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Abstract
We review the elasticity of flexible and stiff polymer networks with permanent cross-links and
synthesize these results into a unifying polymer chain network model. This framework is then
used to address how the network elasticity becomes modified when the network cross-linking is
thermoreversible in nature, changes in the stability of the network with deformation, and the effect
of a variable rate of network deformation on the non-linear elastic response. Comparisons are
made between this class of simplified network models with elasticity measurements performed on
flexible chain and stiff fiber networks, both with permanent and associative cross-links. Although
these network models are highly idealized, they are apparently able to capture many aspects of the
elastic properties of diverse real networks.

I. Introduction
Synthetic and natural networks of polymers and self-assembling molecules are ubiquitous in
manufacturing and biology, and the study of network elasticity has a long and distinguished
scientific history.1 The theory of flexible polymer networks has received particular attention,
but even in this case the quantitative role of interchain interactions in the dry rubber state
(the so-called “entanglement” effect) has been slow to develop and the topic remains one of
scientific and technological interest.1 Networks of stiff fibers have seen a large upsurge of
interest recently because many networks of biological origin (and thus many biological
materials) are comprised of such networks, which have an elasticity quite distinct from their
flexible network counterparts. Specifically, the elasticity of flexible polymer networks is
often characterized at moderate deformations by strain softening and positive normal
stresses while stiff fiber networks often exhibit strain stiffening and negative normal stresses
under deformation.2,3 The elasticity of these different classes of networks could thus not be
more different from each other. Moreover, many real networks are comprised of network
junctions or cross-links that involve a reversible association-dissociation process so that the
junctions are not fixed for all time, although their time-averaged number may be an
invariant. Deforming these associating networks leads to diverse complicating effects such
as the breakdown of the network and subsequent slow recovery following cessation of an
applied stress, an elastic response on the rate of network deformation, etc. Irreversible

Correspondence to: Jack F. Douglas; Ferenc Horkay.

NIH Public Access
Author Manuscript
Soft Matter. Author manuscript; available in PMC 2010 November 26.

Published in final edited form as:
Soft Matter. 2010 January 1; 6(15): 3548–3561. doi:10.1039/B925219N.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



deformation effects such as fracture and plastic flow can also arise when network materials
are subjected to large deformations.

There are diverse applications in manufacturing and biology relating to the control of the
elastic properties of networks and it is clearly important to have effective and
computationally tractable analytic models to help characterize these networks and to
organize methods to control their properties through engineering of molecular structure and
the control of thermodynamic conditions of gel formation. In our discussion below, we first
review some models of this kind that have been found successful for describing networks of
flexible polymer chains with fixed network junctions. A new and potentially useful model of
the elasticity of stiff fiber networks is introduced in the course of this development based on
molecular modeling and analytical arguments. This model reduces in its simplified form
neglecting entanglement interactions to the phenomenological Fung model4–11 that is
widely utilized in modeling biological materials when entanglement interactions are
neglected in our model.

After a review and synthesis of prior results, we generalize our modeling to describe
networks whose junctions form through thermally reversible association. This development
requires an explanation of how these transient junctions influence the elasticity of the
resulting network and we utilize results from rigidity percolation theory to develop a
simplified model of the elasticity of such thermoreversible systems. We also consider
changes in the thermodynamic stability of self-assembled networks with deformation and
the thermodynamics of the network self-assembly based on highly simplified models.
Comparison of special cases of our model to experimental observations on permanent and
thermally reversible systems under diverse conditions show rather good agreement in many
cases, indicating that these models offer a practical approach to describing the elasticity of
both rubbery cross-linked materials and complex fiber gels formed by self-assembly.

In the following section, we summarize some models that have proven effective in
describing flexible polymer networks, including effects associated with the interaction
between network chains (‘chain entanglement’). We then address how the elasticity
becomes modified when the cross-linking is associative and where the network forms by
self-assembly. Finally, in Section III, we compare our idealized flexible and stiff chain
models of network elasticity to experimental observations to illustrate the modeling results
and the different types of elasticity that networks exhibit.

II. Elasticity of polymer networks with permanent junctions
A. Networks of flexible cross-linked chains (‘rubber’)

Models of the elasticity of rubbery materials composed of flexible chains have concentrated
on minimal aspects of rubbery materials. In particular, the classical rubber elasticity models
of Wall and Flory,12 James and Guth,13 Edwards,14 and many others have focused on the
consequences of network connectivity. Classical theories treat rubbery materials as idealized
networks of random walk chains whose junctions deform approximately affinely in response
to a macroscopic deformation, thereby changing the entropy of the system. More recent
work has emphasized inter-chain interactions or ‘entanglement’ interactions defined in terms
of the topological constraint of chain un-crossability and correlations arising from molecular
packing.

A minimal statistical mechanical model of rubber elasticity must incorporate three main
features of the network chains: 1) A connected network of flexible chains,12–14 2)
‘Entanglement’ constraints,15–18 3) Finite volume of chains.19 The localization model (LM)
of rubber elasticity is a minimal model that directly addresses these effects and we briefly

Lin et al. Page 2

Soft Matter. Author manuscript; available in PMC 2010 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



summarize the essential ideas of this model,20–22 which also forms the foundation for our
generalizations below for other more complex networks.

As a first approximation, the localization model (LM) takes the free energy ΔFnetwork of the
network per unit volume to be proportional to the number of chains per unit volume νd
where ΔFchain is the chain free-energy of deformation,

(1)

This result, which derives explicitly from classical elasticity network model calculations,
assumes that each chain sees an equivalent molecular environment arising from its
interaction with surrounding chains and this approximation thus amounts to a mean field
approximation23 when applied more generally. For a cross-linked network, the number of
chains per unit volume is taken to be proportional to the number of cross-links per unit
volume, the cross-link density.

The second basic approximation is to assume that the network chains are Gaussian chains in
our estimation of the chain connectivity contribution to ΔFnetwork. This approximation has
its limitations, especially for large network extensions and for cases where the network
chains are stiff or semi-flexible. (The treatment of finite extensibility effects and chain semi-
flexibility are relatively well-understood and we return to incorporating these effects below.)
For the present, we are concerned with understanding the basic nature of non-classical
‘entanglement’ contributions to network elasticity arising from inter-chain interactions that
exist at high polymer concentrations.

Before initiating our modeling of the entanglement contribution to ΔFnetwork, we make some
general physical observations that constrain our theoretical development:

1. Dry rubbery materials are normally nearly incompressible because of strong
repulsive inter-segment interactions, despite the random coil nature of the
polymers.

2. Confinement of network chains to a volume on the order of the hard core volume of
the chains alters the average chain entropy relative to an unconfined chain.

The question is then how one calculates this entropy change under deformation conditions.

