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Abstract 
 
In this paper, we propose a method of modeling for vehicle crash systems based on viscous and elastic properties of the materials. This 

paper covers an influence of different arrangement of spring and damper on the models’ response. Differences in simulating vehicle-to-
rigid barrier collision and vehicle-to-pole collision are explained. Comparison of the models obtained from wideband (unfiltered) accel-
eration and filtered acceleration is done. At the end we propose a model which is suitable for localized collisions simulation.  
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1. Introduction 

This paper deals with establishing an appropriate mathe-
matical model representing vehicle soft impacts such as local-
ized pole collisions. In simulation of the vehicle collision, 
elements which exhibit viscous and elastic properties are used. 
Models utilized by us consist of energy absorbing elements 
(EA) and masses connected to their both ends. We focus on 
finding a model with such an arrangement of springs, dampers 
and masses, which simulated, will give a response similar to 
the car's behavior during the real crash. 

Due to the fact that real crash tests are complex and compli-
cated events, their modeling is justified and advisable. Every 
car which is going to appear on the roads has to conform to 
the worldwide safety standards. However, crash tests consume 
a lot of effort, time and money. The appropriate equipment 
and qualified staff is needed as well. Therefore our goal is to 
make possible simulation of a vehicle crash on a personal 
computer.  

When it comes to modeling the vehicle crash we can distin-
guish two main approaches. The first one utilizes CAE (Com-
puter Aided Engineering) software including FEA (Finite 
Element Analysis) while the second one bases on the analyti-
cal method presented in this paper. Much research has been 
done so far in both of those areas. Refs. [1-3] provide a brief 
overview of different types of vehicle collisions.  

Approach presented here - mathematical modeling of a 
crash event with the equations of motion which can be solved 
explicitly with closed form solutions - is different that the 
methods which have been shown in Refs. [4-7]. In order to 
simulate the collision of a car the software based on FEM 
(Finite Element Method) was utilized. After the creation of 3D 
CAD and FE models, the crash simulations were performed. 
Results obtained showed good correlation between the test 
and model responses. When it comes to determining crush 
stiffness coefficients, in Ref. [8] it is presented a method 
which employs CRASH3 computer program. Vehicle struc-
ture was modeled as a homogenous body and then the com-
parative analysis of the crash response of vehicles tested in 
both: full-overlap and partial-overlap collisions, was done.  

A lumped parameter modeling (LPM) is another way of ap-
proximation of the vehicle crash. It is an analytical method of 
formulating a model which can be further used for simulation 
of a real event. It allows us to establish dynamic equations of 
the system - differential equations - which give the complete 
description of the model's behavior, see Refs. [9] and [10]. 

To be able to create a mathematical model of a vehicle col-
lision, it is often enough (and more efficient) not to analyze 
the complicated crash pulse recorded during the full-scale 
experiment but just to study an approximation of the measured 
acceleration signal. Those approximated functions were com-
pared to experimental pulses in Ref. [11]. Subsequently they 
were tested to obtain different models' responses which were 
compared to the original pulse. Results confirmed that the 
crash pulse approximation is a reasonable method to simplify 
the collision analysis. Recently, the Haar wavelet-based per-
formance analysis of the safety barrier for use in a full-scale 
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test was proposed in Ref. [12].  
Refs. [13-17] talk over commonly used ways of describing 

a collision - e.g. investigation of tire marks or the crash energy 
approach. Vehicle crash investigation is an area of up-to-date 
technologies application. Refs. [18-22] discuss usefulness of 
such developments as neural networks or fuzzy logic in the 
field of modeling of crash events. It is extremely important to 
assess what factors have an influence on the crash severity for 
an occupant. As in the case of a vehicle crash simulation, also 
here we can distinguish two main ways of examining the oc-
cupant behavior during an impact. Ref. [23] focuses on find-
ing the relationship between the car's damage and occupant 
injuries. On the other hand, Ref. [24] employs FEM software 
to closely study the crash severity of particular body parts. 

