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Development of Monteburns: A Code That Links MCNP and ORIGEN2 

in an Automated Fashion for Burnup Calculations 

bY 

Holly R. Trellue 

ABSTRACT 

Monteburns is a fully automated tool that links the Monte Carlo transport code 

MCNP with the radioactive decay and burnup code ORIGEN2. Monteburns produces 

many criticality and burnup computational parameters based on material feedhemoval 

specifications, power(s), and time intervals. This code processes input from the user 

indicating the system geometry, initial material compositions, feedremoval, and other 

code-specific parameters. Results from MCNP, ORIGEN2, and other calculations are 

then output successively as the code runs. The principle function of monteburns is to 

first transfer one-group cross sections and fluxes from MCNP to ORIGEN2, and then 

transfer the resulting material compositions (after irradiation andor decay) from 

ORIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the 

code is that the user have a working MCNP input file and other input parameters; all 

interaction with OlUGEN2 and other calculations are performed by monteburns. 

This report presents the results obtained from the benchmarking of monteburns to 

measured and previously obtained data from traditional Light Water Reactor systems. 

The majority of the differences seen between the two were less than five percent. These 



were primarily a result of variances in cross sections between MCNP, cross section 

libraries used by other codes, and observed values. With this understanding, this code can 

now be used with confidence for burnup calculations in three-dimensional systems. It 

was designed for use in the Accelerator Transmutation of Waste project at Los Alamos 

National Laboratory but is also being applied to the analysis of isotopic 

productioddestruction of transuranic actinides in a reactor system. The code has now 

been shown to sufficiently support these calculations. 



1.0 INTRODUCTION 

The past few decades have brought growth in a number of areas, two of which 

include the nuclear industry and computer technology. As restrictions placed upon and 

costs involved with experimental facilities increase (due to environmental and radiological 

health concerns), the value of computer modeling also increases. It has become possible 

to model various types of nuclear systems (including full reactor cores) and perform 

complex decay and bumup calculations in a matter of seconds. With the increase in 

computer technology, the number of computer codes available to perform nuclear-related 

calculations has increased, and oAen the user wants to run two or more codes 

concurrently. Thus, many linkage codes have been written to allow concurrent use of 

these “main“ codes in an automated fashion. Two popular codes used in the design of 

nuclear systems are MCNPTM and ORIGEN2, and the code presented in this report is a 

linkage code for these two “main” codes.’ 

MCNP (Monte Carlo N-Particle transport code) is widely used to perform 

Monte Carlo calculations of neutron, photon, andor electron transport.[’] MCNP is 

primarily used for analyzing the exact geometry and material composition of a system to 

determine the behavior of particles in that system (see Section 2.1 for a more detailed 

description of MCNP). It cannot, however, determine the effect that irradiation (burnup) 

has on the materials within the system (i.e-, radioactive decay and burnup calculations). 

Instead, this is the hnction of the code ORIGEN2 (The Oak Ridge National Laboratory 

(ORNL) Isotope Generation and Depletion Code), which analyzes the burnup and 

concurrent decay of isotopes in a system over time.r21 The limitation of ORIGEN2 is 

that it does not take into account the geometry of a system. The geometry, among other 

things, influences cross sections and neutron fluxes at various positions in the 

materiaYregion(s) being analyzed. These geometry-dependent parameters of the s ys tem 

‘ Radiation Safety Information Computational Center (RSICC) Code Packages CCC-660 and CCC-37 1 

1 



can be determined by MCNP. Thus, it is desirable to link MCNP and ORIGEN2 to 

allow accurate calculations of spatial isotope generation and depletion in a physical 

system. 

The basis for the work presented in this paper is the need for a fully automated 

linkage code that transfers material compositions and cross sections for any three- 

dimensional (3-D) system from MCNP to ORIGEN2, transfers the materials remaining 

after irradiation from ORIGEN2 to MCNP, obtains new cross sections, criticality 

parameters, and flwdenergy spectrums from MCNP, and then transfers materials back to 

ORIGEN2 in a cyclic fashion for as many time steps as needed. Additionally, three other 

features related to overall performance were desired: 1) the option to irradiate more than 

one material as separate ORIGEN2 analyses from a single MCNP output file and 

combine them again after irradiation into a single MCNP input file, 2) the ability to 

transfer material from one region in MCNP to another, and 3) the capability to add or 

remove specified materials after each step in an automated fashion. 

Initially, monteburns was specifically developed for use in the Accelerator 

Transmutation of Waste (ATW) projectr3] because it could combine a detailed 3-D 

system model with burnup calculations in an automated fashion. The goal of the ATW 

project is to reduce the radiotoxicity of nuclear waste so that the radiotoxicity of ATW- 

treated waste after 300 years is less than that of untreated waste after 100,000 years (see 

Section 5.1 for more information). For this project, it is desired to have a linkage code 

that allows addition (referred to as “feed” in this document) andor removal of material 

either continuously or discretely (all at one time). In addition, the code must be capable 

of burning more than one material region in ORIGEN2 and of combining isotopic 

compositions for each material into one main MCNP input file for a series of burnup 

steps. For ATW, all of these functions are performed and regions of spent fuel are 

rotated fkom the outside to the inside of the system to allow different amounts of 

2 



irradiation to occur in each. The code was also designed so that it can be used for reactor 

systems, as shown in Sections 4.1 and 5.2. 

The name montebums was chosen because it is a Monte Carlo burnup tool. The 

purpose of this document is threefold 1) to present information relevant to the 

development of montebums (i.e., backgroundprevious work, theory and calculations used 

in the code), 2) to display results of benchmark calculations used to verify the 

performance of monteburns and of statistical analyses for several input parameters, and 

3) to show current and future applications of monteburns. 

3 



2.0 BACKGROUND 

Over the past few decades, the development of numerous computer codes has 

increased the utilization of computer modeling in solving nuclear design problems. For 

example, Los Alamos National Laboratory developed a Monte Carlo code, MCNP, which 

is used to model particle transport in a variety of nuclear systems. In addition, Oak Ridge 

National Laboratory designed a number of codes, including ORIGEN2, the radioactive 

decay and burnup code discussed in this document, and the SCALE package, which is a 

“Modular Code System for Performing Standardized Computer Analyses for Licensing 

Evaluation.” * The SCALE package encompasses a variety of codes, including several 

(Le., MORSE and KENO) that perform Monte Carlo transport calculations, and 

ORIGEN-S, which performs radioactive decay and burnup calculations (ORIGEN-S is a 

“newer” version of ORIGEN2). Concurrently, many commercial nuclear companies 

(both in the United States (US) and Europe), developed their own methodskodes for 

analyzing the effects of burnup on a reactor core. Many of these methods have been used 

and tested extensively, but many are not publicly available. 

There have also been several codes written to link MCNP and ORIGEN2, some of 

which are discussed in Section 2.3. However, each of these linkage codes appears to have 

been developed for specific purposes and thus has certain limitations. Monteburns was 

developed to be as versatile as possible so that it can be applied to a large number of 

situations and give the user a variety of choices of operational parameters while 

simplifying required user training. 

Descriptions of the two codes linked by monteburns, MCNP and ORIGEN2, are 

included below, followed by a discussion of previously developed burnup codes. One of 

the main assumptions made by monteburns is that MCNP and ORIGEN2 perform 

Radiation Safety Information Computational Center (RSICC) Code Package CCC-545. 
2 
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calculations well; benchmarking of them has already been performed, so no additional 

benchmarking is necessary. 

2.1 MCNP 

MCNP is a transport code that uses the Monte Carlo technique. The Monte 

Carlo technique is a statistical method in which estimations for particle characteristics are 

obtained through multiple computer simulations of the behavior of individual particles in 

a system. The probability that a particle behaves in a certain manner (scatters, absorbs, 

fissions) is obtained from the cross sections for the material(s) with which the particle 

interacts. For example, if a material is a pure absorber, the probability that a particle 

interacting with this material is absorbed is 100%. If the material is both an absorber and 

a scatterer, then the probability of absorption is equal to the ratio of the absorption cross 

section to the total cross section (absorption plus scatter). It follows that the probability 

of scatter is equal to the ratio of the scattering cross section to the total cross section. 

After a particle has undergone a scatter, it remains in the system to undergo another 

interaction. A Monte Carlo code keeps track of the position of each particle before and 

after it scatters andor is absorbed, as well as any neutrons produced from fission 

interactions. If a particle travels outside of the system, then it is considered to have 

“leaked.” At the end of the “life” of the particle, it either leaks from the system or is 

absorbed in a material. In the case of a neutron being absorbed in fissile material and 

causing a fission, the location and number of new neutrons created is recorded. 

A Monte Carlo code generates a statistical history for a particle based on random 

samples from probability distributions used in calculations to determine 1) the type of 

interaction the particle undergoes at each point in its life, 2) the resulting energy of the 

particle if it scatters, andor 3) the number of neutrons it produces if it causes a fission. 

Thus, a Monte Carlo code models the series of events that occur in the lives of a large 

number of particles to determine the flux of different types of particles in various 

5 



locations in the system. The particles of the most interest in criticalityhurnup 

calculations are neutrons because they are the ones that interact with fissile materials to 

produce energy as well as more neutrons. 

MCNP is used to model the events in the lives of neutrons, photons, andor 

electrons. The cross sections for the particles are obtained from numerous material cross 

section libraries containing a number of isotopes at various operating temperatures. 

MCNP uses these libraries in a continuous-energy fashion, which means that it obtains 

the specific cross section for a given energy rather than looking at grouped cross section 

sets, in which the cross sections represent an average of a particular range of energies. 

MCNP can also calculate the effective multiplication factor (kff) for a system, 

which is the number of neutrons produced in one generation divided by the number of 

neutrons that existed in the previous generation, indicating how close the system is to 

being critical (hff of 1.0). Table 1 shows the condition of a system at various values of 

hfi. A reactor is typically operated at a hff around 1 .O as the system is self-sustaining at 

that point (i.e., requires no new source of neutrons). 

MCNP is a valuable tool in that it helps to design a system to operate at a certain 

condition. MCNP was developed by personnel at Los Alamos National Laboratory 

(LANL), serves a large number of government and institutional organizations, and has 

been well maintained and updated, For more information about Monte Carlo codes or 

MCNP in particular, see Ref. 1 or 5.  

Table 1. Conditions of bff 

11 Value of k p ~  I Condition 14] 11 
ll k,w < 1 .O I Subcritical 11 

kff= 1.0 Critical 

kff > 1.0 Supercritical 
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2.2 ORIGEN2 

ORIGEN2 is a version of the ORIGEN computer code, which is an isotope 

generation and depletion code used for performing radioactive decay and burnup analyses 

for a material. ORIGEN calculates the concentration of nuclides at numerous points 

throughout a decay or irradiation primarily using the matrix exponential method of 

equation solving. ORIGEN treats the full isotopic matrix of materials generated through 

irradiation by considering time-dependent formulation, destruction, and decay 

concurrently. The main calculation performed by ORIGEN is shown in Equation 1 .I6] 

dNi - = y j i ~ f , j N j @  + C T ~ , ~ - , ~ - ~ @  + AiNj - of ,iNi# - C T ~ , ~  Ni@ - AiNi 
dt 

dNi 
where: - = change in concentration of nuclide i with time = 

dt 

Formation rate - Destruction rate - Decay rate 

Formation terms: 

x ~ , ~ o ~ , ~ N , @  = fission yield rate of N, from fissionable nuclides NJ 

C T ~ , , - ~  N,-,$ 

A, N; 

J 

= transmutation rate of N,-l into N, by neutron capture 

= radioactive decay rate of N,’ into N, 

Destruction terms: 

LT ,, N,@ = fission rate of nuclide N, 

o,,,N,$ = capture rate of nuclide N, - (n,y),(n,a),(n,p),(n,2n), and (n,3n) 

Decay term: 

A, N, = radioactive decay rate of nuclide N, 

= fission yield of nuclide i from nuclide j (obtained from libraries) 

= microscopic fission cross section of nuclide j (cm’ - from libraries) 

= concentration of nuclide j (gram-atoms - calculated) 

where: yJl 

of, 

NJ 
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= neutron flux in system (n/cm2-s - input) 

oc,i-l microscopic capture cross section of nuclide i-1 

(cm2 - from libraries) 

= decay constant of nuclide i’ (s-’ - obtained from decay library) xi 

The matrix exponential method used to solve this problem with a spectrum-averaged flux 

and one-group cross sections is shown in Equations 2 and 3. 

N = A N  

N = Noe 

where: N 

A 

N 

No 

At 

= change of nuclide concentration with time 

= transition matrix with rate coefficients (decay, absorption, fission) 

= vector of nuclide concentrations at time t 

= vector of initial nuclide concentrations 

The equation is then solved by obtaining a series expansion for the term eAt . 

