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P. trituberculatus is an economically important mariculture species in China. Evaluating its
genetic diversity and population structure can contribute to the exploration of germplasm
resources and promote sustainable aquaculture production. In this study, a total of
246,243 SSRs were generated by transcriptome sequencing of P. trituberculatus.
Among the examined 254,746 unigenes, 66,331 had more than one SSR. Among the
different SSR motif types, dinucleotide repeats (110,758, 44.98%) were the most
abundant. In 173 different base repeats, A/T (96.86%), AC/GT (51.46%), and ACC/
GGT (26.20%) were dominant in mono-, di-, and trinucleotide, respectively. GO
annotations showed 87,079 unigenes in 57 GO terms. Cellular process, cell, and
binding were the most abundant terms in biological process, cellular component, and
molecular function categories separately. A total of 34,406 annotated unigenes were
classified into 26 functional categories according to the functional annotation analysis of
KOG, of which “general function prediction only” was the biggest category
(6,028 unigenes, 17.52%). KEGG pathway annotations revealed the clustering of
34,715 unigenes into 32 different pathways. Nineteen SSRs were identified as
polymorphic and, thus, used to assess the genetic diversity and structure of 240 P.
trituberculatus individuals from four populations in the Bohai Sea. Genetic parameter
analysis showed a similar level of genetic diversity within wild populations, and the cultured
population indicated a reduction in genetic diversity compared with wild populations. The
pairwise FST values were between 0.001 and 0.04 with an average of 0.0205 (p < 0.05),
suggesting a low but significant level of genetic differentiation among the four populations.
Structure analysis demonstrated that the four populations were classified into two groups
including the cultured group and other populations. The phylogenetic tree and PCA
revealed that a vast number of samples were clustered together and that cultivated
individuals were distributed more centrally than wild individuals. The findings contribute to

Edited by:
Siti Nor,

University of Malaysia Terengganu,
Malaysia

Reviewed by:
Xiaoming Pang,

Beijing Forestry University, China
Dahui Yu,

Beibu Gulf University, China

*Correspondence:
Xianjiang Kang

xjkang@hbu.edu.cn

Specialty section:
This article was submitted to

Evolutionary and Population Genetics,
a section of the journal
Frontiers in Genetics

Received: 29 April 2022
Accepted: 16 June 2022
Published: 18 July 2022

Citation:
Duan B, Mu S, Guan Y, Liu W, Kang T,

Cheng Y, Li Z, Tian Y and Kang X
(2022) Development of Microsatellite

Markers Based on Transcriptome
Sequencing and Evaluation of Genetic

Diversity in Swimming Crab
(Portunus trituberculatus).
Front. Genet. 13:932173.

doi: 10.3389/fgene.2022.932173

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9321731

ORIGINAL RESEARCH
published: 18 July 2022

doi: 10.3389/fgene.2022.932173

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.932173&domain=pdf&date_stamp=2022-07-18
https://www.frontiersin.org/articles/10.3389/fgene.2022.932173/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.932173/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.932173/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.932173/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.932173/full
http://creativecommons.org/licenses/by/4.0/
mailto:xjkang@hbu.edu.cn
https://doi.org/10.3389/fgene.2022.932173
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.932173


the further assessment of germplasm resources and assist to provide valuable SSRs for
marker-assisted breeding of P. trituberculatus in the future.
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INTRODUCTION

Swimming crab, P. trituberculatus, is an edible portunid of great
commercial significance, which has been widely farmed in China.
Due to its high nutritional value and rapid growth, P.
trituberculatus has become one of the most important
economic crab species in marine aquaculture (Lv et al., 2017).
Indeed, P. trituberculatus is one of the most heavily fished
brachyurans in the world with approximately 95% of the total
catch occurring in China (Liu et al., 2013; Hui et al., 2018). The
total catch was 424,630 tons in 2020 (Bureau of Fisheries of
Ministry of Agriculture, PRC, 2021). With increasing serious
problems such as mass outbreaks of disease, overfishing, and
water pollution in recent years, however, the P. trituberculatus
aquaculture and fishing industry face great pressure. Despite the
improved artificial propagation and rearing techniques, the crab
industry still relies on the collection of wild specimens to provide
parental stock (Wang et al., 2012). It is urgent to determine the
genetic diversity and population structure of P. trituberculatus for
the exploration of germplasm resources and conservation
management of this species.

Genetic diversity is the material basis necessary for
populations to deal with changing environment, and it can
trace the history of biological evolution and explore the
evolutionary potential of existing organisms (Liu et al.,
2021a). However, for the breeding of shrimp and crab, long-
term artificial directional selection eventually leads to a decline
in genetic diversity in the population (Wang et al., 2018a).
Moreover, it is difficult for natural stocks to recover from
declining genetic diversity caused by overfishing (Liu et al.,
2009). Benefitting from the rapid advance of high-throughput
sequencing and genotyping technologies, an increasing number
of molecular markers are developed and applied to genetic
analyses in aquatic species. To date, molecular markers
including isozyme (Fan et al., 2009), random amplified
polymorphic DNA (RAPD) (Chi et al., 2010), amplified
fragments length polymorphism (AFLP) (Liu et al., 2013; Liu
et al., 2014), mitochondrial DNA (Guo et al., 2012; Shan et al.,
2017; Hui et al., 2018), microsatellites DNA (Lee et al., 2013; Yue
et al., 2022), and single nucleotide polymorphism (SNP) (Duan
et al., 2022a) were developed and used in population genetic
analysis of P. trituberculatus. Among these markers,
microsatellite DNA markers (simple sequence repeats, SSRs)
have become an ideal molecular marker in population genetics
research because of their co-dominant inheritance, high
polymorphism, reproducibility, hyper-variable, transferability,
random distribution in the genome, and ease of analysis via PCR
(Gou et al., 2020; Pavan Kumara et al., 2020; Zhu et al., 2021; Lu
et al., 2022). Such markers are often used to obtain genetic
diversity coefficients, which can provide a basis for genetic
protection strategies. However, the traditional methods of

developing SSRs are usually time-consuming and labor-
intensive because of establishing of the genomic library to get
the fragmented sequence and hybridization in situ with probes.
In recent years, the increased access and affordability of high-
throughput sequencing technologies have enabled genomic and
transcriptomic research on many marine species, thus leading to
more rapid and accurate identification of SSR markers (Yang
et al., 2018; Liu et al., 2022).

