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Abstract 

Background: Enzymatic hydrolysis is a major step for cellulosic ethanol production. A thorough understanding of 

enzymatic hydrolysis is necessary to help design optimal conditions and economical systems. The original HCH-1 

(Holtzapple–Caram–Humphrey–1) model is a generalized mechanistic model for enzymatic cellulose hydrolysis, 

but was previously applied only to the initial rates. In this study, the original HCH-1 model was modified to describe 

integrated enzymatic cellulose hydrolysis. The relationships between parameters in the HCH-1 model and substrate 

conversion were investigated. Literature models for long-term (> 48 h) enzymatic hydrolysis were summarized and 

compared to the modified HCH-1 model.

Results: A modified HCH-1 model was developed for long-term (> 48 h) enzymatic cellulose hydrolysis. This modified 

HCH-1 model includes the following additional considerations: (1) relationships between coefficients and substrate 

conversion, and (2) enzyme stability. Parameter estimation was performed with 10-day experimental data using 

α-cellulose as substrate. The developed model satisfactorily describes integrated cellulose hydrolysis data taken with 

various reaction conditions (initial substrate concentration, initial product concentration, enzyme loading, time). 

Mechanistic (and semi-mechanistic) literature models for long-term enzymatic hydrolysis were compared with the 

modified HCH-1 model and evaluated by the corrected version of the Akaike information criterion. Comparison 

results show that the modified HCH-1 model provides the best fit for enzymatic cellulose hydrolysis.

Conclusions: The HCH-1 model was modified to extend its application to integrated enzymatic hydrolysis; it per-

formed well when predicting 10-day cellulose hydrolysis at various experimental conditions. Comparison with the 

literature models showed that the modified HCH-1 model provided the best fit.
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Background
Biomass is the only renewable energy resource that can 

be directly converted to liquid fuels and chemicals. �e 

largest biomass feedstock is lignocellulose, which is 

found globally in many forms. Converting lignocellulose 

into biofuels could relieve shortages of liquid fuels and 

reduce dependence on fossil energy.

In the United States, ethanol is the dominant biofuel, 

which is usually produced from corn, an important food 

for animals and humans. To prevent food shortages, cel-

lulosic ethanol is an attractive alternative. In general, 

there are four major steps for cellulosic ethanol produc-

tion: pretreatment, hydrolysis, fermentation, and separa-

tion. Among these processes, hydrolysis accounts for a 

large portion (~ 30%) of the total costs [1]. To compete 

with corn ethanol and petroleum-derived gasoline, enzy-

matic hydrolysis needs optimization and cost reduction 

[2]; therefore, a thorough understanding of enzymatic 
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hydrolysis is necessary to help design optimal conditions 

and economical systems.

During the last several decades, various theoretical 

and empirical models have been developed to simulate 

enzymatic hydrolysis of cellulose [3–6]. Because they 

lack a theoretical foundation, empirical models cannot 

be applied beyond the range of the data; therefore, this 

paper only focuses on mechanistic (and semi-mechanis-

tic) models.

In 1984, Holtzapple et  al. [3] proposed a generalized 

mechanistic model for cellulose hydrolysis termed the 

HCH-1 (Holtzapple–Caram–Humphrey-1) model. Fig-

ure 1 shows the reaction mechanism of the HCH-1 model 

[3]. As shown in the figure, free enzyme (Ef) adsorbs onto 

a free cellulose site ( G
f
x ) to become adsorbed enzyme 

(Ea), and then complexes with the cellulose to become 

enzyme–substrate complex (EGx). �is complex cata-

lyzes the hydrolysis of the cellulose site to obtain solu-

ble product (Gs) with reaction rate k. All enzyme species 

can complex with product to become inhibited enzyme 

( GsE
f , GsE

a , and GsEGx). For simplicity, the product-

binding constant (β) is assumed to be the same for all the 

enzyme species. In addition, the adsorption constant (δ) 

and the complexing constant (η) are assumed not to be 

affected by the binding of product to the enzyme [3].

�e rate-limiting step is the hydrolysis; therefore, the 

reaction velocity (V) is proportional to the concentra-

tion of uninhibited enzyme–substrate complex (EGx). To 

express the reaction velocity in terms of known variables, 

substitutions can be made for EGx using material bal-

ances of substrate and enzyme species, thus, yielding the 

HCH-1 model (Eq. 1). �e detailed model development is 

described in [3].

