filters and focal lenses were calibrated fol-

lowing the methodology to correct lens distortion described

by Zhang (2000). Depending on users’ need, filters can be

exchanged to register images in different sectors of the VIS-

NIR region of the electromagnetic spectrum. Also, in this

study, we adopted the auto-exposure mode for both cam-

eras, where the exposure value (EV) is set to EV=4 based

on previous experiments at ground level. Since most of the

optical and camera parameters are fixed (such as the focal

length and gain), this mode estimates the best integration

time values while avoiding saturation. Our tests, including

interference filters NIR and red, provided an adequate num-

ber of counts for the 8-bit dynamic range. It is noteworthy

that the approximate cost of the IMAGRI-CIP system is

USD $1,200.

A major aspect in remote sensing applications is the

identification of those regions of the light spectrum that

provide quantitative and qualitative information about key

features of earth or material surfaces under analysis. This

is achieved by measuring the spectral response from the

desired target using a spectrometer. Such information is

crucial to design a camera with a few bands centered at

designated wavelength regions. In vegetation studies, the

spectral region with central wavelengths green (∼560 nm),

red (∼665 nm) and near-infrared (∼842 nm) are the most

informative bands used to calculate vegetation indexes such

as NDVI (Rouse et al. 1973). Widely used commercial

spectrometers are USB2000+ from Ocean Optics (http://

www.oceanoptics.com), SensLine from Avantes (http://

www.avantes.com), and Glacier spectrometer from Edmund

Optics (http://www.edmundoptics.com) with prices that

range from ≈ USD $2,000 to USD $4,000.

For IMAGRI-CIP implementation, we selected interfer-

ence filter wavelengths based on spectral studies carried

out with the USB2000+ Ocean Optics Spectrometer. For

this, we developed an additional tool called SpectraCIP

(see Fig. 2), which aims to facilitate the spectra acquisition

through a user-friendly software under open-access policy.

Spectra-CIP is a C-language-based graphical user interface

(GUI) software. Hence, the user is able to control several

acquisition parameters such as exposure time, the number

of samples to average, binning, among others. Also, it can

acquire reference measurements (using a Lambertian sur-

face) to ultimately calculate the vegetation reflectance. The

software has been tested with the USB 2000+ model for vis-

ible and NIR input light. This software is available to be

used by the agricultural remote sensing community and can

be downloaded from Loayza et al. (2017).

UAVmultispectral imagery pre-processing

Images acquired with a multispectral camera, either TTC or

IMAGRI-CIP, require pre-processing and our study focuses

on two procedures. First, the multispectral images captured

by the IMAGRI-CIP have to be aligned since the camera

registers two independent red and NIR images. Second,

when two or more scenes are registered, they need to

be stitched together to generate a large-area mosaic. The

stitching process was applied to both TTC and the aligned

IMAGRI-CIP imageries.
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Fig. 2 Open-source software Spectra-CIP which allows the user to interact with Ocean Optics spectrometers

Wavelet-based Multispectral Image Aligment

The IMAGRI-CIP camera system provides multispectral

images acquired by two different sensors. One may argue

that due to the fixed location of such sensors, the alignment

could be restricted to a geometrical transformation governed

by the distance between the cameras. However, during in-

flight acquisition, the final scenes are affected by spatial

translation. Specifically, cameras sequentially retrieve data,

i.e., one camera captures one image at the time with a <1-

sec delay, generating a spatial shift in the scene due to the

UAV motion. To cope with it, we developed an automatic

image alignment protocol for NIR and red images based on

the wavelet transform.

The use of wavelets in image registration is supported

by their time-frequency characteristics and multiresolution

capability, which enable decomposing an image into lower

resolution images, enhancing its features without losing

information (Stone et al. 1999; Le Moigne et al. 2002,

2011). It is well-known that the Discrete Wavelet Transform

(DWT) can enhance such features in three specific orien-

tations: vertical, horizontal, and ±45◦ mixed orientation.