Sometimes difficulties occur in generating accurate values using the matrix 

exponential method, and either the Bateman equations[71 or the Gauss-Seidel iterative 

technique[’] is applied. The number of nuclides removed from the transition ma& and 

processed using the Bateman nuclide chain equations are determined by how many have 

half-lives (both absorption and fission) less than 10% of the time interval being 

investigated. Thus, having a shorter time interval in ORIGEN allows the Bateman 
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equations to be used in solving for the concentrations of a larger number of isotopes (as 

discussed in Section 3.3). This can be advantageous in that it often allows more accurate 

results to be obtained. 

The input required for ORIGEN2 consists of three parts: cross section libraries, 

information about each decay/irradiation step, and initial material compositions. First, 

ORIGEN2 contains over 40 different data sets with one-group cross sections for various 

energyhystem spectra. The user must decide which one to use, and transfer both the 

ORIGEN2 decay library and that cross section library to a file that can be read by 

ORIGEN2 (typically calledfovt. 9). Hehhe must then enter identifiers for these libraries 

in the main ORIGEN2 input file. Second, this main ORIGEN2 input file must also 

contain detailed infomation required to run the code, including the length(s) of each decay 

andor irradiation, the flux or power associated with each irradiation, and a description of 

what output parameters (and units of these parameters) are desired. Finally, the initial 

composition of the material being irradiated must be entered. This can either be part of 

the main ORIGEN2 input file, or it can be self-contained in its own file (usually called 

fort.4). The output for ORIGEN2 includes cross sections and fission yields used by the 

code as well as nuclide concentrations at each time step as specified by the user. 

2.3 Previous Work 

There are two main classes of codes that can be used to perform criticality 

calculations for nuclear systems: a Monte Carlo code, and a deterministic code. Monte 

Carlo techniques typically produce a statistical approximation of the answer for the exact 

geometry of the system, whereas deterministic codes numerically produce an exact 

solution of the diffusion andor transport equations for the problem as modeled. 

Deterministic codes generally cannot solve such equations easily for complex geometries, 

so approximations on the geometry must be made.[’] Additionally, deterministic codes 

generally utilize less accurate cross section data (ie., grouped versus continuous). With a 
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Monte Carlo code such as MCNP, a supplemental code, such as ORIGEN2, must be 

used to perform burnup analyses, and another code @e., a llnkage code) is needed to 

interact between the two. Examples of such llnkage codes include MOCUP,[91 

COUPLE,['O1 and SCAMP,["] which are further discussed in the following sections and 

are compared in Table 2. 

Table 2. Comparison of Linkage and/or Burnup Codes 

MOCUP3 

SCALE/ 

COUPLE 

SCAMP 

HELIOS 

CASMO 

ANDROMEDA4 

DANTSY S5/ 

ORIGEN2 

The United States E 
** 

Light Water Reactors 

Descript iodComparison 

Includes Monte Carlo, 3-D techniques and system-dependent parameters 

Links MCNP and ORIGEN2 with existing input files for each 

Modifies reaction rates, fluxes, and cross sections in ORIGEN2 

Modifies nuclide compositions in MCNP after one burnup period 

Allows Monte Carlo 3-D modeling and system-dependent parameters 

Develops multi-group cross sections and neutron fluxes for ORIGEN-S 

Modifies cross sections and fluxes at each time step 

Is a fully automated suite of programs and requires detailed training 

Links MCNP and ORIGEN-S for burnup calculations of LWRs** 

Transfers material compositions after burnup to MCNP 

Does not transfer cross sections or fluxes 

Performs transport calculations for a two-dimensional (2-D) geometry 

Couples subcomponents to perform fast, efficient calculations 

Uses multi-group ENDF* cross section libraries 

Does not include system-dependent axial effects 

Performs one-dimensional diffusion calculations for fast reactors 

Calculates criticality parameters using transport theory 

Multi-group cross sections must be collapsed to one-group for ORIGEN2 

Can perform detailed 3-D geometry calculations, but only with difficulty 

luated Nuclear Data Files, particularly ENDF/B-V'or ENDF/B-VI ver~ions''~' 

Radiation Safety Infomation Computational Center (RSICC) Code Package PSR-365. 
http://www.nea.fr/abs/html/nea-032 1 .html 
Radiation Safety Information Computational Center (RSICC) Code Package CCC-547. 
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In contrast, many deterministic codes used by the commercial nuclear industry 

(for example, HELIOS[ 121 and ANDROMEDA4) actually incorporate burnup as well as 

criticality calculations. These codes are designed for one- or two-dimensional lattice 

geometries and are often large, complex programs to execute. The other way to use a 

deterministic code that does not perform burnup calculations (for example, the Diffusion 

Accelerated Neutral Particle Transport System (DANTSYS) suite of codes)[ 131 is to link 

it with a burnup code such as ORIGEN2. Although deterministic codes can perform 

burnup calculations, they do not have the physical accuracy associated with a Monte 

Carlo code that models a detailed, 3-D geometry. These two categories of codes are 

discussed in the following sections with examples of each, but these only represent a 

small sample of the codes that have been written for burnup analyses; there are most 

likely other types of codes not presented here. 

2.3. I Linkage Codes 

MOCUP (MCNP-ORIGEN2 Coupled Utility Program) is a MCNP/ORIGEN 

linkage code designed to transfer fluxes, reaction rates, nuclides, and cross sections fiom 

MCNP to ORIGEN2 using a number of user-supplied skeleton ORIGEN2 files, which 

are then modified with MCNP results. Then it extracts nuclide compositions from the 

ORIGEN2 output files and converts them into number densities, which are placed back 

into MCNP. However, it requires a certain structure for the initial MCNP input file 

(with comments indicating different locations in the file) and requires the user to create 

skeleton ORIGEN2 input files. It does not interact in an automated fashion with MCNP 

and ORIGEN2 for more than one time step; instead, the user must run each time step 

manually, adding feed materials, removing waste, and/or rotating regions. Although the 

MOCUP utility can be very useful for simple analyses involving MCNP and ORIGEN2, 

it does not work well with repeated structures, multi-materials, or the other limitations 

discussed previously. 
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COUPLE is one of the many modules that exist in the SCALE (Standardized 

Computer Analyses for Licensing Evaluation) suite of programs. The purpose of 

COUPLE is to produce multi-group cross section libraries from the ENDF data base and 

multi-group neutron fluxes, which are required as input for ORIGEN-S, from a detailed 

model of the system (typically developed using the SCALE module KENO). This 

program, along with other modules in SCALE (such as NITAWL, BONAMI, and/or 

XSDRNPM), allows system-dependent design characteristics (such as operating 

parameters and material compositions) to influence multi-group cross sections. This 

system is fully automated with the feature that a large suite of programs are used to 

represent a system as accurately as possible. Unfortunately, although these modules 

offer a number of options for performing calculations, they also require extensive, detailed 

training to execute properly. 

SCAMP (SCALE-to-MCNP Post Processor) was a code written to link 

ORIGEN-S and MCNP for Pressurized-Water-Reactor (PWR) fuel assembly 

configurations. It transfers actinide and fission product compositions from the SCALE 

module ORIGEN-S to MCNP. However, it does not perform automated calculations for 

numerous steps or generate spectrum-averaged cross sections from MCNP to ORIGEN- 

S. The advantage of this program is that ORIGEN-S uses cross sections representative of 

typical PWR systems, whereas the data base for ORIGEN2 may not be as representative. 

2.3.2 Discrete Ordinate Burnup Codes 

There are a number of discrete ordinate burnup codes used in the commercial 

nuclear industry for analyzing the components of a nuclear reactor during operation. Two 

such examples are HELIOS and ANDROMEDA. 

HELIOS perfoms neutron and gamma transport and burnup calculations for two- 

dimensional lattice geometries. the main 

program, a pre-processor, and a post-processor. It was developed by Scandpower A/S  

It consists of three different processors: 
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as a two-dimensional collision probability-based -ansport code. The associated HELIOS 

libraries are 34-energy group libraries based upon ENDFB-VI data for a variety of 

temperatures. HELIOS is useful for performing quick calculations for various reactor 

physics constants but needs to be coupled with another code to obtain temperature 

coefficients or to model 3-D system effects. HELIOS is also fairly expensive to obtain. 

Additionally, CASMO, another widely used burnup code in the US commercial nuclear 

industry, performs calculations fairly similar to HELIOS.[121 

ANDROMEDA is a one-dimensional multi-group diffusion-burnup code 

developed in the Netherlands for use with fast reactor systems. The code is designed 

primarily for fuel-cycle analysis of fast breeder reactors by calculating regular and adjoint 

fluxes, material bucklings, kinetics parameters, material (he1 or poison) concentrations, 

and region dimensions at various steps throughout irradiation. ANDROMEDA collapses 

multi-group cross sections to several groups and analyzes cylindrical, spherical, andor 

slab geometries. A variety of multi-group cross section libraries for ANDROMEDA are 

available. 
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3.0 DESCRIPTION OF CODElTHEORY 

Although the linkage and burnup codes discussed in the previous section perform 

adequate calculations for the irradiation of materials in a system, they do not provide the 

entire range of parameters and functions useful in advanced nuclear burnup problems. For 

ATW and certain reactor systems (see Section 5), it is desired to have a code that 

performs automated bumup calculations for a 3-D system for more than one time step. It 

is also desirable to calculate spectrum-averaged cross sections and fluxes for each of these 

burnup steps. The Monte Carlo code MCNP was chosen to model the system because it 

is widely known and is capable of modeling in three dimensions as well as calculating 

spectrum-averaged cross sections and fluxes in different regions of the system. The code 

ORIGEN2 was chosen to perform calculations involving the change of nuclide 

concentrations because it is a stand-alone radioactive decay and burnup code with the 

characteristic that cross sections and material compositions can each be contained within 

separate input files, making them easy to modify for numerous bum steps. 

In addition, it is preferred to have a linkage code involving little interaction with 

ORIGEN2 and with the ability to work with any MCNP input file (Le., no format 

requirements for an ORIGEN2 or MCNP input file) without requiring detailed training. 

Other desired features include the ability to add andor remove certain materials in a 

system at different bum steps, bum more than one material from the initial MCNP input 

file, and rotate materials from one region in the system to another. None of the llnkage 

codes presented in Section 2.3.1 exhibit all of these options, and the deterministic codes in 

Section 2.3.2 do not analyze detailed, 3-D systems easily. Thus, the linkage code 

monteburns was designed to model the system accurately, incorporate all desired features, 

and make the input and training requirements as simple as possible. This section includes 

a brief description of the code, presents the calculations it performs, and describes the 

input required by and the output produced by monteburns. 
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3.1 Description of Monteburns 

Monteburns is a UNIX c-shell command file (see Appendix A) that frequently 

interacts with a FORTRAN77r'51 program, rn0nteb.J; (see Appendix B) to produce 

criticality and burnup results based on material feedremoval specifications, power(s), and 

time intervals. Figure 1 shows how monteburns interacts with MCNP and ORIGEN2. 

rnonteb urns 

initial material compositions 

ORIGEN2 

material compositions 

Figure 1. Interaction of Monteburns with MCNP and ORIGEN2 

The primary way in which MCNP and ORIGEN2 interact through monteburns is 

that MCNP provides spectrum-averaged one-group microscopic cross sections and fluxes 

required for OlUGEN2, and ORIGEN2 provides material compositions halfway through 

and at the end of each irradiation step. These calculations may occur more than once 

throughout an irradiation period to obtain the best representation for a particular bum 

step (see Section 3.3.2 for more information about predictor steps). 
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Monteburns acts as a post-processor for MCNP and a pre- and post-processor 

for ORIGEN2. For each irradiation step, MCNP is run with material compositions 

halfway through the step (obtained from ORIGEN2), and relevant parameters are 

extracted by monteburns and input into ORIGEN2. A majority of information desired by 

the user is contained in the monteburns output (see Section 3.4), and additional 

information can be obtained in the future if desired (see Section 6).  Nonetheless, 

monteburns was designed to eliminate the user’s need to search through MCNP output 

files for results. 

In addition, input files for ORIGEN2 are complex to write, and output files 

generated by ORIGEN2 are bulky and complicated to read. Thus, monteburns eliminates 

the user’s need to create hisher own ORIGEN2 input files and to extract information 

from ORIGEN2 output files. Monteburns provides a file with cross section and decay 

libraries (fort.9), a material composition input file (fort.4), and a main ORIGEN2 input 

file (mbori), which contains commands as well as some feed and removal information 

(optional). All three of these files are created by monteburns for each material, and they 

provide all the information needed to execute ORIGEN2. 

The FORTRAN77 program, m0nteb.A which interacts with the c-shell file 

monteburns, consists of fifteen different parts, each of which performs a different 

function. These functions are displayed in the detailed flow chart of the c-shell file 

monteburns in Figure 2, where the numbers correspond to the list below. 

1. 

2. 

3. 

4. 