The Feynman-Kac functional limit theorem (FKLT) implies that confining a chain by any
means leads to a universal change in the chain free energy of the flexible polymer chains,
Fconfin ∼ <R2>/ξ2, where <R2> is the mean squared dimensions of the unconfined chain and
ξ is the localization length describing the scale over which the chain is localized.24 <R2> is
proportional to the chain length, N, so that Fconfin is extensive in the chain length. This
limiting scaling relation is also known as ‘ground state dominance’25 based on a quantum
analogy with the Brownian chain model. More generally, we have the more general scaling
relation, Fconfin ∼ <R>df/ξdf for generalized random walks (having independent steps, but
whose variance in step length is not finite) where <R> is the mean chain size and df is the
fractal dimension of the chain, i.e., <R> ∼ N1/df. Evidently, we again obtain a confinement
contribution Fconfin that is extensive in N. In the present instance, this localization effect
derives from the hard core repulsive interactions between a given chain and its surrounding
chains so that Fconfin is entropic in nature. In other words, hard core excluded volume
interactions confine the chains to ‘tube-like’ regions localized around some average chain
conformation and this chain confinement gives rise to a change of the entropy per link of the
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polymer chain. The FKFLT provides the fundamental mathematical underpinning of the
tube model of polymer melts and rubber elasticity.

So far we have based our model on two fundamental limit theorems of broad mathematical
and physical significance- the central limit theorem describing the statistical properties of
random walk chains and the FKLT describing how the free energy of these chains changes
with confinement (or the mathematical equivalent of this effect). This provides a sound
foundation for a general theory of flexible polymer networks with strong localizing inter-
chain interactions in the melt state. The problem of calculating how Fconfin becomes
modified by macroscopic deformation of the rubbery material is more difficult. It seems
reasonable to assume that under quasi-equilibrium conditions of deformation the FKLT
relation still applies and the crux of the LM then reduces to estimating how ξ varies with
deformation. There is certainly no reason to believe that ξ should vary affinely with the
extent of macroscopic deformation λi along the laboratory-fixed axes, as might reasonably
be argued for the coordinates defining the chain junctions in the network.

Gaylord and Douglas20,21 approached this basic problem by assuming, as Edwards23 had
done before, that the network chains are contained within a random tube with local harmonic
confining potential that is composed of segments that are oriented along three directions (x,
y, z) in the lab-fixed frame. The harmonic tube model for the inter-chain interaction potential
is chosen simply for mathematical convenience. The FKLT ensures that essentially any
reasonable confining potential will lead to the same limiting results. We note that Heinrich
et al. have also developed a popular tube model of rubber elasticity,26 based on the same
chain localization concept, but these authors do not invoke the packing arguments to specify
the molecular parameters in their model and the change in elasticity with network
deformation and swelling. McLeish and coworkers27–29 have considered the tube model to
describe the unusual scattering behavior in stretched polymer networks and have reviewed
recent applications of tube model to modeling various aspects of the phenomenology of
entangled polymer chain melts.

A random tube model can now be constructed by viewing the random tube as consisting of
straight tube sections lying along the macroscopic deformation axes. The distribution
function describing the distribution of the chain monomers within a random tube segment
then factorizes into a product of Gaussian functions defined in terms of coordinates along
the tube axis and a coordinate normal to the tube axis. Because of the separability property
of random chains, the random tube segments can be imagined to be aligned along the three
macroscopic deformation axes with equal probability, a construction first introduced by
James and Guth in their approximate treatment of finite- extensibility effects on network
elasticity.

To calculate the free energy change with deformation, the junction positions are taken to
deform affinely, Ri = λi·Ri0, where Ri0 is the initial distance between a given network chain
end along the ith macroscopic deformation coordinate direction. This argument leads to the
classical affine network model of rubber elasticity. Of course, the affine deformation
assumption is an approximation and other models of rubber elasticity take this as a starting
point of their development.30,31 It is the present authors' opinion that non-affine
contributions to the network elasticity do not really address the inter-chain interaction
effects responsible for ‘entanglement’ contributions to the elasticity of dry rubbers.

To estimate ξ(λi), we argue that the hard core volume of the chain and localizing tube are
comparable and invariant to deformation (see Fig. 1). The assumption of affine
displacement is taken to mean that that length of the tube segments along the deformation
axis deform affinely,
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(2)

where L0 is the length of the undeformed tube. The invariance of the tube volume with this
deformation implies that the length of the tube times its cross-sectional area is the same

before and after deformation, . This implies that , where the deformation
scaling exponent β equals, β = − ½ and where ξx0 = ξy0 = ξz0 ≡ ξ0. This scaling relation is
obviously quite different from an affine variation, ξx = λxξ0. Rubinstein and Panyukov32

have made arguments that β is positive (β = ½), as in the affine assumption model. Their
calculation is based on a model of topological invariance of the network under macroscopic
deformation in a model that does not consider chain packing effects.

These considerations lead to the LM20,21 expression for the free-energy density of a dry
rubber,

(3)

where the classical network theory shear modulus Gc is proportional to the cross-link
density (νx) and thermal energy (kBT),

(4)

In the affine network model of Wall and Flory the prefactor is C0 = 1 and in the classical
non-affine ‘phantom model’ of James and Guth,13 Deam and Edwards,14 where the network
junctions can fluctuate with the constraint of excluded volume interactions, C0 = ½. More
generally, C0 depends on the details on network structure (dangling ends, network
functionality, etc.)33 and is considered to be a measurable parameter characterizing a given
network.34 In the absence of other information, we take the ‘phantom’ elasticity model
‘frontfactor’ value, C0 ≈ ½. The entanglement contribution Ge to the free energy density of
the network,

(5)

includes a cross-term proportional to Gc [and thus νx; see eqn (4)] with a network parameter
γ describing the influence of cross-linking on the inter-chain entanglement interaction. The
cross-link independent contribution  to Ge is identified with the plateau modulus of the
polymer melt, .20,21 Much is known about the dependence of  on molecular
parameters35 (see below) and this phenomenology is consistent with the localization model.
36 We note that eqn (3) is consistent with the Valanis-Landel separable form of the strain
energy density of rubbery materials, a property of the strain energy density that has been
established to be a good approximation for many rubbery materials.37 The Valanis-Landel
property greatly simplifies calculation of the deformation properties of rubbers.38 Appendix
A describes the stress strain relations deduced from the LM model that we use in our
comparisons to experiment below. Appendix B discusses the predictions for describing the
effect of network swelling on rubber network elasticity. This broad accord of the LM model
with these network observations is encouraging.
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An explicit derivation of the stress σ for uniaxial deformation of an incompressible rubber
material (where λx = λ; λy = λ−1/2; λz = λ−1/2) is given in Appendix A for the LM model. In
particular, σ has the form σLM = Gc (λ − λ−2) + Ge (1 − λ−3/2), which is eqn (A.2). In our
comparisons to experiments below we often refer to the reduced stress I(λ) = σ/(λ − λ−2),
which is the observed stress relative to that predicted by the classical rubber elasticity
theory. In a ideal incompressible ‘neo-Hookean’ rubber, I(λ) is a constant that is equal the
classical shear modulus, Gc.