In Refs. [25-28], basic mathematical models are proposed to 
represent a collision. The main part of this research is devoted 
to methods of establishing parameters of the vehicle crash 
model and to real crash data investigation, e.g. creation of a 
Kelvin model (spring and damper connected in parallel with 
mass) for a real experiment, its analysis and validation. After 
model's parameters extraction a quick assessment of an occu-
pant crash severity is done. Finally, the dynamic response of 
such a system was similar to the car's real behavior in the time 
interval which corresponds to the collision's duration. Parame-
ters of this assembly (spring stiffness and damping coefficient) 
were obtained analytically with closed-form solutions accord-
ing to Ref. [29].  

In this paper, we present a process of improving the accu-
racy of the vehicle crash model. We start with simulation of 
the vehicle to pole impact by using the Kelvin model (spring 
and damper in parallel connected to mass). Afterwards, by 
filtering the crash pulse data, more accurate response of the 
system is obtained. Model establishment is done one more 
time. This allows us to compare what the crash models are for 
both: raw and filtered data, and to decide which of them is 
more suitable to represent vehicle to pole collision. In total, 
four different models created for the filtered data are elabo-
rated here and it is being assessed which of them gives the 
most exact description of the car's behavior in the pole colli-
sion. The main contribution of this paper is the evaluation of 
the proposed modeling methodology results with the full-scale 
experimental data. When compared to the previous work 
which concerns the similar area of research [25], the current 
study presents more detailed insight into vehicle localized 
impact modeling. By the comparative analysis of different 
viscoelastic models responses, it is decided which of them is 
the most suitable to simulate vehicle-to-pole collision. To 
assess model's fidelity, its structural properties and dynamic 
responses are examined. 

 

2. Experimental setup 

In the experiment conducted by UiA [24] the test vehicle, a 
standard Ford Fiesta 1.1 L 1987 model was subjected to a 
central impact with a vertical, rigid cylinder at the initial im-

pact velocity v0 = 35 km/h. Mass of the vehicle (together with 
the measuring equipment and dummy) was 873 kg. Experi-
ment's scheme is shown in Fig. 1.  

Vehicle accelerations in three directions (longitudinal, lat-
eral and vertical) together with the yaw rate at the center of 
gravity were measured. Using normal-speed and high-speed 
video cameras, the behavior of the obstruction and the test 
vehicle during the collision was recorded. Fig. 2 shows one of 
the crash stages. 

 

3. Raw data analysis - Kelvin model 

According to Ref. [25], the Kelvin model shown in Fig. 3 
has been proposed to represent the vehicle to pole collision. 
Symbols used: k - spring stiffness, c - damping coefficient, m - 
mass, V0 - initial impact velocity. 

Known parameters of the model are: 
 
m = 873 kg - mass 
V0 = 10.8 m/s - initial impact velocity. 
 
Parameters which we obtain from the crash pulse analysis 

(acceleration of the car in the x-direction - longitudinal) shown 

 
 
Fig. 1. Scheme of the test collision [30]. 

 

 
 
Fig. 2. The car is undergoing deformation. 

 

 
 
Fig. 3. Kelvin model. 
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in Fig. 4 are listed in Table 1. At the time when the relative 
approach velocity is zero, the maximum dynamic crush occurs. 
The relative velocity in the rebound phase then increases 
negatively up to the final separation (or rebound) velocity, at 
which time a vehicle rebounds from an obstacle. The contact 
duration of the two masses includes both contact times in de-
formation and restitution phases. When the relative accelera-
tion becomes zero and relative separation velocity reaches its 
maximum recoverable value, separation of the two masses 
occurs. 

By following Ref. [29] (method of calculating damping fac-
tor ζ and natural frequency f is covered in Ref. [25]), spring 
stiffness k and damping coefficient c of the Kelvin model are 
determined to be: 

 
2 2 2 24 4 (2.9375 ) 873

297392 /

k f m Hz kg

N m

π π= = ⋅ ⋅
=

  

4 4 2.9375 0.1 873

3223 / .

c f m Hz kg

N s m

π ζ π= = ⋅ ⋅ ⋅
= ⋅   

Validation of the model has been done in Matlab Simulink 
software - the response of the Kelvin model with above esti-
mated parameters is shown in Fig. 5. 