Notwithstanding, DWT faces two main problems: (1)the

shift-invariance and (2) the lack of directionality. These

problems have been solved with the Dual-Tree Complex

Wavelet Transform (DT-CWT), which offers six different

orientations ±15◦, ±45◦, and ±75◦ (Chauhan et al. 2012).

For further information and implementation details, the

reader is referred to Selesnick et al. (2005). The procedure

for NIR and red images alignment can be summarized in the

following steps (also depicted in Fig. 3):

1. Perform six-orientation feature enhancement for both

red and NIR images using DT-CWT. As a result, we

have six pairs of sub-images (1/4 the size of the original

image).

2. For each pair, the red sub-image is rotated by θj

with 0.1◦ steps in the clockwise direction in the range

[−1◦, 1◦], where j ∈ [1, 20] and j = 1 yields θ1 =

−1◦. This step follows the specifications reported in

Wang et al. (2010).

3. Perform correlation between each pair and store the

peak value in the translation vector Ti = (xi, yi)
T ,

where i ∈ [1, 6] identifies a pair.

4. The rotation angle θ̂ and the translation vector T̂ =

(x̂, ŷ)T are estimated by solving:

{T̂ , θ̂} = argmax
x,y,θi

{

Corr(I
θ=θi

red , I θ=0
NIR)

}

(1)

5. The red image is transformed using {T̂ , θ̂} and

superimposed over the NIR image to generate a

multispectral aligned image.

In the first step, we use the DT-CWT to enhance six-

directional features in the input red and NIR images. In

the second step, a rotation transform given by the angle θj
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Fig. 3 Schematic overview of the Wavelet-based Multispectral Image
Alignment (WMIA-CIP) software. We use the DT-CWT to enhance
six-directional features in the input red and NIR images. A rotation
transform given by the angle θj is applied to the red image and its
correlation with the corresponding NIR image is performed. Then, six

translation vectors T̂i (with i ∈ [1, 6]) are estimated for a given θj .

This process iterates 20 times for each pair, and the values of {T̂i , θj }

that yields maximum value for Corr(I
θ=θi

red , I θ=0
NIR) are selected as the

transform parameters for final alignment

is applied to the red image and its normalized correlation

with the corresponding NIR image is performed. Then,

six translation vectors T̂i (with i ∈ [1, 6]) are estimated

for a given θj . This process iterates 20 times for each

pair, and the pair {T̂i, θj } that yields maximum value for

Corr(I
θ=θi

red , I θ=0
NIR) are selected as the transform parameters

for final alignment.

Figure 4 shows three examples to demonstrate the

application of the WMIA-CIP. Here, we have images

acquired with the IMAGRI-CIP system in a UAV flying at

25-m (cassava) and 60-m (sweet potato) altitude in April

2015 at CIP facilities. Images a, b, and c show NIR , red, and

aligned images for cassava crops, respectively. Similarly,

images d, e, and f show NIR, red, and aligned images for

sweet potatoes. The software Wavelet-based Multispectral

Image Alignment (WMIA-CIP) can be downloaded from

Palacios et al. (2019).

Image Stitching for Aerial Multi-spectral images

Acquired and subsequently aligned images are usually stitched

together to generate a large mosaic of the study area.

For this purpose, an open-source software named Image

Stitching for Aerial Multi-spectral images (ISAM-CIP) was

developed by our team. ISAM-CIP is a C-language software

based on OpenCV libraries whose main objective is to stitch

Fig. 4 Application examples of the proposed wavelet-based algorithm
over IMAGRI-CIP images. Images a, b, and c show NIR , red, and
aligned images for cassava crops, respectively. Similarly, images d, e,

and f show NIR, red, and aligned image for sweet potatoes. Aerial
images were acquired at CIP facilities flying at altitudes of 25 m for
cassava and 60 m for sweet potatoes
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high-resolution imageries seamlessly. The main procedures

within the software include the following:

1. Finding features: Corners, intersections, or manually

located squared white panels (also known as ground

control points (GCP)) in overlapped regions in the

images can help linking images. We selected the

free-patent algorithm ORB for feature detection. The

reader is referred to Rublee et al. (2011) for further

information.