5. 

read input parameters, 

create basic ORIGEN2 input files for each main bum step based on continuous 

feedremoval information, 

put the user’s MCNP input file into monteburns format, 

create tally requests for MCNP, 

write ORIGEN2 composition input file, separating natural elements into individual 

isotopes, 
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6.  update the monteburns input file to indicate the current step number and to update 

the list of isotopes being tracked, 

7. determine which material is located in each region, 

8. add discrete feed to ORIGEN2 composition input file (if requested by the user), 

9. modify the previous MCNP input file with new material compositions, 

10. modify ORIGEN2 input files for predictor steps to calculate compositions halfway 

through each burn step, 

11. modify ORIGEN2 libraries with cross sections calculated by MCNP and ORIGEN2 

input files with fluxes fiom MCNP, 

12. calculate the recoverable energy per fission based on the actinide distribution, 

13. perform discrete removal in the ORIGEN2 composition input file, 

14. output results of ORIGEN2, and 

15. calculate the amount of material burned and produced based on feed and inventory 

information. 

The full range of calculations performed by monteburns is presented in Section 

3.2, detailed input requirements are described in Section 3.3, and the results currently 

output by monteburns are displayed in Section 3.4. 
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1. Readinput parameters to determine: 

Number of MCNP Materials Being Analyzed(nmat), 

Number of Outer Burn Steps (nom), 

Number of Predictor Steps (npre), I Current Bum Step (nrst), and I 
I If Intermediate keff Calculations Occur(nkeff; O=no, 1 =yes) / 

f 
2. Create basic ORIGEN2 input files 

- 

Run MCNP to obtain initial 

of materials to put into ORIGEN2 

T 
4. Create limited tally requests for MCNP 

v 
5. Write ORIGEN2 composition input tile 1 

I Obtain files frorr previous runs 1 

Yes 

Reduce resulting number 

of output files to two including value of nrst 

t 
7. Determine which material is located i 

each region; Organize files 
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no 

9. Modify previous MCNP input file with new material compositions 

Run MCNP to determine effect(s) of discrete feed 

no 

A 
Run ORIGEN2 for entire step 

10. Modify ORIGEN2 input 

I Run ORIGEN2 for predictor step I 

with new material compositions 

13. Perform discrete removal 
I 1 

1 9. Modify previous MCNP input file I with new material compositions 

Run MCNP for entire step --L+ 
14. Output results of ORIGEN2 G? 

4. Create tally requests; Form full MCNP input fil 

Run MCNP to calculate cross sections and fluxes 

1 1 .  Modify ORIGEN2 input files 

with cross sections and fluxes 

= 

5. Calculate the amount of material burnedlproduced 

12. Calculate recoverable energy per fission Save information for a restart case 

I j = j + l  L 

Figure 2. Monteburns Flow Chart 
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3.2 Calculations 

The calculations performed by monteburns are divided into six different 

categories: recoverable energy per fission, flux normalization, reactor physics constants, 

effective multiplication factor, power, and importance fraction. 

3.2.1 Recoverable Energy per Fission 

The user has two options for calculating the recoverable energy produced per 

fission in a system. Either he/she can enter the desired Q-value (the average energy 

released by the entire system) into the monteburns input file, or the user can enter the Q- 

value for U-235 that he/she thinks is most representative for the nuclear system being 

evaluated (preceded by a negative sign in the input file), and the code calculates the 

average Q. In this case, the following equations are used by monteburns to calculate the 

recoverable energy produced per fission in each material (see Equation 8 for the Q-value 

of the entire system) according to the distribution of actinides in that material. I 
a i s  = lQ"-2351* Q r a  (5) 

where: Qfi = total amount of recoverable energy produced per fission 

Qu-z3s= recoverable energy per fission for U-235 (input by user - 

recommended value is 200 

Qrat = weighting factor to include recoverable fission energy for all 

actinides present (calculated by Equation 6 )  

n 

Qm = q a t  (i) * fiat (i) 
i= 1 

where: n = number of actinides in material (calculated by ORIGEN2) 

qral(i)= ratio of recoverable energy per fission for isotope i divided by the 

recoverable energy per fission for U-235 (see Table 3) 
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frar(i) = ratio of fissions resulting from isotope i to total number of 

fissions (calculated by Equation 7) 

(7) 
@(i) * n(i) 

k(cri(i) * n(i)) 

jA(i) = 

r=l 

where: oJzj = spectrum-averaged one-group microscopic fission cross section of 

isotope i (calculated by MCNP) 

n(i) = number density of isotope i 

(calculated by ORIGEN2 in units of gram-atoms) 

Next, the average energy produced per fission for the system as a whole is calculated. 

j=I Z(Qjd *q;  *XfJ * V J  ) 
Q a w  = 

!(d *Xf j *vi) 
J = l  

where: ea,, = average recoverable energy per fission for entire system (MeV) 

@is /= average recoverable energy per fission in material j (MeV) 

(calculated by Equation 5) 

40; = neutron flux (n/cm2-s) in region containing material j 

(calculated by MCNP) 

Cfj  = macroscopic fission cross section of material j (cm-') 

n 

(= coj(i) * n(i) - obtained from ORIGEN2 files) 
i=l 

VJ' = volume of all cells containing material j (cm3) 

(calculated by MCNP or input by user) 

m = number of materials being analyzed (input by user) 
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Table 3. Fraction of Recoverable Energy Per Fission for Certain Actinides Divided 

by the Recoverable Energy Per Fission for U-235 

* The fiac 

Isotope I Fraction[”] * 

Th-227 0.90 

Th-229 1 0.92 
........................................................................... 

Th-232 0.96 

Pa-23 1 0.95 

Pa-233 0.98 

U-232 0.96 

U-233 0.99 

........................................................................... 

............................................................................ 

............................................................................ 

............................................................................ 

U-234 0.98 

U-235 1 .oo 
U-236 1 .oo 
U-237 1.01 

............................................................................ 

............................................................................ 

............................................................................ 

U-238 1.02 ............................................................................ 
Np-237 1.01 

Np-23 8 1.02 
............................................................................ 

............................................................................ 
PU-23 8 1.02 

PU-239 1.04 
............................................................................ 

IS displayed here are an average of thc 

IsotoDe I Fraction 
~~ ~~~~ 

PU-240 

PU-24 1 

PU-242 1.06 

Am-24 1 1.05 

Am-242m 1.06 

Am-243 1.07 

Cm-242 1.06 

Cm-243 1.07 

............................................................................ 

............................................................................ 

........................................................................... 

............................................................................ 

............................................................................ 

Cm-244 1.08 

Cm-245 1.09 

Cm-246 1.10 

Cm-248 1.12 

Cm-249 1.13 

............................................................................ 

............................................................................ 

............................................................................ 

........................................................................... 

Cf-25 1 

ES-254 

ractions calculated for thermal and fast spectrums 

3.2.2 Flux Tally Normalization 

For each material j, the flux used in ORIGEN2 (see Equation 1) is calculated fiom 

the flux tallied by MCNP and is either normalized per MCNP fission neutron for a 

“kcode” source definition or per MCNP source neutron for “nps” source definition, both 

according to Equation 9. 

I 

( P = ( P n * c  (9) 

where: = true value of the flux (normalized to system power) 

= flux tally normalized per fission or source neutron (from MCNP) (pn 
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C = the neutron source term (calculated by Equation 10 or 1 1) 

When an MCNP input file with a “kcode” (criticality) source definition is used, the flux is 

normalized per fission neutron, and the value of k,ff and its associated error are found in 

the MCNP output file. In this case, the value of C is given by Equation 10. 

2) * P * lo6 w / m  
c= 

(1.602 * J / MeV) * kff * Qave 

where: v = average number of neutrons produced per fission 

(calculated by Equation 12) 

P = total power (MW) of system (input by user) 

k e ,  = effective multiplication factor (calculated by MCNP) 

When the MCNP input file has a “nps” source definition, the flux is normalized per 

source neutron, and the value of C is instead: 

si-c * P* lo6 W 1 MW 

j ? 0 s s * ( 1 . 6 0 2 * 1 O - ~ ~ J / M e V ) * Q ~ ~ ~  
c= 

where: SYC = weight of source neutrons (approximately equal to one) 

(calculated by MCNP) 

Jloss = weight of neutrons lost to fission (calculated by MCNP) 

The reason that the equation for the neutron source term has the variable keH(or 

floss/src, which represents the fraction of neutrons lost in fission in a “nps” source 

definition) in the denominator is that it modifies the value of the neutron flux of systems 

not modeled at critical. For a “kcode” problem, the flux calculated by MCNP is 

normalized per fission neutron, which assumes that the number of neutrons that fission in 
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the system modeled are representative of how many fission to produce the given steady- 

state power level (steady-state power is only produced at critical). However, if the 

system is subcritical, then the flux normalized per fission neutron is only a fraction (l<kff) 

of the flux produced at steady-state because only that fraction of neutrons in a 

steady-state system are represented. Dividing by k,ff increases the value of this flux 

appropriately. Similarly, the relative number of fission neutrons produced in a 

supercritical system are greater than those in a reactor at steady-state, so the flux must be 

reduced to accurately reflect power production. Additionally, a system designed to be 

subcritical (such as ATW) must rely upon source neutrons to remain at steady-state, and 

these neutrons are not included in the flux calculated by MCNP. Again, in both cases, 

dividing by kff produces the desired result. 

The condition of a system not only influences the neutron flux in each region but 

also the energy spectrum. If the system modeled is subcritical but the actual system is 

critical, then the spectrum of the modeled system may not be representative of the actual 

one, cross sections may be inaccurate, and incorrect ratios of fission, capture, and leakage 

may be obtained. These three are competing processes that produce different nuclides (or 

none in the case of leakage) such that the resulting isotopic compositions of the system 

are affected by any misrepresentation of the spectrum. However, monteburns is not 

designed to account for such a spectrum shift in either direction. Instead, it only accounts 

for a linear change in the true flux as a hnction of l/&K. For a system designed to be 

subcritical (such as ATW), this effect is not as dominant because it does not have to be 

modeled exactly at critical throughout life to be representative of the actual system. In 

either case, it is recommended that user model a system such that k,ff at all time steps is 

as close to true values as possible so that the correct spectrum and results are obtained. 
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3.2.3 Reactor Physics Constants 

For both types of source definitions, the value of ’u (number of neutrons produced 

per fission) is calculated from results in the MCNP output file. For a “kcode” source 

definition, it is calculated using Equation 12. 

v = ke# * src#loss (12) 

where: src = weight of source neutrons (approximately equal to one) 

(calculated by MCNP) 

floss = weight of neutrons lost to fission (calculated by MCNP) 

For a “nps” source definition, the value of 2) is: 

v = fsrc@oss (13) 

where: fsrc = weight of source neutrons gained in fission (calculated by MCNP) 

For either type of MCNP input file, the number of neutrons produced per neutron 

destroyed (q) in a material is: 

(vcp + 2.0 * O n 2 n )  

( U T  4- of + U 2 n )  
7 7 =  

where: q = fission cross section of material (calculated by MCNP) 

or 

onZn = (n,2n) cross section of material6 (calculated by MCNP) 

= (n,y) cross section of material (calculated by MCNP) 

Additional cross sections for neutron interactions producing neutrons (i.e., (n,3n), (n,4n), etc.) are 
assumed to be negligible. 
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3.2.4 Effective Multiplication Factor 

The value of the effective multiplication factor for a “nps” source defrnition must 

be calculated from the value of the net multiplication obtained from MCNP output: 

kef = (fmult - 1) 

@mu& - l/v) 

where: fmuZt = net multiplication in the system (calculated by MCNP) 

The relative error (0) associated with &ff is then: 

[r = { (fmult *(I +err) - I )  - kef]/keH 
@mult *(I +err)- I/v) 

where: err = relative error associated with net multiplication in system 

(calculated by MCNP) 

3.2.5 Power 

Finally, the power produced by each material is: 

. ( Q a V e * q ’ * X /  *V~*1.60219*10-’3J/A4eV) 
pJ = 

lo6 W l M W  
(17) 

where: = power produced by material j (MW) 

(P‘ = neutron flux (n/cm2-s) in region containing material j 

(calculated by Equation 9) 

3.2.6 Importance Fraction 

A key factor in balancing accuracy with execution time in monteburns is 

determining the number of isotopes for which spectrum-averaged one-group cross 

sections are calculated in MCNP. It is important for isotopes to be included in MCNP 
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for two primary reasons: they may significantly affect the system flux spectrum and 

reactivity, andor an MCNP modified spectrum-averaged one-group cross section 

produces more accurate transmutation and fission rates in ORIGEN2. For some isotopes 

it may be important to modify this cross section, while for others, the default ORIGEN2 

value may be used with little effect on the accuracy of the solution. Thus, it is inefficient 

to calculate a spectrum-averaged one-group cross section for every isotope included in the 

associated MCNP libraries because it increases execution time, although this can be done 

if desired. Isotopes are deemed “important” in two ways. The first way is to explicitly 

list an isotope in the monteburns input file (i-e., designate it as an “automatic” isotope); 

this insures that spectrum-averaged one-group cross sections are calculated for this 

isotope during each burn step (and that this isotope is included in the primary 

monteburns output). The other way in which an isotope is deemed “important” is based 

on a user input variable called the importance fraction. 