In recent years, transcriptome sequencing (RNA-seq) is widely
used in the study of species genetics because of its wide dynamic
range, precise, sensitivity, unbiased quantification of transcripts,
and comprehensive coverage of all expressed sequences in a given
tissue sample (Chakraborty et al., 2022). Now, RNA-seq is a very
updated and efficient method for discovering new genes,
expression pattern identification, and development of SSR
markers with higher throughput and much lower cost (Li
et al., 2018; Tulsania et al., 2020). SSR markers acquired from
RNA-seq have intrinsic advantages over genomic SSRs because of
high efficiency, strong transferability, and correlation with
potential genes, as well as their applicability as anchor markers
for comparative mapping and evolutionary studies (Zheng et al.,
2014; Zhao et al., 2019). Transcriptomic SSRs have been
extensively explored and applicated in various aquatic species,
such as giant freshwater prawn (Macrobrachium rosenbergii)
(Jung et al., 2011; Yu et al., 2019), oriental river prawn
(Macrobrachium nipponense) (Ma et al., 2012), mud crab
(Scylla paramamosain) (Ma et al., 2014), Paphia textile (Chen
et al., 2016), Penaeus monodon (Nguyen et al., 2016), and pearl
oyster (Pinctada maxima) (Wang et al., 2019a). Transcriptomics
have also played an important role in advancing portunid
aquaculture (Waiho et al., 2022). Nevertheless, the current
transcriptome studies involving P. trituberculatus mainly focus
on its nutrition (Zhou et al., 2019a; Fang et al., 2021a),
development (Liu et al., 2018a; Liu et al., 2019), reproduction
(Wang et al., 2018b), and sex determination (Zhang et al., 2022),
while molecular research is scarce.

The present study aimed to 1) develop SSR markers with
RNA-seq technology; 2) characterize the transcriptome of P.
trituberculatus; and 3) evaluate the genetic diversity and
structure among different populations using the polymorphic
SSR markers from transcriptome sequencing. Our findings not
only contribute to molecular genetic analyses but also provide
valuable information for effective breeding and conservation
strategies of the P. trituberculatus aquaculture.

MATERIALS AND METHODS

Sample Collection and DNA Extraction
A total of 240 swimming crab samples from four populations
were collected (Supplementary Table S1; Figure 1), including
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three wild populations [Qinhuangdao (QHD), Huanghua (HW),
and Penglai (PL)] from the Bohai Sea and one cultured stock
(HC) from the national breeding farm of swimming crabs in
Huanghua (Hebei, China) which is adjacent to the Bohai Sea.
Claws of each sample were obtained and preserved in absolute
alcohol and stored at −20°C until DNA extraction. Genomic DNA
was isolated from the claw muscle using the TIANamp Marine
animal DNA extraction kit (TIANGEN, Beijing, China) following
the manufacturer’s protocols. The quality and concentration of
the extracted DNA were determined using the NanoDrop ND-
1000 spectrophotometer (Thermo Scientific, Wilmington, DE,
United States) and 1% agarose electrophoresis gel, and then
diluted to 100 ng/μl and stored at −20°C for polymerase chain
reaction (PCR) amplification.

RNA Extraction, Library Preparation, and
Transcriptome Sequencing
A total of 18 individuals P. trituberculatus (nine wild females and
nine cultured females) were collected from the national breeding
farm of swimming crabs in Huanghua, China. The crabs were all
anesthetized on ice and dissected to collect muscle and ovaries
samples. All of the samples were rapidly flash-frozen in liquid
nitrogen and stored at −80°C for RNA extraction. An equal
amount of either muscle tissue or ovaries tissue was dissected
from each of three individuals and pooled into one mixed sample.

A total of 12 mixed samples were produced, including 6 mixed
muscle samples (3 wild and 3 farmed) and 6 mixed ovarian
samples (3 wild and 3 farmed), each containing three biological
replicates. Total RNA was extracted from each mixed sample
using the TRIzol reagent (Invitrogen, Carlsbad, CA,
United States) following the manufacturer’s protocol. RNA
degradation and contamination were monitored on 1%
agarose gels, and RNA purity was checked using the
NanoPhotometer® spectrophotometer (IMPLEN, CA,
United States). RNA concentration and integrity were
measured using the Qubit® RNA Assay Kit in Qubit®
2.0 Flurometer (Life Technologies, CA, United States) and the
RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer
2100 system (Agilent Technologies, CA, United States),
respectively.

A total amount of 1.5 μg RNA from each sample was used as
input material for the RNA sample preparations. Sequencing
libraries were generated using the NEBNext® Ultra™ RNA
Library Prep Kit for Illumina® (NEB, United States) following
the manufacturer’s recommendations and index codes were
added to attribute sequences to each sample. Briefly, mRNA
was purified from total RNA using poly-T oligo-attached
magnetic beads. Fragmentation was carried out using divalent
cations under elevated temperature in NEBNext First Strand
Synthesis Reaction Buffer (5X). First-strand cDNA was
synthesized using random hexamer primer and M-MuLV

FIGURE 1 | Collection map of P. trituberculatus samples.
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Reverse Transcriptase (RNase H−). Second strand cDNA
synthesis was subsequently performed using DNA Polymerase
I and RNase H. Remaining overhangs were converted into blunt
ends via exonuclease/polymerase activities. After adenylation of
3′ ends of DNA fragments, NEBNext Adaptor with hairpin loop
structure was ligated to prepare for hybridization. In order to
select cDNA fragments of preferentially 250–300 bp in length, the
library fragments were purified with AMPure XP system
(Beckman Coulter, Beverly, United States). Then 3 μl USER
Enzyme (NEB, United States) was used with size-selected,
adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at
95°C before PCR. Subsequently, PCR was performed with
Phusion High-Fidelity DNA polymerase, Universal PCR
primers, and Index (X) Primer. Then PCR products were
purified (AMPure XP system) and library quality was assessed
on the Agilent Bioanalyzer 2100 system. At last, the library
preparations were sequenced on an Illumina HiSeq
4000 platform and paired-end reads were generated at
Novogene Corporation (Tianjin, China).