B. Generalized rod polymer network elasticity model with permanent cross-links
No single model adequately describes the elasticity of all network materials. This situation is
not surprising when one considers the different physical nature of the various network types.
Of particular importance is the rigidity of the filaments that comprise the network; classical
rubber elasticity models are simply not applicable to gels consisting of more rigid fibers.
Relatively stiff fiber networks are observed in the context of many fiber networks (e.g., the
microtubule network within the cellular cytoplasm and the fibrous collagen network in the
extracellular matrix of connective tissues, carbon nanotube networks, etc.) found in biology
and manufacturing. Our goal is to develop effective minimal models of network elasticity
that can be used to describe the deformation behavior of both synthetic and natural flexible
polymer networks or fiber network gels that are commonly found in biological materials.
Below we focus on the extreme models of networks composed of ideally flexible and stiff
polymer chains both with and without entanglement interactions. We also emphasize both
the effects of junctions formed either as a consequence of permanent cross-links or
associative cross-link interactions because permanent and associative networks are common.

The literature describing the elasticity of semi-flexible polymer networks and finite chain
extensibility effects on polymer networks is extensive and we do not attempt to review these
developments here since these effects are described adequately in other recent publications.
Moreover, these effects can be readily incorporated into our (mean field) network model
through a consideration of how the single chain elasticity is affected by the semi-flexibility
and finite extensibility constraints. However, it is unclear whether molecular thread models,
such as ours, that involve either ideally flexible or needle-like chain filaments can describe
essential aspects of the non-linear elasticity of real rubbery materials and fiber networks. We
simply assume the validity of these molecular chain models, the applicability of a mean field
theoretical description, and then focus on the types of elasticity that these models predict in
comparison to well-accepted experimental studies of network elasticity in flexible polymer
and stiff fiber networks. Next, we introduce a molecular model of stiff polymer networks
that directly extends the classical flexible chain network just described. As with our
development of the flexible chain network elasticity model, our development relies heavily
on former studies of network elasticity and the effort emphasizes the integration of
fragmentary results into a more coherent picture of network elasticity and the comparative
nature of flexible and stiff polymer networks.

We base our development of a minimal molecular model of the elasticity of a network of
cross-linked rigid rods on a previous calculation by Vilgis, Boue, and Edwards39 who
formulated a rod network theory based on a rigorous extension of the Deam and Edwards14

theory of the elasticity of a network of flexible ideal chains. In particular, they introduced a
model in which needle-like rigid rods are tethered by freely pivoting junctions
(tetrafunctional) to form a three-dimensional rod network. Curiously, they found that the
elasticity of this rod network exactly recovers the functional form of the classical flexible
chain elasticity model in the limit of small network deformations [See eqn (3)]. The entropic
elasticity in this case derives entirely from the deformation of the junction positions rather
than from stretching network chains (which are inextensible in the rod network model).
Qualitatively new behavior was revealed at higher network deformation, however. The free
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energy of the rod network was found to increase exponentially with the square of the
deformation parameter λ [see Eqn. (22)]. This is a “softer” increase in the free energy than
the power-law singular increase found in the free energy of network deformation due to
finite extensibility in flexible and semi-flexible network models. We analytically extend the
results of Vilgis et al.39 by demanding that the limiting small and large deformation
behavior of rod network be recovered. In particular, we propose the relation,

(6)

which by construction exactly recovers the asymptotic large and small deformation rod
network elasticity results of Vilgis et al.39

Unfortunately, the analytic complexity of solving the non-linear integral equations involved
in the mean field solution of the end-tethered rod network elasticity problem did not allow
for a clear molecular parameter interpretation of the network ‘non-linear stiffening
parameter’ b in eqn (6). We note, however, that eqn (6) is a familiar empirical relation in the
non-linear elasticity of many real materials. In particular, eqn (6) is equivalent to the Fung
hyperelasticity model,4–11 which provides a phenomenological description of the non-linear
elasticity of diverse biological materials. This is first time that this widely discussed relation
(i.e., the Fung model) has been deduced from a molecular model. The resulting stress-strain
relationship in this model, considered below in our comparison to measurements, is
described in Appendix B.

We formally introduce a rod network model that includes the effect of chain confinement by
adding a generalized localization contribution to the network elasticity,

, where νp = ½ and νp = 1 for networks comprised of ideal
flexible and rigid chains, respectively,20,21 where radius of gyration Rg of an uncross-linked
polymer chain in solution scales with chain mass as, Rg ∝ Mνp. Combining this contribution
of the network elasticity with eqn (6) provides a minimal molecular model for the elasticity
of rod polymer networks with interchain entanglement interactions. In particular, the
proposed strain energy for a rod network is then,

(7)

We can expect local chain packing effects to be substantially less important in stiff polymer
networks, but having stiff polymer chains should on the other hand amplify interactions
between chains associated with the constraints of chain uncrossability and volume
exclusion. Our comparisons to experiment below provide an opportunity to study these
entanglement effects in stiff fiber networks within the frame of our model.

III. Elasticity of self-assembled networks
Many networks are formed by a self-assembly process involving the thermally reversible
association of network chains. This process may involve the self-assembly of the network
fibers, which in turn, exhibit branching to create a network (perhaps with other molecules
that regulate the fiber branching process). For example, common gelatin networks self-
assemble through the formation of stiff triple helices of the gelatin molecules that are linked
by flexible chain ‘links’ where the chain helices are not well organized.40 The associative
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interactions between the monomers within the polymer network can be disrupted by heating
or applied stress. Since networks of polymers with associative interactions and self-
assembled fiber networks of bundled molecules are common, it would evidently be helpful
to have a minimal model that captures essential aspects of these networks. For example, we
can expect that deforming self-assembled or thermally reversible networks will ultimately
cause a breakdown of network structure by virtue of the stress-induced disruption of the
associations defining the network, with a consequent loss of network stiffness. Once the
network has “melted” due to the imposition of such stresses, it should recover its pre-
stressed state (eventually) through associations and dissociations occurring under a state of
dynamic equilibrium. Next we introduce a minimal model to describe this effect. It is noted
that if the network undergoes an instability under deformation, such as fracture or significant
plastic flow, before melting then our theory does not apply; network deformation then leads
to an irreversible modification of the network.

A. Simple model of the shear modulus T dependence of self-assembling networks
We treat this problem generally by considering simplified models of the emergence of
elasticity and self-assembly. Rigidity percolation theory41,42 and effective medium theory
indicate that the bulk and shear moduli of lattice structures composed of central force
springs connecting the lattice points varies linearly with the fraction Φ of possible connected
bonds, provided a sufficient number of bonds (rigidity percolation threshold) for the
structure to exist as a solid. The rigidity percolation threshold is notably a greater
concentration than the geometrical percolation threshold where infinite network first forms,
i.e., greater constraints on the particle motions are generally required for rigidity. The
effective medium treatment of rigidity percolation motivates taking the shear modulus to be
proportional to the fraction Φ of associating species in the self-assembled state,

(8)

where  is the limiting modulus (limiting linear regime due to linkages created by self-
assembly) in the fully self-assembled state and Φ* corresponds to a critical amount of
ruptured associations where rigidity is lost. The approximation in eqn (8) applies when Φ is
near unity and has the advantage of not requiring the introduction of a new fit parameter,
Φ*.