2. Matching features: Features were used to connect image

pairs through a process called homography. The output

of this process is a transformation matrix (translation

and rotation) per pair.

3. Estimation of camera parameters: It refers to a three-

dimensional correction based on estimated camera

parameters from every image used in the mosaic. The

algorithm is called Bundle Adjustment (Triggs et al.

1999; Lourakis and Argyros 2009). Small variations in

the estimation of the UAV angle with respect to the

horizon can be estimated here.

4. Image transformation and stitching: The updated trans-

formation matrices are applied to each of the images

to produce the complete mosaic. The algorithm detects

the overlapping region and generates a customized

mask that measures the contrast/brightness level of each

image and equalizes the pixel values to get a corrected

illumination.

The ISAM’s user interface is presented in Fig. 5, and an

example of a stitched image is shown in Fig. 6. This mosaic

was generated using 16 multispectral images acquired

with the commercial agricultural ADC-micro Tetracam

(TTC) camera over avocados at the National Institute for

Agricultural Innovation (INIA) - Huaral, Peru facilities

in April 2016. The resulting image has a total area of

375 m × 180 m acquired with six ≈8 min UAV flights at

an altitude ≈120 m. ISAM-CIP can be downloaded from

Loayza et al. (2017a).

These pre-processing steps can also be performed by

commercial solutions. For example, PIX4Dmapper from

PIX4D (http://www.pix4d.com) and Agisoft Metashape

from Agisoft (http://www.agisoft.ca) provide the needed

tools to align and stitch UAV-based images. In most cases,

the data processing is carried out in a “cloud,” i.e., the data

must be sent to their headquarters to be processed, and the

final product is delivered to the user. Their cost is ≈USD $

3,500 for a yearly single-user license.

UAVmultispectral imagery post-processing

Classification approach for cropping area estimation

Estimation of cropping areas in highly diverse small

farms is a challenging task. To this end, we used UAV-

based, very high-resolution images that can provide rich

information about spatial characteristics with granular data.

Notwithstanding, its spectral resolution is usually low as

a result of the limited payload capability (i.e., additional

weight from extra optical sensors) of small and medium-size

UAVs.

We propose a Maximum Likelihood Classification

(MLC) approach based on additional texture analysis to

increment the efficacy of the feature vector as demonstrated

for a similar application in Laliberte and Rango (2009).

Fig. 5 Open-source software ISAM-CIP. The ISAM-CIP software is a user-friendly package developed by CIP and free to use for research
purposes. It enables the user to stitch several RGB, TTC, and 8-bit images (IMAGRI-CIP) through easy steps
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Fig. 6 Multispectral mosaic
generated using 16 individual
multispectral images acquired
with TTC camera at the National
Institute for Agricultural
Innovation (INIA) - Huaral,
Peru facilities in April 2016.
The output image has an area of
375 m × 180 m registered with
a UAV flying for ≈ 8 min at an
altitude of ≈ 120 m

Thus, the first task was to determine the most suitable

texture measure as well as the optimal image analysis

scale, i.e., the kernel size (Pinto et al. 2016; Ge et al.

2006). We tested several statistical operations (i.e., mean,

median, standard deviation, variance, entropy, among

others) calculated from all the spectral bands using moving

windows of determined scales, i.e., kernels of 3 by 3, 5 by

5, and 7 by 7 pixels. The optimal scale allows us to identify

and map the boundaries of different objects from the

image (Ferro and Warner 2002). Our experimental analysis

demonstrated that with a kernel size of 3 by 3 pixels,

the mean and standard deviation operations over the red

image for RGB images, and NIR images in the multispectral

images are convenient settings for classification purposes of

the highly heterogeneous crop plots.