If an isotope contributes a fraction to the system neutron absorption, fission, 

mass, or atom density higher than the importance fraction, then this isotope is deemed 

“important,” and a spectrum-averaged one-group cross section is calculated in MCNP and 

modified in ORIGEN2. If any of the values calculated by Equations 18-21 (fraction of 

absorption, fraction of fission, weight fraction, and atom fraction respectively) are greater 

than the value of the importance fraction assigned by the user, then the isotope is 

considered “important” and is included in all transfers between ORIGEN2 and MCNP for 

the remainder of the run. 

27 



gadi * Ai 

f: (gadi * Ai) 
wfi = 

i=l 

gadi 
a$= 

i=l 

where: n = total number of isotopes in system (input by user) 

f (qJ i  = fraction of absorption that isotope i contributes to system 

gadi = amount of isotope in system (gram-atoms) 

(calculated by ORIGEN2) 

oai = microscopic absorption cross section of isotope i 

(obtained from ORIGEN2 library or calculated by MCNP) 

f(ojjj = fraction of fission that isotope i contributes to system 

0- = microscopic fission cross section of isotope i 

(obtained from ORIGEN2 library or calculated by MCNP) 

wr; 

A; 

al; 

= weight fraction of isotope i in system 

= atomic weight (grams) of isotope i (calculated by rnontebums) 

= atom fraction of isotope i in system 

In this document (and within rnontebums), the word “absorption” solely refers to 

capture interactions brimarily (n,y)) and excludes the probability of fission. 

Nonetheless, both types of interactions influence the value of kff and what occurs to the 

neutrons in a system (i-e., if a neutron is absorbed in a material, its “life” ends, whereas if 

that absorption leads to fission, it produces even more neutrons as a result). If an isotope 

significantly contributes to either one or both of these areas, it is included in further 

MCNP calculations. 

28 



Not all isotopes produced from irradiation interactions are included in the initial 

ORIGEN2 cross section libraries and are thus not deemed “important” by their 

absorption or fission contribution because their cross sections are effectively zero. If 

such an isotope comprises a significant portion of the material (either by weight or atom 

density), then it should also be included in MCNP because it could significantly 

contribute to interactions in the system. Thus, if the weight andor atom fraction of an 

isotope in ORIGEN2 is greater than the importance fraction, then the isotope is also 

passed back to MCNP. Additionally, even if an isotope does not have an absorption or 

fission fraction greater than the importance fraction but still exists in a material in 

significant amounts, it may still contribute to scatter interactions in the system. By 

allowing the atom and weight fractions to be included in “importance” checks for an 

isotope, such a potential scatterer can be included. 

3.3 User Input 

The user must generate two to four different input files before executing 

monteburns. The two required input files are the MCNP input file (designated here by 

mbJiIe but can be any name up to 8 characters), and a general monteburns input file (this 

must have the same prefix “mbfile” with an extension of “.inp” for a name of mbJie.inp). 

For many complex burnup scenarios, the user must also generate a feed input file (with a 

name of mbJile.feed), which contains detailed instructions for monteburns at each time 

step (Le., time interval, power, material feedremoval). The only case in which a feed 

input file is not required is for a constant power burn with no material feed or removal. 

Finally, monteburns uses one other input file, mbxs.inp, which contains a list of default 

MCNP cross section identifiers for isotopes that may be produced in the irradiation 

process and are not initially specified by the user. 
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3.3. I MCNP Input File 

The MCNP input file represents the system being analyzed, including the 

geometry and compositions of materials. There is no required format of this input file in 

monteburns, except that material numbers must not be greater than 100 and user tally 

cards cannot have numbers greater than 100 (this is to keep monteburns tallies from 

interfering with user input). This file must run in MCNP (for example, complete enough 

active cycles to produce a “final result” for hff in a “kcode” problem) before it can work 

in monteburns. 

3.3.2 Monteburns Input File 

The following pages list input parameters required for monteburns that must be 

provided by the user in the monteburns input file. These input parameters are read in 

free format, but they must be in the order listed below (for more information, see the 

Monteburns User’s Manual[”]). In addition, sensitivity analyses were performed for 

several input parameters to see how their values affected results. The outcome of these 

analyses is located in Section 4.2.1. 

Number of MCNP Materials - this indicates the number of materials the user wants 

to irradiate from the MCNP input file @.e., transfer back and forth between MCNP 

and ORIGEN2). 

MCNP Material Number(s) - the identification number of the material(s) in the 

MCNP input file for which a burnup analysis is desired (the average flux for all cells 

and parts of a repeated structure or lattice with this material are obtained). Note: the 

number of entries here must equal the number of MCNP materials entered above. 

Material Volume(s) - the sum of the volume (cm3) of all cells in the MCNP input 

file for each material number(s) listed above (again, the number of entries must equal 

the number of MCNP materials). If the user enters a value of 0.0 for one or more of 

these, then the volume calculated by MCNP is used (if it exists). However, often the 
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geometry is too complex for MCNP to calculate the volume, in which case, unless the 

user has input a non-zero volume for that material number, an error message appears, 

monteburns terminates, and it must be rerun with non-zero values. Additionally, in 

most cases of repeated structures, MCNP calculates the volume of cells containing a 

given material incorrectly. For each of these cases (and for any other instances the 

user desires), the user must enter the sum of the volumes of cells containing each 

material being analyzed. 

Total Power of System - the power (MW) generated by the entire system 

represented in the MCNP model (note: this is not necessarily the same as the power 

generated solely by the materials burned in monteburns). This value, along with the 

recoverable energy per fission, is used to normalize the flux from MCNP in each 

burned region for ORIGEN2. This flux is then converted to fission power and 

output. Additionally, the user can enter the fiaction of this power to be used during 

each outer burn step (if power is not constant over the entire bum) in the feed input 

file. By entering a power fraction of zero for a step, then it effectively becomes a 

decay-only step, which is useful for analyzing cooling periods of systems. Note: the 

value of fission power output is subject to statistical errors and may not be exactly 

the same as the power input. Increased statistics in MCNP may minimize this 

problem, but nonetheless, the user should check the value of power output to ensure 

that it is close to the amount of power desired. 

Recoverable energy per fission - this value represents the average recoverable 

energy per fission (Q) in MeV in the aforementioned MCNP model. I f  the user does 

not know the exact amount of energy generated by a combination of several isotopes, 

then he/she can enter the recoverable energy per fission for U-235 in that system (see 

Equations 5-8). WARNING: the fissile isotopics used for the calculation of Q are 

based only on the materials burned by monteburns. If the fissile isotopics of the 

entire system are significantly different from the fissile isotopics of the materials 
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burned, then the average value of Q may be in error, thus the flux normalization may 

be incorrect (although in most cases this should be a relatively small effect). 

Total number of days burned - this number represents the length of time for which 

a material is irradiated in ORIGEN2 (or the decay time if power equals zero). If the 

user provides a feed input file, then the irradiation lengths (in days) for each outer 

bum step (described below) must be provided in this file. Otherwise, the total 

irradiation time (in days) is entered in the monteburns input file. 

Number of outer burn steps - this number indicates how many outer burn steps are 

desired. If a feed input file exists, then this must equal the number of steps described 

in the feed input file. If a feed input file does not exist, then the length of the 

irradiation period for each outer bum step equals the total days burned divided by the 

number of outer burn steps. Each of these steps represents a time period for which a 

bumup calculation is performed and representative cross sections are obtained (the 

burn step then uses spectrum-averaged one-group cross sections calculated at a 

predictor step halfway through that step). Each outer step can also indicate the 

addition and/or removal of a material. 

Number of internal burn steps - this is the number of additional times into which 

the irradiation period is divided for ORIGEN2 calculations. As mentioned in Section 

2.2, the results obtained from ORIGEN2 (and as a result, rnontebuvns) may be more 

accurate if long irradiation periods are broken up into smaller lengths of time, 

especially at the beginning of a system’s life. This is because the Bateman equations 

andor the Gauss-Seidel iterative technique are used to solve for compositions of 

materials when the half-life of an isotope is less than 10% of the irradiation interval.[61 

Additionally, the physics and composition of materials in the system may change 

significantly with time. Thus, the user can specify that the outer bum steps be 

divided into even smaller time segments for use in ORIGEN2. In addition, there is 

* 
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virtually no penalty on execution time by using smaller time steps in ORIGEN2 

because most of the execution time lies with MCNP. 

Number of predictor steps - this is another variable affecting the accuracy of the 

results. As the isotopic composition of a material changes during an irradiation step 

(both due to burnup and potential variances in continuous feed fiom beginning to 

end), the cross sections may change as well. To obtain the most accurate results, 

spectrum-averaged one-group cross sections for a burn step should represent an 

average over the time interval. In a monteburns calculation, ORIGEN2 is run halfway 

through each outer burn step, and the resulting isotopics are used in MCNP to 

calculate spectrum-averaged one-group cross sections and fluxes for that step. Then 

a complete ORIGEN2 run is performed with the new values to determine final 

compositions. This assumes that the isotopics of the system at the midpoint are a 

reasonable approximation of the isotopics over the entire bum step and that cross 

sections are representative of the step (actually it is only important that the neutron 

flux energy spectrum is representative of the entire burn step). The user must be 

aware of this assumption, and consequently, ensure that bum intervals are not too 

long. 

If the initial cross sections for a step are not accurate, then the ORIGEN2 

compositions halfway through the step may not be a good representation of the bum 

step. Thus, it is often beneficial to perfom a “predictor” step (derived from a basic 

form of the predictor-corrector method[’]) to calculate cross sections more than once 

at the midpoint of a burn step and to compare the neutron energy spectrum and 

isotopic compositions halfway through the step (these values are printed in the 

output files) to make sure that the final cross sections are representative of the 

system at that step. The number of times for which cross sections are calculated 

halfway through each step is the number of predictor steps. Executing multiple 

predictor steps increases the accuracy of the burnup calculation because the 
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I spectrum-averaged one-group cross sections used to perform the predictor step 

approach the ones calculated by the predictor step @e., they converge). In addition, 

monteburns automatically adds a predictor step for the initial burn step because the 

actual spectrum-averaged one-group cross sections for a system may be different than 

those supplied in the chosen default ORIGEN2 library. For all subsequent bum 

steps, monteburns uses the modified spectrum-averaged one-group cross section 

library from the previous burn step, thus an extra predictor step is not required. 

Step to restart after - a user can use this parameter to restart a run that ended 

unexpectedly, or to branch off from a previous monteburns run with different input 

variables (for example, if keff drops too low during the n* bum step, the user can 

change the feed rate for the nh step and restart from the previous step). The “restart 

step” indicates the outer bum step after which monteburns should start, using all 

previously created input files and results for the outer burn steps up to that point. 

To use this variable effectively, all input files that were created by monteburns during 

the previous run must remain in the directory in which monteburns is running (most 

of these appear in the tmpfiIe subdirectory of the main directory). If a restart run is 

not being performed, then the “restart step” value should be zero. This value gets 

modified during each step to reflect the value of the current step. 

Number of ORIGEN2 library - this number represents the number of the ORIGEN2 

library from which initial one-group cross sections are obtained (these values are then 

modified to be system-dependent as calculated by MCNP tallies after the first step 

for “important” isotopes). The ORIGEN2 manualr2] contains a list of over forty 

different cross section libraries (with two-digit identifiers) from which the user can 

choose for different types of systems. The value of this two-digit identifier must be 

entered by the user. 

OlUGEN2 library location - this line of input must contain the location of the 

ORIGEN2 libraries (both decay and cross section ones) in the user’s file space or in 
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the directory of another user on the system that has the library files. This way, only 

one user on a UNIX operating system needs to have a copy of the libraries. 

Importance Fraction - this value represents the lower limit (tolerance) for the 

importance of one isotope relative to the rest of the system based on results obtained 

from ORIGEN2 and MCNP. If an isotope contributes a large enough fraction (i.e., 

greater than the importance fraction) to absorption or fission interactions, mass, or 

atom density (see Section 3.2.6 for more information), then the isotope is considered 

“important.” Flux and one-group spectrum-averaged cross sections tallies are then 

performed in MCNP for this isotope. If the importance fraction is zero, then all 

activation, fission products, and actinides generated in ORIGEN2 are tallied (except 

those for which no MCNP cross section exists - see Section 3.3.4 for more 

information). If the importance fraction is one, then no isotopes are deemed 

“important” except those specified as “automatic” in the input. Additionally, it is 

advised that the initial ORIGEN2 library be somewhat representative of the system, 

or “important” isotopes may not be properly identified. The only way to absolutely 

avoid this problem is to track every isotope or to generate a problem specific library 

with a previous run of monteburns that replaces the original default ORIGEN2 

library. 