V =
κ[Gx][E]i

α + ϕ[Gx] + ε[E]

i =
1

1 + β1[G1] + β2[G2]

(1)ϕ = [Gx]−α−ε[E]+
√

([Gx]−α−ε[E])2+4α[Gx]
2[Gx]

where Gx is the cellulose concentration (g/L, equiva-

lent to glucose), G1 is the glucose concentration (g/L), 

G2 is the cellobiose concentration (g/L, equivalent to 

glucose), E is the enzyme concentration (g/L), α is the 

lumped adsorption constant ( α =
ηδ

η+1
 , g/L), κ is the 

lumped kinetic constant ( κ =
k

η+1
 ,  h−1), β1 is the glucose 

binding constant (L/g), β2 is the cellobiose binding con-

stant (L/g), ɛ is the number of cellulose sites covered by 

adsorbed or complexed enzyme (dimensionless), i is the 

fraction of total enzyme that is active (dimensionless), 

and ϕ is the fraction of total cellulose sites which are free 

(dimensionless).

Unlike the classic Michaelis–Menten model, the 

HCH-1 model includes a parameter ɛ that describes the 

number of reactive sites covered by the enzymes [3, 7]. 

Furthermore, the HCH-1 model includes non-competi-

tive inhibition by sugar products.

Unlike empirical models that apply only in the range 

where the data were taken, the HCH-1 model is mecha-

nistic (Fig.  1) and, therefore, has broader applicability. 

As a mechanistic model, it applies to individual enzyme 

species; however, it has also been applied successfully 

to an enzyme cocktail in which the mixture is treated 

as a single “lumped” enzyme. Using the initial-rate data 

for pretreated biomass hydrolyzed by an enzyme cock-

tail, Brown et  al. [7] compared mechanistic models and 

showed that the HCH-1 model provided the best fit to 

experimental data.

Previous studies show that, at high degrees of conver-

sion, the hydrolysis rate drops by 2–3 orders of mag-

nitude [8, 9]. �e following factors contribute to the 

decreasing hydrolysis rates: (1) enzyme deactivation, (2) 

product inhibition, (3) decreased substrate reactivity, (4) 

decreased substrate accessibility, and (5) decreased syn-

ergism between cellulases [10]. In short-term enzymatic 

hydrolysis, these factors are not important and, therefore, 

are usually not incorporated into models that predict 

initial rates. However, in long-term batch saccharifica-

tion, the reaction time is usually 3 to 5 days. As the reac-

tion proceeds, the coefficients in short-term enzymatic 

hydrolysis models, such as HCH-1, may change because 

of the enumerated factors above. To describe long-term 

integrated enzymatic hydrolysis, the initial-rate models 

must be modified.

In this study, the original HCH-1 model was modi-

fied to describe 10-day enzymatic cellulose hydrolysis 

with commercial enzyme cocktail CTec2. �e HCH-1 

mechanism (Fig. 1) applies to individual enzymes in the 

cocktail; however, modeling each enzyme component is 

exceedingly complex. Understanding the kinetics of each 

enzyme component would be useful when optimizing the 

cocktail; however, this study uses a cocktail with defined 

components. Our approach is to treat the enzyme Fig. 1 Reaction mechanism for the HCH-I model [3]
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cocktail as a single “lumped” enzyme; hence, the result-

ing “lumped” parameters reflect the collective kinetics of 

the cocktail, not the individual components. To describe 

long-term enzymatic hydrolysis, this study investigates 

the relationships between the “lumped” parameters in 

the HCH-1 model and substrate conversion. �e sensitiv-

ities of parameters in the modified model were analyzed. 

In addition, literature models for long-term (> 48 h) enzy-

matic hydrolysis were summarized and compared to the 

modified HCH-1 model.

Materials and methods
Materials

Substrate

�e substrate used for all experiments was α-cellulose 

(Sigma-Aldrich, C8002). Compositional analysis showed 

that the substrate contained glucan 78.5% and xylan 

14.4% [11].

Enzyme

�e enzyme used in this study was Novozymes  Cellic® 

CTec2 (lot# VCPI 0007), a blend of aggressive cellulases 

with high levels of β-glucosidases and hemicellulases that 

degrade lignocellulose into sugars [12]. �e protein con-

centration was determined to be 294 mg protein/mL with 

Pierce BCA assay [11]. Before use, the enzyme solution 

was diluted ten times with deionized (DI) water.

Citrate bu�er

To maintain relatively high enzyme activity, citrate buffer 

(0.1 M) with a pH of 4.8 was used in enzymatic hydrolysis 

experiments. To prepare the buffer, citric acid monohy-

drate and trisodium citrate dihydrate were added to DI 

water.