Workflow for UAV imagery

Our workflow for UAV imagery is depicted in Fig. 7. It

has three main stages: the acquisition of input data that

could be obtained by our IMAGRI system or a commercial

TTC camera. As previously indicated, IMAGRI yields two

independent images, and an Image Alignment procedure

should be performed with the WMIA-CIP. Then, ISAM-

CIP utilizes multispectral images to generate an image

mosaic. Finally, post-processing involves NDVI calculation

or classification for cropping area estimation. Blocks in

yellow represent the steps carried out with the hardware and

software developed in this project. Given the flexibility of

IMAGRI-CIP to exchange filters and acquired images from

different spectral bands, the user might use SPECTRA-CIP

to determine the appropriate central wavelength of such a

new filter.

Validation of the developed technology

As a demonstration of the feasibility of the developed

technology, we conducted an NDVI temporal analysis over

potato fields in Lima, Peru. To assess our results, we

conduct an identical analysis using images from an ADC-

micro Tetracam (TTC) commercial camera as workflow

inputs. This experiment was conducted at the International

Potato Center (CIP) in Lima, Peru (12.1◦ S, 77.0◦ W),

from August to September 2015 over potato fields with

dimensions ≈70 m × 50 m. Planting was carried out on

July 14, 2015. Drought stress was induced in September

1st, condition that usually cause variations in the NDVI.

We used 50 cm × 50 cm squared white panels as ground

control points (GCP) that were distributed in the border

and center of the study area. Calibration of the IMAGRI-

CIP camera was conducted in an indoor laboratory using

the OpenCV calibration tool (see http://www.opencv.org for

further details).

During the period August–September 2015, image

acquisition was performed five times, and two sets of flight

paths were designed with the microkopter UAV for each

camera. First, we used the TTC camera, and a ground

measurement of a reference (Teflon calibration plate) was

acquired to get the NDVI values through the Tetracam

software PixelWrench2. After that, we assembled the TTC

camera to the UAV, and a single image was acquired at
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Fig. 7 Workflow for UAV-based imagery. Acquisition stage make use
of a camera system such as IMAGRI-CIP to obtain multispectral
images. Pre-processing procedures involves the alignment of multi-
sensor images and stitching of several small area multispectral images.

Finally, postprocessing aims at calculating the NDVI index over the
resulting mosaic or performing crop classification. Blocks in yellow
have been implemented in this research and are publicly available for
the remote sensing community

the height of 70 m since it could cover the entire area of

interest. Second, we assembled the IMAGRI-CIP camera

system to the UAV, and four images were acquired to cover

the whole crop area at the height of 70 m. A Lambertian

surface (Spectralon) was used to do the spectral calibration

before and after each flight.

IMAGRI-CIP images were pre-processed for alignment

using the WMIA-CIP software and stitched with the

ISAM-CIP software. Then, both TTC and IMAGRI-

CIP images were geo-referenced using QGIS and GCP’s

coordinates. Finally, NDVI values were calculated based

on the formula: NDV I = (NIR − RED)/(NIR+

RED).

Figure 8 shows NDVI values per pixel for crop blocks of

≈ 40 m × 40 m acquired with both IMAGRI-CIP (first row)

and TTC (second row) cameras. Five grids were randomly

Fig. 8 Normalized difference vegetation index (NDVI) for potato
fields at CIP facilities acquired with IMAGRI-CIP and Tetracam cam-
eras in 2015. Almost simultaneous data collection was carried out with
the Multikopter UAV at the height of 70 m for five sampling days

during August and September 2015. IMAGRI-CIP images were
aligned, stitched, and geo-referenced. Similarly, Tetracam images were
geo-referenced. Five grids (in colors) were randomly selected for
further analysis
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Table 1 NDVI Mean and
standard deviation values for
the “red grid” for the day
August 17, 2015 (associated
with the first column of Fig. 8)

Sub-grid ID µ IMAGRI σ IMAGRI µ TTC σ TTC

Sub-grid 1 0.532 0.145 0.453 0.060

Sub-grid 2 0.472 0.141 0.428 0.075

Sub-grid 3 0.432 0.133 0.397 0.079

Sub-grid 4 0.514 0.155 0.431 0.075

Sub-grids are numbered from left to right

selected (shown in colors) to conduct the comparative

assessment between the two camera systems. For each

grid, four sub-grid columns containing NDVI values were

analyzed. Their mean and standard deviations were used to

compare the multispectral camera performance.