Quality Control, Transcriptome Assembly,
and Gene Function Annotation
Raw data (raw reads) of fastq format were firstly processed
through in-house perl scripts. In this step, the clean data
(clean reads) were obtained by removing reads containing
adapter, reads containing ploy-N, and low-quality reads
(quality score < 20) from raw data. At the same time, Q20,
Q30, GC-content, and sequence duplication levels of the clean
data were calculated. All the downstream analyses were based on
clean data with high quality. Transcriptome assembly of the high-
quality clean reads was accomplished using Trinity software with
default settings (Grabherr et al., 2011). In order to annotate the
assembled unigenes, a BLASTX search with an E-value < 10−5

(Camacho et al., 2009) was performed against several public
databases, including NCBI non-redundant protein sequences
(Nr), NCBI non-redundant nucleotide sequences (Nt), Protein
family (PFAM), euKaryotic Ortholog Groups (KOG), Swiss-Prot
protein, KEGG Ortholog database (KO) and Gene Ontology
(GO). Assigning the GO terms to the unigenes was
implemented on Blast2GO software (Götz et al., 2008).

Simple Sequence Repeats Identification
and Primer Design
SSR loci were identified throughout all unigenes generated by the
P. trituberculatus transcriptome sequencing using MISA software
version 1.0 (http://pgrc.ipk-gatersleben.de/misa/misa.html). The
minimum number of repeats was defined as ten for
mononucleotide repeats, six for dinucleotide repeats, five for
tri-, tetra-, penta-, and hexanucleotide repeats. Primer pairs
for each SSR locus were designed using Primer3 (http://
primer3.sourceforge.net/releases.php) according to the
following criteria: 1) primer length of 18–25 bp; 2) annealing
temperature (Tm) between 55°C and 62°C; 3) GC content from
40% to 60%; 4) PCR product length of 90–250 bp; 5) avoidance of
primer dimers and hairpin structures. SSR primers were

synthesized by General Biosystems Co., Ltd. (Anhui, China).
Twelve samples were used to identify the polymorphism of the
selected SSR primers through PCR amplification and 8% non-
denaturing polyacrylamide gel electrophoresis with
pBR322 DNA/MspI (MBI) as a standard DNA marker.

Simple Sequence Repeat Genotyping
A total of 19 pairs of polymorphic SSR primers were identified
and used for subsequent analysis (Table 1). All forward primers
were labeled with the fluorescent dye, 6-carboxy-fluorescein
(FAM). PCR amplification was performed in 20 μl reaction
volumes containing 2 μl of template DNA, 2 μl of each primer
(2.5 μmol/L each), 10 μl of 2 × Es Taq Master Mix (CWBIO,
Beijing, China), and 4 μl of ddH2O. Amplification cycles
consisted of initial denaturation (5 min at 95°C), followed by
34 cycles of denaturation (30 s at 95°C), annealing (30 s at 60°C),
extension (30 s at 72°C), and further extension (10 min at 72°C).
After amplification, PCR products were diluted 10 times in sterile
water. The pooled sample was composed of 20 μl Hi-Di
formamide and 0.2 μl GeneScan 500 ROX Size Standard. An

TABLE 1 | Characteristics of 19 SSR loci for P. trituberculatus.

Locus Primer sequences Repeat motif Anneal (°C)

PrMa01 F:CCTTGCCTCGTCAGTGTCAT (CTG)6 60
R:TGGCTGTAGACACCCTCCAT

PrMa02 F:AGAGCTGACCTCGCTTTGAC (GTG)8 60
R:TCCAGCTCCTCCTGTCCAAT

PrMa03 F:CTTGATTGCCTCTCGCTTGT (TG)10 60
R:GGGGGAGAGGGAGAGAATGT

PrMa04 F:TCCTGGACCTTGTTCAGTCC (TCC)10 60
R:GCAATCCCACACACACTCCT

PrMa05 F:GCGTTGCGTGTACTGAAAGT (TG)31 60
R:GCGGCTCTGGTCAGGAATAC

PrMa06 F:TCCTGCAACTTACATTCTTGGTC (CA)15 60
R:GTGTGCACAGGATACAGCCT

ZL05 F:AGAATGTTGCCATGGCTGGA (GGT)7 60
R:ACCCTGTATCAGTGCGTTGG

ZL06 F:CCCGCCCCTGTACATTTTCA (TAT)10 60
R:TGTTGGTAGGCTTGGTGGTC

ZL08 F:GCTTCTGCTGCTGGTCCTTA (CAAC)10 60
R:ACCAGACATTGCTGAGCATG

DX05 F:GTGGGCCGCCAATATCACTA (TG)12 60
R:AATCCACCACTTGCACCCAA

DX07 F:CGTGCATCCGTGTGTTTGTT (TG)10 60
R:GCCATCTTTTCGCCGAGTTG

DX09 F:TAGGCATGGGATGGGTGAGA (CA)17 60
R:CGGGAAGGAGTGTTGTTGAGT

DX10 F:AATCACAACCCAGCCGCATA (TG)12 60
R:ACAACGAAGGAGAGATGCGG

DX14 F:CCCGCTACCCCATAACTCAC (GTG)7 60
R:TCTTCCTCCCCACAGCCATA

DX15 F:CGTCCCATCATCTGACAAAGG (GAG)6 60
R:TCCTTCACCTCTTCCTCTTTTCT

DX16 F:GAGGCAAGCAAGTTAACCATTAG (GT)7 60
R:CTTCCTGGTTACCTCATCCTACC

DX19 F:CACACTCGTTGCAGACACTACTT (TG)11 60
R:CTGTTACTTACTCGGTGCTTTGG

TRAN2 F:TCACTACCACTACCGCTTTGTTT (CAC)8 60
R:GATGTCAGTAACGGGAGAGTGAG

TRAN3 F:GCTGTTGTAGAAACCCATGAAAG (GTG)7 60
R:AGGGAGATACACGACCAACACTA
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ABI 3730XL Genetic Analyzer (Applied Biosystems, Foster City,
CA, United States) was used to conduct capillary electrophoresis
(CE) following the manufacturer’s instructions. Each CE sample
contained 1 μl diluted PCR product and 15 μl pooled sample.
Allele sizes (in base pairs) were determined with GeneMarker®
Fragment Analysis Software (Softgenetics LLC®, State College,
PA, United States) on the comparison of the position of the
internal size standard in each lane with the position of the peak
value of each sample.