Antibiotics

To prevent the growth of contaminating microorgan-

isms that could consume produced sugars, an antibiotic 

cocktail was added. To prepare the solutions, tetracycline 

powder was dissolved in an aqueous solution of 70% eth-

anol at 10 g/L and cycloheximide powder was dissolved 

in DI water at 10 g/L.

Enzymatic hydrolysis

In the enzymatic hydrolysis experiments, desired 

amounts of α-cellulose, glucose, and DI water together 

with 125  mL citrate buffer, 2  mL tetracycline solu-

tion, and 1.5  mL cycloheximide solution were added 

to a 1-L centrifuge bottle in sequence and then pre-

heated. When the mixture reached 50  °C, enzymes 

were added. �en, the centrifuge bottle (total working 

volume of 250 mL) was placed in the incubator at 50 °C 

for 10 days with an axial rotation of 2 rpm. Liquid sam-

ples of 0.5 mL were taken periodically and submerged 

in boiling water for 20  min to deactivate the enzymes 

(note: the volume of liquid sample is small relative to 

the total slurry volume, so it is assumed to have a neg-

ligible impact on substrate concentration). �en, to 

determine the glucose concentration, the samples were 

filtered and analyzed by a high-performance liquid 

chromatography (HPLC), which was equipped with 

a pair of de-ashing guard columns (Bio-Rad Micro-

Guard de-ashing cartridges, 30  mm × 4.6  mm) and an 

HPLC carbohydrate analysis column (Bio-Rad Aminex 

HPX-87P, 300 mm × 7.8 mm).

Selection of hydrolysis conditions

Experiments for model �tness

Based on our previous study [11], 16 enzymatic hydroly-

sis conditions were tested including four different sub-

strate concentrations (40, 60, 80, and 100  g/L), two 

different enzyme loadings (2 and 5  mg protein/g of dry 

biomass (mg/g)), and two different initial glucose con-

centrations (0 and 33 g/L).

Experiments for model predictions

�ree enzymatic hydrolysis conditions—which were dif-

ferent from the conditions used for model fitness—were 

tested for model predictions: (1) substrate concentration: 

40  g/L, enzyme loading: 1  mg/g, initial glucose concen-

tration: 0 g/L; (2) substrate concentration: 70 g/L, enzyme 

loading: 1  mg/g, initial glucose concentration: 28  g/L; 

(3) substrate concentration: 100  g/L, enzyme loading: 

5 mg/g, initial glucose concentration: 28 g/L.

Enzyme stability

Enzyme stability was measured by quantifying the solu-

ble protein concentration over the course of 20 days. In 

this experiment, the desired amount of CTec2 was added 

to the preheated mixture of citrate buffer, DI water, and 

antibiotic cocktail. �e resulting solution was placed 

in the incubator at 50 °C. Samples of 0.5 mL were taken 

periodically and then centrifuged at 13,000  rpm for 

10 min. �e protein concentration of the supernatant was 

measured by the Pierce BCA method.

Modi�cation of HCH-1 model

Simulation of enzyme stability

Wallace et  al. [13] reported that unproductive bind-

ing with lignin and thermal deactivation may play a sig-

nificant role in enzyme deactivation. Considering the 
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substrate used in this study is lignin-free, we assume 

that enzyme deactivation is solely due to thermal deac-

tivation. Rosales-Calderon et  al. [14] observed that the 

protein concentration of a mixture of glucanase and 

β-glucosidase dropped 34% after incubating at 50 °C for 

4 days. It was hypothesized that the enzyme proteins suf-

fered a structural change at 50  °C, which led to protein 

aggregation and precipitation. Additives, whose concen-

tration was assumed constant and proportional to the 

initial enzyme protein concentration, were supposed to 

be present in the cocktail to stabilize the enzyme protein 

against aggregation. Equation  2 incorporates the pres-

ence of additives and is proposed to model protein stabil-

ity [14]. �e development of Eq. 2 is described in detail 

by Rosales-Calderon et al. [14].

where E is the native enzyme protein concentration (g/L), 

E0 is the initial enzyme protein concentration (g/L), and 

k1 and k2 are the rate constants  (h−1).

�e stability of CTec2 with three different initial con-

centrations was tested. Equation  2 was used to fit the 

experimental data.