The extent of self-assembly Φ is the basic order parameter governing self-assembly and there
has been much work to calculate this quantity for specific self-assembly models.
Expressions for Φ for realistic assembly models often involve rather complex analytic
relations that are not generally amenable to closed analytic expression. There is a simplified
two-state model for Φ that provides a useful approximation for many practical applications
and we adopt this relation here for our purposes. Specifically, we model Φ by the relation,43

(9)

where Δh and Δs are the enthalpies and entropies of the assembly process and kBT represents
the thermal energy. The variation of Φ of many other more complicated assembly models is
mimicked rather well by eqn (9), which can be approximated even further by expanding the
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free energy of assembly about the self-assembly transition temperature.43 This yields the
alternative simplified relation,

(10)

where Do describes the temperature breadth of the transition and ζp is a constant (see [43] for
the specification of these fit parameters in terms of the energetic variables of the self-
assembly model). Eqn (10) has the same mathematical form as the occupation density from
statistical mechanics of fermions and this functional form has been denoted the ‘Fermi
function’ ΦF in the experimental literature, as discussed below.

We thus have the simple approximation for the T dependence of the shear modulus G0,
which is prescribed by eqn (8) where Φ is given by either eqn (9) or the simplified
expression eqn (10). Fig. 2 shows the variation of  as a function of T for
representative values of the energetic parameters Δh and Δs. We see that G0 drops to zero
with increasing temperature in a sigmoidal manner as the temperature is increased. This
phenomenon is observed in diverse biomaterials44,45 and nano-technology applications,46

where  is often fit to the phenomenological Fermi function. (This function is
apparently a phenomenological counterpart to the Vogel-Fulcher-Tammann relation for the
temperature dependence of the viscosity and structural relaxation time of glass-forming and
some self-assembling systems (e.g., see Kumar and Douglas47). Note that “two-state
expression” for Φ in eqn (9), and the Fermi approximant defined by eqn (10), are nearly
indistinguishable from each other so that either relation seems reasonable for quantifying T
dependent changes in the elasticity of network solid materials. The Fermi function has been
particularly utilized in food science field in the quantification of the mechanical properties
of breakfast cereals,48 and other common food products, and recently this relation has been
applied to the description of the T dependence of the elastic moduli of polymeric nanofibers,
etc.46 (Recent observations of the formation of a thermally reversible network structure
consistent with equilibrium branched polymer network structure in a model glass-forming
polymer melt lends some support to the application of our model to glassy materials.49 The
common use of the Fermi function in the characterization of network materials motivated
our explanation of how the Fermi function can be approximately derived from a molecular
model and stimulated our initial modeling of the elastic properties of self-assembled
networks.

B. Deformation dependence of the stability of self-assembled networks
To describe the elastic properties of deformed networks formed by self-assembly, we must
account for changes in the free energy of self-assembly accompanying the network
deformation process. There has been much recent work quantifying the effect of applied
deformation on binding constants in ligand-receptor pairs in the context of modeling cellular
adhesion. Bell and others (see Bongrand50) have introduced a simplified model for how
deformation alters association equilibrium constants. Specifically, Bell et al.51 argued that
the free energy of the equilibrium constant governing the association and dissociation of the
binding species is modified by simply adding a quadratic term in the extent of deformation
with a phenomenological local force constant describing how the free energy of assembly
(binary binding of the associating species) becomes modified by deformation. In the spirit of
the minimal model introduced above to describe network elasticity in vanishing deformation
limit, we introduce the simple Bell model expression for the deformation dependence of the
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free energy association constant governing the self-assembly process to obtain a deformation
dependent expression for Φ,

(11)

where kf is the force constant mentioned above. In Fig. 3, we show the variation of Φ(λ) at a
fixed T when λ is varied and we see that increasing λ causes Φ (and corresponding the
reduced shear modulus, ) to decrease sigmoidally. We also show Φ(T,λ) in Fig. 4 as a
function of T at fixed λ values where we see the self-assembly transition temperature
(inflection point of Φ curve) simply shifts to lower T as λ increases. Eqn (11) leads us expect
a general tendency for self-assembled networks to “melt” upon deformation and a
corresponding tendency towards strain softening if deformation is large enough to induce
network disordering.

Eqn (10), in conjunction with eqn (11), provides a minimal model for describing how
changes in the free energy of assembly with deformation alter the elastic properties of
assembled structures change with deformation. The order parameter for self-assembly Φ(λ)
exhibits a sigmoidal variation with increased deformation λ at a fixed temperature and we
can similarly define a simple Fermi model approximant for Φ,

(12)

by analogy to eqn (10) where ζ and δ are adjustable parameters and λ* is the critical stretch
at a fixed T at which softening initiates. As before, the Fermi approximant is most
appropriate when the fiber self-assembly transition is sharp (i.e., cooperative).

C. Viscoelasticity of self-assembled networks
The idealized model for the elasticity of self-assembled networks in the previous section
neglects relaxation processes associated with varying the rate at which strain is applied. In
reality, relaxation processes over time progressively reduce the stress applied to the network
when the application of stress is made at progressively lower rates. This is another
complexity that must be confronted in modeling the elasticity of networks. Evidence for
these strain rate effects have been reported for telechelic polymer networks and gelatin gels
by Berret and Serero52 and Groot et al.,53 respectively. In the former system, strain
hardening and stress maxima were found to be shear rate dependent. In the latter case, the
initial shear modulus (G0), yield stress and yield strain of gelatin all varied with the applied
shear rate. Of particular interest is the increase in all three mechanical properties with
increasing strain rate. An assumption of the modeling of strain rate effects is that
deformation rates remain low enough to remain in a regime where the equilibrium constant
governing the self-assembly process remains well defined.

We may again draw upon recent work on modeling the viscoelastic properties of self-
assembling fluid to model this kind of viscoelastic effect. Stukalin et al.54 have recently
modeled stress relaxation of solutions of self-assembling polymers and have found the stress
relaxation function ψ(t) of these solutions to generally have a stretched exponential form,
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(13)

where 0 < α < 1 and τr is an average structural relaxation time. The exponent α primarily
affects the averaging of the relaxation of the individual assembled chains over the size
distribution that generally accompanies the self-association by virtue of Boltzmann's law.
We adopt eqn (13) as a model of the stress relaxation process of our assembled networks.
Further, we take the deformation rate (ω) at which the stress is applied to equal the
reciprocal of time in eqn (13) and define t/τr = 1/ωτr by an overall deformation rate
parameter, Γ. The relaxation stiffness at a finite dimensionless rate of network deformation
Γ for our deformed networks is then taken to equal,

(14)

where Ω = exp[−(1/Γ)α]. A factor of this kind has been previously invoked by Berret and
Serero52 to describe variable viscoelasticity as a function of Γ in their network elasticity
measurements.

Many self-assembling systems recover their unstressed properties following a cessation of
the applied stress as the system recovers its quiescent state. This phenomenon has been a
particular focus of interest in actin networks subjected to stretching,55,56 a phenomenon that
has been suggested to be of great significance in cellular function.57 We may model this
recovery process by multiplying Φ in eqn (11) by a corresponding stress recovery function,
R(t/τR) = (G0 − Gcessation) [1 − e−(t/τR)α] + Gcessation, where τR is a recovery time for
network ‘rejuvenation’ and where Gcessation is the cross-link contribution to the modulus at
the time of cessation of the applied stress, a quantity that can be calculated from the model
above. Note that this expression implies that R(t) approaches its equilibrium value G0 at long
times. In general, we expect recovery time τR to be on the order of the linear viscoelastic
relaxation time τr in eqn (13). We emphasize that our modeling does not describe the
common situation at very large deformation where the material fractures or suffers some
instability or extensive plastic deformation that preempts that network melting process.