As an example, results from the statistical analysis for the

red grid for August 17, 2015, are shown in Table 1. Every

column or sub-grid was identified with a number from 1 to

4 (located in Fig. 8 from left to right within a grid), and their

mean (µ) and standard deviation (σ ) were calculated. The

number of pixels inside a sub-grid was ≈75 pixels.

In addition, we conducted a temporal analysis of the

mean and standard deviation of NDVI values per grid

(see Fig. 9). Here, the solid red line and red shaded

region represent the mean and standard deviation of NDVI

estimates using the TTC camera. Similarly, the solid blue

line and blue shaded region are associated with the mean

and standard deviation of the NDVI estimations using the

IMAGRI camera system. NDVI variations as a function of

the day of the year (DOY) evidenced phenological changes

in the crop. In all the cases, we can observe an NDVI

peak value around DOY=250. After this point, recorded

NDVI decrements were associated with induced drought

stress and senescence onset (starting on September 1st

(DOY= 244)).

Finally, we calculated the time-dependent (5 measure-

ments throughout the season) correlation of the mean NDVI

estimations using both TTC and IMAGRI-CIP for each col-

ored grid. Table 2 depicts these results. The correlation

values are all greater than 0.8, which confirms an excellent

performance of the IMAGRI-CIP camera system in compar-

ison with the commercial camera. Further analysis has to be

done to identify how this subtle difference can affect more

complex NDVI-based studies such as agricultural stress

identification, irrigation water-efficiency, and prediction of

phenological stages, among others.

Example of technology application
in the smallholder farming context

The purpose of this “proof-of-concept” project was to

determine if the technology could generate information

that would ultimately benefit smallholder farmers. For this,

we used a translational research approach to engage with

developers of technologies, applications by scientists, and

understanding by potential users. As a result of these

interactions (further described in the Discussion Section),

we identified that smallholder farmers require the following:

(1) an accurate spatial indicator of crop status that allows

them to determine management strategies, and (2) crop

statistic in terms of crop area quantification for the several

cultivated species. In the previous section, we described

the response to the first requirement where a two month-

length NDVI analysis under controlled plots demonstrated

that our camera system provides similar NDVI values than

a commercial camera. In this Section, we focus on the crop

area determination in a smallholder scenario and test our

classification algorithms.

This field work was conducted in Kilosa, Tanzania (6.86◦

S, 36.98◦ E in a plot of ≈1.5 ha), and was supported

by the Tanzania National Bureau of Statistics (NBS), the

Sugarcane Research Institute (SRI - Kibaha), the Sokoine

University of Agriculture (SUA), and the Kilosa district

office. We used the commercial Mikrokopter UAV with

an RGB and TTC cameras in seven independent ≈15 min

flights which were carried out on April 29, 2016. The

RGB camera is a Canon EOS 100D with 10.1 Megapixel

(effective pixels). Each flight path was designed to cover the

total study area, and the selected height was 80 m for the

RGB camera and 65 m for the TTC camera. A total of 40

and 45 images were acquired with RGB and TTC cameras,

respectively. Then, the images were geo-referenced with

QGIS software and stitched with the ISAM-CIP software.

The resulting RGB mosaic is shown as Fig. 10, whereas

the TTC false-color mosaic, composed of the NIR, red and

green bands, is shown in Fig. 11.

Supervised classification for both RGB and TTC mosaics

was performed using the Maximum Likelihood (ML)

method, including statistical textures as a complement to

original bands to create more robust feature vectors. Thus,

mean and standard deviation were calculated for the red and

NIR bands from the RGB and TTC mosaics, respectively,

using Kernel sizes of 3 by 3 pixels. The following classes

were discriminated: mango, banana, grassland, cowpeas,

sunflower, sweet potato, maize 1 (around 2 weeks after

planting), maize 2 (about 1 month after planting), paddy

rice, rice 1 (around 2 weeks after planting), rice 2

(approximately 1 month after planting), bare soil and

road. Training sites were used for classification with the
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Fig. 9 NDVI values from IMAGRI-CIP and Tetracam images. Mean
NDVI and standard deviations are depicted for the following: a red
grid, b green grid, c yellow grid, d blue grid, and e orange grid, respec-
tively. The solid red line and red shaded region represent the mean and
standard deviation of NDVI estimations using the Tetracam camera.