Modi�cation of HCH-1 model

�e HCH-1 model was modified by the following steps:

Step 1:  Use an empirical equation (Eq.  3) to fit the 

experimental data of the 16 enzymatic hydroly-

sis conditions (“Experiments for model fitness” 

section) with high accuracy. �is smoothed 

version of the data provides the reaction rates 

needed to fit the parameters in the modified 

HCH-1 model of enzymatic hydrolysis. 

where G0
x
 is the initial cellulose concentration (g/L, equiv-

alent to glucose).

  Equation 3 was developed based on the inte-

grated version of Eq. 2 and an empirical model 

for batch fermentation [15]. Detailed develop-

ment of this equation is described in Addi-

tional file  1. To fit the parameters, Eq.  3 was 

solved with the ode45 routine in MATLAB 

and nonlinear optimization was achieved by 

the fmincon routine. �e objective function 

was the sum of square errors (SSE), which is 

the sum of the squared difference between 

(2)−
d[E]
dt

= k1[E] − k2([E0] − [E])[E0] ,

(3)

d[G1]

dt
=

3.7798
([

G
0
x

]

− [G1]
)0.6410

(

[E0 ](0.0574[E0 ]+0.4370 exp (−t(0.4370+0.0574[E0 ])))
0.4370+0.0574[E0 ]

)0.8500

1 + 0.0247[G1]
1.1579

,

experimental data and the predicted value 

[16]. �e optimal set of parameters corre-

sponds to the smallest SSE value. �is empiri-

cal correlation of the data provided a coeffi-

cient of determination R2 = 0.994.

Step 2:  Divide substrate conversion (from 0 to 1) into 

50 equal segments. Using Eq.  3, calculate the 

reaction rate at each conversion and get a 

16 × 50 data set.

Step 3:  Determine product inhibition.

  �e inhibition parameter i in the HCH-1 

model was calculated by determining the 

initial velocities with and without inhibitor 

(Eq.  4) [17]. To estimate this value, the same 

enzyme and cellulose concentrations should 

be used. 

  �e inhibition of enzymatic hydrolysis by 

cellobiose was not considered in this study, 

because CTec2 contains a high level of 

β-glucosidase that rapidly converts produced 

cellobiose into glucose; the cellobiose peak 

was not found in the HPLC results.

  For a single inhibitor, the inhibition parameter 

i is expressed in Eq. 5 and the glucose binding 

constant β1 is calculated with Eq. 6. 

Step 4:  Use the HCH-1 model to fit the 16 reaction 

conditions at each conversion, and determine 

the best-fit coefficients κ, α, and ɛ.

Step 5:  Determine the relationship between parameter 

κ and conversion x.

  Figure  2a presents the relationship between 

parameter κ in the HCH-1 model and sub-

strate conversion x. �e data were obtained 

from Steps 1–4. As shown in the figure, κ 

drops very fast in the beginning and then 

stabilizes after conversion reaches 0.38. 

Nidetzky and Steiner [18] assumed that cel-

lulose consists of an easily hydrolysable part 

and a recalcitrant part. Based on their two-

substrate hypothesis, the authors derived a 

(4)i =
Vwith inhibitor

Vno inhibitor
=

[

κ[G0
x][E]

α+[G0
x]+ε[E]

]

i

κ[G0
x][E]

α+[G0
x]+ε[E]

(5)i = 1
1+β1[G1]

(6)β1 =
(1−i)
i[G1]
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mathematical model to describe the kinetics 

of cellulose hydrolysis. According to the simu-

lation results, the obtained rate constant for 

easily hydrolysable cellulose was much higher 

than that of recalcitrant cellulose. Using 

α-cellulose as substrate, they determined that 

the fraction of easily hydrolysable cellulose 

was 0.3 [18]. Figure  2a can be explained by 

this hypothesis, but the rate constant for the 

easily hydrolysable cellulose decreases as con-

version increases instead of being constant. In 

our experiments, the fraction of easily hydro-

lysable cellulose (0.38) is close to the result in 

[18].

  Equation 7 was developed to describe the rela-

tionship between parameter κ and conversion 

x.

  

(7)
κ =

k3
(

1+xk4

)k5
+ k6 ,

where x is the substrate conversion, k3, k4, k5, and k6 are 

the parameters.

  �e conversion x in the denominator is used 

to describe the negative effect of conversion 

on the rate constant. �e parameter k6 is con-

sidered as the rate constant for recalcitrant 

cellulose. �e parameter k3 is used to describe 

the difference in rate constants between the 

easily hydrolysable cellulose (initial) and recal-

citrant cellulose (height of the curve). �e 

parameters k4 and k5 are used to describe the 

decrease rate of the rate constant (steepness 

of the curve) for the easily hydrolysable part. 

