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Abstract. We developed a microbial-enzyme-mediated decomposition (MEND) model,
based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined
pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved
organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated
exoenzymes. The ranges and/or distributions of parameters were determined by both
analytical steady-state and dynamic analyses with SOC data from the literature. We used an
improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most
important parameters for the full model: maintenance of microbial biomass, turnover and
synthesis of enzymes, and carbon use efficiency (CUE). The model predicted that an increase
of 28C (baseline temperature 128C) caused the pools of POC-cellulose, MOC, and total SOC
to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50%
confidence intervals. Regardless of dynamic or constant CUE, the changes in pool size of
POC, MOC, and total SOC varied from�8% to 8% underþ28C. The scenario analysis using a
single parameter set indicates that higher temperature with dynamic CUE might result in
greater net increases in both POC-cellulose and MOC pools. Different dynamics of various
SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and
the interactions between microbes, enzymes, and SOC. With the feasible parameter values
estimated in this study, models incorporating fundamental principles of microbial-enzyme
dynamics can lead to simulation results qualitatively different from traditional models with
fast/slow/passive pools.

Key words: decomposition; microbial biomass; multi-objective parameter sensitivity analysis (MOP-
SA); parameterization; soil enzymes.

INTRODUCTION

Recent developments in modeling of soil organic

carbon (SOC) decomposition have explicitly taken into

account the role of microbes as decomposers (Schimel

and Weintraub 2003, Moorhead and Sinsabaugh 2006,

Lawrence et al. 2009, Allison et al. 2010). Particularly,

these models separate extracellular enzymes from the

microbial biomass pool and directly couple the kinetics

of enzymes to SOC turnover. Schimel and Weintraub

(2003) incorporated an enzyme pool into a first-order or

a reverse Michaelis-Menten (RM-M-SW) kinetics for

SOC decomposition. Moorhead and Sinsabaugh (2006)

divided the microbial community for litter decomposi-

tion into three guilds: opportunists, decomposers, and

miners, which are responsible for degradation of soluble

substrates, holocelluloses, and lignins, respectively. This

guild-based model considered the lignocellulose index

(LCI) as a key factor controlling the interactions

between lignin and cellulose. The RM-M-SW was used

by Lawrence et al. (2009) in an enzyme-catalyzed model

including both sorption and desorption processes.

Allison et al. (2010) developed a microbial-enzyme

model with the Michaelis-Menten (M-M) kinetics to

simulate the responses of SOC to an increase of 58C

from 208C using a single SOC pool.

These efforts were effective attempts to add microbial-

enzyme mechanisms to traditional SOC decomposition

models. However, several important issues remain to be

addressed and further studied:

1) Representation of carbon pools. A single SOC pool

or traditional fast/slow/passive pools are often used in

SOC decomposition models. Traditional fast/slow/pas-

sive pools based on decay rates are empirical and

difficult to relate to measurements (Schmidt et al. 2011).

Although physically defined SOC fractions have been

employed to study SOC dynamics (Six et al. 2001), they

have not been considered in SOC decomposition

models. Generally, the organic material in the mineral

soil can be separated into particulate organic matter

(POC) and mineral-associated organic matter (MOC;

Schlesinger and Lichter 2001). POC, derived from

plants, is defined as the organic matter carbon associ-

ated with sand-sized particles (e.g., particle size .53

lm), while MOC refers to the fraction with particle size
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,53 lm (Aoyama et al. 1999, Mrabet et al. 2001,

Schlesinger and Lichter 2001, Mendham et al. 2004).

POC corresponds to the available SOC in Schimel and

Weintraub (2003), and MOC is the physiochemically

protected SOC in Conant et al. (2011). Turnover of POC

can be orders of magnitude faster than those for MOC

(Conant et al. 2011).

2) Representation of enzyme kinetics in models. Since

SOC is largely decomposed as a result of exoenzymes

produced by microorganisms, explicit representation of

enzyme kinetics is an important advance in the process

description of SOC dynamics. Several models used the

RM-M-SW equation to simulate SOC decomposition,

which relies on the concentration of enzymes rather than

the concentration of substrates. Unlike the original M-

M equation derived from a solid theoretical basis for a

simple enzyme and a single substrate (Park and Agmon

2008), the RM-M-SW is functionally analogous to the

Langmuir adsorption equation (Schimel and Weintraub

2003). However, almost no estimates of the half-

saturation constant for enzyme pools in the RM-M-

SW have been reported (Moorhead and Sinsabaugh

2006, Lawrence et al. 2009). Thus it is more difficult to

parameterize a RM-M-SW model than a M-M model.

Even for the M-M kinetics, very few estimates of the

maximum specific reaction rate and the half-saturation

constant for substrates have been presented outside of

the aquatic literature (Moorhead and Sinsabaugh 2006).

3) Adsorption and desorption of dissolved organic

carbon (DOC). The transformation of DOC is one of

the rate-limiting steps in decomposition and respiration

(Conant et al. 2011). In addition, DOC availability,

especially in deeper soil, is controlled by sorption

processes (Michalzik et al. 2003). Equilibrium sorption

models (e.g., Langmuir isotherm) have been widely used

to describe the adsorption/desorption processes (Kaiser

and Guggenberger 2000, Hinz 2001, Kaiser et al. 2001,

Neff and Asner 2001, Jardine et al. 2006, Kleber et al.

2007, Vandenbruwane et al. 2007, Mehdi et al. 2009).

However, equilibrium models are not enough to account

for the role of mineral-organic interactions in stabilizing

SOC, since they assume that exchange between the

adsorbed and dissolved phases equilibrates rapidly

(Yurova et al. 2008). Actually, a 24-hour duration has

been widely used in the laboratory sorption experiments

(Lilienfein et al. 2004, Kothawala et al. 2008). In

addition, the utilization of equilibrium models means

that only net adsorption occurs even at low DOC

concentration and would result in continuous augmen-

tation of adsorbed C, which is inconsistent with the

existence of a maximum sorption capacity denoted by

Qmax (Kothawala et al. 2008, Mayes et al. 2012). Only

one model includes both adsorption and desorption

(Lawrence et al. 2009), where the adsorption and

desorption depend on DOC concentration and slow

pool size, respectively. However, the slow pool size in

their model was far greater than Qmax. Additionally, the

adsorption only depends on the concentration of DOC

in their model (Neff and Asner 2001) and disregards the

amount of mineral surface available for adsorption

(Sohn and Kim 2005).

4) Microbial growth and maintenance. Both growth

and maintenance respiration were included in two

models, with maintenance respiration proportional to

microbial biomass carbon (MBC; Schimel and Wein-

traub 2003, Lawrence et al. 2009). Wang and Post (2012)

conducted a theoretical reassessment of microbial

maintenance and proposed a new model scheme to

quantify growth respiration rate, maintenance respira-

tion rate, enzyme production rate, plus microbial

mortality rate, where the maintenance respiration was

considered to depend on both DOC and MBC. This

representation of microbial maintenance respiration is

adopted in MEND developed here.

5) Model parameterization. One reason that various

mechanistic processes have not been integrated into

current SOC models is data unavailability (Schmidt et

al. 2011). In the previous models, many parameter

values were simply assumed by the researchers. Partic-

ularly, very few estimates for the kinetic parameters in

the M-M equation and the adsorption/desorption rates

have been documented for use in models. In addition,

model development also requires determination of the

relative importance of each parameter for model

performance in order to evaluate the adequacy of the

model parameter estimates (Wang et al. 2009, Schmidt

et al. 2011).