Comparison of dynamic crush and time of dynamic crush 
from the crash pulse analysis and Kelvin model response is 
done in Table 1.  

Remark 1. Since the raw data has been used above, the dis-
crepancy between the real initial impact velocity (which is V0 

= 9.86 m/s = 35 km/h) and initial impact velocity obtained 
from the raw data analysis (which is V0 = 10.80 m/s = 39 

km/h) is visible. Therefore, to eliminate inaccuracies in model-
ing caused by this velocity difference we need to filter the 
acceleration measurements. 

 

4. Acceleration measurements filtering 

Digital filtering method has been used here [31]. Frequency 
response corridors for an appropriate channel class are speci-
fied in this standard. Since our goal is to analyze the crash 
pulse (i.e. integration for velocity and displacement) we select 
the channel class CFC 180. Filter utilized by us was Butter-
worth 3rd order lowpass digital filter with cut-off frequency fN 

= 300 Hz. Comparison between the wideband data and data 
filtered with this method is shown in Fig. 6. In Fig. 7, the 
comparison in the frequency domain between the raw and 
filtered acceleration is presented. 

Since the scale is linear, we clearly see that the filtering 
helped us to get rid of the high frequency components of the 
crash pulse. This makes its analysis more efficient and gives 
us results which better correspond to the reality than the ones 
obtained from wideband data (velocity and displacement). 

Table 1. Comparison between car’s and Kelvin model’s responses - 
raw data. 
 

Parameter Crash pulse analysis Kelvin model 

Dynamic crush 
C [cm] 

57 50 

Time of dynamic crush 
tm [ms] 

80 80 
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Fig. 4. Raw data analysis. 
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Fig. 5. Kelvin model’s response - raw data. 
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Fig. 6. Butterworth 3rd order filtering results. 
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Fig. 7. Frequency analysis of crash pulses in linear scale (left - whole 
spectrum, right - cut-off frequency region). 
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This has crucial influence on our further considerations be-
cause in order to develop a good model, we need to have at 
our disposal real parameters of the crash test (e.g. initial veloc-
ity). 

 

5. Filtered data analysis 

5.1 Kelvin model 

Let us determine what the maximum dynamic crush and the 
time at which it occurs are for the filtered data. 

Parameters which we obtain from the crash pulse analysis 
(acceleration of the car in the x-direction - longitudinal) shown 
in Fig. 8 are listed in Table 2. 

Proceeding in the same manner as in Section 3, we obtain 
the following parameters of the Kelvin model: 

 
2 24 344150 /k f m N mπ= =   

4 2427 / .c f m N s mπ ζ= = ⋅   
 

Kelvin model response for those parameters is shown in Fig. 
9. Comparison between the model and reality for the filtered 
data is done in Table 2. 

Filtering the data has improved our calculations - we have 
obtained the real value of the initial velocity V0 = 9.86 m/s = 

35 km/h. However, we observe a larger discrepancy between 
the dynamic crush from the acceleration's integration and 
model's prediction than for the raw data. 

This allows us to claim that since the method utilized in 
both of those cases remains the same and accuracy of our cal-
culations has increased because of the data filtering, the Kel-
vin model is not suitable for modeling the impact examined by 
us. For that reason we investigate a simpler model which con-
sists of spring and mass only.  

 
5.2 Spring-mass model 

The motion of this system is a non-decayed oscillatory one 
(sinusoidal) because there is no damping in it [29]. This ar-
rangement is shown in Fig. 10. Symbols: k - spring stiffness, 
m - mass, a - absolute displacement of mass m. 

Let us introduce the following notation: 
V - initial barrier impact velocity [m/s] 
f - structural natural frequency [Hz]. 
Response of this system is characterized by the following 

equations: 

 

( ) sin( )
e e

t V tα ω ω
••

= −                          (1) 

( ) cos( )
e

t V tα ω
•

=                             (2) 

( ) sin( )
e

e

V
t tα ω

ω
=                           (3)   

 
which represent deceleration, velocity and displacement, re-
spectively. Furthermore we define: 

 

e

V
C

ω
=                               (4) 

2m

e

t
π
ω

=     (5) 

e

k

m
ω =    (6) 

Table 2. Comparison between car’s and Kelvin model’s responses - 
filtered data. 
 