The user must also decide how to deal with fission products. I f  the user enters 

the importance fraction as a positive value, then only those fission products deemed 

“important” are included in MCNP. However, since MCNP cross sections for many 

fission products do not exist, monteburns contains the option to lump all fission 

products together as one sum (except for those fission products, if any, designated as 

“automatic” in the monteburns input file) by using a negative value here. These 

lumped fission products are then given one of two general fission product cross 

sections in MCNP - the average fission product from Uranium-235 and the average 

fission product from Plutonium-239 (these have the identifiers 45 1 17.90~ and 

35 



461 19.90~ respectively[’]). The fraction of the total fission product mass separated 

into each category is determined by comparing the number of fissions that result from 

isotopes with an atomic number less than or equal to that of uranium (92) to those 

that occur in other transuranic actinides with an atomic number greater than 92. 

Intermediate flag - this flag indicates whether intermediate k,ff calculations are 

performed. Normally, MCNP is only run once per predictor step, and these runs 

occur halfway through each outer burn step (i.e., halfway through each irradiation 

period). However, it is often desired to obtain a value of k,ff at the beginning andor 

end of each burn step. When the value of this parameter is one, these additional 

MCNP calculations are performed. Neither cross sections nor fluxes are recalculated 

by MCNP for these runs, so ORIGEN2 results are not influenced. The only purpose 

“intermediate” MCNP calculations have is to provide the value of k,ff at more than 

one point during each outer burn step to see how the system changes. When a 

discrete feed addition (see Section 3.3.3) occurs, three MCNP runs are performed for 

the step (at the beginning, middle, and end); otherwise two MCNP runs are performed 

(at the middle and end) because the beginning value of k,ff equals the ending value of 

k,ff from the previous step. If the value of this parameter is zero, then only one 

MCNP run is performed for each outer burn step (in the middle) regardless if discrete 

feed occurs. 

Number and list of automatic tally isotopes for each material - this integer 

represents the number of isotopes/elements for which the user wants tallies to be 

performed in MCNP and results written to monteburns output files (i-e., automatic 

“important” isotopes). The user must then enter the MCNP identification number 

for each of these isotopes/elements (these can indicate library preference andor 

temperature dependence). It also allows the user to use a cross section not specified 

in the default cross section file discussed in Section 3.3.4, rnbxs.inp (i.e., the cross 

section identifier listed here has precedence over the one in mbxxinp). 

36 



3.3.3 Feed Input File 

The purpose of a feed input file in monteburns is to list the lengths of each time 

step, to vary the fraction of power generated by the system during each time steps, to 

shuMe materials from one region to another, andor to specify amounts of materials to 

add to or remove from the system during each outer bum step. The user can also specify 

continuous or discrete (all at one time) feed (addition of isotopes) and/or removal (of 

specified elements) for each material at each time step in this file. First, for each outer 

bum step and (excluding the first two items) material, the user enters the following 

parameters : 

e 

e 

length of the irradiation (in days), 

fraction of power produced relative to the total power entered in the monteburns 

input file, 

region in which each material is located, 

feed group (defined below), 

feed rate(s) (both beginning and ending rates for continuous and a flag and a rate for 

discrete), 

removal group (positive for continuous feed, negative for discrete), and 

removal fraction (the fraction of each element removed (for example, a fractional 

removal of 0.9 means that 90% of the removal group is removed and 10% remains)). 

The next part of the feed input file allows the user to enter information about the 

feed group(s). This includes: 

then, for each feed group, 

the number of feed groups, 

the number of isotopes in that group, and 
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a list of those isotopes (atomic number followed by atomic mass number (for 

example, 92235 for U-235)). 

Continuous feed OCCUTS at several points throughout the irradiation process, the amount 

of feed being interpolated from the beginning and ending rates, and discrete feed occurs all 

at the beginning. 

The final part of the feed input file consists of information about the removal 

group(s), including: 

then, for each removal group, 

the number of removal groups, 

the number of ranges of elements to be removed, 

the range(s) of elements (for example, 28 to 68 means that all elements between nickel 

and erbium are removed (which represents a majority of fission products), the two 

ranges 28 to 42 and 44 to 68 mean that all fission products in this same range except 

technetium ( 2 ~ 4 3 )  are removed, and the range 43 to 43 indicates that only the element 

technetium is being removed). 

For continuous removal (a removal group number greater than 0),  the appropriate 

elements are removed both after the halfway predictor step and at the end of the bum 

(simulating continuous removal), whereas for discrete removal (a removal group number 

less than 0), the elements are removed only at the end of the bum step. 

3.3.4 IdentiJier Input File 

The identifiers used to recognize isotopes in MCNP are different than those in 

ORIGEN2. Thus, monteburns is designed to determine which identifiers to use for each 

code. In ORIGEN2, the identifier is simply the atomic number followed by the atomic 

mass number and a “0” for most isotopes (metastable isotopes are followed by a “I”). 

MCNP not only requires the atomic number and atomic mass number but also a cross 
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section identifier. A file containing a list of default MCNP identifiers for all isotopes 

used or potentially created by decay or irradiation processes must be present in the 

directory in which the user is running (Note: cross section libraries for many fission 

products may not exist and obviously cannot be listed here). This file is named mbxs.inp 

and can either be provided by the user or obtained with the source code and modified by 

the user as necessary. For any isotopes deemed “important” by monteburns but do not 

have a cross section identifier in this file, monteburns gives a warning that the cross 

section is not found, continues to use the default ORIGEN2 cross section, and does not 

transfer the material to MCNP. The identifiers in this file can either be cross section 

libraries provided by MCNP, or they can be ones generated by the user with ENDF 

libraries and/or the code NJOY,’ or ones fiom other sources. In fact, the user is 

encouraged to use a code such as NJOY to generate temperature-dependent cross section 

libraries, which can then be used by MCNPIPnonteburns to process temperature- 

dependent data. In addition, mbxs. inp must include the general fission product identifiers 

45 117.90~ and 461 19.90~ for MCNP if the lump sum of fission products option is used 

(as discussed in Section 3.2.6 and 3.3.3). 

There are a number of elements in MCNP for which “natural” cross sections exist. 

However, ORIGEN2 does not recognize natural elements, so monteburns contains data to 

separate natural elements into individual isotopes. I f  a natural cross section exists in the 

MCNP input file, monteburns separates this element into its isotopic components, and 

then ORIGEN2 burns these isotopes individually (with the default ORIGEN2 library 

cross sections). After the ORIGEN2 burn, monteburns then lumps them back into the 

element’s natural isotopics for use in MCNP. Although this may not be completely 

accurate because the initial ORIGEN2 cross sections are not modified by MCNP @e., 

’ Versions of NJOY are available at the Radiation Safety Information Computational Center (RSICC) as 

codes PSR-171 and PSR-355. 
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they are not fully representative of the material in the system), it is dictated by the lack 

of MCNP cross sections for many individual isotopes. 

3.4 output 

Two large, primary output files are produced by monteburns. These output files 

consist of the name of the MCNP input file created by the user followed either by the 

extension “.mbout” or “.mbchk.” For each of the output groups listed below (except the 

first two, which contain system, not material dependent parameters), results appear for 

each monteburns materialkegion being analyzed. Note: this is not necessarily the same as 

the initial MCNP material number assigned to each region due to shullling between 

regions. The user must keep track of each MCNP material individually through the 

various regions when shuffling occurs. 

The first output file, mbJile.mbout, contains the results displayed below for each 

outer burn step: 

Monteburns MCNP 4ff Versus Time - a list of the cumulative time (in days) over 

which irradiation has occurred as well as the effective multiplication factor (bff), 

associated relative error, 2) (see Equations 12 or 13), average recoverable energy per 

fission calculated by monteburns (see Equations 5-8), and q for the system (see 

Equations 8 and 14 respectively). 

Monteburns MCNP kefr at Beginning of Step - a list of the cumulative time of 

irradiation (in days) that has occurred before each step begins as well as the effective 

multiplication factor, relative error, and 2) at the beginning of each outer burn step 

(after discrete feed occurs). This data is only included in the output if discrete feed is 

used and intermediate kff calculations are requested. 
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For each material and outer burn step, the following parameters are output: 

Monteburns Transport History - the recoverable energy per fission (see Equation 5), 

neutron flux (see Equation 9), macroscopic fission cross section (&), power 

generation, burnup (in gigawatt-days per metric ton heavy metal (i.e., actinides) 

(GWd/MTHM)), capture - (n,y), fission - (n,f), and (n,2n) cross sections, fission-to- 

capture ratio, and q (see Equation 14) for both the material as a whole and the 

actinides only. 

Monteburns Flux Spectrum - the percent of neutrons with energies in each of the 

following ranges: 0 to 0.1 eV, 0.1 to 1 eV, 1 to 100 eV, 100 eV to 100 keV, 100 keV 

to 1 MeV, and 1 MeV to 20 MeV. To obtain a more detailed spectrum, the user must 

enter hidher own tallies into the MCNP input file or modify monteburns to provide 

the values desired. 
. 

The following results are provided for each “automatic” isotope in each material for each 

outer burn step: 

Monteburns One-Group (n,y) Cross Sections - the value bf the microscopic capture 

cross section (oc). This capture cross section is assumed to be equal to the (n,y) cross 

section for the isotope, which is its primary constituent. Other reactions, such as 

(n,p), (n,d), (n,t), etc. may contribute to the total capture cross section, but not in 

significant amounts. 

Monteburns One-Group Fission Cross Sections - the value of the microscopic 

fission cross section (of). 

Monteburns Fission-to-Capture Ratio - the ratio of the microscopic fission cross 

section to the microscopic capture (n,y) cross section (q hc). 

Monteburns Grams of Material at Beginning of Steps - this represents the amount 

of material (in grams) that exists in the system at the beginning of each step. 
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Monteburns Grams of Material at End of Steps - the amount of material (in grams) 

at the end of each step. 

Monteburns Grams of Feed - the amount of material (in grams) added to the system. 

Monteburns Grams Produced (or Destroyed) - the amount of material (in grams) 

produced (or destroyed if the output is negative) during irradiation. The 

interpretation of this data may depend on feed, removal, andor material shuffling. 

Summary of Inventory/Feed/Production - the total amount of material in the 

system at the beginning and end of monteburns (not of each step), the amount added 

through feed, and the net change. The interpretation of this data may also depend on 

feed, removal, andor material shuffling. 

Feed Rate - the average continuous feed rate (in grams per day). 

Production/Destruction Rate - the rate of change (in grams per day) of material 

produced to that destroyed during irradiation. The interpretation of this data may 

depend on feed, removal, or material shuffling. 

Feed Input File - if it exists, this file is included at the end of this output file so that 

the user can determine what feed parameters he/she used to produce the results 

presented in this output file. 

In the second output file, mb$le.mbchk, many intermediate results from the 

execution of monteburns are listed. In this output file, the following results are reported 

for each monteburns material analyzed for each predictor step: 

Monteburns Spectrum for Each Predictor - the percent of neutrons with energies in 

each of the following ranges: 0 to 0.1 eV, 0.1 to 1 eV, 1 to 100 eV, 100 eV to 100 

keV, 100 keV to 1 MeV, and 1 MeV to 20 MeV. This can be used to determine if 

smaller time intervals or more predictor steps need to be run. 
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Monteburns Grams at Midpoint - the amount of each isotope (in grams) present 

halfivay through the irradiation for both the predictor and the actual steps. The grams 

of each automatic “important” isotope present halfivay through each predictor step 

are listed first for each outer burn step followed by the composition of these isotopes 

halfway through the actual step. This way the user can determine if the predictor 

step(s) provided enough accuracy or if more predictor steps (or smaller time intervals) 

are needed. If the two values for any isotope are significantly different, then 

monteburns should be rerun using more predictor steps or outer burn steps to obtain 

more representative cross sections. 

Importance Fraction of Isotopes Sent From OIUGEN2 to MCNP - the isotopes 

deemed “important,” both automatically and through the importance fraction. This 

list contains the total mass of the isotope in the specified region and the contribution 

of each isotope in the following four categories: absorption, fission, mass fraction, and 

atom fraction. For example, if the fission column for an isotope reads 0.1, then 10% 

of the fissions resulted from this isotope. This file also includes a warning message if 

an isotope deemed “important” by monteburns or “automatic” by the user is not 

found in the MCNP cross section library used by monteburns. 
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4.0 BENCHMARKING/STAXISTICS 

One of the most important aspects of developing a new computer code is 

benchmarking it against existing experimental data and/or published calculations fiom 

other codes. The linkage code monteburns is no exception. To show that it is capable of 

performing burnup calculations well, a variety of test cases were run. Statistical analyses 

were also performed for selected input parameters and various system models to 

determine how they affect the outcome. Results from the benchmarking and the 

statistical analyses are presented in this section. 