In this study, we developed a microbial-enzyme-

mediated SOC decomposition model by considering

the aforementioned issues and estimated parameter

values through both analytical steady-state and dynamic

analyses. Using the estimated parameter ranges/distri-

butions, we implemented a multi-objective parameter

sensitivity analysis (MOPSA) to identify important

parameters and investigated the effects of temperature

on SOC dynamics.

METHODS

Model description

Carbon pools and fluxes in the proposed microbial-

enzyme-mediated decomposition (MEND) model are

shown in Fig. 1. Six carbon pools are considered in

MEND: (1) particulate organic carbon (POC, repre-

sented by the variable P in model equations, see Table

1), (2) mineral-associated organic carbon (MOC, M ),

(3) active layer of MOC interacting with dissolved

organic carbon through adsorption and desorption (Q),

(4) dissolved organic carbon (DOC, D), (5) microbial

biomass carbon (MBC, B), and (6) extracellular

enzymes (EP and EM). The component fluxes are (1)

DOC uptake by microbes (denoted by the flux F1), (2)

POC decomposition (F2), (3) MOC decomposition (F3),

(4, 5) microbial growth respiration (F4) and mainte-

nance respiration (F5), (6, 7) adsorption (F6) and

desorption (F7), (8) microbial mortality (F8), (9) enzyme
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production (F9), and (10) enzyme turnover (F10). Model

equations for each compartment are listed as follows:

dP

dt
¼ IP þ ð1� gDÞF8 � F2 ð1Þ

dM

dt
¼ ð1� fDÞF2 � F3 ð2Þ

dQ

dt
¼ F6 � F7 ð3Þ

dB

dt
¼ F1 � ðF4 þ F5Þ � F8 � ðF9;EP þ F9;EMÞ ð4Þ

dD

dt
¼ ID þ fD � F2 þ gD � F8 þ F3

þ ðF10;EP þ F10;EMÞ � F1 � ðF6 � F7Þ ð5Þ

dEP

dt
¼ F9;EP � F10;EP ð6Þ

dEM

dt
¼ F9;EM � F10;EM ð7Þ

d

dt
ðPþM þ Qþ Bþ Dþ EPþ EMÞ

¼ IP þ ID � ðF4 þ F5Þ ð8Þ

where Fi (i ¼ 1, 2, . . . , 10) denotes the component C

fluxes,

F1 ¼
1

EC

ðVD þ mRÞ
D3B

KD þ D
ð9Þ

F2 ¼
VP 3EP3P

KP þ P
ð10Þ

F3 ¼
VM 3EM3M

KM þM
ð11Þ

F4 ¼
1

EC

� 1

� �

VD 3B3D

KD þ D
ð12Þ

F5 ¼
1

EC

� 1

� �

mR 3B3D

KD þ D
ð13Þ

FIG. 1. Carbon pools and fluxes in the soil organic carbon (SOC) decomposition model. Circles represent carbon pools, and
solid arrows represent C fluxes. Dashed arrows indicate the catalysis of SOC decompositions by extracellular enzymes. SOC has
two components: particulate organic carbon (POC, P) and mineral associated organic carbon (MOC, M ). Transformation
processes include (1) dissolved organic carbon (DOC, D) uptake by microbial biomass (MBC, B), (2) POC pool decomposition, (3)
MOC pool decomposition, (4, 5) microbial growth and maintenance respirations, (6, 7) adsorption and desorption between DOC
and Q pools (the adsorbed phase of DOC interacting with DOC through adsorption and desorption), (8) microbial biomass
mortality, (9) production of enzymes for decomposition of POC (EP) and MOC (EM), and (10) enzyme turnover.

TABLE 1. State variables of the model.

Variable Description

Initial size
for spin-up
(mg C/g soil)

B Microbial biomass carbon (MBC) 2
D Dissolved organic carbon (DOC) 1
P Particulate organic carbon (POC) 10
Q Adsorbed phase of DOC 0.1
M Mineral associated organic carbon

(MOC) excluding Q
5

EP Enzyme for decomposition of P 10�5

EM Enzyme for decomposition of M 10�5

CO2 Accumulated CO2 flux
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F6 ¼ Kads 1�
Q

Qmax

� �

D ð14Þ

F7 ¼ Kdes 3
Q

Qmax

ð15Þ

F8 ¼ ð1� pEP � pEMÞmR 3B ð16Þ

F9;EP ¼ pEP 3mR 3B; and F9;EM ¼ pEM 3mR 3B ð17Þ

F10;EP ¼ rEP 3EP; and F10;EM ¼ rEM 3EM ð18Þ

where the state variables (C pools, i.e., B, D, P, Q, M,

EP, and EM) and model parameters/inputs (e.g., VP,

KP, IP, ID, VD, KD, VM, KM, EC, mR, gD, fD, Kads, Kdes,

pEM, pEP) are summarized in Table 1 and Table 2,

respectively. Eq. 8 expresses the overall mass balance of

the full system.

The POC and DOC pools receive external inputs such

as litter decomposition, plant roots, and root exudates

(Kuzyakov and Domanski 2000). The decomposition

processes of POC and MOC are mediated by responsible

enzymes (EP and EM), respectively. A fraction ( fD) of

decomposed POC enters the DOC pool and the rest (1�

fD) goes to MOC. Decomposed MOC becomes another

source for DOC. A pool (Q) is differentiated from MOC

and defined as the adsorbed phase of DOC interacting

with DOC through adsorption and desorption. The

potential size of the Q pool is quantified by the

maximum adsorption capacity (Qmax) (Kothawala et

al. 2008). We assumed that the mutual conversion

between MOC and Q could be neglected. The adsorp-

tion and desorption of DOC are simultaneously

considered as dynamic processes in the model. The

adsorption is controlled by DOC concentration and

mineral surface coverage, and the desorption is pre-

sumed to only depend on surface coverage (Rudzinski

and Panczyk 2000, Sohn and Kim 2005). Relative

saturation of the Q pool (Q/Qmax, ratio of actual

adsorbed C content to Qmax) is defined to represent

the fraction of the mineral surface area occupied.

Both growth and maintenance respirations (Pirt 1965,

van Iersel and Seymour 2000, Jin and Bethke 2003, van

Bodegom 2007) are included in the model. The uptake

of DOC by MBC, and the growth, maintenance, and

turnover of MBC, follow the model scheme described by

Wang and Post (2012). Small portions ( pEP and pEM) of

the physiological maintenance of MBC (quantified by

the factor mR) are allocated to enzyme production, and

the turnover of MBC enters DOC with a fraction of gD
and POC with the rest of the fraction of (1 � gD).

In this paper, DOC is considered as potential DOC,

passing a filter pore size of 0.4–0.6 lm (Novak et al.

1992, Kalbitz et al. 2000, Chantigny 2003), that contains

organic carbon from the decomposition of POC and

MOC, the desorption of C from mineral surfaces,

enzymes, and the death of MBC. It is similar to the

concept of ‘‘available DOC’’ postulated by Schimel and

Weintraub (2003) and ‘‘soluble organic carbon’’ used by

Qualls (2000). Therefore, the DOC used in our model

includes DOC present in soil solution and potentially

soluble organic carbon, but in solid state.

Model parameterization

Data for SOC, DOC, and MBC, and related climate,

soil, and land use conditions were collected from 985

observations in 177 publications (see full data in the

Supplement). Generally, the depth of these soil samples

ranged from 0.1 to 0.5 m with an average depth of 0.25

m. In addition, values for some parameters (e.g., KD,

mR, EC, Qmax, binding affinity [KBA]) and external

inputs (I ¼ IP þ ID) were also summarized through

literature research (Wang et al. 2012b). Based on these

TABLE 2. Model parameters and inputs.