Genetic Diversity and Population Structure
Analysis
Genetic diversity was estimated by determining the genetic
parameters, such as the number of alleles (Na), the effective
number of alleles (Ne), the observed heterozygosity (HO) and
expected heterozygosity (HE) using POPGENE version 1.3 (Yeh
et al., 1999). Based on allele frequency, the polymorphism
information content (PIC) per locus was estimated by PIC-
CALC software (Nagy et al., 2012). The null allele frequency
(Fna) for loci was calculated using GenePOP (Rousset, 2008). p
values were calculated for determining the Hardy–Weinberg
equilibrium (HWE) at each locus with POPGENE version 1.3.
Genetic differentiation index (FST) between populations and
analysis of molecular variance (AMOVA) were calculated
using GenAlEx 6.5 (Peakall and Smouse, 2012).

The phylogenetic tree was constructed using the neighbor-
joining (NJ) method as implemented in MEGA7 (Kumar et al.,
2016). Principal component analysis (PCA) was carried out using
Canoco 4.5 to elucidate genetic relationships within and among
populations. Bayesian model-based population genetic structure
was inferred by STRUCTURE version 2.3.4 (Pritchard et al.,
2000). The putative number of populations (K) was set from 1 to
10 with 3 replicate simulations for each K value using
100,000 MCMC (Markov Chain Monte Carlo) iterations after
an initial 100,000 burn-in period. With the log probability of data
(LnP(D)) and an ad hoc statistic ΔK based on the rate of change in
LnP(D) between successive K-values, the structure output was
entered into Structure Harvester (Evanno et al., 2005; Earl and
Vonholdt, 2012) to determine the optimum K value.

RESULTS

Transcriptome Assembly and Sequence
Annotation
The transcriptome sequencing of 12 mixed samples from muscle
and ovary of P. trituberculatus was conducted to generate RNA
sequences, and the statistical data has been shown in Table 2.
Illumina sequencing generated 661,922,456 raw reads. The raw
reads produced in this study have been deposited in the Short
Read Archive of the National Center for Biotechnology
Information (NCBI) with accession numbers
SUB11453401 and PRJNA836158. After stringent quality
filtering, a total of 637,983,466 clean reads were obtained,
accounting for 99.38% of the total raw reads. GC content
ranged from 48.5% to 53.47% with an average of 50.88%, and
the mean Q20 and Q30 were 96.3% and 91.07%, respectively. A
total of 338,285 transcripts were identified with an average length
of 879 bp (N50 length of transcript = 1,730 bp, which is defined as
the shortest sequence length of 50% of total contigs and is used to
evaluate the quality of assembled sequences), of which 11,0596
(32.69%) were less than 301 bp in length; 84,886 (25.09%) were
301–500 bp; 61,915 (18.3%) were 501–1,000 bp; 43,085 (12.74%)
were 1,001–2,000 bp; 37,803 (11.18%) were over 2,000 bp
(Supplementary Figure S1). Totaling 254,746 unigenes were
assembled with an average length of 1,077 bp (N50 length of
unigenes is 1,936 bp), among which 47,174 (18.52%) were less
than 301 bp in length; 67,149 (26.36%) were 301–500 bp; 59,692
(23.43%) were 501–1,000 bp; 42,928 (16.85%) were
1,001–2,000 bp; 37,803 (14.84%) were over 2,000 bp
(Supplementary Figure S1).

GO database was the largest matched database with
87,079 unigenes (34.18% of all unigenes) annotated, followed
by PFAM (86,669, 34.02%), Nr (77,856, 30.56%), SwissProt
(58,305, 22.88%), KO (34,715, 13.62%), KOG (34,406, 13.5%),
and Nt (29,269, 11.48%) database (Supplementary Figure S2). In
all, 118,572 (46.54%) unigenes were annotated in at least one
database and 9,901 (3.88%) were annotated in all databases. In the
Nr databases, 77,856 unigenes were annotated from 835 species.
The top-hit species in similarity search against the Nr database
included Zootermopsis nevadensis (9,854, 12.7%), Daphnia pulex
(4,798, 6.2%), Tribolium castaneum (2,730, 3.5%), Stegodyphus
mimosarum (2,399, 3.1%), Crassostrea gigas (2,389, 3.1%), and
other (55,686, 71.5%) (Supplementary Figure S3).

For the functional annotation and classification of the
assembled unigenes, 87,079 unigenes were assigned to 57 GO
terms which included three ontology categories: biological
process (258,416 unigenes), cellular component (178,933), and
molecular function (102,370) (Figure 2A). Themain components
within biological process category contained cellular process
(52,412, 60.19%), metabolic process (43,020, 49.40%), and
single-organism process (39,395, 45.24%). Cell (32,536,
37.36%) and cell part (32,535, 37.36%) were the most frequent
proportion in cellular component category. In the molecular
function category, the largest potion was binding (45,970,
52.79%), followed by catalytic activity (32,373, 37.18%).
According to KOG annotations, 34,406 annotated unigenes

TABLE 2 | Summary statistics for transcriptome sequencing of P. trituberculatus.