To fit the data, the MATLAB curve fitting tool 

was used and a coefficient of determination 

R2 = 0.998 was acquired. �e values of param-

eters k3, k4, k5, and k6 were determined in this 

step.

Step 6:  Determine the relationship between parameter 

ε and conversion x.

  Figure  2b shows the relationship between 

parameter ε in the HCH-1 model and conver-

sion x. As shown in the figure, parameter ε has 

a very narrow range (0–0.5) over the entire 

conversion and remains almost unchanged 

(nearly zero) at conversion 0.1–0.95. �ere-

fore, in this study, parameter ε is assumed 

not to be affected by conversion and its opti-

mal value should be close to zero. Brown and 

Holtzapple [19] reported that if [ G0
x
]/[E0] > 35, 

assuming ε = 0 would not introduce consid-

erable error (< 1%) (note: in our study, [ G0
x
]/

[E0] ≥ 200). �e parameter ε is needed only 

at high enzyme loadings. In industrial-scale 

saccharification, considering the high cost of 

enzymes, the enzyme dosage must be very 

low; therefore, if modeling a commercial pro-

cess, the value of ε can be set as zero.

Step 7:  Determine the relationship between parameter 

α and conversion x.

  �e parameter α in the original HCH-1 model 

may be expressed by Eq. 8, which is related to 

enzyme adsorption:

  

  Kumar and Wyman [20] showed that glucose 

addition and enzyme dosage can affect the 

percentage of cellulase adsorption. �erefore, 

besides the impact of conversion, the effects 

(8)α =

[

Ef
][

G
f
x

]

[Ea]+[EGx]
.

Fig. 2 a The relationship between parameter κ and conversion x. b 

The relationship between parameter ε and conversion x 
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of glucose and enzyme concentration on the 

value of α were tested. Using the best-fit coef-

ficients κ and ɛ obtained from Step 4, two 

optimal α values corresponding to two ini-

tial glucose concentrations were determined 

by fitting the data (eight data at each initial 

glucose concentration) from Step 2 at each 

conversion with the HCH-1 model (Fig.  3a). 

Another two optimal α values corresponding 

to two enzyme concentrations were deter-

mined by repeating this procedure at each 

conversion (Fig.  3b). As shown in Fig.  3, as 

the reaction proceeds, the value of α increases 

and then is unchanged when the conversion 

reaches a certain point. It is obvious that high 

initial glucose concentration and low enzyme 

dosage improve the value of α significantly 

over the entire conversion range. Equation  9 

was proposed to describe the relationship 

among α, conversion x, enzyme concentration 

E, and glucose concentration G1. As shown 

in Fig.  3, all four curves show an “S” shape; 

therefore, the sigmoid function—which has an 

S-shaped curve—was used. �e core structure 

of Eq. 9 is a sigmoidal function that describes 

the relationship between parameter α and 

conversion x (note: a2 and a3 are the param-

eters of the sigmoid function). In addition, 

because of the significant effect of glucose 

and enzyme concentrations on the value of 

α, the terms [G1] and [E] were included in the 

numerator and denominator of the sigmoid 

function, respectively. �e parameter a1 was 

added to describe the weight of terms [G1] 

and [E]. 

  where a1, a2, and a3 are the parameters.

Step 8:  Modify HCH-1 model.

  Summarizing the proposed equations, Eq. 10 

is the modified HCH-1 model, where k1, k2, k3, 

k4, k5, k6, a1, a2, a3, ε, and β1 are parameters. 

Estimates for k1, k2, k3, k4, k5, k6, and β1 were 

determined in previous steps. In this step, the 

optimal values of a1, a2, a3, and ε were deter-

mined by simultaneously fitting the experi-

mental data of the 16 enzymatic hydrolysis 

conditions (Section: Experiments for model 

fitness) with Eq. 10. 

(9)α =
a1[G1]

[E](1+exp(−a2x+a3))
,

where, 

  

d[G1]

dt
=

κ[Gx][E]i

α + ϕ[Gx] + ε[E]
,

i =
1

1 + β1[G1]

ϕ = [Gx]−α−ε[E]+
√

([Gx]−α−ε[E])2+4α[Gx]
2[Gx]

−
d[E]

dt
= k1[E] − k2([E0] − [E])[E0]

κ =
k3

(

1 + xk4
)k5

+ k6

Fig. 3 The relationship between parameter α and conversion x with 

a different initial glucose concentrations and b different enzyme 

loadings
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  Integration of the differential equations 

described in Eq.  10 was performed using the 

same numerical methods described in Step 1.