4.1 Benchmarking 

The benchmarking process for monteburns used five different test cases, 

representing a variety of burnup scenarios. These test cases show the versatility of 

monteburns in performing all types of burnup calculations. First, changes in the 

concentrations of uranium and plutonium isotopes were calculated as a function of 

burnup, and then both a pin in a simple cell geometry and a fill reactor assembly were 

analyzed. The first three test cases examined a PWR system and low-enriched uranium 

(LEU) fuel, the fourth involved a Boiling Water Reactor (BWR) system, and the fifth 

used mixed-oxide (MOX) fuel. The broad range of these cases is useful in showing the 

validity of monteburns in handling a variety of parameters. All cases were modeled using 

temperature-dependent cross sections derived from the ENDFB-V data set and 

processed by NJOY.[I4] Brief descriptions of these five test cases are: 

1. Uranium and Plutonium Isotopic Concentrations as a Function of Burnup 

2. Composition of Isotopes in a Fuel Pin at Fixed Burnups 

3. Concentrations of Isotopes in a PWR Lattice at Fixed Burnups 

4. Power Distribution of Pins Within a Small BWR Lattice 

5. Activity of MOX-Based Spent Fuel After Removal from a Reactor 
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4.1. I Isotopic Concentration 

The first test case involved tracking the weight percents of several uranium (U) 

and plutonium (Pu) isotopes as well as fission products (FPs) in a typical PWR system 

as a function of burnup. 

4.1.1 - 1 Description 

A number of textbooks and other sources have published this information, and one 

representative figuref7] was compared to the results obtained by monteburns for a 

standard Westinghouse PWR The monteburns output is shown in Figure 

3a, and the isotopic concentrations calculated by basic burnup equations in Ref. 7 appear 

in Figure 3b. 

4.1.1.2 Results 
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Figure 3a. Calculated Isotopic Distribution as a Function of Burnup as Predicted 

by Monteburns 
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Figure 3b. Publishedf71 Isotopic Distribution as a Function of Burnup 

The differences seen for actinides are discussed in terms of two categories: 

resonance self-shielding, and cross sections. Then variances in fission product 

concentrations are discussed. 

4.1.1.3 Resonance Self-shielding 

Figures 3a and 3b display fairly similar results, with the exception of the isotopes 

Pu-240, Pu-241, and Pu-242. This variance was expected because, as the text in Ref. 7 

states, the burnup equations that generated Figure 3b used one-group effective thermal 

cross sections for a PWR and did not account for resonance absorption, self-shielding, or 

the change in cross sections with burnup as monteburns does. When a system is initially 

started, it has a thermal spectrum, which means that a majority of neutrons in the system 

are at relatively low energies and are more likely to be absorbed than if they were at higher 

energies (the absorption cross section is higher at thermal energies because of l/v 
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effects['61 (i.e., cross sections are indirectly proportional to neutron energy)). As burnup 

in a system increases, the number of isotopes built into the system also increases. The 

creation by fission and absorption of additional isotopes adds new resonance energies to 

the system in the resonance region (approximately 0.1 eV to 3 keV).[I3] Neutrons created 

by fission typically have energies greater than 50 keV, and as they slow down (assuming 

enough moderator exists), they can be absorbed in resonances. If many of these neutrons 

are absorbed in the first (highest energy) resonance, then the neutron flux that would 

otherwise go to resonances at lower energies (and consequently, the total amount of 

resonance absorption) would decrease. The flux around this resonance is also depressed 

because many neutrons at that energy are absorbed, decreasing the flux seen by the 

Thus, resonance self-shielding (as this process is called) can significantly decrease the 

neutron flux in regions of multiple, closely-spaced resonances. 

The one-group cross section for an isotope is calculated by weighting the 

absorption cross section at each energy by the neutron flux at that energy, and having low 

fluxes at energy(ies) with large absorption cross sections (i.e. resonances) decreases the 

overall one-group absorption cross section of many actinides. The energy spectrum then 

either becomes more soft or more hard, depending on the ratio of neutrons that exist in the 

thermal energy region (below the resonances) to those in the fast region (above the 

resonances). 

Additionally, as plutonium is built into the system during irradiation, the energy 

spectrum of neutrons somewhat hardens because the absorption cross sections of several 

plutonium isotopes are larger than those of uranium ones, and a large thermal resonance 

exists for Pu-239 and Pu-241 at an energy lower than that of the resonances of U-235 and 

U-238 (about 0.1 eV compared to around 5 ev). Thus, the neutron flux in both the 

thermal and the resonance regions decreases with burnup because as additional plutonium 

is built into the system, more absorption occurs (due to a larger absorption cross section), 

and the spectrum slightly shifts to higher energies. 
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The effects of resonance self-shielding are especially significant for Pu-240, which 

has a large absorption cross section at resonance energies, but as burnup increases, the 

cross section of this isotope significantly decreases (363 to 92 barns) due to resonance 

self-shielding. Figure 3c shows the variance in the compositions of Pu-240, Pu-241, and 

Pu-242 between the concentrations calculated by the equations in the reference (eq) and 

those calculated by monteburns (mb). The amount of Pu-240 calculated by monteburns 

was greater than that calculated by the equations in Ref. 7 because less of it was depleted 

through absorption interactions (i-e., 0, was lower). It follows that the concentrations of 

Pu-241 and Pu-242 were smaller in monteburns than the referenced equations because less 

of them were built up &om neutron absorption in Pu-240. However, all concentrations 

seen in Figure 3a do match those obtained using another code, CELL.[71 

1 ,  1 
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1 
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@ +Pu-240 eq 

A Pu-242 eq 

Pu-240 mb 

m Pu-241 mb 

0 Pu-242 mb 

/ 

0 1 0  2 0  3 0  4 0  5c 

Burnup (GWd/MTHM) 

Figure 3c. Differences in Higher Isotopes of Plutonium 
* eq means the equations in the reference and mb stands for monteburns 
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4.1.1.4 Cross Sections 

Another parameter compared in this analysis was the fission-to-capture ratios of 

the uranium and plutonium isotopes analyzed (see Table 4a). The fission-to-capture ratio 

in Ref. 7 for U-235 was smaller than the ratio calculated by monteburns at the various 

bum steps. This means that more fissions occurred per U-235 atom in monteburns than 

in the reference, causing more to be burned (as can be seen by comparing Figures 3a and 

3b). The fission-to-capture ratio of U-238, however, decreased slightly with bumup, 

which means that the rate of capture slightly increased relative to the rate of fission, 

producing a few more plutonium atoms in monteburns. In addition, the fission-to-capture 

ratios of plutonium isotopes increased slightly as a function of burnup in response to the 

decrease of the absorption cross sections due to resonance self-shielding. For Pu-240, 

even though its fission-to-capture ratio increased, its probability of fission was so small 

that it was still not depleted as rapidly as when constant cross sections that did not 

account for resonance self-shielding were used and more transmutation occurred.[71 

Table 4a. Comparison of the Change in the Fission-to-Capture Ratio in 

Monteburns with Burnup to Thermal Ones Used in Ref. 7 

4.54 to 4.60 
11 U-236 I 0.035 to 0.043 I - II 

________ ~ 

11 U-238 0.109 to 0.108 I - 11 
h-239 1.74 to 1.81 1.84 

Pu-240 0.0025 to 0.006 - 
Pu-24 1 2.68 to 2.73 2.66 

I Pu-242 1 0.012 to 0.014 I - 
’ of/oc is the fission-to-capture ratio of the isotope. 

1 
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I Another difference seen in this analysis was that the absorption cross sections 

used by montebums were not as large as those given in the reference (see Table 4b). This 

was because the reference used constant, thermal cross sections for PWRs most likely at 

room temperature (ie., an energy of 0.0253 ev), whereas monteburns calculated 

spectrum-dependent cross sections at actual temperatures. This higher temperature 

affected the cross section in two ways. First, higher temperatures cause resonances to 

broaden, increasing resonance absorption in the system. Second, as the temperature of 

the moderator increases, its density decreases, causing less of it to be present, and 

absorption cross sections decrease because neutrons are not slowed down as effectively. 

The result of these two effects is that a one-group cross section can either increase or 

decrease with temperature (in this case they decreased). 

Table 4b. Comparison of the Change in the Absorption Cross Section in 

Monteburns with Burnup to Thermal Ones Used in Ref. 7 

II Isotope 1 Monteburns I Published 11 
Change in 0, 0L71 

U-235 58 to 66 556 

11 U-236 I 9 to 6 

11 U-238 I - 1 +/- 0.05 I 2.23 11 
PU-239 - 190+/- 15 

PU-240 363 to 92 

PU-24 1 166 to 192 

PU-242 35 to 26 

* oa is considered here to be the total effective microscopic absorption cross section (i.e., capture + fission) 
in barns (b), but in the remainder of the document, absorption solely refers to capture interactions 

4.1.1.5 Fission Products 

The change in relative concentrations of fission products calculated by 

monteburns matched almost identically to those produced using thermal cross sections 

and the equations in the reference. To model the amount of buildup of all fission 

products (and not just those with cross sections in MCNP), the lump sum fission 
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product option in MCNP was used (see Section 3.3.2 for a description). This test case 

showed that this option in monteburns did calculate fission product compositions 

correctly. Unfortunately, it adversely affected uranium and plutonium isotopic 

compositions. Either the absorption cross sections of these general fission products were 

too large relative to the rest of the system, or the atom densities of fission products 

calculated by MCNP were too large (see Section 4.2.1.3 for more information). In either 

case, the addition of these lump summed fission products caused the h. of the system to 

decrease significantly as a function of burnup. A subcritical system significantly alters 

the neutron energy spectrum, influencing the value of the spectrum-averaged one-group 

cross sections as well as the relative ratios of fission, capture, and leakage. Because this 

system was modeled as an infinite lattice with no leakage, simply the ratio of fission to 

capture was altered, causing too little U-235 to be depleted and too many plutonium 

isotopes to be built up. Thus, the results presented in this test case were obtained fiom 

two different runs; one to obtain actinide concentrations as a function of burnup for a 

near-critical system, and one to calculate the change in the total fission product 

concentrations with burnup. 

4. I .2 Pin-Cell Burnup 

The next test case compared results from monteburns to experimental data and 

results from previous calculations using other codes for a simple fuel pin within a square- 

pitched cell (pin-cell geometry). The Organization for Economic Cooperation and 

DevelopmentINuclear Energy Agency (OECD/NEA) Burnup Credit Calculational 

Criticality Benchmarks are a compendium of calculations performed by 16 different 

organizations (21 sets of results) and measured burnup data.[''] The purpose of these 

benchmarks was to determine if various computer codes/models could accurately calculate 

the composition of spent fuel assemblies for the Burnup Credit program. Results fiom 

Burnup Credit Benchmark Phase I-B were used in the benchmarking process for 
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monteburns to determine if similar nuclide concentrations were calculated as a function of 

burnup for a simple pin-cell geometry. The percent errors in this case were calculated 

relative to the measured data, and the results obtained by monteburns were compared to 

the data published by other organizations and codes. 

4.1.2.1 Description 

The pin-cell geometry used for this benchmark case consisted of a fuel pin 

(initially comprised of U02) with a thin layer of cladding (Zircaloy-2) surrounded by 

water in a square-pitched cell (see Figure 4). Reflective boundary conditions were used 

on all four edges to simulate that the pin was infinitely surrounded by similar pins. The 

parameters used for this test case are given in Table 5,  and the input files used to run 

monteburns for this test case appear in Appendices C-E (which is why detailed geometry 

information is provided for this test case and not the others). 

Fuel 

Figure 4. Pin-Cell Diagram 
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Table 5. Parameters for Test Case #2 

Value Parameter Value 

Fuel Density 10.045 g/cc Length of Irradiation - Cycle 1 306 days 

Water Density 0.7569 g/cc Time Between Cycles 1 and 2 71 .O days 

Rod Pitch 1 S586 cm Length of Irradiation - Cycle 2 382 days 

Rod Outside Radius 0.559 cm Time Between Cycles 2 and 3 83.1 days 

Rod Inside Radius 0.493 cm Length of Irradiation - Cycle 3 466 days 

Fuel Pellet Radius 0.4782 cm Time Between Cycles 3 and 4 85.0 days 

Active Fuel Length 347.2 cm Length of Irradiation - Cycle 4 461 days 

Effective Fuel Temp. 841 K Length of Final Cool-Down 1870 days 

Cladding Temperature 620 K Boron Concentration - Cycle 1 33 1 ppm * 

Water Temperature 558 K Boron Concentration - Cycle 2 470 ppm 

Ending Fuel Burnup for 27.35 Boron Concentration - Cycle 3 504 ppm 

Scenario A (GWdMTHM) 

Ending Fuel Burnup for 37.12 Boron Concentration - Cycle 4 493 ppm 

Scenario B (GWdMTHM) 

* ppm (or parts per million) means the grams of boron particles per million grams of water in the system 

The soluble boron concentration in the water was fixed for each burn step and was 

not burned (the ability to change the composition of material in a region during burn steps 

without burning the material is one of the unique features of monteburns). If the boron 

were burned, the ratio of Boron-10 to Boron-1 1 throughout the burn step would have 

been affected because Boron-10 burns faster than Boron-1 1, and the results would not 

have reflected a representative neutron spectrum due to an inaccurate boron composition. 

