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Development of mixed mode MPI / OpenMP

applications

Lorna Smith∗ and Mark Bull
EPCC, James Clark Maxwell Building, The King’s

Buildings, University of Edinburgh, Mayfield Road,

Edinburgh, EH9 3JZ, Scotland, UK

MPI / OpenMP mixed mode codes could potentially offer

the most effective parallelisation strategy for an SMP clus-

ter, as well as allowing the different characteristics of both

paradigms to be exploited to give the best performance on

a single SMP. This paper discusses the implementation, de-

velopment and performance of mixed mode MPI / OpenMP

applications.

The results demonstrate that this style of programming

will not always be the most effective mechanism on SMP

systems and cannot be regarded as the ideal programming

model for all codes. In some situations, however, significant

benefit may be obtained from a mixed mode implementation.

For example, benefit may be obtained if the parallel (MPI)

code suffers from: poor scaling with MPI processes due to

load imbalance or too fine a grain problem size, memory

limitations due to the use of a replicated data strategy, or a

restriction on the number of MPI processes combinations.

In addition, if the system has a poorly optimised or limited

scaling MPI implementation then a mixed mode code may

increase the code performance.

1. Introduction

Shared memory architectures are gradually becom-

ing more prominent in the HPC market, as advances

in technology have allowed larger numbers of CPUs

to have access to a single memory space. In addition,

manufacturers are increasingly clustering these SMP

systems together to go beyond the limits of a single

system. Some of these, such as cc-NUMA systems,

provide a single address space across the cluster whilst
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others have distinct address spaces for each node. As

clustered SMPs become more prominent, it becomes

more important for applications to be portable and ef-
ficient on these systems.

Message passing codes written in MPI are obviously

portable and should transfer easily to clustered SMP

systems. Whilst message passing may be necessary

to communicate between nodes, it is not immediately
clear that this is the most efficient parallelisation tech-

nique within an SMP node. In theory, a shared memory

model such as OpenMP should offer a more efficient

parallelisation strategy within an SMP node. Hence
a combination of shared memory and message pass-

ing parallelisation paradigms within the same applica-

tion (mixed mode programming) may provide a more

efficient parallelisation strategy than pure MPI.
Whilst mixed mode codes may involve other pro-

gramming languages such as High Performance Fortran

and POSIX threads, this paper will focus on mixed MPI

and OpenMP codes. This is because these are likely

to represent the most widespread use of mixed mode
programming on SMP clusters due to their portability

and the fact that they represent industry standards for

distributed and shared memory systems respectively.

Whilst SMP clusters offer the greatest reason for de-
veloping a mixed mode code, both the OpenMP and

MPI paradigms have different advantages and disad-

vantages and by developing such a model these charac-

teristics may be exploited to give the best performance
on a single SMP system.

This paper discusses the benefits of developing

mixed mode MPI / OpenMP applications on both sin-

gle and clustered SMPs. Section 2 describes related

work on mixed mode programming whilst Section 3
provides a comparison of the different characteristics of

the OpenMP and MPI paradigms. Section 4 discusses

the implementation of mixed mode applications and

Section 5 describes a number of situations where mixed
mode programming is potentially beneficial. Section 6

contains a case study and Section 7 a real mixed mode

application; in both cases we describe the implemen-

tation of a mixed mode application and compare and
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contrast the performance of the code with pure MPI

and OpenMP versions.

2. Related work

Henty et al. [7] have developed an MPI, OpenMP

and mixed mode version of a discrete element model

(DEM) code and compared and contrasted the perfor-

mance. This work is also discussed further in Section 5.

Tafti et al. [10,24] have studied irregular applications

such as adaptive mesh refinement codes which suffer

from load balance problems when parallelised using

MPI. By developing a mixed mode code for a clus-

tered SMP system, MPI need only be used for com-

munication between nodes. The OpenMP implemen-

tation does not suffer from load imbalance and hence

the performance of the code would be improved. They

have developed a technique called computational power

balancing which dynamically adjusts the number of

processors working on a particular calculation. This

work is discussed further in Section 5. Lanucara et

al. [14] have developed mixed OpenMP / MPI versions

of two Conjugate-Gradients algorithms and compared

their performance to pure MPI implementations.

The DoD High Performance Computing Moderni-

sation Program (HPCMP) Waterways Experiment Sta-

tion (WES) have developed a mixed mode OpenMP /

MPI version of the CGWAVE code [25]. This code

is used by the US Navy for forecasting and analysis

of harbour conditions. The wave components are the

parameter space and each wave component creates a

separate partial differential equation that is solved on

the same finite element grid. MPI is used to distribute

the wave components using a simple boss-worker strat-

egy, resulting in a course grain parallelism. Each wave

component results in a large sparse linear system of

equations that is parallelised using OpenMP. The de-

velopment of a mixed mode code has allowed these

simulations to be carried out on a grid of computers, in

this case on two different computers at different loca-

tions simultaneously. This mixed mode code has been

very successful and won the “most effective engineer-

ing methodology” award at SC98.

Bova et al. [2] have developed mixed mode ver-

sions of five separate codes. These are the CGWAVE

code mentioned above, the ab initio quantum chemistry

package GAMESS, a Linear algebra study, a thin-layer

Navier-Stokex solver (TLNS3D) and the seismic pro-

cessing benchmark SPECseis96. Each model was de-

veloped for different reasons however most used multi-

ple levels of parallelism, with distributed memory pro-

gramming for the coarser grain parallelism and shared

memory programming for the finer-grained.

Bush et al. [3] have developed mixed MPI / OpenMP

versions of some kernel algorithms and larger applica-

tions, concluding that although significant performance

gain can be obtained on some kernel applications this

requires a significant amount of effort. Cappello et

al. [4] have compared and contrasted the performance

of pure MPI and mixed MPI / OpenMP versions of

the NAS 2.3 benchmarks, concluding that the choice

of model is non trivial and requires consideration of

issues such as communication costs, memory access

patterns and the level of shared memory parallelisation

achievable.