Parameter Description Units

VP maximum specific decomposition rate for P by EP mg C�mg C�1�h�1

KP half-saturation constant for decomposition of P mg C/g soil
VM maximum specific decomposition rate for M by EM mg C�mg C�1�h�1

KM half-saturation constant for decomposition of M mg C/g soil
VD maximum specific uptake rate of D for growth of B mg C�mg C�1�h�1

KD half-saturation constant of uptake of D for growth of B mg C/g soil
mR specific maintenance factor or rate mg C�mg C�1�h�1

EC carbon use efficiency
fD fraction of decomposed P allocated to D
gD fraction of dead B allocated to D
pEP fraction of mR for production of EP
pEM fraction of mR for production of EM
rEP turnover rate of EP mg C�mg C�1�h�1

rEM turnover rate of EM mg C�mg C�1�h�1

Qmax maximum DOC sorption capacity mg C/g soil
Kads specific adsorption rate mg C�mg C�1�h�1

Kdes desorption rate mg C�mg C�1�h�1

KBA binding affinity (mg C/g soil)�1

IP input rate of P mg C�g soil�1�h�1

ID input rate of D mg C�g soil�1�h�1

fID ratio of ID to IP —
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data and the steady-state solutions, values or ranges for

the other model parameters could be estimated. From

the analysis of Wang and Post (2012), the values of

specific maintenance rate, maintenance coefficient, and

turnover rate of MBC were combined to quantify the

specific maintenance factor (mR). Literature values of

KBA are expressed in units of (mg C/L solution)�1

because it is usually derived from sorption experiments

using soil solutions. We converted KBA to values in units

of (mg C/g soil)�1 by presuming that the dimensionless

quantities, DeqKBA (Deq is the equilibrium concentration

of DOC), are equivalent under different unit systems.

Statistical analysis of literature data was conducted

using R software (R Development Core Team 2011).

The Kolmogorov-Smirnov goodness-of-fit (KS) test was

adopted for the normality test (software available

online).2 The significance of difference between categor-

ical data was tested by the non-parametric Kruskal-

Wallis (KW) test (see footnote 2; Ott and Longnecker

2010). Both KS and KW tests were conducted at a

significance level of 0.05.

Multi-objective parameter sensitivity analysis

The parametric sensitivity analysis is important for

model parameterization (Wang and Chen 2012, Wang et

al. 2012a). Based on the estimated parameter ranges, we

could identify the critical parameters for the dynamics of

each pool through an improved multi-objective param-

eter sensitivity analysis (MOPSA). The original MOPSA

in Wang and Chen (2012) was developed based on the

multi-parameter sensitivity analysis (MPSA) algorithm,

which is a global sensitivity analysis method (Rodrigue-

Fernandez et al. 2012). The consideration of multiple

objectives is essential in models with many processes and

state variables (Wang and Xia 2010). We used this

improved MOPSA approach to increase our ability to

quantitatively interpret the results over previous MOP-

SA in Wang and Chen (2012). The improved MOPSA

consists of the following steps:

1) Select the parameters to be evaluated and generate

parameter sets in terms of their distributions and ranges

based on the parameterization process described in the

previous section.

2) Run the model with these parameter sets and

compute the objective function values (OBFs) in terms

of a specific response variable. The OBFs are defined as

the sum of squared errors between observed and

simulated time-series data. In particular, observed

values achieve the OBF using the medians of parame-

ters.

3) Identify whether the parameter sets are acceptable

or unacceptable by comparing the OBFs to a given

criterion, e.g., the 50% divisions of the sorted OBFs

(Choi et al. 1998). The OBF less than the criterion is

classified as acceptable, otherwise it is classified as

unacceptable.

4) For the ith parameter, if it follows a log-

transformed distribution (e.g., log-normal or log-uni-

form has been used in step 1), let Xi¼fxi, j, j¼ 1, 2, . . . ,

2ng be the logarithmic parameter values; otherwise, let

Xi be the original values. Define xi,min ¼ minfXig and

xi,max¼maxfXig, and the normalized Xi, denoted by Xni
¼ fxni, j, j¼ 1, 2, . . . , 2ng, is defined as

xni; j ¼
xi;j � xi;min

xi;max � xi;min

2 ½0; 1�: ð19Þ

5) Let XnAi ¼fxnAi; j, j¼1, 2, . . . , ng and XnUi ¼fxnUi; j, j¼
1, 2, . . . , ng be the sorted (in ascending order) subsets of

acceptable (A) and unacceptable (U)Xni, respectively.

Plot the cumulative probability distribution (CPD)

curves for the acceptable and unacceptable subsets.

Compute the average ‘‘discrepancy’’ between the two

CPD curves as the sensitivity index (SI):

SIki ¼
1

n

X

n

j¼1

xnAi; j � xnUi; j

�

�

�

�

�

� ð20Þ

where SIki is the sensitivity index of the ith parameter for

the kth response variable.

6) Evaluate the sensitivity of each parameter by the

sensitivity plots and the SI values. The sensitivity plot

qualitatively shows the discrepancy between the two

CPD curves. In addition, the SI value quantitatively

describes the relative sensitivity between parameters. A

large difference means that the response variable is

highly sensitive to the changes in that parameter.

Similarly, a higher SI value implies a higher sensitivity

of the parameter.

7) The above analysis is conducted for a single

objective (i.e., a single response variable). The overall

parameter sensitivity index of a model with multiple

response variables can be estimated as

SIi ¼
1

m

X

m

k¼1

SIki ð21Þ

where SIi denotes the overall sensitivity index for the ith

parameter in terms of m response variables.

Log-normalization is required for those parameters

with log-transformed distributions in step 4 to make the

sensitivity plots and the SI values comparable among

parameters. The sensitivity index used here is a relative

concept. The SI values can be used to compare the

sensitivities between different parameters pertaining to a

specific objective function or an integrated function of

multi-objective. A parameter with higher SI value is

more sensitive (or important) than another parameter

with lower SI value.

SOC responses to warming: model application

The SOC dynamics is influenced by environmental

factors, especially temperature (Davidson and Janssens

2 http://cran.r-project.org/web/packages/pgirmess/index.
html
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2006). However, the impacts of warming on SOC

dynamics are uncertain (Conant et al. 2011). We

provided an analysis of our model formulation to

hypothetical temperature changes. For this we require

additional model development, consistent with our

enzyme kinetic formulation. Since POC receives plant-

derived materials as inputs (McGuire and Treseder

2010), we assumed that the POC pool consists of two

substrates (lignin and cellulose/hemicellulose). Each

substrate has associated enzymes that convert it into

dissolved monomers (DOC). Lignin is decomposed by

oxidative enzymes (ligninases) produced by appropriate

microbes (fungi), and cellulose/hemicellulose is decom-

posed with hydrolytic enzymes (cellulases) produced by

bacteria and fungi (Wang et al. 2012b). The allocation of

EP production to ligninase and cellulase was presumed

to be proportional to the corresponding substrate pool

size. We investigated the SOC pools changing with time

under warming conditions by conducting numerical

simulations.

The Arrhenius equation was used to simulate the

response of parameter values to changes in temperature

(Wang et al. 2012b):

VðTÞ ¼ VðTrefÞexp �
Ea

R

1

T
�

1

Tref

� �� �

ð22Þ

where V(T ) and V(Tref ) are the parameter values at the

temperature T (K) and the reference temperature Tref

(K), respectively; Ea is the energy of activation (kJ/mol);

and R¼ 8.314 J�mol�1�K�1, is the universal gas constant.