Category Number

Total raw reads 661,922,456
Total clean reads 637,983,466
Clean reads proportion (%), Q20 (%), Q30 (%) 99.38, 96.3, 91.07
Total number of unigenes examined 254,746
Mean length of unigenes (bp), N50 (bp) 1,077, 1,936
GC content (%) 50.88
Total amount of transcripts 338,285
Mean length of transcripts (bp), N50 (bp) 879, 1,730
Total size of examined sequences (bp) 274,270,543
Total number of identified SSRs 246,243
Number of SSR containing sequences 132,908
Number of sequences containing more than one SSR 66,331
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were classified into 26 functional categories (Figure 2B). Among
these categories, “general function prediction only” was the
biggest category (6,028 unigenes, 17.52%), followed by “signal
transduction mechanisms” (5,223, 15.18%), and
“posttranslational modification, protein turnover, chaperones”
(3,466, 10.02%) category.

Identification of the biological pathways was performed
according to the KEGG annotations, which showed the
clustering of 34,715 unigenes into 32 pathways (Figure 3).

Detailedly, these unigenes were categorized into five KEGG
biochemical pathways: Cellular Processes (A), Environmental
Information Processing (B), Genetic Information Processing
(C), Metabolism (D), and Organismal Systems (E). This
analysis revealed that the top five pathways included signal
transduction (4,665 unigenes, 13.44%), endocrine system
(2,629, 7.57%), transport and catabolism (2,491, 7.18%),
translation (2,100, 6.05%), and cellular community
(1,852, 5.33%).

FIGURE 2 | Annotation of the P. trituberculatus transcriptome. (A)GO annotation and classification of unigenes. (B) KOG annotation and classification of unigenes.
The x-axis indicates the categories, and the y-axis indicates the number of the unigenes.
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Characterization of Simple Sequence
Repeat Markers
A total of 246,243 SSRs were identified from 132,908 SSR-
containing unigenes of P. trituberculatus. The distribution
density was one SSR per 1.11 kb, and 66,331 sequences
contained more than one SSR (Table 2). Dinucleotide repeats
were the most abundant type (110,758, 44.98%), followed by
mono- (64,679, 26.27%), tri- (61,923, 25.15%), tetra- (7,154,
2.91%), penta- (1,343, 0.55%), and hexanucleotide (386,
0.16%) (Supplementary Table S1). The number of tandem
repeats of microsatellite motifs ranged from 5 to 103.
Microsatellites with six tandem repeats (28371, 11.52%) were
the most common, followed by five tandem repeats (25,920,
10.53%), ten tandem repeats (24,777, 10.06%), and eleven
tandem repeats (24,136, 9.88%). Microsatellite motifs with >
16 tandem repeats accounted for 22.39% (55,129)
(Supplementary Table S2).

Of the 246,243 SSR loci, 173 different repeat motifs were
detected (Supplementary Table S3). Among the two types of

mononucleotide repeats, A/T was the most abundant (62,646,
96.85%) when compared to C/G. AC/GT (56,994, 51.46%) was
the dominant motif type in the dinucleotide repeat, followed by
AG/CT (47,487, 42.87%), and AT/AT (6,046, 5.46%). The most
abundant types in the trinucleotide were ACC/GGT (16,224,
26.20%). Moreover, a low percentage (3.62%) of tetra-, penta- and
hexanucleotide repeat motifs were observed in all identified
microsatellite motifs. The physical positions of these SSR
markers in the unigenes were also identified that 1708, 8,644,
and 5,067 SSRs were located in the coding sequence (CDS),
3′untranslated region (UTR) and 5′UTR, respectively. In CDS,
trinucleotide repeats (1,279, 74.88%) were the dominant type.
Most of the mono- and dinucleotide repeats (6,290, 72.77%) were
located in 3′UTR, and 5′UTR contained the majority of di- and
trinucleotide repeats (3,283, 64.79%) (Supplementary
Figure S4).

A total of 104,424 pairs of SSR primers were designed, 150 of
which were randomly selected to identify polymorphism
(Supplementary Table S4). Finally, 19 pairs of SSR primers

FIGURE 3 | Function annotation and classification of P. trituberculatus unigenes in the KEGG category.
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showed high polymorphism in 8% non-denaturing
polyacrylamide gel electrophoresis (Table 1), and they were
used for subsequent analysis in P. trituberculatus.

Genetic Diversity Within Populations
All parameters of the 19 SSR loci were calculated (Table 3).
The PIC values ranged from 0.598 (TRNA3) to 0.948
(PrMa05) with a mean of 0.802, showing that these SSRs
has high polymorphism (PIC > 0.5) and are suitable for the
evaluation of genetic diversity in P. trituberculatus
populations. A total of 243 alleles were found with an
average of 12.79 per locus. The Ne values ranged from
2.751 to 20.156 with a mean of 7.095. The HO and HE

ranged from 0.467 to 0.938 (mean: 0.692) and from
0.636 to 0.95 (mean: 0.824), respectively. The three wild
populations (HW, PL, and QHD) showed a similar level of
genetic diversity, while the cultivated population indicated a
reduction in genetic diversity compared with them due to the
relatively smaller genetic parameters (Table 4). Notably, the
majority of SSR loci had null alleles and presented significant
deviations from HWE, and heterozygote deficiency (HO < HE)
was observed, with the exception of PrMa01, DX05,
and DX19.

Population Differentiation and Variation
The populations HW and HC showed highest FST (0.040) (p <
0.05) whereas the lowest FST of 0.001 (p < 0.05) was observed
between populations PL and QHD (Table 5). The mean FST was
observed to be 0.0205, indicating low but significant levels of
genetic differentiation among the four populations. The results of
AMOVA revealed that only 2% of genetic variation was
partitioned among populations while 98% of the variation was
concentrated within populations (Table 6).