Finally, a number of talks and presentations have

also been given on comparing OpenMP and MPI and

on mixed mode programming styles. For further infor-

mation see [1,5,6,13,15,16,20,22].

3. Programming model characteristics

As mentioned previously,as well as being potentially

more effective on an SMP cluster, mixed mode pro-

gramming may be of use on a single SMP, allowing the

advantages of both models to be exploited. This section

briefly summarises the two paradigms and considers

their potential advantages and disadvantages.

3.1. MPI

The message passing programming model is a dis-

tributed memory model with explicit control paral-

lelism. MPI [17] is portable to both distributed and

shared memory architecture and allows static task

scheduling. The explicit parallelism often provides a

better performance and a number of optimised collec-

tive communication routines are available for optimal

efficiency. Data placement problems are rarely ob-

served and synchronisation occurs implicitly with sub-

routine calls and hence is minimised naturally.

However MPI suffers from a few deficiencies. De-

composition, development and debugging of appli-

cations can be time consuming and significant code

changes are often required. Communications can cre-

ate a large overhead and the code granularity often has

to be large to minimise the latency. Finally, global

operations can be very expensive.
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3.2. OpenMP

OpenMP is an industry standard [19] for shared

memory programming. Based on a combination of

compiler directives, library routines and environment

variables it is used to specify parallelism on shared

memory machines. Communication is implicit and

OpenMP applications are relatively easy to implement.

In theory, OpenMP makes better use of the shared

memory architecture. Run time scheduling is allowed

and both fine and course grain parallelism are effec-

tive. OpenMP codes will however only run on shared

memory machines and the placement policy of data

may causes problems. Course grain parallelism often

requires a parallelisation strategy similar to an MPI

strategy and explicit synchronisation is required.

3.3. Mixed mode programming

By utilising a mixed mode programming model we

should be able to take advantage of the benefits of both

models. For example a mixed mode program may al-

low the data placement policies of MPI to be utilised

with the finer grain parallelism of OpenMP. The major-

ity of mixed mode applications involve a hierarchical

model; MPI parallelisation occurring at the top level,

and OpenMP parallelisation occurring below. For ex-

ample, Fig. 1 shows a 2D grid which has been divided

geometrically between four MPI processes. These sub-

arrays have then been further divided between three

OpenMP threads. This model closely maps to the ar-

chitecture of an SMP cluster, the MPI parallelisation

occurring between the SMP nodes and the OpenMP

parallelisation within the nodes.

Whilst the majority of mixed mode programs im-

plement this type of model, a number of authors have

described non-hierarchical models (see Section 2). For

example, message passing could be used within a code

when this is relatively simple to implement and shared

memory parallelism used where message passing is

difficult [8].

4. Implementing a mixed mode application

Although a large number of MPI implementations

are thread-safe, this cannot be guaranteed. To ensure

the code is portable, all MPI calls should be made

within thread sequential regions of the code. This often

creates little problem as the majority of codes involve

the OpenMP parallelisation occurring beneath the MPI

parallelisation and hence the majority of MPI calls oc-

cur outside the OpenMP parallel regions. When MPI

calls occur within an OpenMP parallel region the calls

should be placed inside a CRITICAL, MASTER or

SINGLE region, depending on the nature of the code.

Care should be taken with SINGLE regions,as different

threads may execute the code on successive passes.

Ideally, the number of threads should be set

from within each MPI process using omp set num

threads(n) as this is more portable than the

OMP NUM THREADS environment variable. Al-

though the two models are mixed within the code, the

experience of this author [23] and others [15] suggests

debugging and performance optimisation is most ef-

fectively carried out by treating the MPI and OpenMP

separately.

When writing a mixed mode application it is impor-

tant to consider how each paradigm carries out paral-

lelisation, and whether combining the two mechanisms

provides an optimal parallelisation strategy. For exam-

ple, a two dimensional grid problem may involve an

MPI decomposition in one dimension and an OpenMP

decomposition in one dimension. As two dimensional

decomposition strategies are often more efficient than

a one dimensional strategy it is important to ensure that

the two decompositions occur in different dimensions.

5. Benefits of mixed mode programming

This section discusses various situations where a

mixed mode code may be more efficient than a cor-

responding MPI implementation, whether on an SMP

cluster or single SMP system.

5.1. Codes which scale poorly with MPI

One of the largest areas of potential benefit from

mixed mode programming is with codes which scale

poorly with increasing MPI processes. If, for example,

the corresponding OpenMP version scales well then an

improvement in performance may be expected for a

mixed mode code. If, however, the equivalent OpenMP

implementation scales poorly, it is important to con-

sider the reasons behind the poor scaling and whether

these reasons are different for the OpenMP and MPI

implementations. If both versions scale poorly for dif-

ferent reasons, for example the MPI implementation

involves too much load imbalance and the OpenMP

version suffers from cache misses due to data place-

ment problems, then a mixed version may allow the
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Fig. 1. Schematic representation of a hierarchical mixed mode programming model for a 2D array.

code to scale to a larger number of processors before

either of these problems become apparent. If however

both the MPI and OpenMP codes scale poorly for the
same reason, developing a mixed mode version of the

algorithms may be of little use.

5.1.1. Load balance problems

One of the most common reasons for an MPI code to

scale poorly is load imbalance. For example irregular

applications such as adaptive mesh refinement codes
suffer from load balance problems when parallelised

using MPI. By developing a mixed mode code for a

clustered SMP system, MPI need only be used for com-

munication between nodes, creating a coarser grained
problem. The OpenMP implementation does not suffer

from load imbalance and hence the performance of the

code would be improved [10].

5.1.2. Fine grain parallelism problems

OpenMP generally gives better performance on fine

grain problems, where an MPI application may become
communication dominated. Hence when an applica-

tion requires good scaling with a fine grain level of par-

allelism a mixed mode program may be more efficient.

Obviously a pure OpenMP implementation would give
better performance still, however on SMP clusters MPI

parallelism is still required for communication between

nodes. By reducing the number of MPI processes re-

quired, the scaling of the code should be improved.