The activation energy (Ea) in the Arrhenius equation

for selected parameters is shown in Table 3. The specific

reaction rate for lignin degradation had a higher Ea than

that of cellulose (Wang et al. 2012b). Ea for the half-

saturation constants (KP, KM, and KD) was set as 30 kJ/

mol, corresponding to a Q10 of 1.5 for temperature

ranging 20–308C (Davidson et al. 2006). The microbial

maintenance is also dependent on temperature (van

Iersel and Seymour 2002). Elshafei et al. (2009) observed

a low Ea, i.e., 4.36 and 5.04 kJ/mol for DOC adsorption

in clay and sandy soils, which was consistent with the

observations of no apparent effect of temperature on it

(Kaiser et al. 2001, Mehdi et al. 2009). As shown in

Table 3, Ea for adsorption is smaller than that for

desorption (Conant et al. 2011). The temperature-

modification of carbon use efficiency (CUE, denoted

by EC in equations) is described by a linear function:

ECðTÞ ¼ ECðTrefÞ � kECðT � TrefÞ ð23Þ

where 0, EC(T ), 1 in this study and the slope kEC was

set to 0.0128C�1 (Devevre and Horwath 2000).

The baseline soil temperature and pH value were set

as 128C and 6, respectively. The baseline temperature of

128C is close to the mean annual temperature of 11.68C

for the United States (NOAA 2011). The baseline pH of

6 is the mean soil pH value calculated from literature

data (see Table 4).

We simulated the responses of C pool sizes to a

temperature increase of 28C against the control treatment

(128C) by sampling the parameters from their respective

distributions/ranges. Only those parameter sets that could

result in a feasible steady-state system were used for

further analysis. The steady-state C pool sizes were then

adopted as initial values for scenario analysis over a 100-

yr period. The values of parameters shown in Table 3

TABLE 3. Activation energies (Ea) for selected parameters.

Parameter
Activation energy

(kJ/mol) Reference

VP, lignin 53 6 17 Wang et al. (2012b)
VP, cellulose 37 6 15 Wang et al. (2012b)
VM, VD 47 Allison et al. (2010)
KP, KM, KD 30 Davidson et al. (2006)
mR 20 van Iersel and Seymour

(2002)
Kads 5 Elshafei et al. (2009)
Kdes 20 Kaiser et al. (2001)

Note: Activation energy values for VP are means 6 SD.

TABLE 4. Summary of soil organic carbon data from the literature (the associated full data are presented in the Supplement).

SOC DOC MBC pH

Soil order n log10(SOC) n log10(DOC) n log10(MBC) n pH

Alfisols 154 1.19cd 6 0.30 18 �0.79b 6 0.56 25 �0.33b 6 0.41 141 6.3bc 6 0.7
Andisols 52 1.77b 6 0.21 34 �0.64b 6 0.50 28 �0.60b 6 0.45 45 5.8cd 6 0.9
Aridisols 23 0.92d 6 0.39 4 �0.96b 6 0.26 1 �0.45 21 7.6a 6 0.4
Entisols 81 0.94d 6 0.54 17 �1.56b 6 0.52 14 �0.44ab 6 0.72 61 6.3bcd 6 1.2
Gelisols 49 1.77b 6 0.63 21 �0.51b 6 0.42 7 0.58a 6 0.69 28 5.4de 6 1.2
Histosols 44 2.38a 6 0.23 5 0.01a 6 0.35 7 0.23a 6 0.24 21 5.5de 6 1.2
Inceptisols 204 1.43b 6 0.48 47 �0.86b 6 0.41 62 �0.12ab 6 0.32 169 5.8d 6 1.2
Mollisols 88 1.33c 6 0.31 9 �0.64b 6 0.44 11 �0.18ab 6 0.31 75 7.0a 6 1.0
Oxisols 24 1.41bc 6 0.36 7 �1.19b 6 0.85 19 �0.34b 6 0.49 21 5.6de 6 0.8
Spodosols 62 1.61b 6 0.53 20 �0.92b 6 0.50 14 �0.08ab 6 0.47 56 4.7e 6 0.9
Ultisols 117 1.15c 6 0.46 14 �1.08b 6 0.41 75 �0.42b 6 0.43 109 5.7d 6 1.0
Vertisols 18 1.17cd 6 0.39 3 �1.56b 6 0.30 12 �0.36b 6 0.24 16 7.3a 6 0.8
All 916 1.38 6 0.54 199 �0.85 6 0.56 275 �0.29 6 0.48 763 6.0 6 1.2

Notes: Values are mean 6 SD of log-transformed soil organic carbon (SOC), dissolved organic carbon (DOC), or microbial
biomass carbon (MBC), measured as mg C/g soil; n is the number of observations. Different superscript letters after means indicate
significantly different means according to the Kruskal-Wallis (KW) test at a ¼ 0.05.
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were modified by temperature changes. Two scenarios

were examined: dynamic CUE, with CUE changing with

temperature as described by Eq. 23, and constant CUE,

with the same CUE as the control treatment.

We also investigated the temporal evolutions of C

pool sizes by conducting model simulations to a

hypothetical step-wise temperature change using a single

parameter set. The typical parameter values estimated in

model parameterization were adopted in this case. The

VP values (T ¼ 128C and pH ¼ 6) for POC-lignin and

POC-cellulose were set to 0.96 and 5.02 mg C�mg

C�1�h�1, respectively (Wang et al. 2012b). Five scenarios

of 1–58C temperature increase with the parameters

showing in Table 3 and CUE changing with temperature

were considered. A sixth scenario of 28C temperature

increase with the same CUE (0.47) as the control

treatment was also included to compare with the results

from the first five scenarios.

RESULTS AND DISCUSSION

Summary of pool sizes from the literature

The KS normality tests on SOC, DOC, and MBC

indicated that none of them followed a normal

distribution (P , 1 3 10�10). Both log10(DOC) and

log10(MBC) were normally distributed (P ¼ 0.37 and

0.71, respectively). Although log10(SOC) was not strictly

normally distributed (P ¼ 3 3 10�4), we computed the

mean and standard deviation (SD) from log10(SOC)

rather than directly from SOC. Histograms for log-

transformed SOC, DOC, and MBC are shown in Fig. 2.

Statistics for these data as well as soil pH values

classified by soil orders are summarized in Table 4. The

soil pH values can be used to modify the decomposition

rates through an exponential-quadratic function as

described in Wang et al. (2012b). Considering an average

soil depth of 0.25 m and bulk density of 1 g/cm3, the

back-transformed mean SOC is equivalent to 6 kg C/m2,

which is close to the SOC density for cultivated land (7.9

kg C/m2) derived by Post et al. (1982). The enzyme

concentration in soils was estimated as 1 3 10�5 to 53

10�3 mg C/g soil (Tabatabai 2003).