Similarly, the solid blue line and blue shaded regions depict the mean
and standard deviation of NDVI estimations using the IMAGRI cam-
era system. At DOY = 244, induced drought stress starts. As a result,
we can observe a reduction of NDVI value after DOY = 250 for all the
cases

Maximum Likelihood method and validation sites for

testing its accuracy. Finally, to determine the improvement

of the classification using textures, classification using only

spectral bands and including statistical textures were also

compared.

The results of the classification of the RGB mosaic

are depicted in Fig. 12, where the 13 different land cover

classes were identified. Unclassified pixels are shown as

white pixels and are less than 10% of the total image.

Similarly, results for the classification of the TTC mosaic

are shown in Fig. 13. The number of unclassified pixels

was less than 2% of the total number of input pixels.

Moreover, an error matrix that includes accuracy and kappa

number was calculated for both RGB and TTC classification
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Table 2 Time-dependent correlation between NDVI values from
TETRACAM and IMAGRI systems

Grid Correlation

Red grid 0.847

Green grid 0.853

Yellow grid 0.948

Blue grid 0.933

Orange grid 0.916

procedures (see in Table 3). Also, complete confusion

matrix is provided as supplementary information.

Discussions

Translational research in the smallholder farming
context

This research aimed at contributing to the development

of the low-cost UAV-based agricultural remote sensing

information system to survey crops in sampling areas

of smallholder farming. The work was performed in

East Africa in a multi-stage fashion. The first stage was

an inception workshop carried out in October 2014 in

Nairobi, Kenya, which engaged stakeholders from several

African countries such as Tanzania, Uganda, Kenya, East

African organizations, and six international agricultural

research centers with headquarters in Africa. It was an

occasion for developers to present state-of-the-art drone-

based remote sensing tools for agricultural applications.

The workshop facilitated the development of collaborative

networks needed for fieldwork testing and identified key

features stakeholders wanted in a low-cost UAV-based

system.

The second stage was focused on the development

of the UAV-based technology, which was conducted in

collaboration with universities and national agricultural

institutions in Kenya, Tanzania, Uganda, and Rwanda,

which facilitated field-testing and promoted innovation and

capacity building on open-access software and lowcost

hardware development in the region.

In the third stage, another workshop was held on June

2016 where CIP’s team reported back to the stakeholders

participating in the community of practice. They had the

Fig. 10 RGB mosaic of the study area located at (Kilosa District, Tan-
zania, 6.86◦ S, 36.98◦ E), that covers ≈ 1.5 ha. It was generated by
stitching 40 images registered during a UAV flight at 70 m and using

the ISAM-CIP software. Local experts helped determine around 13
different crop types in the images

258 Appl Geomat (2020) 12:247–263



Fig. 11 Multispectral mosaic of the study area. It was generated by stitching 45 TTC registered images with the UAV at 65 m using the ISAM-CIP
software. The corresponding spectral bands are as follows: NIR, red, and green, and they are presented in a false-color pattern

Fig. 12 Classification results for the RGB mosaic. The training data set was formed by using a spatial domain kernel of size 3×3 pixels, and
spectral-domain of five layers. Less than 10% of the pixels were not classified
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Fig. 13 Classification results for the TTC mosaic. The training data set was formed by using spatial domain kernel of size 3×3 pixels and
spectral-domain of 5 layers that included NIR, red, green, and mean and standard deviation. Less than 2% of the pixels were not classified

opportunity of monitoring the work progress, assessing the

products, and providing feedback (James 2018).