Combining eqn (13) and (14) with the entangled rod network model [eqn (7)] provides a
simple model for the deformation rate dependence σ of these networks in uniaxial
deformation,

(15)

Correspondingly, for a network of flexible chains with thermally reversible associations we
have,

(16)

Many real associating networks form over long timescales and exhibit ‘aging’ behavior in
their mechanical properties over long timescales. Sollich58,59 has developed an interesting
constituitive modeling approach for ‘glassy’ material systems that is frequently cited as
providing qualitative insights into measurements on biological thermoreversible gels. This
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model should be useful in the complementary case to our work where the polymer network
is in a highly non-equilibrium glassy state, a situation that may be operative in the fiber
networks in living systems where the network properties are affected by the presence of
motor proteins, chemical reactions involving ATP, calcium reaction diffusion waves
modulating the fiber assembly, etc.

III. Results and discussion
A. Application to flexible chain networks with permanent cross-links

It is well known that the classical theory of rubber elasticity has limited applicability to the
description of dry rubbery materials composed of flexible polymer chains, although this
model becomes quite a useful description to swollen polymer networks where interchain
packing interactions are diminished by swelling.60,61 Many molecular models have been
introduced to describe the elasticity of dry rubbery materials, but a recent evaluation of these
models by Han, Horkay and McKenna38 indicated that only two models are empirically
successful in fitting the elastic behavior of real rubbery materials– the localization model
(LM) of Gaylord and Douglas and the Flory-Erman ‘junction fluctuation’ model. (The
Flory-Erman model contains a parameter relating to fluctuation in the junction positions that
affects the degree to which their displacement is affine under macroscopic deformation.)
The LM has the advantage of physical transparency and makes predictions for the model
parameters that have been validated by measurement. For example, McKenna et al.62 found
that the LM describes torsional rigidity measurements on dry rubbers having a range of
cross-linking densities where the classical term is fixed to its classical value (C0 = ½) and Ge
was found to have exactly the form predicted by eqn (5), the entanglement contribution to
the dry rubber elasticity Ge is linear in Gc and extrapolates to the plateau modulus  in the
limit of vanishing cross-linking density (See Appendix A). The LM prediction for the
dependence of  on molecular structure (e.g. chain cross-sectional dimension) also accords
rather well with observations on numerous polymers.36 The junction-fluctuation model does
not have this predictive capability.

We briefly illustrate the nature of dry rubber elasticity in comparison to the classical rubber
elasticity theory in Fig. 5 and 6 (the reduced stress is defined relative to the classical rubber
elasticity scaling), where comparison is made to the classical data of Rivlin and Saunders63

and Pak and Flory's64 on the compression and extension of dry rubbers (natural rubber and
polydimethylsiloxane, respectively) at moderate cross-linking densities. The data is shown
in the form of a reduced stress relative to the classical theory to emphasize the deviation
from the classical theory.

The fits of the LM to this rubber elasticity benchmark data reveals that the non-classical
contribution (Ge) to the shear modulus is nearly a factor of five times larger than the
contribution from the classical network elasticity. This observation underscores the
limitations of classical rubber elasticity to the description of dry rubber materials.

B. Application to permanent stiff chain networks
From our development in Sect. II, we many expect networks of cross-liked stiff fibers to
exhibit a qualitatively different elasticity. In particular, such networks are predicted
theoretically to exhibit strain stiffening rather than strain softening under extension and this
phenomenon has recently been receiving significant experimental and theoretical attention,
2,52,53,55,65,66 mainly because of its biological importance.

We illustrate this phenomenon with some other widely recognized data in Fig. 7, where we
also show comparisons to the rod network model with entanglement interactions included.
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As noted before, this model is equivalent, in the absence of entanglement interactions, to the
phenomenological Fung model. The Fung model is widely successful in describing the load-
deformation behavior of various types of soft tissues.4–11 This type of elasticity is common
in real ‘gel’ materials and we emphasize how different this behavior is from the strain
softening found for flexible polymer chain networks (Fig. 5 and 6). (At very large
deformations, flexible polymer networks exhibit a singular strain stiffening associated with
the finite extensibility of real flexible chains; Gaussian chains are infinitely extensible).
Strain stiffening is also apparent in microscale observations on self-assembled fiber
networks. For example, Fig. 8 illustrates the microscale deformation of chicken sternal
cartilage determined by the atomic force microscope (AFM). As in the other stiff chain
network systems, we are able to obtain a good fit to our network model. Numerous recent
studies of the deformation of fiber networks have indicated similar data as described in the
representative data shown in Fig. 7 and 8.

C. Application to self-assembled fiber networks
It is apparent from Fig. 7 that there is a tendency for the strain stiffening to weaken with
increasing deformation, leading a slight turnover in the data for large λ. Indeed, this
tendency is normal and progressively increases with increasing deformation. To address this
general phenomenon, we recognize that the fibers composing the gel form by the dynamic
process of molecular self-assembly and that the associations governing network connectivity
eventually break down under stress, which for systems formed by equilibrium self-assembly
should be perfectly reversible given enough time for recovery (which can be a very long
time!). We illustrate this general phenomenon - stiffening followed by abrupt softening - in
Fig. 9 in the case of a gelatin gel under deformation. Similar observations have recently been
reported for actin55,56 (where reversible fiber buckling was invoked to rationalize the facile
recovery of the elastic properties of the undeformed system) and recently in thermally
reversible gels of block copolymers67).

We next compare our model of self-assembling stiff networks subject to a deformation
dependent change in the stability of network. Fig. 9 shows that this simple model is able to
capture the stiffening and subsequent softening in an effective manner when we use the
simple Fermi approximation for the deformation dependence of the linear shear modulus.
The self-assembly energetic parameters obtained from a fit to this data (Δh = −38 kJ/mol
and Δs = −77.6 J/mol K) are similar to values observed in many self-assembling systems
(e.g., Δh and Δs for the equilibrium polymerization of α-methylstyrene have been found to
equal Δh = −35 kJ/mol and Δs = −105 J/mol K). We expect our model of the elasticity of
self-assembled stiff chain networks to be widely applicable to diverse biological and
synthetic networks.

Another basic aspect of networks of dynamically associating species is a sensitivity of the
elastic response to the rate of straining the sample. We illustrate this expected effect
schematically in Fig. 10 for a range of dimensionless strain rates Γ where we take α = 0.8, as
in recent measurements on telechelic polymer networks.52 Our main point here is that we
can understand the qualitative effect of varying strain rate on the elasticity of this class of
gels within our network model. We look forward to comparing our model to other data over
a range of thermodynamic conditions to further test the model in the future.