Sensitivity analysis

Local sensitivity analysis

Local sensitivity analysis assesses the local impact of 

variation in input factors on model outputs. To do this 

analysis, the direct differential method [21] was used 

by calculating the sensitivity indices (Eq.  11). �e sen-

sitivities of parameters k1, k2, and β1 were not analyzed, 

because their values were obtained from independent 

experiment or calculation.

where Spj is the non-dimensional sensitivity index of the 

jth parameter, y is the glucose concentration (g/L), and pj 

is the jth parameter in the parameter vector p.

Global sensitivity analysis

Local sensitivity only analyzes the sensitivity of a solution 

close to the optimal parameter set. In contrast, global 

sensitivity analysis assesses the sensitivity of the model 

for the full range of possible parameter values [16]. In 

addition, global sensitivity indices can evaluate the com-

bined impact of multiple parameters on model output.

To calculate a global sensitivity index, a normally dis-

tributed search of parameter space using the Monte 

Carlo method was performed and subsequent analysis of 

the variance in the model outputs was used. In this study, 

two global sensitivity indices were calculated: first-order 

index and total-effect index [16, 22]. �e first-order index 

measures the effect of the parameter of interest alone 

on the output variance. �e total-effect index accounts 

for not only the effect of the parameter of interest, but 

also interactions between the other parameters and the 

parameter of interest at any order.

Model evaluation

�e modified HCH-1 model was compared with the lit-

erature models for long-term enzymatic hydrolysis. As 

described in Step 1, the same differential equation inte-

gration method, nonlinear optimization constraint algo-

rithm, and objective function were used. �e Akaike 

information criterion  (AIC) was used to evaluate model 

quality for the experimental data. �e corrected version 

of AIC (Eq. 12) was used, because the number of obser-

vations was not large enough:

(10)α =
a1[G1]

[E](1+exp(−a2x+a3))
.

(11)Spj =

∂y
∂pj

pj
y ,

where N is the number of observations, P is the number 

of model parameters, and SSE is the sum square error.

Results and discussion
Enzyme deactivation

Figure 4 shows that, after incubating at 50 °C for 20 days, 

soluble protein concentrations of CTec2 dropped to 

74, 77, and 83% of their initial values of 0.15, 0.26, and 

0.61 g/L, respectively. �is result is consistent with a pre-

vious study [14] that shows higher initial protein concen-

trations favor lower deactivation rates and supports the 

additive hypothesis. Equation  2 successfully describes 

the time profiles of CTec2 protein concentration with a 

coefficient of determination R2 = 0.999. �e rate con-

stants in Eq. 2 were determined to be k1 = 0.0225 h−1 and 

k2 = 0.1740 L/(g h). It should be noted that the modified 

HCH-1 model is a “lumped” model, the performance of 

each enzyme was not modeled individually; therefore, the 

stability of each component in the enzyme cocktail was 

not investigated. Equation 2 describes the overall deacti-

vation of the cocktail.

Production inhibition

Table  1 lists the values of glucose-binding constant cal-

culated from various reaction conditions. �e eight β1 

values are very close to each other and have a standard 

deviation of 6 × 10−6 L/g. �e mean value 0.0429 L/g is 

considered to be the “true” β1 value and is used for later 

calculations.

(12)

AICC = N · ln

(

SSE
N

)

+ 2(P + 1) + 2
(P+1)(P+2)

N−P
,

Fig. 4 Time profiles and model predictions for soluble CTec2 protein 

concentration at 50 °C. Experimental data are presented by the 

markers and the optimal fit by the solid lines
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Model validation

Figure  5a shows the experimental data and modified 

HCH-1 model fitting results for enzymatic hydrolysis 

with 16 reaction conditions (“Experiments for model fit-

ness” section). Table 2 shows the values of the parameters 

obtained from the previous section. �e model simula-

tion provided the coefficient of determination R2 = 0.992, 

which indicates that the modified HCH-1 model 

describes enzymatic hydrolysis of α-cellulose very well.

As a comparison, Fig.  5b shows the original HCH-1 

model fit to the experimental data with 16 reaction 

conditions (“Experiments for model fitness” section). 