Multispectral camera system assessment

Results of the comparison between the multispectral images

acquired by TTC and the IMAGRI camera systems for

NDVI assessment under controlled experimental conditions

in Peru indicated that the contrast and clarity of the

images are comparable, as shown in Fig. 8. Correlation

coefficients greater than 0.8 (see Fig. 9 and Table 2)

confirmed that the IMAGRI system could estimate NDVI

values that approximate those obtained by the commercial

TTC camera. IMAGRI-CIP comprises two independent

cameras with independent exposure time set and each

camera (NIR and red) acquires an image of a reference

surface (Spectralon) on the ground. The exposure time is

set as the time needed for the camera to obtain the 80%

of the maximum DN (256 for 8 bits) and thus increase the

Table 3 Accuracy and kappa values for RGB and TTC imagery
classification

Camera 3-Bands 5-Bands

accuracy Kappa accuracy Kappa

RGB 57.47% 0.4707 82.46% 0.7874

TTC 65.37% 0.5261 76.84% 0.6506

signal-to-noise ratio. On the other hand, the TTC camera

has only one optical sensor that estimates the integration

time of two images, red and green, since it only computes

with a high dynamic range the NIR image. For this, the

TTC camera set its optimal exposure time based on the NIR

input, which might saturate the sensor faster. It is therefore

reasonable that NDVI estimations in both multispectral

systems may not be necessarily the same. Conceptually,

IMAGRI-CIP provides a higher signal-to-noise ratio data

and might improve the measurements of NDVI values.

Moreover, the advantage of the IMAGRI system is its

capacity to adapt to and measure different regions of the

light spectrum. In this context, the innovative SpectraCIP

software helps to analyze spectral signatures of vegetation

canopy at ground level. With this information, vegetation

studies can be assessed under different types of abiotic

and biotic stress conditions making it possible to identify

specific spectral regions responding to particular problems

affecting the plants. The user can select required optical

filters for an IMAGRI-type camera system and register

the information needed for building different vegetation

indexes, e.g., the Photochemical Refraction Index (PRI) that

makes use of reflectance values in the spectral bands 531 nm

and 570 nm (Alonso et al. 2017). However, the IMAGRI-

based NDVI results reported here should, of course, be

considered preliminary, and firm conclusions regarding

the differences with the commercial TTC camera require

further analysis that may include longer assessment periods.
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It is noteworthy that in Candiago et al. (2015), a similar

study using TETRACAM cameras was performed, and

the authors indicated that the lack of ground radiometric

measures precluded the conversion of digital number (DN)

to reflectance values.

Evaluation of image stitching software
in comparison with commercial solutions

Image stitching by our open-source software ISAM-CIP,

based on identified features in the scenes, was quite

satisfactory. Feature detection is achieved using the free-

license Oriented Fast and Rotated BRIEF (ORB) algorithm.

However, the literature describes two more effective

methods for this task, with a lower computational cost and a

higher rate of feature detection: the Scale Invariant Feature

Transform (SIFT) and the Speed Up Robust Features

(SURF) (Rublee et al. 2011). One well-known stitching

software based on SIFT is AutoStitch (Brown and Lowe

2007) which is robust to scale and orientation variations as

well as to different illumination conditions. Its demo version

(freely available) allows the user to get a mosaic from

three-band images with excellent seamless results. Their

full use, however, is restricted to a contract. In comparison,

an advantage of ISAM-CIP is its open-access and the fact

that it is tailored for agricultural applications rather than

for general purposes. Thus, users are able to select the best

spectral band for the stitching process, i.e., use only NIR

images to determine features in the scene as NIR band

provide significant texture information from crops.