D. Application to self-assembled flexible chain networks
Gelation may also arise from the association of flexible chains and the effect of large
deformation on the elasticity of these gels has obvious practical interest. For example, we
can expect this situation to apply to nanoparticles (NP) dispersed in a polymer matrix in
cases where the association of the NP with the polymer chains creates the equivalent of
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dynamic cross-links. There is a large literature showing a strong softening of NP-filled
networks where the effect is temperature dependent and where the effect is observed
following a small extent of deformation. The Payne effect is often attributed to the
breakdown of particle-polymer associations within the network,68 as in our model, or the
irreversible breakup of NP clusters within the network. The breakup of the physical
associations should be reversible while this is not the case for the breakup of the NP clusters.
Our model only considers the first mechanism of strain softening and does not address the
irreversible NP breakup mechanism of strain-softening, which no doubt arises in some
nanocomposites.

We consider the consequences of deformation on flexible polymer networks based on the
same model for the deformation dependence of G0 used in our model of a self-assembled
stiff network. In our illustrative calculations, we restrict attention to unentangled flexible
polymer networks where we can appropriately neglect the entanglement contribution (i.e.,
Ge = 0). This approximation is probably more generally applicable for polymer
nanocomposites at low NP concentrations since the effect of deformation on the
entanglement contribution to the network elasticity (Mullin's effect) normally occurs at
relatively large extents of deformation in comparison to the Payne effect.

Fig. 11 illustrates the result of these approximations for our highly idealized model of a NP
filled unentangled flexible chain network. We see from Fig. 11 that the strain softening can
be a large effect at small deformations and that effect becomes progressively larger upon
cooling. These general trends in measurements are observed in real nanocomposites, where
the strain softening effect vanishes at high temperature where the cross-links ‘melt’. We
have chosen the transition temperature for network dissociation (inflection point temperature
of Φ in Fig. 2) to be 120 °C which is close to the value that seems to apply to the NP
measurements of Kalfus and Jancar.68 More quantitative comparisons between our model
and experiments are needed, but our model clearly captures correct physical trends in this
practically important class of thermally reversible gels. The effects of entanglement
interactions on the Payne effect, appropriate to the situation where the polymer chains are
long, can be incorporated by simply including a Ge contribution into our model. However,
this generalization does not change the qualitative nature of strain softening found for the
NP filled polymer melts, unless the extent of deformation is so large as to significantly
modifies the entanglement contribution to the rubber elasticity. Next, we consider the
deformation rate dependence on the entanglement contribution to flexible polymer networks
composed of long flexible polymer chains. This Mullins effect is a non-trivial effect even in
the absence of added NP.

In these illustrative computations, we assume that the network connectivity contribution to
the network elasticity of the flexible polymer network is negligible in comparison to the
entanglement contribution, which physically corresponds to a low cross-link density in the
melt state (just enough cross-links for the network to be in a percolated solid state). In this
model, the only contribution to the stress under steady deformation in the localization model
equals Ge (1 − λ−3/2). Applying the same model as described above for the rate of relaxation
of this entanglement contribution then provides a model of the strain rate Γ and strain
dependence of entanglement contribution to the elasticity, Ge(1 − λ−3/2) exp[(−1/Γe)3/5],
where Γe = ω τer is the product of the deformation rate ω and an entanglement recovery time
τer. This recovery time should be on the order of the terminal stress relaxation time τT ∼
M3.4 of the polymer melt.24 Recovery after a large deformation can also be modeled through
the introduction of corresponding stress recovery function R(t/τer) in a fashion described
above for the recovery of the elastic properties of network whose structure is broken down
under stress where τer governs the rate of recovery to the entangled state. We plan to study
this recovery phenomena in future work. At a higher level of development, we could
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incorporate NP into entangled polymer melts where the effects of the associative or
permanent network junctions are also considered. Application to such complex systems,
however, will require validation of the model in simpler situations where there are not so
many effects in play.

E. Observations on biological fiber network gels
Storm and colleagues66 have recently emphasized the characteristic strain stiffening
properties of many biopolymer networks and the neurofilament gel reproduced in Fig. 7
provides a good illustrative example. Applying the full rod network model, along with the
strain dependence of the shear modulus leads to a better fit of the data, as illustrated in Fig.
7. The effect of deformation on the thermal stability of the network is evident in this data.

The extracellular matrix (ECM) of cartilage provides another good example of such a rigid
chain biological network. Along with charged glycosaminoglycans, the meshwork of
collagen fibers provides tissue with its strength and compressive resistance. In compression
(or indentation, which is essentially a compressive process69), strain stiffening is dominant,
as illustrated by our measurements shown in Fig. 8. The rod network model capably
describes the observed elasticity very well until the onset of strain softening, which is often
observed to be much more dramatic than found in Fig. 7.

Networks comprised of two distinct components having very different flexibility can also
exhibit strong softening. For example, the addition of platelet cells to fibrin gels65 produces
dramatic change in gel elasticity. When the highly deformable platelets are added the
network it behaves more like a flexible chain network where the rod-like protein filaments
play the role of effective cross-links.

IV. Conclusions
We have developed a series of simple models of the elasticity of network materials that
address essential physical aspects of this broad class of materials. Building on former
successes for flexible polymer networks in the dry state (rubbery materials) we have
extended the former modeling to include networks of stiff polymers. Some classical
observations on the elasticity of rubbery materials are compared with our models to illustrate
their effectiveness and to provide a counterpoint for our new modeling of the elasticity of
stiff polymer networks that exhibit a dramatically different elasticity (e.g., strain stiffening
versus strain softening at low network deformations).

After showing that our molecular model of stiff polymer networks can reproduce essential
trends in the elasticity of stiff polymer networks, we generalize our modeling to address the
fact that many gels exhibit cross-links that form by self-assembly or dynamic association.
We introduce simple models of the temperature and strain dependence of the elasticity
associated with changing the free energy of assembly with deformation and that predict
many of the observed elasticity trends seen in real networks, both stiff and flexible chain
varieties. Further experimental measurements and modeling are no doubt required to refine
the models, but these simple network models seem to capture many of the essential
characteristics of complex gels and provide at least qualitative insights into observed trends
in these complex materials. Future work should particularly focus on the temperature
dependence of the shear modulus to characterize the energetic parameters governing the
self-assembly process and the quantification of the rate of strain effects in stiff and flexible
chain gels.

Lin et al. Page 15

Soft Matter. Author manuscript; available in PMC 2010 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
This work was supported by the Intramural Research Program of the NIH/NICHD. We greatly acknowledge
Kendra Erk and Ken Shull of Northwestern University and Richard Gaylord for their critical reading of our
manuscript and constructive advice. We thank Rob Riggleman for providing Fig. 1.

Appendix A. The elasticity of dry rubbers
Calculations of the stress-strain relations for dry rubber are then remarkably simple for the
LM.20,21 Under uniaxial deformation (λx = λ; λy = λ−1/2; λz = λ−1/2) of an incompressible
material in three dimensions, we have the normal stress σ,

(A.1)

where V0 is the dry rubber volume. Using the FLM expression for Fnetwork from eqn (A1)
implies a remarkably simple relation for σ,

(A.2)

The stress relative to its classical deformation variation (λ − λ−2) defines a reduced stress:

(A.3)

For large deformations (λ → ∞), this expression reduces to an asymptotic Mooney-Rivlin
relation,70,71

(A.4)

so that Gc and Ge can be identified approximately with the Mooney parameters 2C1 and 2C2
that are normally considered in characterizing dry rubbers under extension. Blokland72 has
provided an extensive tabulation of C2 for a variety of rubbers at relatively high cross-link
densities and we tentatively suggest the phenomenological relation γ ≈ 1/3 [see eqn (5)] as a
useful rough estimate of the entanglement contribution to rubber elasticity in the absence of
direct measurement.