For example, Henty et al. [7] have developed an MPI

version of a discrete element model (DEM) code using

a domain decomposition strategy and a block-cyclic
distribution. In order to load balance certain problems

a fine granularity is required, but this results in an in-

crease in parallel overheads. The equivalent OpenMP

implementation involves a simple block distribution of
the main loop, which effectively makes the calculation

load balanced. In theory therefore, the performance

of a pure MPI implementation should be poorer than a

pure OpenMP implementation for these fine granular-
ity situations. A mixed mode code could provide better

performance, as load balance would only be an issue

between SMPs, which may be achieved with coarser

granularity. This specific example is more compli-

cated with other factors affecting the OpenMP scaling:
see [7] for further details.

5.2. Replicated data

Codes written using a replicated data strategy often
suffer from memory limitations and from poor scal-

ing due to global communications. By using a mixed

mode programming style on an SMP cluster, with the

MPI parallelisation occurring across the nodes and the
OpenMP parallelisation inside the nodes, the problem

will be limited to the memory of an SMP node rather

than the memory of a processor (or, to be precise, the

memory of an SMP node divided by the number of pro-
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cessors), as is the case for a pure MPI implementation.

This has obvious advantages, allowing more realistic

problem sizes to be studied.

5.3. Ease of implementation

Implementing an OpenMP application is almost al-

ways regarded as simpler and quicker than implement-

ing an MPI application (the exception being codes im-

plemented in an SPMD-style). Based on this the over-

head in creating a mixed mode code over an MPI code

is relatively small. In general, no significant advan-

tage in implementation time can be gained by writing

a mixed mode code over an MPI code, as the MPI im-

plementation still requires writing. There are possible

exceptions where this is not the case. In a number

of situations it is more efficient to carry out a parallel

decomposition in multiple dimensions rather than in

one, as the ratio of computation to communication in-

creases with increasing dimension. It is however sim-

pler to carry out a one dimensional parallel decompo-

sition rather than a three dimensional decomposition

using MPI. By writing a mixed mode version, the code

would not need to scale well to as many MPI processes,

as some MPI processes would be replaced by OpenMP

threads. Hence, in some cases writing a mixed mode

program may be easier than writing a pure MPI ap-

plication, as the MPI implementation could be simpler

and less scalable.

5.4. Restricted MPI process applications

A number of MPI applications require a specific

number of processes to run. For example one code [21]

(which uses a time dependent quantum approach to

scattering processes) distributes the work by assigning

the tasks propagating the wavepacket at different vi-

brational and rotational numbers to different processes.

Whilst a natural and efficient implementation, this lim-

its the number of MPI processes to certain combina-

tions. In addition, a large number of codes only scale to

powers of 2, again limiting the number of processors.

This can create a problem in two ways. Firstly the num-

ber of processes required may not equal the machine

size, either being too large, making running impossi-

ble, or more commonly too small and hence making

the utilisation of the machine inefficient. In addition,

a number of MPP services only allow jobs of certain

sizes to be run in an attempt to maximise the resource

usage of the system. If the restricted number of proces-

sors does not match the size of one of the batch queues

this can create real problems for running the code. By

developing a mixed mode MPI / OpenMP code the nat-

ural MPI decomposition strategy can be used, running

the desired number of MPI processes, and OpenMP

threads used to further distribute the work, allowing all

the available processes to be used effectively.

5.5. Poorly optimised intra-node MPI

Although a number of vendors have spent consider-

able amounts of time optimising their MPI implemen-

tations within a shared memory architecture, this may

not always be the case. On a clustered SMP system,

if the MPI implementation has not been optimised, the

performance of a pure MPI application across the sys-

tem may be poorer than a mixed MPI / OpenMP code.

This is obviously vendor specific, but in certain cases a

mixed mode code could offer significant performance

improvement, for example on a Beowulf system.

5.6. Poor scaling of the MPI implementation

Clustered SMPs open the way for systems to be built

with ever increasing numbers of processors. In certain

situations the scaling of the MPI implementation itself

may not match these ever increasing processor num-

bers or may indeed be restricted to a certain maximum

number [11]. In this situation developing a mixed mode

code may be of benefit (or required), as the number

of MPI processes needed will be reduced and replaced

with OpenMP threads.

5.7. Bandwidth and Latency limited problems

The bandwidth and latency between SMP nodes can

influence the performance of some codes substantially.

Developing a mixed MPI / OpenMP version of a code

previously written in MPI will typically reduce the

number of inter-node messages, but increase the size

of these messages.

On a simple interconnect, which only allows one

message at a time to be sent/received by a node, the

message bandwidth will be unaffected, since the same

total amount of data is being transferred. The total la-

tency, however, will decrease as there are fewer mes-

sages, resulting in a potential increase in performance.

On a more sophisticated interconnect, which allows

concurrent sending/receiving of messages, the smaller

number of larger messages may have a detrimental ef-

fect, as the total network bandwidth cannot be exploited

as efficiently.
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5.8. Computational power balancing

A technique developed by D. Tafti and W. Huang [10,

24], computational power balancing dynamically ad-

justs the number of processors working on a particu-

lar calculation. The application is written as a mixed

mode code with the OpenMP directives embedded un-

der the MPI processes. Initially the work is distributed

between the MPI processes, however when the load

on a processor doubles the code uses the OpenMP di-

rectives to spawn a new thread on another processor.

Hence when an MPI process becomes overloaded the

work can be redistributed. Tafti et al. have used this

technique with irregular applications such as adaptive

mesh refinement (AMR) codes which suffer from load

balance problems. When load imbalance occurs for

an MPI application either repartition of the mesh, or

mesh migration is used to improve the load balance.

This is often time consuming and costly. By using

computational power balancing these procedures can

be avoided.

The advantages of this technique are limited by the

operating policy of the system. Most systems allocate a

fixed number of processors for one job and do not allow

applications to grab more processors during execution.

This is to ensure the most effective utilisation of the

system by multiple users and it is difficult to see these

policies changing. The obvious exception is “free for

all” SMPs which would accommodate such a model.