Analytical steady-state solutions

Under steady state conditions, the C pools can be

analytically determined from Eqs. 1–7 as follows:

Peq ¼
KP

VP

pEP

rEP

EC

A

ID

IP
þ 1

� �

� 1

’
KP

VP 3 pEP

rEP

EC

1� gDEC

� 1

ð24Þ

Meq ¼
KM

VM

pEM

rEM

EC

ð1� fDÞA
1þ

ID

IP

� �

� 1

’
KM

VM 3 pEM

rEM

EC

ð1� gDECÞð1� fDÞ
� 1

ð25Þ

Qeq ¼
Qmax

1þ VD=ðmRKDKBAÞ
¼

Qmax

1þ 1=ðDeqKBAÞ
ð26Þ

Beq ¼
ID þ IP

ð1=EC � 1Þ3mR

ð27Þ

FIG. 2. Histogram of log-transformed (a) soil organic
carbon (SOC), (b) dissolved organic carbon (DOC), and (c)
microbial biomass carbon (MBC), all measured as mg C/g soil.
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Deq ¼
KD

VD=mR

ð28Þ

EPeq ¼ Beq 3
mRpEP

rEP
ð29Þ

EMeq ¼ Beq 3
mRpEM

rEM
ð30Þ

where A¼1� E

Cþ (1� pEP� pEM)3EC(1� gD)(ID/IPþ

1); under the condition of input of DOC/input of POC

(ID/IP)� 1 and because of pEPþpEM � 1, A’ 1� gD3

EC; the subscript eq denotes the steady state solution;

and KBA ¼ Kads/Kdes is the binding affinity ([mg C/g

soil]�1) as defined in the Langmuir isotherm (Kothawala

et al. 2008). The assumption of ID/IP � 1 is based on the

consideration that DOC in the mineral soil is derived

from decomposed SOC and the DOC input from recent

litter is limited (Michalzik et al. 2003, Fröberg et al.

2007).

Estimation of parameter values

The parameter values or probability distributions are

summarized in Table 5. Some of the parameter values

were collected from the literature. Both input rates (I ¼

ID þ IP) and specific maintenance factor (mR) were log-

normal distributed (see Fig. 3a and 3b, P¼ 0.7 and 0.2,

respectively). The back-transformed mR from the log-

normal distribution had a mean of 2.83 10�4 mg C�mg

C�1�h�1 with 1 SD interval of (6.3 3 10�5, 1.3 3 10�3).

The 1 SD interval for mR is the back-transformed

interval from the 1 SD interval of log10(mR). Values of I

were converted to carbon inputs in units of mg C�g

soil�1�h�1. The back-transformed I has an average of 1.6

3 10�4 mg C�g soil�1�h�1 (log10I¼�3.8 6 0.3) (Wang et

al. 2012b). Both fraction of decomposed POC allocated

to DOC ( fD) and fraction of dead MBC allocated to

DOC (gD) were assumed to be 0.5 (Hunt 1977). The

average C contents from all observations (Table 4) were

used as steady-state pool sizes.

From Tabatabai (2003), the estimated enzyme con-

centration of a-glucosidase and b-glucosidase ranges

from 1310�5 to 5310�3 mg C/g soil, with a mean value

of 23 10�4 mg C/g soil, assuming that it follows a log-

normal distribution. Considering that ‘‘the actual

concentrations of enzyme proteins in soils are undoubt-

edly much greater than those calculated’’ (Tabatabai

2003), we adopted an enzyme concentration of 13 10�3

mg C/g soil, which is an order of magnitude higher than

the mean value. Provided the concentration of equilib-

rium MBC (Beq) from Table 4, specific maintenance

factor (mR) and enzyme turnover rate (rEP) in Table 5,

and enzyme concentration (EPeq)¼1310�3 mg C/g soil,

we estimated the fraction of mR for production of EP

( pEP) ’ 1% based on Eq. 29. We assumed that pEM ’

pEP.

Adapting the values for half-saturation constant of

uptake of DOC for MBC growth (KD) from Van de

Werf and Verstraete (1987) and DOC concentration

(Deq) from Table 4, we could estimate the maximum

specific uptake rate of DOC for growth of MBC (VD) ’

2mR by Eq. 28. For agricultural soils, turnover rates of

DOC were found to be 2.5–4.23 10�4 h�1 (Gjettermann

et al. 2008), which was within the range derived in this

study.

Generally, the SOC substrates were assumed to be

under-saturated (Moorhead and Sinsabaugh 2006,

Allison et al. 2010), which implies that the half-

saturation constants KP and KM have the following

relation with steady-state POC and MOC concentra-

tions, respectively, 0.01 , Peq/KP , 1 and 0.01 , Meq/

KM , 1. The lower bound of 0.01 was set for the two

ratios (Peq/KP and Meq/KM) in order to make the M-M

kinetics functional. Carbon use efficiency (EC) is

negatively dependent on temperature (Devevre and

TABLE 5. Model parameterization.

Parameter Values� Typical value Reference

I ¼ ID þ IP log10(I ) ¼ �3.8 6 0.3 1.6 3 10�4 Wang et al. (2012b)
mR log10(mR) ¼ �3.6 6 0.7 2.8 3 10�4 this study
EC 0.609–0.012T (8C) 0.47 Devevre and Horwath (2000)
fD, gD 0.5 [0.2–0.8] 0.5 Hunt (1977), this study
rEP, rEM log10(rEP) ¼ �3.0 6 0.5 1 3 10�3 Allison et al. (2010), this study
pEP, pEM log10( pEP) ¼ �2.0 6 0.5 1 3 10�2 this study
Qmax 1.7 6 1.1 1.7 Mayes et al. (2012)
KBA 6 6 5 6 this study
Kdes 1 3 10�3 [10�4–10�2] 1 3 10�3 this study
Kads KBA 3 Kdes 6 3 10�3 this study
KD 0.26 6 0.12 0.26 van de Werf and Verstraete (1987)
VD log10(VD) ¼ �3.3 6 0.7 5 3 10�4 this study
VP 0.2–33.0 2.5 this study
KP Peq(aP 3 VP � 1), aP ¼ 6 [3–11] 50 this study
VM 0.05–22.0 1 this study
KM Meq(aM 3 VM � 1), aM ¼ 14 [4–51] 250 this study

Notes: See Table 2 for description of parameters; I denotes the model inputs.
� Values shown are means; error is SD, ranges in brackets are lower bound and upper bound.
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Horwath 2000), and EC¼ 0.47 at T¼ 128C. Eqs. 24 and

25 can be rearranged as follows:

Peq=KP ¼ 1=ðaPVP � 1Þ ð31Þ

Meq=KM ¼ 1=ðaMVM � 1Þ ð32Þ

where aP¼ pEP/rEP3 EC/(1� gDEC) and aM¼ pEM/rEM
3 EC/(1 � gDEC)/(1 � fD).

With the assumption that pEP/rEP¼ 10, and fD and gD
2 (0.2, 0.8), we obtained that aP 2 (3, 11) and aM 2 (4,

51). From Eqs. 31 and 32, we plotted Peq/KP against VP

and Meq/KM against VM (Fig. 4). Based on the above

constraints for Peq/KP and Meq/KM, we derived VP ¼
0.2–33 (mean ’ 2) and VM ¼ 0.05–22 (mean ’ 1) mg

C�mg C�1�h�1. Allison et al. (2010) set V¼0.42 mg C�mg

C�1�h�1 at 208C, which fell into our parameter range.

The V values from laboratory experiments with purified

ligninases and cellulases had a 1 SD interval of 13101 to

13103 (Wang et al. 2012b), which was at least one order

of magnitude higher than the V values derived here.

Jastrow (1996) measured the POC and MOC frac-

tions in long-term cultivated soils and found that they

were about 20% and 80% of the SOC contents,

respectively. Under the condition of Peq þ Meq ¼ 24

mg C/g soil (Table 4), one could estimate Peq andMeq as

5 and 19 mg C/g soil, respectively. Using the above Peq

and Meq and mean VP and VM, we calculated that KP¼
50 and KM ¼ 250 mg C/g soil, respectively. Similarly, if

Peq þ Meq ¼ 110 as used by Allison et al. (2010), one

could derive KP ¼ 240 and KM ¼ 1100, whose range

contained the half-saturation constant of 500 mg C/cm3

soil in Allison et al. (2010).