The reduced stress in the LM can be generalized to d-dimensions:

(A.5)

which reduces to the classical–like expression σ = Gc[λ − λ−1] in high dimensions73 and an
expression applicable to the elasticity of membranes (e.g., polymerized Langmuir films) for
d = 2.74

Previous comparisons of the LM to experiment show that this simple model compares well
with uniaxial compression and extension measurements, as well as biaxial extension,20,21
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and torsional deformation measurements on dry rubbers.62 Moreover, the LM adequately
describes network elasticity of rubbers cross-linked in a deformed state.75,76 The torsional
deformation measurements of McKenna et al.62 are particularly notable in this type of test
of the molecular model since these were performed over a relatively large range of νx. In
particular, a fit of these measurements (where C0 was fixed to ½) to the localization model
yielded a Ge relation having the form predicted by eqn (5), i.e., Ge is linear in and
extrapolates to , the transient shear modulus of the polymer melt. This is reassuring test of
the physical soundness of the LM. One of the most challenging tests of a theory of rubber
elasticity is the prediction of the changes in the elastic properties of the network upon
swelling, which tends to diminish the effects of interchain interaction. In Appendix B, the
predictions for the LM are shown to be in broad accord with classical experimental studies
on the effect of network swelling on rubber network elasticity. This broad accord of the LM
model with these network observations is again encouraging for the physical basis of the
model.

Appendix B. The elasticity of swollen rubbers
The theoretical prediction of the elasticity of swollen flexible polymer networks (‘rubber’)
from information about the dry rubber is a challenging problem. Before addressing this
problem, we note some insightful comments and classic observations made by Gumbrell et
al.19 on this topic:

“The change in C2 [non-classical contribution to rubber elasticity; see eqn (A.4)] with
volume swelling can be associated with the finite volume of the rubber molecules. This
leads to a reduction in the number of possible configurations as two molecules cannot
occupy the same space at the same time nor can they pass through one another. The
reduction of configurations from this cause would naturally be less in the swollen than in the
dry state and in highly swollen rubbers deviations from ideal behavior due to this cause will
be small.”

“The value of C2 is found to be large in dry rubbers and decreases to zero at high degrees of
swelling.”

The first issue that we must address, in a manner consistent with the former formulation of
the LM, is the concentration dependence of the plateau modulus of a polymer melt. In a melt
of high molecular mass polymers, the chains are only transiently localized into their local
tube environments on the time scale of the stress relaxation time, the terminal time. The
system thus responds elastically when perturbed at relatively high frequency measurements,
while the system flows over long time scales. Cross-linking locks chains into a permanently
localized state- an amorphous solidification transition.77

In the limit νd → 0 (high molecular mass polymer melt), the entanglement contribution Ge is
simply due to chain localization as a result of inter-chain interactions:21,24,75

 where . If we imagine the network as being
comprised of one single molecule (tube) of length N that fills space, then the change in
system volume upon swelling V0 → V implies the change in the correlation length ξ ∼ ξ0
ϕ−1/(d−1) and where cross-link density becomes, νd = ϕνd0, where ϕ is the polymer volume
fraction. These relations then imply that the plateau modulus of the diluted melt GN (ϕ)
scales as,

(B.1)
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Notably this scaling relation has nothing to do with the fractal character of the chains. This
scaling relation is simply a consequence of chain packing. The same packing argument
implies that  scales in inverse proportionality to the chain cross-sectional area A since ξ2

∼ A.24 The entanglement contribution to the elasticity of polymer networks, and even
polymer melts, should then be reduced for entangled polymer chains with bulky sidegroups.

To calculate the tension of a swollen rubber subjected to deformation,20 we define a
swelling factor to describe the first swelling part of the deformation , where λs is
the swelling factor. This deformation is followed, for example, by a uniaxial deformation λx
= α;λy = α−1/2;λz = α−1/2 so that the tension σ (α) is equal to σ = d[ΔFnetwork/V]/dα or
explicitly the LM predicts,

(B.2)

The concentration dependent reduced stress I(α,ϕ) ≡ σ/(α − 1/α2)ϕ1/3 then equals,

(B.3)

In the large extension limit (α → ∞) eqn (B.3) reduces as before to the Mooney-Rivlin
form,

(B.4)

where Gc ≡ 2C1 and Ge(ϕ) ≈ 2C2(ϕ) and the ‘Mooney parameter’ C2 exhibits the non-trivial
concentration scaling,

(B.5)

Although C2 generally vanishes upon swelling, as noted by Gumbrell et al.,19 there is a
qualitative difference in the concentration dependence of the entanglement contribution to
the elasticity of rubbery materials having relatively high and low cross-linking densities. For
lightly cross-linked materials where the chain localization term related to the plateau
modulus dominates, we predict that the Mooney parameter should drop off rapidly with
concentration,

(B.6)

while for highly cross-linked rubbers the scaling becomes like that of classical rubber
elasticity theory,

(B.7)
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Numerous observations on lightly cross-linked rubbers are consistent with eqn (B.5),
specifically C2(ϕ) for lightly cross-linked dry rubbers often exhibits a concentration power
law19,78,79 near 1 or 4/3, the precise value predicted by the LM. On the other hand, Douglas
and McKenna22 have shown that the scaling relation eqn (B.7) holds rather well for
relatively highly cross-linked natural rubber. The accord of the LM with these qualitative
changes in the elasticity of rubbers, depending on the cross-linking density, is again
encouraging.

Evidently, the non-ideal contribution to rubber elasticity can be large in unswollen rubbers,
and can even be larger than the contribution arising from chain cross-links. The localization
model attributes this non-ideal contribution to strong inter-chain interactions that influence
the chain entropy. Comparison of localization model to dry rubber deformation data
provides a reasonable description of the elasticity of rubbers in all modes of deformation
considered so far. The LM predicts that elasticity of lightly and highly cross-linked rubbers
changes in a qualitatively different fashion with network dilution. In view of the simplicity
of the analytic form of the model, the physically sensible nature of the parameters derived
from it, and its success in capturing qualitative aspects of rubber elasticity in both dry and
swollen rubbers, we conclude that the model is a useful working tool in modeling rubbery
materials.

In a previous review of the experimental literature to swollen rubbers,38 it was concluded
that the constrained junction fluctuation model of Flory and Erman30 provided the “best”
empirical description of elasticity of swollen rubbers under different deformation conditions
where the fitting parameters of this model were freely adjusted. However, this model offers
no predictions about how the fitting parameters should vary with molecular structure or the
extent of swelling. A comparison was also made to the localization model in this work
where the basic localization variable Ge was not allowed to vary with the concentration,
however, so that the predictive capability of the LM to describe the elasticity of swollen
rubbers, based on dry state measurements, was not made evident. In view of the empirical
success and simple and physically transparent nature of the LM, we believe that this model
has significant advantages over other available models to describe the elasticity of both dry
and swollen rubbers.