In a reactor system, the coolant flows in and out of the reactor vertically and does not 

stay in one location for too long to be irradiated (it only takes the coolant about 0.7 

seconds to flow through the reactor (see Equation 22)). Thus, it was assumed for this 

test case that the boron concentration going in was fxed as natural boron (about 20% B- 

10 and 80% B-1 1) and that it came out at the same concentration. 
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p * A * L  
t =  

cf 

where: t = time coolant spends in core (s) = 0.7 s 

p = density of coolant = 0.7569 g/cm3 [201 

A = cross sectional area of coolant flow = 50,500 cm2 for a PWRr4] 

L 

cf 

= length of fuel rod = 347.2 cm r201 

= coolant flow = 19*106 g/s [201 

The isotopic compositions (in mg/g initial U02) resulting from burnup calculations 

in monteburns for two different scenarios appear in Tables 6a and 6b. The values 

calculated by monteburns, the measured data from Ref. 20, the percent error between the 

two (calculated using Equation 23), and the range of values calculated by other 

organizations are all listed in these tables. 

% Error = (Calculatedhfeasured - 1) * 100% (23) 

The geometry used in this test case, an infinite lattice of fuel pins, was not 

completely representative of the actual system in which the measured fuel pin was 

burned. Thus, the main purpose of this test case was not necessarily to analyze how well 

it represented an actual fuel pin, but to show that monteburns calculated results of 

burnup calculations within the range of values calculated by other codes using the same 

geometry. The only difference between the system modeled in monteburns and that 

described in the reference is that it was difficult to obtain the exact amount of burnup in 

monteburns that was specified in the problem. This is because monteburns requires the 

user to input the total system power, irradiation time, and fraction of power produced in 

each step, and it then calculates how much power is generated by each region (see 

Equations 9-1 7). The resulting flux is subject to statistical errors and may not correspond 
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to the exact flux and power specified in the input, but this problem can be corrected by 

running MCNP with better statistics. The actual burnups calculated by monteburns for 

Scenarios A and B in this test case were 27.34 and 37.38 GWdMTHM respectively, 

which were fairly close to the specified inputs of 27.35 and 37.12 GWdIMTHM 

respectively. 

4.1.2.2 Results 

Table 6a. Results and a Comparison of Experimental Data for Scenario A 

- 
Isotope Monteburns Published Value % Error Range of Values fiom 

Value (mg/g UO~)  (mg/g UO,) l2O1 Other Codesr201 

U-234 0.156 0.160 -2.45 0.1330 to 0.1750 

U-235 8.10 8.47 -4.32 7.445 to 8.661 

U-236 3.21 3.14 2.09 3.128 to 3.540 

U-238 838 843 -0.50 836.7 to 841.5 

N ~ - 2 3 7  0.286 0.268 6.65 0.2527 to 0.3396 

11 Pu-238 I 0.095 I 0.101 I -6.12 I 0.05721 to0.1083 

PU-239 3.94 4.26 -7.50 3.660 to 4.690 

PU-240 1.68 1.72 -2.00 1.573 to 1.860 

PU-24 1 0.663 0.681 -2.72 0.5310 to 0.7335 

PU-242 0.308 0.289 6.65 0.2000 to 0.3 192 

Am-24 1 0.232 NIA NIA 0.2269 to 0.2598 

Am-243 0.041 1 NIA NIA 0.03480 to 0.04672 

MO-95 0.563 NIA NIA 0.5590 to 0.5795 

TC-99 0.595 NIA NIA 0.5648 to 0.6904 

CS-1 33 0.866 0.850 1.91 0.6820 to 0.8640 

11 Cs-135 I 0.376 I 0.360 I 4.46 I 0.3728 to 0.3959 

Nd-143 0.61 1 0.613 -0.36 0.6040 to 0.6792 

Nd- 145 0.51 1 0.5 10 0.19 0.4984 to 0.5 15 1 

Sm- 147 0.160 NIA NIA 0.1564 to 0.1932 

Sm-149 0.00157 0.00290 -45.76 0.001626 to 0.002900 

Sm-150 0.180 0.207 -13.22 0.1713 to 0.2146 

Sm-15 1 0.00890 NIA N/A 0.006376 to 0.01413 

Sm- 152 0.0858 0.0870 -1.35 0.07947 to 0.1073 

EU-153 0.0830 0.0790 5.1 1 0.06730 to 0.08921 

11 Gd-155 I 0.00394 I NIA I N/A I 0.001507 to 0.005762 
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Table 6b. Results and a Comparison of Experimental Data for Scenario B 

Isotope Montebums Published Value % Error Range of Values from 

Value (mg/g U O ~ )  (mg/g UO~)  [201 0 ther Codes[2o1 

U-234 0.133 0.140 -5.05 0.1080 to 0.1570 

U-235 4.67 5.17 -9.66 4.022 to 5.5 10 

U-236 3.62 3.53 2.68 3.526 to 3.930 

U-238 830 833 -0.28 829.2 to 836.0 

Mo-95 I 0.735 I NIA I NIA i 0.7214 to0.7545 II 
Tc-99 0.782 NIA NIA 0:7327 to 0.8372 

CS-1 33 1.12 1.09 2.55 0.8784 to 1.117 

CS- 135 0.419 0.400 4.79 0.3967 to 0.43 17 

Nd- 143 0.71 1 0.716 -0.76 0.7013 to 0.8254 

Nd- 145 0.655 0.653 0.26 0.6326 to 0.6600 

Sm-147 0.170 N/A N/A 0.1659 to 0.2201 

Sm-150 0.247 0.271 -8.96 0.2.297 to 0.3152 

Sm-151 0.00958 NIA NIA 0.008614 to 0.01571 

Sm- 1 52 0.104 0.104 -0.20 0.09761 to 0.1416 

Eu-153 0.123 0.109 13.17 0.09960 to 0.1309 

Gd-155 0.00703 NIA N/A 0.002538 to 0.01028 

Sm-149 0.001 64 0.00300 -45.1 8 0.001 736 to 0.003092 

The results calculated by monteburns fell within the range of values calculated by 

other codes for both scenarios with the exception of the fission products Cesium (Cs)- 

133 and Samarium (Sm)-149. However, neither of these two isotopes’ compositions 

were too far out of range, which means that monteburns represented the system just as 

well as or better than the other burnup codes. It is difficult to calculate fission product 
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concentrations accurately (as discussed in Section 4.1.2.5), so this benchmark was indeed 

considered to be successful. 

The results of calculations performed in monteburns for Scenario A matched the 

measured results from this test case to within a 5% error for most isotopes with the 

exception of Neptunium (Np)-237, Pu-238, Pu-239, Pu-242, Europium (Eu)-l53, 

Samarium (Sm)-149, and Sm-150. The errors seen in these calculations could be a result 

of four different effects: 1) the system, as modeled, was supercritical and produced a 

different spectrum than was seen experimentally, 2) the recoverable energy per fission 

may not have been represented correctly, 3) incorrect fission yields in ORIGEN2, and 4) 

stat is tical errors. 

4.1.2.3 Differences in Energy Spectra 

First, the simple system modeled in this test case was an infinite pin-cell 

geometry and did not represent the exact spectrum that would have been seen with a pin 

taken from an experimental reactor operating at steady-state. A pin in an actual reactor 

would be subject to the influences of other poisons (besides soluble boron) in the system, 

and the effects of leakage would decrease the relative reaction rates of fission and capture 

because it is a competing process. However, in this infinite lattice of fuel pins, no leakage 

occurred, so the fraction of neutrons that would have previously left the system 

contributed to fission and capture interactions instead. This could explain why more U- 

235 was depleted in monteburns than experimentally. 

4.1.2.4 Recoverable Energy Per Fission 

The second source of error could have been that the value input in monteburns for 

the recoverable energy per fission may have been too low. In monteburns, the user has 

the option to input the recoverable energy per fission for U-235, and the actual 

recoverable energy per fission (Qfis) in the system is scaled relative to the presence of 
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other actinides in the system and the ratio of their recoverable energies to that of U-235 

(see Equations 5-7). For this case, an estimated value of 200 MeV was used.['61 Thus, 

because only 200 MeV was generated per fission, a larger number of fissions were 

required for a given power level than if a larger value, such as 202 MeV, were entered. 

For example, results from using 202 MeV showed that U-235 was not burned as quickly 

because fewer total fissions occurred. However, the fission-to-capture ratio of each 

actinide remained the same even though the recoverable energy per fission changed, so the 

plutonium isotopes still did not build up as much as in the measured data. In either case, 

it was difficult to justify using a higher recoverable energy per fission in this test case 

without experimentally showing that a PWR system provides that much more energy per 

fission. 

4.1.2.5 Fission Yields 

Third, for both scenarios the compositions of Sm-149, Sm-150, and Eu-153 

calculated by monteburns at the end of the irradiation were smaller than measured results 

(by almost a factor of 2 for Sm-149 although much better for the other two). This is 

probably a result of estimations of the fission yields made by ORIGEN2 for these 

isotopes. For example, the total fission yield from Pu-239 for Sm is around 0.2% in the 

ORIGEN2 libraries while it is 0.7% experimentally,[211 causing fewer Sm atoms to be 

produced in monteburns than experimentally. However, this is a facet of the code 

ORIGEN2 and cannot currently be modified by monteburns, so these errors must be 

accepted. Additionally, the ratio of fissions due to Pu-239 versus Pu-241 may also have 

affected the results. The fission yields of both Sm-149 and Sm-150 are slightly greater 

from Pu-239 than Pu-241 according to the relevant ORIGEN2 library. Because excess 

Pu-242 was produced, it was assumed that a great deal of Pu-241 was also produced 

(although it was depleted rather quickly). Thus, more fissions probably occurred &om 

Pu-241 than Pu-239 in the modeled system than the measured one, and fewer Sm-149 and 
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Sm-150 atoms were produced. The errors associated with Eu-153 and other fission 

products were probably a result of similar reasons. Fortunately, ORIGEN2 contains 

more representative fission yields for a majority of the fission products, overall producing 

acceptable results (i.e. < 5% error). 

4.1.2.6 Statistical Variances 

The last possible source of error could have been a result of the statistical 

variances involved with obtaining spectrum-averaged, one-group cross sections in MCNP, 

which were produced using tally cards. The accuracy of these depend on the statistics 

with which MCNP was run and the accuracy with which it calculates fluxes in each 

region. For example, Pu-238 displayed a 6.12% error in Scenario A but only a 3.84% 

error in Scenario B. The accuracy to which the ENDF/B-V cross section set(s) 

represented resonances may also have affected the outcome. Either way, variances in 

cross sections may have altered the amount of resonance absorption versus self-shielding 

and influenced results. 

4.1.2.7 Additional Burnup 

For Scenario B, a number of additional actinides had errors greater than 5%. This 

case involved higher burnups than Scenario A as well as a larger variance between the final 

burnup in monteburns and measured data, so greater percent errors were expected. This 

was because variances in cross sections and fission yields became more prominent as 

power times time increased because each burn step became relatively longer (in terms of 

GWd) to make differences more prominent. In this scenario of the test case, it was 

particularly obvious that U-235 was burned faster using monteburns than experimentally, 

creating almost a 10% error. This was again due to the reasons discussed previously. 

However, all actinides still fell within the range of computational values produced by 
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other codes for both scenarios, showing the validity of monteburns in modeling the 

system described by the reference. 

Overall, the ability of monteburns to calculate the change in composition of a 

system with burnup has been shown to be fairly good and within the range of values 

calculated by other codes. More accurate answers may be obtained using better statistics 

(as further discussed in Section 4.2) or by modeling the entire system rather than just one 

fuel pin to represent a more accurate spectrum and to include the effects of leakage. 

4.1.3 Assembly Burnup 

The purpose of the third test case was to compare the burnup results calculated 

by monteburns to experimental values for a full PWR assembly. 

4.1.3.1 Description 

The assembly modeled in this example was H.B. Robinson’s Unit 2, which uses a 

Westinghouse 15x15 fuel lattice, and the assembly layout is shown in Figure 5 (for 

detailed information, see Ref 19). This test case studied four different scenarios, each 

with a different final burnup. To simulate an assembly located in the middle of a reactor 

with identical assemblies surrounding it, reflective boundary conditions were placed on all 

four sides of the assembly. 