Parameter Crash pulse analysis Kelvin model 

Dynamic crush 
C [cm] 

52 43 

Time of dynamic crush 
tm [ms] 

76 76 
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Fig. 8. Filtered data analysis. 
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Fig. 9. Kelvin model’s response - filtered data. 

 

 
 
Fig. 10. Spring-mass model. 

 



 W. Pawlus et al. / Journal of Mechanical Science and Technology 25 (7) (2011) 1737~1747 1741 
 

  

as maximum dynamic crush, time of maximum dynamic crush 
and system's circular natural frequency, respectively. 

To investigate what the parameters C and tm of such a 
model are, first we need to find the spring stiffness k. By sub-
stituting Eq. (6) to Eq. (4) and rearranging one gets: 

 
2

2
.

V
k m

C
=                                 (7) 

 
From Fig. 8 it is obtained C = 0.52 m = 52 cm and V = 9.86 

m/s = 35 km/h for filtered data. Therefore 
 

2

2

(9.86 / )
873 313878 /

(0.52)

m s
k kg N m= =

  

2 313878 /
2 2

873

0.083 .

m

e

t
k N m

m kg

s

π π π
ω

= = =

=
   

Spring-mass model's response for above spring stiffness k 
(initial velocity and mass of the car remain the same) is shown 
in Fig. 11. Let us compare what the dynamic crush and the 
time at which it occurs are for the car and model – see Table 3. 

Results obtained in this step are good. The dynamic crush 
estimated by the spring-mass model is exactly the same as the 
reference dynamic crush of a real car. When it comes to the 
time when it occurs, the difference between the model and 
reality is less than 1%. This model gives us good approxima-
tion of the car's behavior during the crash. It is a particular 
case of a Kelvin model in which damping has been set to zero 
as well as of a Maxwell model in which damping goes to in-
finity. 

6. Maxwell model - introduction 

The arrangement in which spring and damper are connected 
in series to mass is called Maxwell model - Fig. 12. To derive 
its equation of motion it is proposed to place small mass m' 
between spring and damper. By doing this, the inertia effect 
which occurs for the spring and damper is neglected and the 
system becomes third order differential equation which can be 
solved explicitly [29]. According to Fig. 12 we define d and d' 
as absolute displacement of mass m and absolute displacement 
of mass m', respectively. We establish the following equations 
of motion (EOM): 

 

( ')md c d d
•• • •

= − −  (8) 

' ' ( ') '.m d c d d kd
•• • •

= − −  (9) 
 
By differentiating Eq. (8) and Eq. (9) w.r.t. time and setting 

m' = 0 we obtain: 
 

( ')m d c d d
••• •• ••

= − −    (10) 

0 ( ') '.c d d k d
•• •• •

= − −        (11) 

 
We sum up both sides of Eqs. (10) and (11) and rearrange: 
 

' .
m

d d
k

• •••−=    (12) 

 
We substitute Eq. (12) into Eq. (8) and finally obtain the 

EOM found below: 

 

0.
k k

d d d
c m

••• •• •

+ + =    (13) 

 
Therefore, characteristic equation of the Maxwell model is: 
 

2[ ] 0.
k k

s s s
c m

+ + =        (14) 

 
In this system, the rebound of the mass depends on the sign 

of discriminant Δ of the quadratic equation in brackets. For 
positive Δ there is no rebound, i.e.:  

 
2

4 .
k k

c m

⎛ ⎞ >⎜ ⎟
⎝ ⎠

  

Table 3. Comparison between car’s and spring-mass model’s responses - 
filtered data. 
 

Parameter Crash pulse analysis Spring-mass model 

Dynamic crush 
C [cm] 

52 52 

Time of dynamic crush 
tm [ms] 

76 83 
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Fig. 11. Spring-mass model’s response. 