Appendix C. Expression of the shear stress under uniaxial deformation in
the rod network model

We deduce the stress-strain relationship for a uniaxial network deformation from eqn (6) as,

(C.1)

In simple shear, where the shearing force is applied along the x direction and results in a
shear strain γ, the principal stretch ratios are λx = λ, λy = 1, and λz = λ−1. The extent of shear
equals, γ = λ − λ−1, and the shear stress S is then defined as,

(C.2)

Substituting dλ/dγ = (dγ/dλ)−1 and performing the differentiation, we obtain the desired
explicit relation for S,
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(C.3)
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Fig. 1.
Molecular dynamics simulation of chain deformation under macroscopic extension (the
macroscopic deformation direction is along the horizontal direction); left chain is before
deformation and the right is after deformation. Red spheres indicate chain segments and the
gray segments are those of surrounding chains in the proximity of the illustrated test chain.
The number of chain segments in the test chain environment is nearly invariant, consistent
with an invariance of the tube volume with deformation. This figure is for schematic
purposes only.
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Fig. 2.
Variation of the self-assembly order parameter Φ or the reduced linear shear modulus with
temperature from eqn (9) and (10), respectively. The illustrative curves are for Δh = − 35 kJ/
mol and Δs = −105 J/mol K, and for Tp = 335 K and D0 = 25 K. Increasing the magnitude of
Δs at fixed Δh causes the “melting’ transition to become progressively sharper, while
reducing the transition temperature itself (inflection point in curve).
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Fig. 3.
Variation of the self-assembly order parameter Φ or the reduced linear shear modulus with
deformation ratio λ at constant temperature from eqn (11) and (12), respectively. The
illustrative curves are for Δh = −40.75 kJ/mol, Δs = −70 J/mol K, kf = 12 kJ/mol and ζ =
120, λ* = 2.7, δ = 0.09.
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Fig. 4.
Variation of the self-assembly order parameter Φ and reduced linear shear modulus order
with T for different fixed values of the stretch ratio λ from eqn (10). Illustrative curves are
for Δh = −35 kJ/mol, Δs = − 105 J/mol K, and kf = 1 kJ/mol.
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Fig. 5.
Stress-strain plot of Rivlin and Saunders's data63 for the compression and extension of
vulcanized natural rubber. The data is fit with the localization model, with fitting parameters
Gc = 12 kPa and Ge = 94 kPa with correlation coefficient R2 = 0.999 (maximum deviation in
stress is 6.17 kPa). Scaling errors arising from digitization of the original plots are estimated
to be no more than ±10%. Inset: reduced stress vs. inverse deformation or ‘Mooney-Rivlin’
plot.
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Fig. 6.
Stress-strain plot of Pak and Flory's data64 for the elongation and compression of
polydimethylsiloxane. The data is fit with the localization model, with fitting parameters Gc
= 55 kPa and Ge = 184 kPa, and with R2 = 0.999 (maximum deviation in stress is 98.6 kPa).
Scaling errors arising from digitization of the original plots are estimated to be no more than
±10%. Inset: reduced stress vs. inverse deformation. The LM also compares well with
biaxial extension,20,21 and torsional deformation measurements on dry rubbers62 and
network elasticity of rubbers cross-linked in a deformed state.75,76 Torsional deformation62

measurements performed over an wide range of νx, where C0 was fixed to equal ½, yielded a
fitted Ge having exactly the form predicted by eqn (5), i.e., Ge is linear in νx with slope γ,
where Ge extrapolates to the plateau or transient rubbery modulus  of the entangled
polymer melt.
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Fig. 7.
Reduced stress vs. stretch plot of the shear deformation of a neurofilament gel.66 The data is
fit with the rod chain network model, both with (solid curve) and without (dashed curve)
applying the Fermi approximation, eqn (11) as a factor, with fitting parameters: Gc = 750
kPa, Ge = 1000 kPa, b = 0.125, ζ = 0.9, λ* = 6, and δ = 0.3. Inset: stress vs. deformation,
with R2 = 0.998 for the fit with the simple Fermi approximant (maximum deviation in stress
is 0.004 kPa).
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Fig. 8.
Reduced stress vs. inverse stretch plot of the microindentation of chicken sternal cartilage.
The data is fit with the rod chain + localization model in which the additional Fermi
approximation, eqn (11), is applied: fitting parameters Gc = 0.9 kPa, Ge = 0.8 kPa, b = 45, ζ
= 1, λ* = 0.8745, and δ = − 0.008. Uncertainties in measured stresses are mainly attributed
to sample surface roughness and inclination (estimated to be on the order of several percent
due to the relatively large size of the probe), and to errors in measuring the probe radius
(estimated to be no greater than ±5%). Inset: stress vs. inverse deformation where R2 =
0.998 (maximum deviation in stress is 0.17 kPa).
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Fig. 9.
Stress vs. stretch plot of the shear deformation of a gelatin gel.53 The data is fit with two
forms of the rod chain network model: one curve indicates the simple Fermi function
description of the deformation dependence of the shear modulus (solid curve; fitting
parameters Gc = 56 Pa, Ge = 12 Pa, b = 0.4, ζ = 210, λ* = 2.85, and δ = 0.1; R2 = 0.952,
maximum deviation in stress is 0.06 kPa) and the other curve indicates a comparison where
the full expression for the order parameter is utilized [eqn (11)] (dashed curve; fitting
parameters Gc = 56 Pa, Ge = 12 Pa, b = 0.4, Δh = −38.1 kJ/mol, Δs = −75.0 J/mol K, and kf
= 9.0 kJ/mol; R2 = 0.948, maximum deviation in stress is 0.06 kPa). Inset: reduced stress vs.
deformation.
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Fig. 10.
The data and fit using the order parameter form of the rod polymer network model from Fig.
9 are reproduced, along with fits in which the deformation rate Γ is progressively decreased.
The tendency of σ to plateau at large λ in measurements of this kind is often due to the onset
of gel fracture which preempts the gel melting process,67 an effect that is not described by
our simple stress-induced network disassembly model. Our model should only be applied
when the material can recover its initial network properties, at least approximately, after
network breakdown under stress.

Lin et al. Page 32

Soft Matter. Author manuscript; available in PMC 2010 November 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Reduced stress plot of a flexible unentangled chain network that conforms to the classical
model with Gc = 45 kPa, showing the effect of temperature on strain softening behavior.
Thermodynamic parameters: Δh = − 40kJ/mol, Δs = −100 J/molK, and kf= 1000 kJ/mol.
Inset shows the stress-stretch relationship at room temperature and at elevated temperature.
In the context of carbon black and nanoparticle filled rubbers, this type of strongly
temperature dependent strain softening is called the “Payne effect”.68,78 Note that the
stiffness in these nanoparticle cross-linked rubber networks increases upon cooling, which is
opposite from classical theory of rubber elasticity with permanent cross-links.
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