According to Mayes et al. (2012), the binding affinity

KBA,L (subscript L denotes the value for the liquid or

solution condition) was estimated as 0.06 6 0.05 (mg C/

L)�1. In addition, DOC concentration in mineral soil of

temperate forest was Deq,L ¼ 13.8 6 12.1 mg C/L

(Michalzik et al. 2001). Table 4 indicated an average

DOC concentration of Deq ¼ 0.14 mg C/g soil (1 SD

interval, 0.04–0.52). We have assumed that the dimen-

sionless quantity (DeqKBA) in Eq. 26 should be

equivalent under different unit systems, i.e., DeqKBA ¼
Deq,LKBA,L, which yielded KBA ’ 100KBA,L¼ 6 6 5 (mg

C/g soil)�1.

Since the analytical steady-state solutions only de-

pended on KBA, i.e., the ratio of Kads to Kdes, dynamic

analysis (numerical simulation) was conducted to

determine the values of Kads and Kdes. The initial values

for state variables (Table 1) and typical parameter

values (Table 5, specifically Kdes ¼ 1 3 10�3) were

adopted to reach a steady state. These steady-state pool

sizes were then used as model initialization with Kdes

varying from 1 3 10�5 to 1 mg C�g soil�1�h�1. Hourly

changes of Q and DOC during the first year (8760 h) are

shown in Fig. 5. When Kdes was reduced from 13 10�4

to 1 3 10�5, the changes in Q and DOC were not

significant compared with the others (see Fig. 5a and 5b,

respectively). As Kdes . 0.01, both DOC and Q departed

from the steady state quickly within the first day.

Therefore, we estimated Kdes as 13 10�4 to 13 10�2 mg

C�g soil�1�h�1. The desorption rate in Lawrence et al.

(2009) was close to our lower bound of Kdes, because the

slow pool in their model is analogous to but larger than

the Q pool in our model.

Although we summarized the data of SOC, DOC, and

MBC classified by soil orders (Table 4), we did not think

there is sufficient information to separately parameterize

the model with respect to soil orders. Taking the SOC as

an example, there were no significant differences among

Gelisols, Spodosols, Andisols, and Inceptisols according

to the KW test at a¼ 0.05, neither were among Oxisols,

Ultisols, Mollisols, Vertisols, and Alfisols. Therefore, we

only estimated the parameters for a ‘‘mean’’ soil type.

Actually, the parameterization results shown in Table 5

are proposed general parameter ranges/distributions

from considering the parameter uncertainty. In partic-

FIG. 3. Histogram of log-transformed (a) inputs to SOC (I,
mg C�[g soil]�1�h�1) and (b) specific maintenance factor (mR,
mg C�[mg C]�1�h�1).
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FIG. 4. Relationship between Peq/KP or Meq/KM and VP or VM; Peq and Meq are equilibrium concentrations, VP and VM are
maximum specific decomposition rates, and KP and KM are half-saturation constants for particulate organic carbon (POC, P) and
mineral-associated organic carbon (MOC, M ), respectively. Mean, lower, and upper denote mean value and lower and upper
bounds, respectively.

FIG. 5. Determination of desorption rate (Kdes) with binding affinity KBA ¼ 6 (mg C/g soil) from dynamics of (a) adsorbed
phase of DOC (Q) and (b) dissolved organic carbon (DOC).
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ular, quantitative relationships between V and K in the

M-M equations for POC and MOC decomposition were

developed jointly. If there is no other data or

information available, the categorized data based on

soil orders could be used as a reference.

Sensitivity analysis

Based on the parameterization results shown in Table

5, the MOPSA was conducted in terms of the response

variables shown in Table 1. Because we did not

differentiate the parameters (enzyme production and

loss rates) between EP and EM, the time evolutions of

the two pools were the same. Therefore, seven response

variables (m ¼ 7, see Table 6) were considered in

MOPSA. In addition, although we assumed the

fractional input rate ( fID ¼ ID/IP) � 1, and fD ¼ gD ¼
0.5 in the steady-state analysis, we adopted uniform

distributions for fID (range, 0.05–1) and fD and gD
(range, 0.2–0.8) in MOPSA. We also assumed log-

normal distributions for rEP (�3.0 6 0.5 [mean 6 SD])

and pEP (�2.0 6 0.5). In summary, 17 parameters (k ¼
17) including the C input rates were considered in

sensitivity analysis, and the results are shown in Table 6.

For each response variable, there were two columns

quantifying the sensitivity: the first column showing the

SI values and the second column indicating the ordering

of the sensitivity based on SI. It is evident that the

relative importance of parameters depends on the

response variable. For example, the most sensitive

(important) parameters for the MBC pool (B) were

mR, EC, KM, VM, fID, and rEP; the most important

parameters regarding POC were KP, rEP, VP, pEP, EC,

and fID; and the Q pool was most sensitive to changes in

Qmax, mR, VD, KBA, Kdes, and fD. Several sensitivity plots

in terms of MBC are shown in Fig. 6 to illustrate the

CPD curves for acceptable and unacceptable parameter

values.

As shown in Fig. 7, the overall parameter sensitivity

indicated that the maintenance factor of microbial

biomass (mR) was rated highest and the desorption rate

(Kdes) rated lowest among the parameters. Using the k-

means clustering (Likas and Vlassis 2003), we classified

the 17 parameters into five groups (G1–G5) with

sensitivity from high to low: G1 (mR), G2 (rEP, EC,

pEP, KP, VD, KM, and fID), G3 (VM and Qmax), G4 (VP,

IP, and fD), and G5 (KBA, KD, gD, and Kdes). The

parameters within each group were considered to have

similar sensitivity. The enzyme production and turnover

rates ( pEP and rEP) were as important as the CUE (EC).

Therefore, the function of enzymes in catalyzing SOC

decomposition is considerable, although the enzyme

concentrations are very small compared to the other C

pools. As for adsorption/desorption, the maximum

sorption capacity (Qmax) was more important than

KBA and Kdes. Although KBA and Kdes fell into the same

group, the SI value for KBA was higher than Kdes.

One of the main objectives of a sensitivity analysis is

to evaluate the relative significance of each parameter

(Choi et al. 1998, Wang and Chen 2012). The typical

sensitivity analysis (SA), which investigates how an

observable quantity varies with changes in the param-

eter, also serves this objective. The more sensitive a

parameter is, the more important it is. However, the

local SA is conducted in terms of single parameter in the

neighborhood of a single parameter value (Van

Griensven et al. 2006, Wang and Post 2012). The

sensitivity index measures the average ‘‘distance’’ or

‘‘difference’’ between the two cumulative curves, not the

‘‘difference’’ between two means. Determining the

sensitivity from the perspective of probability distribu-

tion rather than from the simple mean value is one of the

advantages of MOPSA over the typical SA. Since

computing a P value using the mean and standard

deviation requires that a variable follows or can be

TABLE 6. Parameter sensitivity analysis.