Population Genetic Structure
The genetic structural analysis of 240 P. trituberculatus samples
was performed to infer the optimal K value with the ΔK method.
When the highest ΔK value was observed, the optimal K value
was 2 (Figure 4A), indicating that all individuals were clustered
into two groups, including wild group (green) and the cultivated
group (red) (Figure 4B). This was consistent with the population-
level phylogenetic tree that the four populations were divided into
2 main clusters, in which cluster 1 contained only HC and cluster
2 contained all wild populations (Supplementary Figure S5). A
certain degree of biological mixing, however, was also observed
between wild and cultivated samples. The PCA revealed that the
first two principal components (PCs) explained 7.9% (PC1) and
6.62% (PC2) of total variation respectively (Figure 5). The
majority of samples were clustered together, and no obvious
geographical patterns were observed. The cultivated individuals
were mainly clustered towards the right side (positive values) of
PC1. The individual-level phylogenetic tree was constructed
based on NJ method, in which all individuals were clustered
into two clades, and no significant clustering patterns related to
geographical locations were found, but cultivated individuals
were distributed more centrally than wild individuals (Figure 6).

DISCUSSION

Transcriptome Sequencing
P. trituberculatus is a typical mariculture species with significant
economic value. The Bohai Sea is an important habitat and
fishing area for this species. The germplasm resources from
the Bohai Sea form a vital foundation for the protection and
breeding of P. trituberculatus in the national breeding farms of
swimming crabs. Large-scale development of molecular markers
and advancement of high-throughput sequencing technologies
provide a solid support for germplasm resources assessment of P.
trituberculatus in recent years (Shan et al., 2017; Liu et al., 2021b).

TABLE 3 | Genetic diversity parameters for 19 SSR loci.

Locus Na Ne HO HE PIC Fna HWE

PrMa01 12 5.124 0.925 0.805 0.779 0.0000 **
PrMa02 11 7.354 0.532 0.864 0.849 0.0706 **
PrMa03 21 11.161 0.833 0.91 0.903 0.0486 **
PrMa04 12 6.672 0.808 0.85 0.834 0.0157 **
PrMa05 30 20.156 0.791 0.95 0.948 0.084 **
PrMa06 20 9.693 0.488 0.897 0.888 0.2086 **
ZL05 9 4.239 0.467 0.764 0.727 0.0991 **
ZL06 11 5.079 0.708 0.803 0.782 0.0788 **
ZL08 12 6.644 0.82 0.85 0.833 0.000 ns
DX05 10 6.363 0.871 0.843 0.824 0.000 ns
DX07 7 3.892 0.613 0.743 0.702 0.0254 **
DX09 21 12.708 0.774 0.921 0.916 0.0835 **
DX10 10 4.938 0.699 0.798 0.773 0.0525 **
DX14 8 4.052 0.525 0.753 0.714 0.0289 **
DX15 13 8.75 0.571 0.886 0.875 0.1829 **
DX16 7 4.222 0.679 0.763 0.727 0.0359 **
DX19 11 6.647 0.938 0.85 0.832 0.000 **
TRAN2 9 4.367 0.629 0.771 0.736 0.000 **
TRAN3 9 2.751 0.483 0.636 0.598 0.000 **
Mean 12.79 7.095 0.692 0.824 0.802

Na, number of alleles; Ne, number of effective alleles; Ho, observed heterozygosity; HE,
expected heterozygosity; PIC, polymorphism information content; Fna, frequency of null
alleles; HWE, Hardy–Weinberg equilibrium; **p < 0.01. ns, no deviations from HWE.

TABLE 4 | Mean genetic parameters of four P. trituberculatus populations.

Population Na Ne HO HE PIC

HW 11.421 5.572 0.706 0.756 0.728
PL 11.842 5.595 0.7 0.76 0.731
QHD 11.263 5.802 0.675 0.752 0.724
HC 8.737 4.507 0.688 0.716 0.679

TABLE 5 | Estimates of pairwise FST values among the four P. trituberculatus
populations.

HW HC PL QHD

HW —

HC 0.040* —

PL 0.016* 0.023* —

QHD 0.020* 0.023* 0.001* —

*Significant difference (p < 0.05).
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Lv et al. (2014) identified 22,673 SSRmarkers of P. trituberculatus
with transcriptome sequencing, which provided a material basis
for future genetic linkage and quantitative trait loci analyses in
this species. In this study, Illumina sequencing of P.
trituberculatus was performed for the development of SSR
markers, which generated new high-throughput data for
transcriptomics, providing valuable information for germplasm
conservation and selective breeding of P. trituberculatus.

A total of 246,243 SSRs were identified with the Illumina
HiSeq 4000 platform, which was far higher than that of yesso
scallop (Patinopecten yessoensis) (2,748 SSRs, Hou et al., 2011),
yellow drum (Nibea albiflora) (12,254, Gong et al., 2016),
Xingguo red carp (Cyprinus carpio var.singuonensis) (13,652,
Yue et al., 2016), freshwater ornamental shrimps (Neocaridina
denticulate) (25,355, Huang et al., 2020), and clam (Cyclina
sinensis) (12,418, Fang et al., 2020). The possible reason is that

TABLE 6 | Analysis of molecular variance (AMOVA) from four P. trituberculatus populations.

Source of
variation

df SS MS Variance component Percentage of
variation (%)

p-value

Among populations 3 77.042 25.681 0.149 2 0.001
Within populations 476 3408.842 14.333 7.166 98 0.001
Total 479 3485.883 7.316 100 0.001

df, degrees of freedom; SS, sum of squares; MS, mean square.

FIGURE 4 | (A) Relationships between the number of clusters (K) and the corresponding. ΔK statistics calculated based on STRUCTURE analysis. (B) Population
genetic structure based on the Bayesian clustering model among 240 P. trituberculatus samples at K = 2.
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P. trituberculatus has more chromosomes (2n = 106) than
shellfish, fish, and other crustaceans (Liu et al., 2012), thus
containing more SSR sequences. The average density of SSRs
was 1/1.11 kb, which was higher than that in P. maxima (1/
29.73 kb) (Wang et al., 2019a), sea cucumber (Apostichopus
japonicus) (1/29.2 kb) (Du et al., 2012), mandarin fish
(Siniperca chuatsi) (1/26.28 kb) (Sun et al., 2019), large-scale
loach (Paramisgurnus dabryanus) (1/6.99 kb) (Li et al., 2015a),
giant wrasse (Cheilinus undulatus) (1/5.35 kb) (Liu et al., 2020),
burbot (Lota lota) (1/4.25 kb) (Meng et al., 2019), and the
Bombay duck (Harpadon nehereus) (1/3 kb) (Huang et al.,
2021), while lower than that of the South African abalone
(Haliotis midae) (1/0.756 kb) (Franchini et al., 2011), tu-chung
(Eucommia ulmoides) (1/0.73 kb) (Huang et al., 2013). The
differences between SSR frequency and density may be
attributed to genome structure, SSR mining tools, dataset size,
and search criteria (Liu et al., 2021c). In addition, the most
abundant types of SSR are dinucleotide repeats, which was
consistent with the conclusions obtained by other high-
throughput sequencing technologies in aquatic animals (Kong
et al., 2019; Zhai et al., 2020).