 

 
 
Fig. 12. Maxwell model - m’ designates zero-mass. 
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In this case, roots of the characteristic equations (Eq. (14)) 
are, respectively: 

 

0 0s =   
1s a b= +   
2s a b= −   

 
where: 

 

2

k
a

c

−=
  

2

.
2

k k
b

c m

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  

 
On the other hand, for negative Δ the rebound occurs when: 
 

2

4 .
k k

c m

⎛ ⎞ <⎜ ⎟
⎝ ⎠

  

 
In this case, roots of the characteristic equation (Eq. (14)) 

are, respectively: 

 

0 0s =   
1s a ib= +   
2s a ib= −   

 
where:  
 

2

k
a

c

−=
  

2

.
2

k k
b

m c

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  

 
Since this case is of our greater interest than the previous 

one (due to the fact that in the experiment rebound occurred) 
we will describe in details its response. Displacement of a 
mass is given by the formula: 

 
0

0 1 2[ sin( ) cos( )] .s t atd e e d bt d btα = + +     (15) 

  
Initial conditions (t = 0) are:  
 

0α =   

vα
•

=   

0.α
••

=   
  

where v is the initial impact velocity. Constants are: 
 

2 2 2

2av
d

a b
=

+   

2
1

v ad
d

b

−=
  

0 2 .d d= −
  

 
However, in a Maxwell model, the mass may not rebound 

from the obstacle. It means that its displacement increases 
with time to an asymptotic value. The parameter, which de-
termines whether the rebound will occur or not, is damping 
coefficient. When it is less than a limiting one (named transi-
tion damping coefficient c*), the mass will be constantly ap-
proaching an obstacle, whereas when it is higher, there will 
exist a dynamic crush at a finite time. Another boundary situa-
tion is for damping coefficient c = ∞. Then the Maxwell 
model degenerates into spring-mass system. To determine the 
value of transition damping coefficient we assume that c = 0, 
or equivalently 

 

*
2

k k

c m
=

  
 

and 
 

* .
2

km
c =  (16) 

 
Indeed, for c < c

* we have Δ > 0 - it means no dynamic 
crush at a finite time. 

We are able to assess what the minimal damping should be, 
which we add to the simple spring-mass model mentioned 
above, which will produce the dynamic crush not extended in 
an infinite period of time. According to Eq. (16), for the model 
and crash test being analyzed in Section 5.2, we calculate the 
transition damping coefficient: 

 

* 313878 / 873
8277 / .

2

N m kg
c N s m

⋅
= = ⋅

  
 
For every damping greater than this value, the Maxwell 

model formed from the spring-mass model from Section 5.2, 
will give us the response more and more similar to the spring-
mass model characteristics presented in Fig. 11, as it is shown 
in Fig. 13. 

It is noting that the final displacement (or asymptotic value - 
for transition damping coefficient) achieved by the mass in 
this model is characterized by the equation (V0 - initial impact 
velocity, m - mass, c - damping coefficient): 

 0 .
V m

crush
c

=            (17) 

 

This system is appropriate for simulating soft impacts or 
offset impacts because the time of dynamic crush is longer 
than for Kelvin model. We assume the same parameters for 
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both models, e.g.:  
 
k = 100 N/m, c = 15 N-s/m, m = 5 kg, v0 = 10 m/s.  

 
In Fig. 14, it is seen that for the Maxwell model the dy-

namic crush occurs later than for the Kelvin model. 
This is an analog situation to the real crash: in a vehicle-to-

rigid barrier collision (Kelvin model) the whole impact energy 
is being consumed faster, therefore the crash is more dynamic 
than the vehicle-to-pole collision (Maxwell model) - under the 
assumption that we compare the same cars with the same ini-
tial impact velocities - as in the example above. It is noting 
that we do not investigate here the magnitude of the displace-
ment of both models - as we can see for the same parameters it 
is higher for the Maxwell model. Above example just illus-
trates the dynamic responses of those two systems and in or-
der to apply those two models to the real crash one needs to 
assess what spring stiffness and damping coefficient of both of 
them are separately. 