6. Case study

Having discussed the possible benefits of writing a

mixed mode application, this section looks at an exam-

ple code which is implemented in OpenMP, MPI and

as a mixed MPI / OpenMP code. The code has been

run on a Sun HPC 3500 system with exclusive access.

This system has 8 400 MHz UltraSparc II processors

and 8 Gbytes of memory running Solaris 2.7.

6.1. The code

The code used here is a Game of Life code, a simple

grid-based problem which demonstrates complex be-

haviour. It is a cellular automaton where the world is

a 2D grid of cells which have two states, alive or dead.

At each iteration the new state of the cell is entirely

determined by the state of its eight nearest neighbours

at the previous iteration.

The basic structure of the code is:

1. Initialise the 2D cell.

2. Carry out boundary swaps (for periodic boundary

conditions).

3. Loop over the 2D grid, to determine the number

of alive neighbours.

4. Up-date the 2D grid, based on the number of

alive neighbours and calculate the number of alive

cells.

5. Iterate steps 2–4 for the required number of iter-

ations.

6. Write out the final 2D grid.

The majority of the computational time is spent car-

rying out steps 2–4.

6.2. Parallelisation

The aim of developing a mixed mode MPI / OpenMP

code is to attempt to gain a performance improvement

over a pure MPI code, allowing for the most efficient

use of a cluster of SMPs. In general, this will only be

achieved if a pure OpenMP version of the code gives

better performance on an SMP system than a pure MPI

version of the code (see Section 5.1). Hence a number

of pure OpenMP and MPI versions of the code have

been developed and their performance compared.

6.2.1. MPI parallelisation

The MPI implementation involves a domain decom-

position strategy. The 2D grid of cells is divided be-

tween each process, each process being responsible for

updating the elements of its section of the array. Be-

fore the states of neighbouring cells can be determined

copies of edge data must be swapped between neigh-

bouring processors. Hence halo-swaps are carried out

for each iteration. On completion, all the data is sent

to the master process, which writes out the data. This

implementation involves a number of MPI calls to cre-

ate virtual topologies and derived data types, and to de-

termine and send data to neighbouring processes. This

has resulted in considerable code modification, with

around 100 extra lines of code.

6.2.2. OpenMP parallelisation

The most natural OpenMP parallelisation strategy is

to place a number of PARALLEL DO directives around

the computationally intense loops of the code and an

OpenMP version of the code has been implemented

with PARALLEL DO directives around the outer loops

of the three computationally intense components of the

iterative loop (steps 2–4). This has resulted in minimal

code changes, with only 15 extra lines of code.
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Table 1

Timings (seconds) of the main loop of the Game of Life codes with

array sizes 100 × 100 and 700 × 700 for 10000 iterations

array size 100

OpenMP (SPMD) MPI OpenMP (Loop)

1 5.59 5.80 4.82

2 4.33 4.00 3.39

4 2.98 2.93 2.31
6 2.28 3.02 1.98

8 2.09 3.35 1.97

array size 700

OpenMP (SPMD) MPI OpenMP (Loop)

1 264.82 264.20 219.67

2 146.20 139.89 120.34

4 72.57 71.38 64.20

6 52.23 51.33 45.22

8 44.53 46.21 37.64

The code has also been written using an SPMD
model and the same domain decomposition strategy as

the MPI code to provide a more direct comparison. The
code is placed within a PARALLEL region. An extra

index has been added to the main array of cells, based
on the thread number. This array is shared and each

thread is responsible for updating its own section of the
array based on the thread index. Halo swaps are car-

ried out between different sections of the array. Syn-

chronisation is only required between nearest neigh-
bour threads and, rather than force extra synchronisa-

tion between all threads using a BARRIER, a separate
routine, using the FLUSH directive, has been written

to carry this out.
The primary difference between this code and the

MPI code is in the way in which the halo swaps are
carried out. The MPI code carries out explicit message

passing whilst the OpenMP code uses direct reads and
writes to memory.

6.3. Performance

The performance of the two OpenMP codes and the
MPI code has been measured with two different array

sizes. Table 1 shows the timings of the main loop of
the code (steps 2–4) and Figs 2 and 3 show the scaling

of the code on array sizes 100 × 100 and 700 × 700
respectively for 10000 iterations.

These results show a small difference between the
timing of the OpenMP loop based code and the other

codes on one processor. This is due to differences in

compiler optimisation for the three codes which proved
difficult to eliminate. This however has not influenced

the overall conclusions of this section.
Comparison of the two OpenMP codes with the MPI

implementation reveals a better performance for the

OpenMP codes on both problem sizes on eight pro-

cessors. It is also clear from these results that the

performance difference is more extreme on the finer

grain problem size. This observation concurs with Sec-

tions 3.2 and 5.1 which suggest that OpenMP imple-

mentations perform more effectively on fine grain prob-

lems. The SPMD OpenMP code gives the best overall

speed-up, no matter what the problem size.

The poorer scaling of the MPI code for both prob-

lem sizes is due to the communication involved in the

halo swaps, becoming more pronounced for the smaller

problem size.

Both the SPMD OpenMP and MPI codes benefit

from a minimum of synchronisation, which is only re-

quired between nearest neighbour threads/processes for

each iteration of the loop. The loop based OpenMP im-

plementation however involves synchronisation at the

end of each PARALLEL DO region, forcing all the

threads to synchronise three times within each itera-

tion. The poorer scaling of this code in comparison to

the SPMD OpenMP code is due to this added synchro-

nisation.

These timing results demonstrate that both the

OpenMP codes give better performance than the MPI

code on both problem sizes. Hence developing a mixed

mode MPI / OpenMP code may give better perfor-

mance than the pure MPI code, and would therefore be

of benefit on an SMP cluster.