UAV versus satellite debate

UAV-based remote sensing systems can provide very high-

resolution images that can be used for precise analysis and

identification of affected crop regions in the scene. The

work presented in Stratoulias et al. (2017), also conducted

in African countries, points out that limitations of Sentinel-

2 imagery are determined by its coarse spatial resolution

with a ground sampling distance (GSD) of 10 m. Image

segmentation and spatial filtering of trees, as required by

that study, could not be confidently quantified. Furthermore,

it is also stated that the typical climatic conditions of the

tropical savanna caused frequent cloud coverage, which

precluded the acquisition of high-quality data. Thus, UAV

provides a reliable alternative when it comes to gathering

information in a faster and inexpensive way. However, the

main drawbacks of UAVs are the required logistic and

expertise. While a satellite can independently cover the

site of interest once or twice per day acquiring images, a

group of a least two people should usually travel by car

to the site. A driver and a UAV pilot with some technical

expertise (for battery charging and calibration settings)

should participate in a campaign that can take several

hours or even days. Also, rainy weather can hamper an

entire image acquisition campaign. Indeed, satellites can

provide a large amount of data that can be collected quickly,

covering vast areas. For example, Landsat 8 and Sentinel

2 can provide useful data for agricultural applications and

current studies (Stratoulias et al. 2017; Lebourgeois et al.

2017; Mansaray et al. 2017) are focused on obtaining useful

information for decision-making. High-resolution images

registered with UAVs platforms can be used for a “micro”

analysis where high spatial and temporal resolution is

needed. Merging these two approaches i.e., integrate UAV

very high-resolution data with open-software satellite-data

processors to increment the effectiveness in classification

and decision-making seems to be the way forward.

Future of commercial solutions

Commercial remote sensing technologies with agriculture

applications are becoming more robust. A plethora of new

companies that are making use of UAVs as platforms

provide the users with several technological options. For

example, multispectral cameras such as TETRACAM ADC

Snap or MICASENSE RedEdge-M are designed with light

weights to be flown on UAVs. In addition, RedEdge-M is

built to capture 5-band images being one of the most used

cameras nowadays due to the possibility to estimate several

vegetation indexes and its price is ≈ USD $4, 900 without

shipping fees. In the image pre- and post- processing

domain, there are also numerous solutions such as Pix4D

and AGIsoft. Pix4D is fully final-user oriented and provides

the option to upload acquired images to its “cloud” for

further processing. Its use requires a yearly or monthly

subscription with an average price of USD $3, 500 per year.

Certainly, the costs of these technologies are still high and

inaccessible for applications oriented to facilitate the work

demanded by professionals advising smallholder farmers.

Moreover, most commercial hardware are designed to be

used with the company’s software, not always included with

the package and oftentimes should be purchased separately.

The options presented here do not intend to compete with

commercial technologies in the market but aim at providing

low-cost specific solutions to final users that are interested

in using a do-it-yourself approach where they can replicate

and improve what has been developed.

As a final remark, efforts made by companies and

scientists to make technology accessible in terms of cost

will be hampered if the capacity to assemble drones, repair

hardware, collect data, and how to interpret it for decision

making is left behind. Building those capacities on site was

one of our most significant accomplishments.
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Conclusions

The open-source tools developed in this research are

freely available for any researcher and advisers serving

smallholder farmers in the analysis of vegetation parameters

such as NDVI or cropping area. These tools, of course,

have their commercial counterpart which have higher prices,

and the work presented here focused not only on reducing

those costs but also on giving the scientific and agricultural

communities the “know-how” and the skills to improve their

capabilities.

Open-Software tools developed during this research:

Spectra-CIP, ISAM-CIP, and WMIA-CIP can be freely

downloaded from our website. We encourage scientists

and other users to test the software and provide us with

feedback, which will be useful to improve the tools.

Open-hardware information for its replication can also be

provided by direct communication with the corresponding

author. Available information includes blueprints for 3-

D printed-plastic platforms and selection criteria for the

camera and optical systems. Also, dataset, i.e., >500

multispectral images acquired in the Kilosa, Tanzania

experiment, can be freely downloaded from Loayza et al.

(2017b).

UAV-based technology is a new frontier in the agri-

cultural sector and brings the ability to acquire data with

unprecedented precision. A lot of work is, however, required

to make the technology more accessible to users to allow

them to gather accurate data without incurring higher costs.

Training and advocacy are needed to make UAV-based

remote sensing a regular tool for gathering agricultural data.
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