�e value of β1 (0.0429 L/g) was obtained from the pre-

vious section (product inhibition). �e optimal val-

ues (α = 2.0776 × 106 g/L, κ = 9.2889 × 105  h−1, and 

ɛ = 0.9996) were determined (note: because the original 

HCH-1 model was not developed for integrated cellulose 

hydrolysis, these parameter values are not be meaning-

ful). �e model simulation provided the coefficient of 

determination R2 = 0.947. �e calculated SSE and AICc 

are listed in Table 3.

Model predictions

�e modified HCH-1 model (Eq.  10) was used to pre-

dict the experimental results of the three conditions 

described in “Experiments for model prediction.” �e 

parameter values were obtained from the fitness of 

the 16 conditions (Table 2). �e experimental and pre-

dicted results are shown in Fig. 5c. �e simulation pro-

vided the coefficient of determination R2 = 0.991, which 

indicates that the modified HCH-1 model predicts 

enzymatic hydrolysis of α-cellulose with high accuracy.

Sensitivity analysis

To explore the controlling factors in the proposed 

model at different hydrolysis stages, local and global 

sensitivity analyses were performed. Figure  6a shows 

the parameter sensitivity indices from local sensitivity 

analysis of the modified HCH-1 model over the course 

of 10 days. As shown in the figure, the sensitivity of k3 

drops to nearly 10% of its initial value at day 10. �e 

sensitivity of k4 increases first and reaches up to 0.4 

at around day 1, and then slightly decreases from day 

2 to day 10. For the parameters about α, the sensitivity 

of a1 (absolute value) increases as the hydrolysis time 

increases. �e sensitivities of a2 and a3 only change 

within the first several reaction days, and then are close 

to zero after day 3. �e sensitivity of ε is close to zero 

during the entire reaction time.

Figure  6b, c shows the global sensitivity analysis 

results of the modified HCH-1 model. According to the 

figures, the first-order indices and total-effect indices 

of all variables are almost identical at any time, which 

means that the variance in this model is not related to 

any interaction between parameters. At the initial stage 

of hydrolysis, the variance in the model output only 

depends on k3 and k6. �en, the sensitivity index of k3 

decreases very fast during the first 2  days, whereas k4 

increases up to 0.6. From day 2 to day 10, the effects of 

k6 and a1 on the model increase. �e variables a2, a3, 

and ε do not show significant effects on the variance in 

model predictions.

According to Fig.  6, the local and global sensitivity 

analyses of the modified HCH-1 model show a similar 

trend during the entire reaction time. Figure  7 shows 

the sensitivity indices calculated from both analyses 

at day 10. �e rankings of the eight sensitivity indices 

from both analyses are almost the same (k6 > a1 > k4 > k5 

> k3 > a2 ≈ a3 ≈ ε).

�e sensitivity analyses not only determine which 

parameters have the most influence on model results, 

but also verify the assumption in Step 6 that the param-

eter ε is not needed at low enzyme loadings. �ese 

analyses provide direction for further modification of 

the HCH-1 model to apply it to real-world lignocellu-

lose that contains lignin.

Model comparison

Based on the methodology used, the published mecha-

nistic and semi-mechanistic models for cellulose and 

lignocellulose can be broadly divided into two classes: 

Michaelis–Menten and enzyme-adsorption models 

[10]. �e models following Michaelis–Menten kinetics 

can also be divided into two subclasses: full Michaelis–

Menten models (all rate equations follow Michaelis–

Menten kinetics, including the steps of cellulose to 

cellobiose, cellulose to glucose, and cellobiose to glucose) 

and partial Michaelis–Menten models (only the step 

of cellobiose to glucose follows these kinetics). Models 

Table 1 Glucose-binding constant from  various reaction 

conditions

Reaction condition β1 (L/g)

Substrate concentration 
(g/L)

Enzyme loading (mg/g)

40 2 0.042908

40 5 0.042915

60 2 0.042912

60 5 0.042918

80 2 0.042920

80 5 0.042923

100 2 0.042922

100 5 0.042925
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Fig. 5 a Time profiles and modified HCH-1 model fitting results for enzymatic hydrolysis of α-cellulose. b Time profiles and original HCH-1 model 

fitting results for enzymatic hydrolysis of α-cellulose. c Time profiles and modified HCH-1 model predictions for enzymatic hydrolysis of α-cellulose. 

Experimental data are presented by the markers and the values of parameters are from Table 2
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employing enzyme adsorption typically use Langmuir 

adsorption isotherms or the help of kinetic equations 

[10]. Some literature models incorporate both enzyme 

adsorption and Michaelis–Menten kinetics.