6.4. Mixed mode parallelisation and performance

Three mixed mode versions of the code have been

developed. The simplest of these involves a combina-

tion of the MPI domain decomposition parallelisation

and the OpenMP loop based parallelisation. The MPI

domain decomposition is carried out as before with the

2D grid divided between each process with each pro-

cess responsible for updating the elements of its sec-

tion of the array. Halo-swaps are carried out for each

iteration. In addition OpenMP PARALLEL DO direc-

tives have been placed around the relevant loops, creat-

ing further parallelisation beneath the MPI parallelisa-

tion. Hence the work is firstly distributed by dividing

the 2D grid between the MPI processes geometrically

and then parallelised further using OpenMP loop based

parallelisation.

The performance of this code has been measured

and scaling curves determined for increasing MPI pro-

cesses and OpenMP threads. The results have again

been measured with two different array sizes. Table 2

shows the timings of the main loop of the code for



90 L. Smith and M. Bull / Development of mixed mode MPI / OpenMP applications

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9

No of threads/processes

S
p

e
e
d

-u
p

OpenMP (SPMD)

MPI

OpenMP (Loop)

Fig. 2. Scaling of the Game of Life code for array size 100.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

No of threads/processes

S
p

e
e
d

-u
p

OpenMP (SPMD)

MPI

OpenMP (Loop)

Fig. 3. Scaling of the Game of Life code for array size 700.

10000 iterations. The results presented here are for N

processes × 1 thread and N threads x 1 process, other

combinations are presented later in the paper. Figure 4

shows the scaling of the code on array sizes 100× 100

and 700× 700.

It is clear that the scaling with OpenMP threads is

similar to the scaling with MPI processes, for the larger

problem size. However when compared to the perfor-

mance of the pure MPI code the speed-up is very simi-

lar and no significant advantage has been obtained over

the pure MPI implementation.

The scaling is slightly better for the smaller problem

size, again demonstrating OpenMP’s advantage on finer

grain problem sizes.
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Table 2
Timings (seconds) of the main loop of the mixed mode Game of

Life codes with array sizes 100 × 100 and 700 × 700 for 10000

iterations. Array sizes are given in brackets, while Processes refers

to MPI processes and Threads to OpenMP threads. Results presented

here are for N processes × 1 thread and N threads × 1 process

Loop based mixed mode code

Threads Processes Threads Processes

(700) (700) (100) (100)

1 229.18 229.18 5.46 5.46

2 121.59 121.77 3.92 3.76
4 66.21 62.25 3.01 2.70

6 47.91 45.58 2.66 2.94

8 39.87 39.21 2.65 3.19

2D mixed mode code

Threads Processes Threads Processes

(700) (700) (100) (100)

1 302.41 302.41 5.22 5.22

2 172.43 161.79 3.92 3.58

4 92.69 81.77 3.86 2.52

6 68.76 59.32 3.52 2.80

8 58.51 50.00 3.56 3.09

SPMD mixed mode code

Threads Processes Threads Processes

(700) (700) (100) (100)

1 251.84 251.84 5.25 5.25

2 135.42 133.18 3.79 3.59

4 68.22 68.92 2.00 2.61

6 48.37 49.87 1.59 2.73

8 39.63 43.11 1.60 3.19

Further analysis reveals that the poor scaling of the

code is due to the same reasons as the pure MPI and

OpenMP codes. The scaling with MPI processes is

less than ideal due to the additional time spent carrying

out halo swaps and the scaling with OpenMP threads

is reduced because of the additional synchronisation

creating a load balance issue.

In an attempt to improve the load balance and reduce

the amount of synchronisation involved the code has

been modified. Rather than using OpenMP PARAL-

LEL DO directives around the two principal OpenMP

loops (the loop to determine the number of neighbours

and the loop to up-date the board based on the number

of neighbours) these have been placed within a parallel

region and the work divided between the threads in a

geometric manner. Hence, in a similar manner to the

SPMD OpenMP implementation mentioned above, the

2D grid has been divided between the threads in a ge-

ometric manner and each thread is responsible for its

own section of the 2D grid. The 2D arrays are still

shared between the threads. This has had two effects:

firstly the amount of synchronisation has been reduced,

as no synchronisation is required between each of the

two loops. Secondly, the parallelisation now occurs

in two dimensions, whereas previously parallelisation

was in one (across the outer DO loops). This could

have an effect on the load balance if the problem is

relatively small. Figure 5 shows the performance of

this code, with scaling curves determined for increasing

MPI processes and OpenMP processes.

This figure demonstrates that the scaling of the code

with OpenMP threads has decreased, and the scaling



92 L. Smith and M. Bull / Development of mixed mode MPI / OpenMP applications

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9

No of threads/processes

S
p

e
e
d

-u
p

Threads (700)

Processes (700)

Threads (100)

Processes (100)

Fig. 5. Scaling of the 2D OpenMP / MPI Game of Life code for array sizes 100 and 700.

with MPI processes remained similar. Further analysis

reveals that the poor scaling is still in part due to the

barrier synchronisation creating load imbalance. Al-

though the number of barriers has been decreased, syn-

chronisation between all threads is still necessary be-

fore the MPI halo swaps can occur for each iteration.

When running with increasing MPI processes (and only

one OpenMP thread), synchronisation only occurs be-

tween nearest neighbour processes, and not across the

entire communicator. In addition, the 2D decomposi-

tion has had a detrimental effect on the performance.

This may be due to the increased number of cache lines

which must be read from remote processors.

In order to eliminate this extra communication, the

code has been re-written so that the OpenMP paralleli-

sation no longer occurs underneath the MPI paralleli-

sation.

The threads and processes have each been given a

global identifier and divided into a global 2D topology.

From this the nearest neighbour threads/processes have

been determined and the nearest neighbour (MPI) rank

has been stored. The 2D grid has been divided geo-

metrically between the threads and processes based on

the 2D topology. Halo swaps are carried out for each

iteration of the code. If a thread/process is sending to a

neighbour located on the same MPI processes (i.e. with

the same rank), halo swaps are carried out using sim-

ple read and writes (as with the pure OpenMP SPMD

model). If, however, the nearest neighbour is located

on a different process, MPI send and receive calls are

used to exchange the information. This has the effect of

allowing only nearest neighbour synchronisation to be

carried out, no matter how many processes or threads

are available. Figure 6 shows a schematic of the halo

swaps.