In 173 different repeat motifs from the identified
microsatellites in this study, A/T was the most abundant motif
type higher than C/G in mononucleotide, which was congruent
with the previous studies (Song et al., 2008; Fang et al., 2020; Tian
et al., 2021). Ni et al. (2018) indicated that DNA recombination
and replication sliding mechanisms in PCR amplification might
result in high A/T content. In addition, methylated cytosine C is
easily mutated into thymine T through deamination, which
makes G/C mutate A/T in the process of DNA replication and
transcription (Schlötterer and Tautz, 1992). In dinucleotide
repeats, AC/GT exhibited the highest frequency, which was
coincident with the result obtained by Lv et al. (2013). In the
development of SSR markers based on transcriptome sequencing
in blood clam (Scapharca kagoshimensis), AC/GT was also

predominant among dinucleotide repeats (Chen et al., 2022).
However, the opposite results were found in the Zhikong scallop
(Chlamys farreri) (Zhan et al., 2008) and bay scallop (Argopecten
irradians) (Li et al., 2009) from the SSR-enriched library, which
showed that the proportion of AG/CT was higher than that of
AC/GT in the genome. This difference may be related to the SSR
screening method, base composition preference of different
coding genes, and methylase activity in vivo (Chen et al., 2022).

The location of SSR loci determines their functional roles.
SSRs in CDS affect the inactivated or activated genes or protein
synthesis process, and SSRs in 3′UTR are involved in
transcription slippage or gene silencing, and SSRs in 5′UTR
impact gene transcription and translation (Xia et al., 2014; Xu
et al., 2020; Liu et al., 2021c). In the present study, 88.92% of
microsatellites were located in UTRs, which was much higher
than that of CDS regions. One possible reason is that
microsatellites located in UTRs are subject to fewer
evolutionary constraints and natural selection pressure, thus
easily leading to phenotype changes (Xu et al., 2020; Vidya
et al., 2021). Moreover, 74.88% of trinucleotide repeats were
found to be accumulated in CDSs regions. This might explain
that non-trinucleotides negatively selected frameshift mutations,
while trinucleotide did not cause frame shift mutation and failed
to affect gene expression (Xia et al., 2014; Liu et al., 2021c).

To explore the potential functions of the obtained unigenes,
the functional annotation and classification of these unigenes
were conducted through BLASTX search in the public databases.
GO annotations showed a lot of unigenes distributed to cellular
process, metabolic process, cell, cell part, binding, and catalytic
activity terms. This suggests that genes encoding these functions
may be more conserved across different species and are thus
easier to annotate in the database. In addition, KEGG and KOG
annotations revealed that many unigenes might participate in the
life activities and basal metabolism of P. trituberculatus with
various biological functions. In summary, these annotation
analyses contribute to finding potential genes associated with
the growth and development of P. trituberculatus for breeding
programs. Further studies also should be carried out to identify
the molecular functions of these putative genes.

Population Genetic Diversity
Genetic diversity is the foundational core of ecosystems and
species diversity and can reveal population connectivity and
adaptive potential of a species as well as provide insight into
past events (Fang et al., 2021b; Ma et al., 2021). It is affected by
many factors, including artificial selection, genetic drift,
migration, and breeding systems and is usually evaluated by
the polymorphism information content (PIC) and
heterozygosity (Zhou, et al., 2019b). Values of PIC above
0.5 indicate high polymorphism (Singh et al., 2020).
Heterozygosity is an important index to evaluate population
variation at the genetic level, and the greater its value, the
higher the population genetic diversity (Qin et al., 2013). Li
et al. (2011) investigated the genetic diversity of five P.
trituberculatus populations with eight SSR markers and
observed that the mean HE values ranged from 0.7283 to
0.7704, which revealed a high level of genetic diversity in the

FIGURE 5 | PCA analyses based on SSR data for 240 individuals from
4 P. trituberculatus populations.
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wild resources. The current study reports PIC values of all SSR
loci greater than 0.5, indicating the high polymorphic nature of
the loci and their suitability for assessing genetic diversity in the
four P. trituberculatus populations. The observed and expected
heterozygosity values indicated a similar level of genetic diversity
among the wild populations, and compared with the wild
populations, the genetic diversity of the cultivated population
showed a reduction because of lower genetic coefficients. In the
estimation of genetic diversity of P. trituberculatus populations
from Shandong peninsula, Liu et al. (2012) found a similar result.
It is possible that genetic decline, genetic drift, and inbreeding
result in low genetic variability in farmed stocks (Jorge et al.,
2018). Additionally, the domesticated stocks are subjected to
artificial selection in a selective breeding program, which may

show reduced effective population size, thus leading to a decline
in genetic diversity (Wong et al., 2022).