D B P M Q EP/EM CO2

Parameter SI Order SI Order SI Order SI Order SI Order SI Order SI Order

mR 0.083 16 0.087 17 0.024 10 0.011 6 0.047 16 0.053 15 0.078 17
rEP 0.025 13 0.019 12 0.083 16 0.057 17 0.003 5 0.072 17 0.021 11
EC 0.019 11 0.056 16 0.036 13 0.039 14 0.005 10 0.051 14 0.009 5
pEP 0.013 9 0.018 11 0.059 14 0.039 13 0.003 4 0.059 16 0.024 12
KP 0.006 6 0.003 2 0.143 17 0.038 12 0.002 2 0.005 3 0.013 10
VD 0.108 17 0.003 3 0.019 8 0.011 7 0.041 15 0.011 9 0.011 9
KM 0.031 14 0.038 15 0.006 4 0.048 16 0.003 3 0.024 12 0.056 15
fID 0.008 7 0.020 13 0.029 12 0.037 10 0.005 7 0.038 13 0.061 16
VM 0.033 15 0.027 14 0.003 2 0.037 11 0.005 9 0.022 11 0.049 14
Qmax 0.005 5 0.008 9 0.007 6 0.004 2 0.112 17 0.008 6 0.009 6
VP 0.011 8 0.006 5 0.077 15 0.027 8 0.005 8 0.003 1 0.003 3
IP 0.004 1 0.014 10 0.003 3 0.039 15 0.002 1 0.013 10 0.043 13
fD 0.018 10 0.007 7 0.022 9 0.035 9 0.012 12 0.009 7 0.003 2
KBA 0.005 2 0.006 4 0.006 5 0.007 5 0.036 14 0.010 8 0.007 4
KD 0.023 12 0.007 8 0.007 7 0.005 4 0.012 11 0.006 4 0.010 7
gD 0.005 4 0.006 6 0.025 11 0.005 3 0.004 6 0.008 5 0.011 8
Kdes 0.005 3 0.003 1 0.003 1 0.002 1 0.017 13 0.005 2 0.003 1

Notes: Response (state) variables are described in Table 1. For sensitivity index (SI), a greater value indicates more sensitive.
Order is the ordering of sensitivity by SI, with a greater number indicating more sensitive.
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transformed to a normal distribution, which is not

always true for some variables (e.g., EC, fD, gD). Similar

to the other global sensitivity analysis methods, MOPSA

varies all the parameters simultaneously. The CPDs of

acceptable and unacceptable sets for each parameter

(e.g., mR in Fig. 6a) also account for interactions

between parameters (Rodrigue-Fernandez et al. 2012),

since the acceptable/unacceptable sets are discriminated

by the objective function representing the response of a

pool to changes in multiple parameters.

Temperature effect on SOC dynamics

The soil C pools could reach a feasible steady state

with 3291 out of the 10 000 parameter sets sampled from

the parameter distributions/ranges. With an increase of

28C, the 50% confidence intervals (between the first and

third quartiles) of the 100-yr change in C pool size (Fig.

8) indicate (1) the pools of POC-cellulose, MOC, and

total SOC increased with dynamic CUE but decreased

with constant CUE; (2) the total CO2 production

slightly changed (�0.05 to 0.20%) under dynamic CUE

and increased (0.12 to 0.77%) under constant CUE; (3)

both scenarios caused an increase in DOC and decreases

in POC-lignin, Q, MBC, and ligninase (EPL); and (4)

both cellulase (EPC) and EM decreased under dynamic

CUE but cellulase increased and EM remained un-

changed under constant CUE. The warming (þ28C)

effects considering variations in parameters indicate that

the sensitivity of CUE to temperature change had

significant effects on all soil C pools except DOC and

Q. By excluding the outliers shown in Fig. 8, one might

conclude that the changes in SOC pools (POC-lignin,

POC-cellulose, MOC, Q) would vary from �8% to 8%

under a 28C increase in temperature.

The typical parameter values in Table 5 were adopted

to examine the C pool sizes changing with time. Five

scenarios (I–V) ofþ1 toþ58C were simulated in addition

to the baseline run (T¼128C). As aforementioned, CUE

and the parameters shown in Table 3 varied with

temperature under scenarios I–V. An additional scenar-

io (VI) was conducted with þ28C and constant CUE.

The CO2 efflux (mg C�g soil�1�h�1; Fig. 9a) reached its

FIG. 6. Examples of cumulative probability distributions of acceptable and unacceptable parameter values by parameter
sensitivity analysis; response variable: microbial biomass carbon (MBC). Parameters are (a) specific maintenance factor (mR), (b)
carbon use efficiency (EC), and (c, d) maximum specific enzyme activity for (c) mineral-associated organic carbon (VM) and (d)
particulate organic carbon (VP).
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lowest level during the seventh year under scenarios I–V

and resulted in slight decreases of total respiration over

50 years. The CO2 efflux was higher than the control

value during the first 10 years under Scenario VI.

Regardless of the scenario, the CO2 efflux returned to

the pre-warming (control) level with very small fluctu-

ations after approximately 10 years, which has been

observed in field-based studies (Treseder et al. 2011).

After 30 years, the CO2 efflux completely returned to the

control value of 0.16 lg C�g soil�1�h�1. This efflux is

equivalent to a respiration rate of 1400 g C�m�3�yr�1

(bulk density ¼ 1 g C/cm3) or 350 g C�m�2�yr�1 (soil

depth ¼ 25 cm), which falls into the observed range of

60–1260 g C�m�2�yr�1 (Raich and Schlesinger 1992).

Scenarios I–V predicted a net decrease during the first

six years and then a net increase in the total SOC

contents (POC-ligninþPOC-celluloseþMOCþQ; Fig.

9b). Compared to the equilibrium state, the total SOC

pool increased after 50 years with scenarios I–V. On the

contrary, scenario VI resulted in a continuous decrease

in SOC during the first 10 years (Fig. 9b) and a total loss

of 6% of the equilibrium pool size after 50 years.

The response of POC-lignin (Fig. 9c) was much more

complex than the other pools. Scenario I caused a slight

net increase but Scenario II–V predicted net losses of

lignin. Scenarios I–V predicted a net gain of POC-

cellulose (Fig. 9d) and MOC (Fig. 9e) and higher

temperature resulted in greater accumulation of C in

these two pools. Unlike the other pools, which stabilized

after 30 years, the pools of POC-lignin and MOC did

not return to new near-equilibrium states until 50 years

because of their relatively low decomposition rates. The

net increases in POC-cellulose and MOC led to net gains

in the total SOC under scenarios I–V. However, scenario

VI with constant CUE resulted in a net decrease in the

pools of POC-lignin, POC-cellulose, MOC, and Q. The

C loss in the Q pool also increased with higher warming

temperature (Fig. 9f ) under scenarios I–V. Regardless of

constant or dynamic CUE with a temperature increase

of 28C, the Q pool became nearly stable with similar C

contents after 20 years, although the temporal trends

were opposite during the first 20 years. The Q pool

decreased under warming conditions because an increase

in temperature would increase the rate of desorption

relative to adsorption (Conant et al. 2011).

Net increase in DOC was found for each scenario

(Fig. 9g). A constant CUE resulted in less DOC uptake

and a large increase of DOC in the first few years, and a

net increase in DOC overall. In fact, constant CUE

produced a net loss over 50 years for the pools of total

SOC, POC-lignin, POC-cellulose, MOC, Q, and MBC

(see Fig. 9). In contrast, when CUE is allowed to

decrease with warming in scenarios I–V, a net loss of

DOC was observed for the first few years, followed by a

net increase in DOC. Net increase in DOC was observed

most likely because desorption was promoted with

higher temperature.

Continuous loss of MBC occurred during the first six

years under scenarios I–V (Fig. 9h), which was likely the

cause of net loss of DOC in the first few years (Fig. 9g).