This does however highlight another issue. Section 4

mentioned that a thread-safe MPI implementation can-

not be guaranteed, and MPI calls should be carried out

within thread serial regions of the code. This is still the

case, however the SUN MPI 4.0 implementation be-

ing utilised has a thread safe MPI implementation and

therefore allows this procedure to be carried out. Al-

though this makes the code less portable, it allows the

demonstration of the performance improvement gained

by using OpenMP and MPI at the same level.

The performance of this code has been measured and

scaling curves determined for increasing MPI processes

and OpenMP processes. The results have again been

measured with two different array sizes. Figure 7 shows

the scaling of the code on array sizes 100 × 100 and

700× 700 respectively.

The scaling of the code with increasing OpenMP

threads is greater than the scaling of the code with MPI

processes. In this situation the amount of synchronisa-

tion required is the same for MPI processes as it is for

OpenMP threads, i.e. only nearest neighbour. Hence
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the difference is only with the halo swaps, thread to

thread halo swaps involving simple read and writes,

whilst process to process halo swaps involving explicit

message passing. Timing runs for various combina-

tions of threads and processes, using the same total

number of processors, demonstrate that as the num-

ber of threads increases and the number of processes

decreases the time decreases linearly.

The aim of developing a mixed mode MPI / OpenMP

code was to attempt to gain a performance improvement

over a pure MPI code, allowing for the most efficient

use of a cluster of SMPs. Comparison of this mixed

code with the pure MPI implementation reveals a per-

formance improvement has been obtained: the overall

timings have reduced and the scaling of the code with

increasing thread number is better.

Examining Table 2 again highlights a variation be-

tween the sequential thread execution times (i.e. N pro-

cesses × 1 thread). This is due to differences in the

structure of the three codes, in addition to differences
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in compiler optimisation. These variations do not how-

ever alter the overall conclusion of this section, with

the overall timings for the SMPD mixed mode code

reduced in comparison to the pure MPI code.

6.5. Summary

This case study has highlighted a number of interest-

ing points. Firstly, the OpenMP code performs better

on finer grain problem sizes and therefore offers the po-

tential for mixed MPI / OpenMP codes to give a better

performance over a pure MPI implementation on these

problems.

Secondly, even when a pure OpenMP implemen-

tation gives better performance over a pure MPI im-

plementation, this does not always mean that a mixed

MPI / OpenMP code will give better performance than

a pure MPI implementation. For example, by imple-

menting the mixed mode code with the MPI paralleli-

sation above the OpenMP parallelisation, as is often

the recommended case due to the lack of a guaranteed

thread-safe MPI implementation, extra synchronisation

is often introduced, which can reduce the performance.

Finally, for this particular example the mixed code

needed to be written with MPI and OpenMP at the same

level, rather than using the more common hierarchical

model. This creates issues with portability, relying on a

thread-safe MPI implementation, and adds to the code

complexity, but increases performance.

7. Real applications

In this section we will look at the performance of a

mixed mode implementation of a real application code.

This application is a mixed mode Quantum Monte-

Carlo code [23]. The original parallel MPI version

of the QMC code was developed by the Electronic

Structure of Solids HPCI consortium in collaboration

with EPCC. This code has been highly successful, and

has resulted in numerous publications based on results

generated on Cray MPP systems ( [12,18,9]). Interest in

developing a mixed MPI / OpenMP version of the code

has recently increased with the advent of clustered SMP

systems. Hence the code has been re-written to allow

for an arbitrary mix of OpenMP and MPI parallelism.

In this section we will briefly discuss the various issues

which arose during the parallelisation and compare and

contrast the performance with the original MPI version.

For further details see [23].

7.1. The code

The ability to study and predict theoretically the

electronic properties of atoms, molecules and solids

has brought about a deeper understanding of the na-

ture and properties of real materials. The method-

ology used here is based on Quantum Monte Carlo

(QMC) techniques, which provide an accurate descrip-

tion of the many-body physics which is so important

in most systems. The code carries out diffusion Monte

Carlo (DMC) calculations. These calculations are com-

putationally intensive and require high performance

computing facilities to be able to study realistic sys-

tems. These calculations involve a stochastic simula-

tion where the configuration space is sampled by many

points, each of which undergoes a random walk.

The basic structure of the DMC algorithm is:

1. Initialise an ensemble of walkers distributed with

an arbitrary probability distribution.

2. Update each walker in the ensemble.

For each electron in the walker:

(a) Move the electron.

(b) Calculate the local energy for the new walker

position and other observables of interest.

(c) Calculate the new weight for this walker.

(d) Accumulate the local energy contribution for

this walker.

(e) Breed new walkers or kill the walker based

on the energy.

3. Once all walkers in the current generation have

been updated, evaluate the new generation aver-

ages.

4. After N generations (a block), calculate the new

averages.

5. Iterate steps 2–4 until equilibrium is reached; then

reset all cumulative averages and iterate steps 2–

4 until the variance in the average is as small as

required.

7.2. MPI parallelisation

A master-slave model is used where the master dele-

gates work to the other processors. The master proces-

sor sends work to the slave processors who complete

the required work and return the results back to the

master. The master processor divides the ensemble of

configurations amongst the slaves. Each of the slaves

evaluates various quantities dependent on its subset of

configurations. These are returned to the master which
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determines new values of the parameters. The proce-

dure is repeated until convergence.

DMC calculations involve the creation and annihi-

lation of electron configurations depending on global

properties of the ensemble configurations. Before each

block, or set of iterations, each processor is assigned

the same fixed number of electron configurations. Af-

ter each block, however, the number of electron config-

urations on each processor may change. To avoid poor

load balancing, the electron configurations are redis-

tributed between the processors after each block. This

involves a number of all-to-one communications and

several point-to-point send operations.