 

7. Maxwell model analysis 

When it comes to Maxwell model, we will discuss just two 
cases for which Δ < 0, i.e. when the rebound occurs, because 
that is what happens during the experiment. We are going to 
start with the simplification of this situation, in which damp-

ing coefficient of this model has a limiting, transitional value. 
Then we proceed to the full Maxwell model's analysis. 

 
7.1 Maxwell model with transition damping coefficient 

This is the particular case of a Maxwell model in which 
mass' displacement reaches an asymptotic value given by Eq. 
(17). For 

 

*

2

km
c =

  
 
parameters of Eq. (15) degenerate into: 

 
a ω= −   

0b =   

1

v
d

b
= −

  

2 2
v

d
ω

= −
  

0 2
v

d
ω

=
  

 where 

 
.

k

m
ω =

  

 We take advantage of the following trigonometric relation-
ships: 

 

0

sin( )
lim
b

bt
t

b→
=

  
0

limcos( ) 1.
b

bt
→

=
  

 
Finally we come up with the following equation of mass' 

displacement: 
 

[2 ( 2) ] .tv
t e ωα ω

ω
−= − +     (18) 

 
To establish the parameters of the Maxwell model (spring 

stiffness k and damping coefficient c) we just substitute to Eq. 
(18) values of initial impact velocity v, maximum dynamic 
crush α and time of maximum dynamic crush tm taken from 
the acceleration measurements analysis shown in Fig. 8 - we 
obtain ω = 37.52 rad/s. Knowing circular natural frequency ω 
and mass of the whole vehicle m = 873 kg, we calculate 
spring stiffness k and transition damping coefficient c*: 

 
2 237.24 873 1228966 /k m N mω= = ⋅ =   

* 1228966 873
16377 /

2 2

km
c N s m

⋅= = = ⋅
  

 Response of the model with above computed parameters 
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Fig. 13. Maxwell model responses for different values of damping. 
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Fig. 14. Maxwell and Kelvin models’ responses comparison. 
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and initial impact velocity v = 9.86 m/s = 35 km/h is shown in 
Fig. 15. 

As we can see the value of maximum dynamic crush is the 
same as the one obtained from the experiment's data analysis 
(C = 0.52 m) and time when it occurs is much longer - ap-
proximately tm = 0.2 s (compared to experiment's tm = 0.076 s). 

 

7.2 Maxwell model - rebound 

Response of the Maxwell model is described by Eq. (15). 
Having the car's displacement curve from the experiment we 
can establish parameters of the model (spring stiffness k and 
damping coefficient c) just by fitting the curve defined by Eq. 
(15) to that real graph. However parameters which we obtain 
by fitting Eq. (15) are: a, b, d0, d1 and d2. Since d1 and d2 (we 
do not discuss d0 separately because d0 = -d2) are functions of 
v as well, it is not guaranteed that the model's parameters 
which we obtained would be correct - in another words, v 
wouldn't be fixed if we fit Eq. (15) to the experiment's dis-
placement. Therefore we express Eq. (15) only in terms of a 
and b (which are just functions of k, c and mass m = 873 kg) 
and set initial impact velocity to v = 9.86 m/s. The equation 
which we obtain has the following form: 

 

2 2

2

2 2

2 2

2

2
2

sin( ) cos( ) .at

av

a b

a v
v

ava be bt bt
b a b

α = − +
+

⎡ ⎤−⎢ ⎥+ +⎢ ⎥
+⎢ ⎥

⎢ ⎥⎣ ⎦  

(19) 

 

Fitting Eq. (19) to the experiment's results has been done in 
Matlab Curve Fitting Toolbox and is shown in Fig. 16. Fitting 
Eq. (19) not Eq. (15) resulted in loss of approximation's accu-
racy but on the other hand, we are sure that the initial impact 
velocity has the correct value. From the above operation we 
obtain parameters a and b of Eq. (19) which are equal to: 

 
1

14.79
2

k
a

c s

−= = −   

2

2

1
21.06 .