Net loss in MBC increased with higher warming

temperature. In addition, dynamic CUE with a small

temperature change (þ18C) resulted in more MBC loss

than scenario VI with constant CUE. Similar to MBC,

net loss of enzyme was found for each enzyme pool

under scenarios I–V (Fig. 9i and j; data for EM is not

FIG. 7. Overall parameter sensitivity quantified by the sensitivity index with regard to all response variables. Parameters are
defined in Table 2.
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shown here). Under scenario VI, however, net increases

occurred for all enzyme pools (Fig. 9i and j) during the

first 10 years, which corresponded to the increase in

MBC (Fig. 9h). The behavior of MBC and enzyme pools

was very different for the constant CUE vs. dynamic

CUE, which was the most likely cause of the observed

different responses in SOC pools. Because dynamic

CUE results in lower MBC and enzyme pools, POC-

cellulose and MOC tend to accumulate resulting in the

overall increase in SOC (Fig. 9b). Constant CUE, in

contrast, tends to over-estimate the activities of MBC

and enzymes, leading to lower overall SOC. Similar to

the constant CUE scenario, however, POC-lignin

decreases with dynamic CUE despite observed decreases

in ligninase concentration (Fig. 9i). Different behaviors

between the POC-lignin and POC-cellulose pools could

be interpreted by the changes in individual enzyme pools

and a much higher Ea for the specific lignin degradation

rate than for cellulose degradation, which leads to a

greater increase in the specific enzyme activity for

ligninase than for cellulase under warming conditions.

All enzyme pools returned to the baseline sizes after 30

years under scenario VI.

Zhou et al. (2012) found that there is no significant

difference in the recalcitrant-C pool between warming

(þ28C) and the control for a 10-yr experiment on a

tallgrass prairie ecosystem. Our study also indicates the

first 10 years as a critical period. The pools of POC-

lignin and MOC reached the control values after about

10 years under scenarios I–V (Figs. 9c and e). In

particular, POC-lignin decreased in the first three years

and then recovered back to the baseline, while very small

variations in MOC were observed during the first 10

years.

FIG. 8. Boxplots of simulated warming (þ28C) effects on soil C pool sizes over a 100-yr period. Parameter values were sampled
from their respective distributions/ranges in Table 5. Dynamic CUE means the carbon use efficiency (CUE) varies with
temperature. Const CUE denotes that CUE remains the same as the control treatment (128C). Soil C pools are POCL, particulate
organic carbon-lignin; POCC, particulate organic carbon-cellulose; MOC, mineral-associated organic carbon; Q, adsorbed phase
of DOC (dissolved organic carbon); SOC, POCL þ POCC þ MOC þ Q; CO2, total CO2 production; MBC, microbial biomass
carbon; EPL, EPC, and EM, enzymes for POCL, POCC, and MOC, respectively. The bottom and top of the box denote the 25th
and 75th percentile (the lower and upper quartiles), respectively. The band near the middle of the box is the 50th percentile (the
median). The ends of the whiskers represent the lowest datum within 1.5 IQR (interquartile range) of the lower quartile, and the
highest datum within 1.5 IQR of the upper quartile. The data beyond the two ends of the whiskers might be considered outliers.
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Although the maximum specific enzyme activities

increased under scenario I–V, the decreased MBC led to

decreases in enzyme production after several years and

then provided negative feedback to decomposition rates.

Take scenario II as an example, the concentrations of

ligninase and cellulase were reduced by 21% and 14%,

respectively, at around the seventh year, compared to

the baseline concentrations (see Figs. 9i and j). Although

FIG. 9. Simulated warming effects on (a) CO2 efflux, (b) soil organic carbon (SOC¼POCþMOCþQ), (c) particulate organic
carbon-lignin (POC-lignin), (d) particulate organic carbon-cellulose (POC-cellulose), (e) mineral-associated organic carbon
(MOC), (f ) adsorbed phase of DOC (Q), (g) dissolved organic carbon (DOC), (h) microbial biomass carbon (MBC), (i ) lignin-
degrading enzyme (ligninase), and ( j) cellulose-degrading enzyme (cellulase). Carbon use efficiency (CUE) was modified by
temperature under Scenario I–V but remained the same as the control treatment under Scenario VI (þ28C, CUE¼0.47). The typical
parameter values in Table 5 were adopted and the VP values (T¼ 128C and pH¼ 6) for POC-lignin and POC-cellulose were set to
0.96 and 5.02 mg C�[mg C]�1�h�1, respectively.
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the maximum specific enzyme activities of ligninase and

cellulase were increased by 17% and 11% due to a

temperature increase of 28C, the maximum enzyme

activities (maximum specific enzyme activity multiplied

by enzyme concentration) were still reduced by 8% and

4% for ligninase and cellulase, respectively, because of

the reductions in enzyme concentration. The enzyme

activities were also lower under warming than the

control from the seventh to the 11th year, which led to

accumulation of C in both POC pools under warming

conditions in those years. Thus it is understandable that

Zhou et al. (2012) observed that the activity of phenol

oxidase remained constant and the activity of peroxidase

was significantly lower under warming than the control

after 10 years. However, during the first year, the

activities of ligninase and cellulase were higher under

warming than the control, since both maximum specific

enzyme activities and enzyme concentrations were

higher. Therefore, the positive response of maximum

specific enzyme activity combining positive or negative

feedback of enzyme concentration to warming could

finally result in increased, unchanged, or reduced

enzyme activities, mainly depending on the changing

magnitudes of specific enzyme activity and enzyme

concentration.

CONCLUSION

We developed an enzyme-mediated SOC decomposi-

tion model with physically measurable pools. Based on

the analytical steady-state and dynamic analyses com-

bined with literature estimates, we estimated feasible

ranges/distributions for model parameters, such as the

maximum specific reaction rates and half-saturation

constants for the decompositions of POC and MOC and

the uptake of DOC by MBC, the specific maintenance

factor and the adsorption and desorption coefficients.

The scenario analysis of responses of SOC dynamics to

warming indicated that the decreased MBC under

warming conditions might lead to decreases in enzyme

production and provide negative feedback to decompo-

sition rates. Although the maximum specific enzyme

activities increased with increasing temperature, the

overall decomposition rates were reduced and the total

SOC yielded net accumulation of C over 50–100 yr with

regard to warming and dynamic CUE, while a constant

CUE might result in a net SOC loss. Our model

simulation indicated that SOC losses under warming

conditions could occur in the first few years, and

subsequently recover because of reductions in decom-

position resulting from reductions in microbial biomass

and associated enzyme production.

Multiple SOC pools (POC-lignin, POC-cellulose,

MOC, and Q) in the MEND model elucidate different

responses of various pools to temperature changes and

the contributions of various pools to the overall SOC

dynamics, which is more informative than the model

with a single SOC pool (e.g., Allison et al. 2010).

Different behaviors between the POC-lignin and POC-

cellulose pools could be interpreted by the changes in

individual enzyme pools and a much higher Ea for the

specific lignin degradation rate than for cellulose

degradation. The dynamics of different SOC pools

reflected the catalytic functions of specific enzymes

targeting specific substrates and the interactions between

microbes, enzymes, and SOC.

The feasible parameter values and the MOPSA

method developed in this study can be used as useful

tools to parameterize the decomposition models incor-

porating microbial-enzyme kinetics. Our current model

simplifies the descriptions of enzyme dynamics and the

relationships to microbial dynamics. Further steps to

incorporate enzyme patterns and responses to substrate

chemistry and microbial stoichiometry (Sinsabaugh et

al. 2008) into mathematical models will be required for a

complete process description.
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Supplement
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the literature (Ecological Archives A023-015-S1).
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