In this study, the published models for long-term enzy-

matic hydrolysis of cellulose and lignocellulose were fit 

to the experimental data using the numerical methods 

described in Step 1. Some models do not consider prod-

uct inhibition. To make a fair comparison, these models 

were only fit to experimental conditions with no initial 

sugar added (0 g/L initial glucose; four substrate concen-

trations × two enzyme loadings). Some models teased 

out fine details in the elementary reaction steps and 

included some variables that were not determined in this 

study, such as exocellulase concentration and associated 

enzyme concentration [23–25]. �ese models are not 

included in this section. Table 3 summarizes the number 

of observations and parameters, calculated SSE and AICc 

values, and the methodology used for the published mod-

els. According to the table, the modified HCH-1 model 

has the least SSE and AICc values, which indicates that 

this model provides the best fit for long-term enzymatic 

hydrolysis of α-cellulose.

Conclusion
�e original HCH-1 model was modified to extend its 

application to integrated enzymatic hydrolysis; it per-

formed well when fitting 10-day cellulose hydrolysis 

at various experimental conditions. Local and global 

sensitivity analyses were performed to determine the 

controlling parameters at different hydrolysis stages. 

Mechanistic (and semi-mechanistic) literature mod-

els for long-term enzymatic hydrolysis were compared 

with the modified HCH-1 model and evaluated by AICc. 

Comparison results show that the modified HCH-1 

model provides the best description of enzymatic cel-

lulose hydrolysis. �e “lumped” modified HCH-1 model 

developed in this study has a simpler form and fewer 

parameters than mechanistic models of each enzyme 

component. When each enzyme is modeled separately, 

the kinetics is extremely complex with the potential to 

over-parameterize. For the specific commercial enzyme 

cocktail used in this study, excellent fits to the data were 

Table 2 Optimal parameter estimates for  the  modi�ed 

HCH-1 model

Parameter Value Unit

k1 0.0225 h−1

k2 0.1740 L/(g h)

k3 84.7500 h−1

k4 2.5800 Dimensionless

k5 26.3600 Dimensionless

k6 38.5000 h−1

a1 1.6791 g/L

a2 31.1485 Dimensionless

a3 2.8452 Dimensionless

ε 5.5248 × 10−5 Dimensionless

β1 0.0429 L/g

Table 3 Comparison of long-term enzymatic hydrolysis models

M–M Michaelis–Menten kinetics, Ads adsorption-based approach

a Only eight reaction conditions were �t [0 g/L initial glucose, four substrate concentrations (40, 60, 80, and 100 g/L) × two enzyme loadings (2 and 5 mg/g)]

Model N (Obs) Parameter SSE AICc Methodology

Modified HCH-1 (16) 112 11 236.7 110.9 Ads

Holtzapple et al. [3] (original HCH-1) 112 4 1630.7 310.5 Ads

Drissen et al. [26] 112 11 600.8 215.2 Ads, M–M

Fan and Lee [27] 112 11 679.7 229.0 Ads

Liao et al. [28] 112 5 1313.7 288.5 Ads

Peri et al. [21] 112 12 2657.6 384.3 Ads, M–M

Fenila and Shastri [5] 112 22 2080.9 385.5 Ads, M–M

Kadam et al. [4] 112 18 2338.6 386.4 Ads, M–M

Gusakov et al. [29] 112 16 2879.2 404.0 M–M

Philippidis et al. [30] 112 7 9139.8 510.4 Ads, M–M

Modified HCH-1 (8)a 56 11 115.2 71.3 Ads

Shen and Agblevor [31]a 56 4 493.8 133.1 Ads

Zhang et al. [32]a 56 3 692.6 149.6 Ads

Rosales-Calderon et al. [33]a 56 3 692.6 149.6 Ads

Nidetzky and Steiner [18]a 56 5 743.9 158.5 Ads
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Fig. 6 a Local sensitivity analysis of the modified HCH-1 model at the optimal solution. Global sensitivity analysis of the modified HCH-1 model 

over the course of 10 days, b first-order indices; c total-effect indices
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obtained without the need to model each enzyme com-

ponent individually.

Additional �le

Additional �le 1. Development of Eq. 3.

Abbreviations

mg/g: mg protein/g of dry biomass; AIC: Akaike information criterion; SSE: 

sum of square errors; DI water: deionized water; M–M: Michaelis–Menten 

kinetics; Ads: adsorption-based approach.
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