7.3. Mixed mode parallelisation

The majority of the execution time is spent within

the principal DMC loop, i.e. the loop over electron

configurations carried out within each block. Compiler

directives have been placed around this loop allowing

the work to be distributed between the threads. The

principal storage arrays are recomputed before the loop

over electron configurations. Although considerably

less time consuming than the principle loop, this loop

has an effect on the code scaling and has also been

parallelised.

At the start of each block electron configurations are

distributed evenly between the MPI processes. The

work is then further distributed by the OpenMP di-

rectives, resulting in each of the loops being executed

in parallel between the OpenMP threads. Hence the

OpenMP loop parallelisation occurs beneath the MPI

parallelisation.

7.4. Discussion

Within the main loop, two principal shared arrays are

present. At the start of the loop, sections of these ar-

rays, based on the loop index, are copied to temporary

private arrays. On completion these arrays are copied

back to the principle shared arrays. As the number

of electron configurations, and hence the size of the

temporary arrays, changes with each iteration, an OR-

DERED statement is required to ensure the arrays are

copied back in the same order as the sequential version

of the code. This is a potential source of poor scaling,

but was unavoidable due to the dynamic nature of the

algorithm.

No major performance or implementation problems

were encountered with mixing MPI and OpenMP, and

results were reproducible with various combinations of

Table 3

Execution time (seconds) for various combinations of OpenMP

threads and MPI processes on the SGI Origin 2000. Loop times

are average loop times, averaged over 20 iterations for 960 electron

configurations

Processes × Loop over Processes × Loop over

Threads Blocks Threads Blocks

1 × 1 965.64 1 × 1 965.64

1 × 4 243.52 4 × 1 241.40
1 × 8 123.25 8 × 1 120.30

1 × 16 61.98 16 × 1 60.13

1 × 32 31.54 32 × 1 30.93

1 × 64 17.17 64 × 1 15.69

1 × 96 14.65 96 × 1 11.04

1 × 96 14.65 12 × 8 11.04

2 × 48 11.11 24 × 4 11.04

4 × 24 11.05 48 × 2 11.04
8 × 12 11.04 96 × 1 11.04

OpenMP threads and MPI processes. As mentioned

before, to ensure that the code is portable to systems

without thread-safe MPI implementations, MPI calls

are only made from within serial regions of the code.

In general the OpenMP loop parallelisation occurs be-

neath the MPI parallelisation. There were two excep-

tions to this. Firstly a number of calls to MPI WTIME

occur within the OpenMP loops, these have been mod-

ified to only allow the master thread to call them.

Secondly, within the first OpenMP loop a number of

MPI BCASTs are carried out. In the original MPI

code, a number of dynamically allocatable arrays are

declared within a module. These are allocated the first

time the routine is called, then written to once on the

master process. The master processes then broadcasts

the values to all the other processes. In the threaded

code, OpenMP makes these arrays shared by default,

but since they are written to within a parallel region they

require to be private. Hence they have been returned

to statically allocated arrays and placed in THREAD-

PRIVATE COMMON blocks. All the private thread

copies are then written to on the master processes. The

MPI BCASTS have been placed inside a CRITICAL

section, to cause the MPI calls to only occur within

a serial region while ensuring every thread on every

process has a copy of the data.

7.5. Results

The code has been run on an SGI Origin 2000 with

300MHz R12000 processors, with exclusive access.

Timing runs have been taken for a combination of

OpenMP threads and MPI processes, to give a total of

96. Table 3 reports these timings and Fig. 8 shows the

scaling of the code with OpenMP thread number (with
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1 MPI process) and with MPI process number (with
1 OpenMP thread).

For this particular example the code scales well with

increasing MPI process number to 96 processors. The

results also demonstrate that the scaling of the code with

OpenMP threads is reasonable to 32 processors and
only slightly lower than with MPI processes. Above

32 processors the scaling is worse than with MPI pro-

cesses, tailing off considerably above 64 threads. Ta-

ble 3 shows the execution time for the code for different

thread/process combinations. This demonstrates that,
with the exception of the 1 process × 96 threads com-

bination, comparable results are obtained for various

MPI process and OpenMP thread number.

Although the code scales well with increasing MPI
process number, the scaling is not ideal. This is due

to the redistribution of electron configurations between

processors after each block,which involves a number of

all-to-one communications and several point-to-point

send operations. For example, on 96 MPI processes the
redistribution of electron configurations requires 0.92 s,

accounting for around 8 percent of the total loop iter-

ation time. The equivalent example on 96 OpenMP

threads requires no redistribution. One possible reason

for the poorer scaling of the code with OpenMP threads
is the architecture of the Origin 2000. This has a cc-

NUMA architecture with physically distributed mem-

ory and data will be stored on the node that initialised

it. This has the potential to create a bottleneck, with all

data accesses being satisfied by one hub, hence limit-

ing the memory bandwidth. To address this problem,

the data placement policy was changed to use a round-

robin allocation, where data is allocated in a round-

robin fashion between processors. This, however, had

no effect on the scaling.

A further source of poor scaling is due to MPI calls

made from within serial regions of the code. To ensure

the code is portable to systems without thread-safe MPI

implementations, MPI calls are only made from within

serial regions of the code. As mentioned earlier, in gen-

eral the OpenMP loop parallelisation occurs beneath

the MPI parallelisation, with only a few exceptions.

For these exceptions, the MPI calls have been placed

within a CRITICAL section, to cause the MPI calls to

only occur within a serial region while ensuring every

thread on every process has a copy of the data. This is

a potential source of poor scaling. However, the ma-

jority of these calls only occur during the first iteration

of the OpenMP loop, and therefore have little effect on

the performance of the code. Finally, poor scaling may

be a result of the ORDERED statement within the loop

over electron configurations which forces the code to be

executed in the order in which iterations are executed in

a sequential execution of the loop. The more dramatic

tailing off above 64 processors is probably due to the

ORDERED statement, which can seriously affect the

performance on small problem sizes. In this case the
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problem size on 96 processors is relatively small and

only involves 10 electron configurations per thread.

Examining the execution times of the code with a

range of threads and processes, giving a total of 96

processors, demonstrates similar times with all combi-

nations except the 1 process × 96 thread combination.