In general, the expected heterozygosity (HE) is more accurate
than the observed heterozygosity (HO) for evaluating the level of
population genetic diversity because Ho is easily influenced by
sample sizes (Qin et al., 2013). Based on polymorphic SSR
markers, middle (HE = 0.73–0.84) to high (HE = 0.916–0.918)
genetic diversity of P. trituberculatus was revealed by Guo et al.
(2013) and Xu and Liu (2011). In this study, the mean HE ranged
from 0.675 to 0.706 which is lower than those observed in the
above studies, thus showing a lower level of genetic diversity
among the four populations. This may be attributable to the
special geographical location of the Bohai Sea. The Bohai Sea is a
semi-enclosed shallow water body and has limited connectivity to

FIGURE 6 | Neighbor-joining phylogenetic tree of 240 individuals of P. trituberculatus based on SSR data.
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the Yellow Sea by the Bohai Strait, which restricts the dispersal of
crabs and thus results in low genetic diversity (Liu et al., 2012).
Moreover, the phenomena of eutrophication and hypoxia, as well
as the serious interference from anthropogenic activities such as
land-source pollution, aquaculture pollution, and reclamation in
the Bohai Sea also reduced the genetic diversity of species (Wang
et al., 2021).

Genetic Differentiation and Variation
Among Populations
FST is an important gauge of genetic differentiation between
populations and is crucial for a better understanding of the
genetic relationships. A value of FST which falls between 0 and
0.05 shows a low level of genetic differentiation (Wang et al.,
2019b). The current study reports the mean FST values of 0.021
(p < 0.05) which is less than 0.05 (Table 5), indicating low levels
of genetic differentiation among the four P. trituberculatus
populations, which is conformed to the result described by Xu
and Liu (2011). Based on the pairwise FST ranging from 0.0142 to
0.0498, six SSR loci showed no genetic difference between wild
and cultivated populations of P. trituberculatus from the Zhejiang
coastal region (Li et al., 2015b). This genetic similarity may be
accounted for release of hatchery-produced offspring, which
results in hybrid germplasm. Liu et al. (2018b) and Liu et al.
(2021b) used SSR markers to evaluate the population structure of
P. trituberculatus in Panjin and Yingkou (Liaoning, China)
adjacent to Liaodong Bay, respectively, and found low but
significant levels of genetic differentiation (FST < 0.05, p <
0.05), suggesting that large-scale stock enhancement of P.
trituberculatus presents potential genetic risks on wild
populations, and that the relevant management measures
should be formulated to achieve successful stock enhancement
and resource restoration for the swimming crab.

During the current study, AMOVA results revealed that total
variance within populations (98%) was significantly greater than
that among populations (2%). The result corresponded to the
genetic variation found in blue swimmer crab (Portunus
pelagicus) (Chai et al., 2017). Most loci showed a deficit of
heterozygotes, which might result from the presence of null
alleles, artificial selection, migration, and inbreeding in the
population (Guo et al., 2013). Additionally, a majority of SSR
loci deviated from the Hardy-Weinberg equilibrium, and this
finding might be ascribed to null alleles or a small number of
samples. Hence, designing more effective SSR primers to
eliminate null alleles, and combining more molecular markers
with a larger sample size are essential to elaborate the genetic
diversity of P. trituberculatus populations in the Bohai Sea. In
addition, genetic monitoring is required to preserve the genetic
variations for preventing germplasm degradation andmaking full
use of the genetic resources of P. trituberculatus.

Population Genetic Structure
A stable genetic structure is central to species survival. Its
disintegration will lead to decreased populations or even
extinction. Given the economic significance of P.
trituberculatus, the understanding genetic structure is crucial

for the development of effective management strategies and
can provide a genetic tool for breeding and offer a scientific
support for resource conservation of this species (Liu et al., 2009).
The results of the current study establish that K = 2 is the most
likely number of clusters when ΔK is at its highest. This finding
confirms that the P. trituberculatus specimens from the four
populations cluster into two groups including the cultured group
and the wild group (Figure 4). Some of the genetic information
gained from the cultured samples has been assigned to wild
populations, indicating that the ancestral generation of these
wild individuals may derive from cultivated populations
because of the hatchery-reared seed release activities. In a
cultivated group, some genetic information that derives from
wild samples can be observed. This observation indicates some
degree of introgression of wild populations into the cultivated
population, which may be accounted for the fact that fertilized
female crabs are caught as broodstocks from the wild to use to
artificially culture and produce seeds (Duan et al., 2022b).

The individual-level phylogenetic tree and PCA illuminated
that all individuals showed some degree of genetic connectivity,
and that the cultured individuals were relatively concentrated in
comparison with wild individuals. Despite the annual release
activities, the gene exchange between cultivated and wild
populations is limited when compared to that between wild
populations in the open sea, thus leading to the separation of
cultured individuals from all individuals, showing more obvious
particularity. Therefore, it is vital to further investigate the genetic
structure of wild and cultured populations of P. trituberculatus in
the Bohai Sea for formulating scientific management measures to
prevent mutual interference between them.

CONCLUSION

Overall, this study performed assembly of transcriptome
sequences, functional annotation, and SSR markers discovery
of P. trituberculatus. Nineteen polymorphic SSRs were identified
and used to investigate the genetic variation and structure of the
four P. trituberculatus populations from the Bohai Sea. The
findings revealed a lower level of genetic diversity in P.
trituberculatus populations from the Bohai Sea when
compared to the other populations from the Yellow Sea and
the East China Sea. The pairwise FST values showed low but
significant genetic differentiation between populations. The
population structure analysis, phylogenetic tree, and PCA
showed a mixing of wild and cultivated individuals, which
corroborated the genetic connectivity between them, but
cultivated individuals were distributed more centrally than
wild individuals. In addition, heterozygote deficiencies, null
alleles, and significant deviation from HWE at many SSR loci
were observed. Therefore, practical and effective measures are
expected to be taken to reinforce the identification and protection
of genetic diversity and prevent degeneration of P. trituberculatus
germplasm. For example, developing high-quality markers such
as SNPs using a chromosome-level genome of P. trituberculatus
(Tang et al., 2020; Lv et al., 2021), and carrying out a large-scale
investigation to fully elucidate the genetic diversity and
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population structure of P. trituberculatus in the Bohai Sea.
Additionally, increasing the scale of swimming crab
aquaculture, extending the fishing moratorium, and
performing long-term genetic monitoring is also helpful for
the conservation and utilization of germplasm resources in P.
trituberculatus. In conclusion, the results improve our
understanding of the population genetic structure of P.
trituberculatus in the Bohai Sea and provide valuable
information for the selection breeding of this species.
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