2

k k
b

m c s

⎛ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
  

 
Now we have all we need to calculate damping coefficient c 

and spring stiffness k of the Maxwell model, respectively: 
 

2 2( )
19546 /

2

m a b
c N s m

a

+= = ⋅
−   

2 578171 / .k ac N m= − =
  

 

Response of the model is shown in Fig. 17. As we can see 
the value of maximum dynamic crush is exactly the same as 
the one obtained from the experiment's data analysis (C = 52 

cm) and time when it occurs is longer - tm = 104 ms (com-
pared to the experiment's tm = 76 ms). However, as it is going 
to be shown in the following Section, the overall response of 
the Maxwell model is the most similar to the car's behavior 
during collision with a pole. 

 

8. Models comparison 

To represent vehicle to pole collision we established in total 
four models here (spring-mass model, Kelvin model, Maxwell 
model with transition damping coefficient and complete 
Maxwell model). Let us compare their responses with the car's 
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Fig. 15. Maxwell model’s (transition damping coefficient) response. 
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Fig. 16. Fitting the Maxwell model's response to the real experiment's 
displacement. 
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Fig. 17. Complete Maxwell model’s response. 
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behavior during the experiment analyzed by us - see Fig. 18. 
Characteristics which the best represents the overall car's 

behavior during the crash period belongs to the Maxwell 
model. Although Kelvin and spring-mass models give good 
approximation in the beginning of the crash (up to the time of 
maximum dynamic crush), they completely fail when it comes 
to the crash representation after the rebound. Maxwell model 
with transition damping coefficient shows correctly just the 
maximum dynamic crush, not its time at all. Therefore the 
Maxwell model gives the best overall outcome - there is no 
difference in maximum displacement and about 27% of diver-
gence for time of maximum dynamic crush comparing to the 
reality. And the entire shape of the Maxwell model's response 
resembles closely the real car's crush. 

 
9. Conclusion and future works 

In this paper, we studied a process of improving the accu-
racy of the vehicle crash model. First, we simulated the vehi-
cle under a pole impact by using the Kelvin model. After-
wards, by filtering the crash pulse data, more accurate re-
sponse of the system was obtained. Model establishment was 
done one more time. Finally, we compared the crash models 
and it was concluded which of them is more suitable to repre-
sent vehicle to pole collision.  

The obtained results indicate that the Kelvin model is not 
appropriate for simulation of the collision which we deal with. 
Based on Section 6, for the data prepared in the proper way, 
we establish a proper model. Results obtained from studying 
Maxwell model provided us with satisfactory results. Com-
parative analysis of the model's and real car's responses turned 
out to be appropriate. Therefore if one wants to simulate a 
vehicle to pole collision it is advisable to use Maxwell model. 

It is desirable to verify whether the other viscoelastic mod-
els which were not discussed in this paper are capable of vehi-
cle crash simulation. In particular, so called hybrid models 
(systems composed of two springs, one damper, and a mass) 
may be promising for this application. Furthermore, a two-
mass-spring-damper model can be used to represent interac-
tions between fore- and aft-frame of a vehicle. On top of that, 
it is advisable to examine methods for nonlinear system pa-

rameters identification. Since all the models presented in the 
current study are lumped parameter ones which are valid only 
for the data which were used for their creation, they cannot be 
used to simulate e.g. a high-speed vehicle collision. However, 
the capabilities of mathematical models with nonlinear pa-
rameters (stiffness and damping) to simulate a variety of crash 
events are required to be assessed. 

 

Nomenclature 

k  : Spring stiffness 
c  : Damping coefficient 
m     : Mass 
V0; V  : Initial impact velocity 
ζ   : Damping factor 
f : Structural natural frequency 
C : Maximum dynamic crush 
tm : Time of maximum dynamic crush 
fN : Cut-off frequency 
a; d  : Absolute displacement of mass m 

α  : Model displacement 
ωe; ω : Circular natural frequency 
m’  : Zero-mass 
d’  : Absolute displacement of mass m’ 

c* : Transition damping coefficient 
Δ : Discriminant 
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