The execution time for this combination is larger than

the other situations, possibly a result of the cc-NUMA

architecture with the larger number of MPI process

combinations benefiting from a better data placement

policy.

7.6. Summary

An OpenMP version of a large QMC application

code has been developed. The original version of

the code was written in MPI and the new version has

been written to explicitly allow for an arbitrary mix of

OpenMP and MPI parallelism. The code scales well

with OpenMP threads to 32 processors and only slightly

lower than with MPI processes. Above 32 processors

the scaling is worse than with MPI processes, tailing off

considerably above 64 threads. It is interesting to note

that some of the poor scaling has been attributed to the

ORDERED statement, which has effectively reduced

any benefit from using OpenMP on a fine grain prob-

lem size. Examining the execution times on 96 proces-

sors, with a range of thread and process combinations,

reveals similar times for all but one combination.

8. Conclusions

With the increasing prominence of clustered SMPs

in the HPC market, the importance of writing the most

efficient and portable applications for these systems

grows. Whilst message passing is required between

nodes, OpenMP offers an efficient, and often consid-

erably easier, parallelisation strategy within an SMP

node. Hence a mixed mode programming model may

provide the most effective strategy for an SMP cluster.

In addition, a mixed mode MPI / OpenMP code has

the potential to exploit the different characteristics of

both paradigms to give the best performance on a single

SMP.

It has, however, become clear that this style of pro-

gramming will not always be the most effective mech-

anism on SMP systems and cannot be regarded as the

ideal programming model for all codes. In practice,

serious consideration must be given to the nature of

the codes before embarking on a mixed mode imple-

mentation. In some situations significant benefit may

be obtained from a mixed mode implementation. For

example benefit may be obtained if the parallel (MPI)

code suffers from:

– poor scaling with MPI processes due to e.g. load

imbalance or too fine a grain problem size;

– from memory limitations due to the use of a repli-

cated data strategy;

– from a restriction on the number of MPI process

combinations.

In addition, if the system suffers from a poorly op-

timised or limited scaling MPI implementation then a

mixed mode code may increase the code performance.
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[5] Raphaël Couturier, OpenMP en plus de MPI, Manifestations

du Centre Charles Hermite, 1999, http://cch.loria.fr/activites/

manifestations/1999/OpenMP MPI/sld001.htm.

[6] C. Grassel, Blended programming: MPI and OpenMP, T.J.

Watson Research Center presentations, IBM, 1999, http://
www.research.ibm.com/actc/Talks/CharlesGrassl/Blended/

index.htm.

[7] D.S. Henty, Performance of hybrid message-passing and

shared-memory parallelism for Discrete Element Modelling,

presented at Supercomputing, Dallas, 2000, http://www.

sc2000.org/proceedings/techpapr/papers/pap154.pdf.

[8] J. Hoeflinger, A performance comparison of Fortran 90 with

MPI and OpenMP on the Origin 2000, Centre for Simula-
tion of Advanced Rockets, http://polaris.cs.uiuc.edu/˜hoefling/

Talks/MPIvsOMP/sld001.htm.

[9] R.Q. Hood, M.Y. Chou, A.J. Williamson, G. Rajagopal, R.J.

Needs and W.M.C Foulkes, Quantum Monte Carlo investiga-

tion of exchange and correlation in Silicon, Phys. Rev. Lett. 78

(1997), 3350–3353.

[10] W. Huang and D.K. Tafti, A parallel computing framework for
dynamic power balancing in adaptive mesh refinement appli-

cations proceedings of Parallel Computational Fluid Dynam-

ics 1999, Wiiliamsburg, VA, May 23–26, 1999, http://www.

ncsa.uiuc.edu/SCD/Consulting/Tips/Load Balancing.html.

[11] Hybrid MPI / OpenMP programming for the SDSC teraflop

system, Scientific Computing at NPACI (SCAN), http://www.

npaci.edu/online/v3.14/SCAN.html.



98 L. Smith and M. Bull / Development of mixed mode MPI / OpenMP applications

[12] P.R.C. Kent, R.Q. Hood, A.J. Williamson, R.J. Needs, W.M.C

Foulkes and G. Rajagopal, Finite-size errors in quantum many-

body simulations of extended systems, Phys. Rev. B59 (1999),

1917–1929.

[13] D. Klepacki, Mixed-mode programming, T.J. Watson Re-

search Center presentations, IBM, 1999, http://www.research.

ibm.com/actc/Talks/DavidKlepacki/MixedMode/index.htm.
[14] P. Lanucara and S. Rovida, Conjugate-Gradient algortihms:

An MPI-OpenMP implementation on distributed shared mem-

ory systems, proceeding of the 1st European Workshop on

OpenMP, Lund, Sweden, 1999, pp. 76–78.

[15] B. Magro, OpenMP programming with KAP/Pro toolset,

(Part 2), Kuck and Associates, Inc., http://www.research.ibm.

com/actc/Talks/KAI/Part1/sld001.htm.

[16] J.M. May and B.R. de Supinski, Experiences with mixed MPI
and threaded programming models, presentation at the IBM

Advanced Computing Technology Center SP Scientific Appli-

cations and Optimization Meeting at the San Diego Super-

computer Center, March 18, 1999, http://www.llnl.gov/casc/

mixed models/pubs.html.

[17] MPI, MPI: A Message-Passing Interface standard. Mes-

sage Passing Interface Forum, June 1995, http://www.mpi-

forum.org/.
[18] M. Nekovee, W.M.C. Foulkes, A.J. Williamson, G. Ra-

jagopal and R.J. Needs, A Quantum Monte Carlo approach to

the adiabatic connection method, Adv. Quantum Chem. 33

(1999), 189–207.

[19] OpenMP, The OpenMP ARB, http://www.openmp.org/.

[20] D. Pekurovsky, T. Kaiser and L. Nett, OpenMP and Hybrid-

Model Performance Issues, presented at SciComp 2000, San

Diego, CA, http://www.spscicomp.org/2000/.
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