This model was considered to be more accurate than the simple pin-cell one in 

Test Case #2 because burnable poisons as well as guide and instrumentation tubes were 

represented, thus, the spectrum of the system should have been more accurate. However, 

the same number of outer burn steps were used for each scenario with increasing amounts 

of power times time, so representative cross sections were calculated over a shorter time 

frame in the first scenario and over a longer one in the last one. The same average boron 

concentration was also used for each but probably represented the middle two cases best. 
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Figure 5. Layout of Assembly for Test Case #3 

The system turned out to be slightly supercritical for the first scenario and 

slightly subcritical for the last one, so the results for the middle two cases were expected 

to be better than for the first and last. Again, there were difficulties achieving the exact 

amount of burnup specified in the input, but the values were fairly close nonetheless 

(16.00, 23.84, 28.64, and 31.86 GWd/MTHM compared to 16.02, 23.81, 28.47, and 

3 1.66 GWd/MTHM for Scenarios 1-4 respectively). 

4.1.3.2 Results 

One rod within this assembly was measured for isotopic content, and the 

measured results for this rod were compared to those calculated by monteburns in Tables 
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7a and 7b (in dg UOz) for the four burnup scenarios. The percent errors displayed in 

these tables were calculated using Equation 23. 

Table 7a. Results for Burnups of 16.00 and 23.84 GWd/MTHM (g/g U02) 

Table 7b. Results for Burnups of 28.64 and 31.86 GWd/MTHM (gig U02) 

*The units for these are given in Curies/gram U02 (Ci/g) instead of s/g UOZ like the other isotopes. 
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As can be seen from these tables, the percent error associated with a majority of 

the isotopes in these cases was below 5% with the exception of several actinides and the 

fission product Technetium (Tc)-99. 

4.1.3.3 Actinides 

In each burnup case, at least one actinide concentration resulted in a percent error 

greater than 5%, but none consistently produced poor resuIts. These errors were 

probably a result of any or all of the reasons presented in Test Cases 1 and 2 (Le., 

resonance self-shielding, cross sections, inaccurate system modeling, variances in 

recoverable energy per fission, statistics, etc.). Because the first scenario was slightly 

supercritical and the last subcritical, the spectrums were probably not representative of a 

steady-state system, and cross sections may have suffered accuracy as a result. This is 

probably a result of differences in the locations of resonances and the amount of 

resonance absorption versus self-shielding that occurred. For example, in Scenarios 1 , 2, 

and 4, too much U-238 was depleted, producing excess Pu-239, and in Scenario 3, too 

little U-238 was depleted, not producing enough Pu-239 or higher plutonium isotopes. In 

contrast, too much U-235 was depleted in Scenario 3 because Pu-239 did not contribute 

to as many fissions as it should have, and excess U-236 was produced. In turn, not 

enough U-235 was depleted in Scenarios 1,2, and 4 because too much Pu-239 and Pu-241 

fissioned, resulting in too little production of U-236. This probably means that in 

Scenario 3, the absorption cross section of U-235 was too large compared to that of U- 

238, whereas in the other test cases, it was too small. Thus, the number of U-235 

captures appeared to be indirectly proportional to the number of U-238 captures in this 

test case, and in all scenarios were slightly different than the actual system. 
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4.1.3.4 Fission Products 

The percent errors associated with the concentration of Tc-99 were around 20-15 

percent for each burnup case. There are three potential sources of error for this 

calculation. First, the fission yields for Tc-99 used by ORIGEN2 may not have been 

truly representative of the probability that it was produced by fission (as discussed in 

Section 4.1.2.5). Second, the absorption cross section calculated by monteburns for Tc- 

99 may have been too small because not enough of it was transmuted to Tc-100. Finally 

(but least likely), the concentration of Tc-99 was given in Ci/g UOz instead of g/g UOZ as 

the actinides were, and the conversion may have been performed incorrectly. Monteburns 

outputs the concentrations of isotopes in grams, so it was converted from grams to Curies 

by multiplying by the specific activity of Tc-99 (see Equation 24 1221). 

- 1.7e-2 Ci/g for Tc-99 
4.17 * 

SA = 
MT 

where: SA = specific activity (Bq/g) (where 1 Ci = 3.7*10" Bq [221) 

M = atomic weight of isotope =: atomic mass number = 99 for Tc-99 

T = half-life of isotope in seconds = 2.1 3* lo5 years r2'1 

However, the errors associated with the fission product Cs-137 were less than 

2.5% using the same ORIGEN2 library and specific activity equation. Therefore, the 

errors associated with Tc-99 were more likely a result of the differences in the fission 

yields or cross sections. Even a 10-15% error for a fission product was not considered to 

be too unreasonable in this analysis considering all the uncertainties and potential 

statistical errors involved. 
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4.1.3.5 Comparison to SCALE 

The percent errors seen using the code SCALE were similar to those obtained 

from monteburns. For Tc-99 the average percent error was 11.7% in SCALE and 

between 8-15% in monteburns. Similarly, the errors associated with the other fission 

product, Cs-137, were only on average, 1.2% in SCALE and between 0.7 and 2.5% in 

monteburns. This means that the two codes produced similar results, which is probably 

because the same (or similar) fission yields andor cross sections were used in each (this is 

because ORIGEN-S, the code used by SCALE containing fission yields, is simply a 

newer version of ORIGEN2, which is used in monteburns) as well as the same model. 

The largest percent errors seen in SCALE for actinides were associated with Pu-239, Pu- 

241, and Np-237 (8.2%, 5.4%, and l l  .l% respectively) for this test case, and comparing 

these to Tables 7a and 7b, monteburns performed as well as SCALE for burnup 

calculations. A more accurate system model would be needed to match measured results 

more closely. 

Overall, modeling a full reactor assembly proved to be more accurate than just 

modeling an infinite lattice of identical fuel pins, and it was shown that monteburns 

performs calculations for a given system model just as well as a code such as SCALE. 

4.1.4 Power Distribution 

One of the many capabilities of monteburns is that it can calculate the amount of 

power produced in each regiodmaterial of a system given the total system power. Power 

distribution is important because it determines how much energy is released from each 

region, thereby indicating which one(s) is depleted the fastest. It does this by obtaining 

the flux and macroscopic fission cross section tallies for the region(s) of interest from 

MCNP, “normalizing” these values, and then calculating the power in each region from 

these results (see Equations 9-1 7 for more information). 
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4.1.4.1 Description 

The test case used to validate this calculation modeled a sample 3x3 BWR 

assembly with eight fuel pins on the outside and a rod capable of containing burnable 

poison in the middle.1231 The layout of the 3x3 assembly is shown in Figure 6,  and the 

pins are numbered according to three different regions. The average power produced per 

pin in the assembly was calculated, and then the power produced by a pin in each region 

was divided by this average. 

Centerpin With 

or Without Gd 

Fuel Rod 0 
Figure 6. 3x3 Assembly 

4.1.4.2 Results 

Table 8 displays the differences between the results calculated by monteburns and 

the range of values obtained using other codes given in Ref. 23 for both a scenario with 

gadolinium (Gd) in thc center pin and one without. This table shows that the power 

distributions for both cases fell within the range of published values, indicating that not 

only does monteburns perform power distribution calculations correctly, but it also 

analyzes a BWR fuel assembly well. 
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Table 8. Pin Power Distribution 

Montebums Value* Published Range of Values 1231 

Pin 1 with 3% Gd 1.055 1.053 to 1.062 

Pin 2 with 3% Gd 0.437 0.413 to 0.460 

Pin 3 with 3% Gd 1.086 1.082 to 1.087 

Pin 1 with 0% Gd I 1.03 1 I 1.029 to 1.032 II 
Pin 2 with 0% Gd 0.766 0.766 to 0.779 

Pin 3 with 0% Gd 1.028 1.026 to 1.027 

‘This is the average power produced per pin in each region divided by the average power produced per pin 
in the 3x3 assembly. 

Additionally, it shows that the continuous pointwise cross sections output as one-group 

in MCNP produce compatible results to the group-wise ones used by the other codes in 

this reference.[231 

4.1.5 Activity Calculation 

One of the proposed future uses of monteburns is to provide activation and/or 

decay powers of materials (see Section 6.0). To do this, the activities of various isotopes 

in a material must be calculated. This test case compares the activity of a spent fuel 

assembly containing MOX fuel after irradiation in monteburns to published results fiom 

SCALE. The purpose of using MOX fuel in this test case was to show the versatility of 

montebums in calculating the burnup of plutonium- as well as uranium-based fuels. 

4.1 -5.1 Description 

First, the composition of the materia1 after irradiation was calculated using 

monteburns, and then it was converted and output as activity as a function of decay time 

using ORIGEN2 (although only the activity immediately after removal is compared here). 

This information can be used to generate dose rates as a function of cooling time for a 

spent fuel assembly, which could be useful in both repository analyses and proliferation 

issues. 
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4.1.5.2 Results 

The differences between monteburns and published values using SCALE are 

shown in Table 9 for a Combustion Engineering System 80+ PWR System containing 

mixed-oxide (MOX) fuel.[241 The percent difference between the values calculated by 

montebums and those given in Ref. 24 for SCALE were calculated by Equation 23, where 

the measured value was replaced by the SCALE value. 

Table 9. Results from Activity Calculation 

11 Activitv (Ci) I Monteburns I SCALE[241 

II H-3 I 3.48E+02 I 2.76E+02 

II Kr-85 I 2.85E+03 I 2.69E+03 

II Kr-85m I 5.25E+04 I 5.07E+04 ~~ 

I 
~ 

I 

Rb-86 I 4.91E+02 I 3.72E+02 
KI-88 1.27E+05 1.30E+05 

Sr-89 1.66E+05 1.69E+05 

Sr-90 1 .94E+04 2.00E+04 

II Y-90 I 2 .OOE+04 I 2.03E+04 
~ ~~~~~ ~ ~ 

Sr-9 1 2.3 5E+05 2.45E+05 

Y-91 2.3 9E+05 2.46E+05 

Y-91m I .36E+05 1.42E+05 

Sr-92 2.80E+05 2.90E+05 

II Y -92 I 2.82E+05 I 2.9 1 E+05 
~ ~ 

Y-93 ~ 3.60E+05 2.45E+05 

Nb-95 4.54E+05 4.56E+05 

Nb-95m 3.2 1 E+03 5.21E+03 

II Zr-95 I 4.52E+05 I 4.5 8E+05 

Zr-97 4.93E+05 4.86E+05 

MO-99 5.65E+05 5.89E+05 

Tc-99m 4.99E+05 5.22Et-05 

Rh- 105 4.4 1 E+05 4.99E+05 
~ 

Rh-105m 1.39E+05 1.45E+05 

RU- 105 4.96E+05 5.1 OE+05 

RU- 106 3.76E+05 3.74E+05 

I1 I I Sb-127 4.52E3-04 3.86E+04 

% difference t-7F-I 
I 5.99 II 

3 1.88 

-2.95 

-1.38 II 

-3.13 

46.86 

-38.35 

-1.35 

1.42 

-4.13 

-4.35 

-1 1.64 

17.10 I1 
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Table 9 (cont.) 

69 



Table 9 shows that the percent differences associated with most of the actinides 

(with the exception ofNp-238, Am-241 and Cm-244) were less than 5%, but they were 

larger for some of the fission products. 

4.1.5.3 Actinides 

The percent differences seen for all plutonium isotopes and most other actinides 

were less than 5% (excluding Np-238, Am-241, and Cm-244), showing the validity of 

both codes in performing burnup calculations involving major system isotopes in the 

given geometry. Because this test case was not compared to experimental data, the causes 

of error discussed in Test Cases 1-3 were minimal here. Instead, errors associated with 

Np-238, Am-241, and Cm-244 were most likely due to variances in cross sections and the 

ways the codes model an assembly with reflective boundary conditions. SCALE uses 

multi-group cross section sets, whereas monteburns uses one-group spectrum-averaged 

ones obtained from continuous-energy data in MCNP. SCALE also typically uses the 

Monte Carlo code KENO, whereas monteburns uses MCNP. Additionally, even though 

results from the two codes were comparable, they may not complement measured data as 

well without a better system model. 

The Am-241 concentration in monteburns was probably smaller than that in 

SCALE because not enough Pu-241 was present to decay by beta emission to Am-241, 

which was probably a result of fewer neutron absorptions in Pu-240. Another 

explanation could be that the Am-241 absorption cross section was larger in monteburns 

than in SCALE, producing higher actinide concentrations while depleting Am-241. This 

explanation is probably more likely because the monteburns concentrations for Cm-242 

and Cm-244 were larger than those in SCALE. By the absorption of a neutron, Am-241 

is transmuted to Am-242, which beta decays to Cm-242; Cm-242 then absorbs neutrons 

to create Cm-244. The small concentration of Am-241 in monteburns relative to SCALE 

also contributed to the relatively small concentration of Np-238 (Am-241 decays by 
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alpha emission into Np-237, which absorbs a neutron to become Np-238). As the Am- 

241 concentration was relatively low in monteburns, the resulting decay process 

produced less Np-237, and in turn, fewer Np-238 atoms. 

4.1.5.4 Fission Products 

Fission products with a deviation greater than 5% between SCALE and 

monteburns include: Ba-140, (3-134, Cs-134m, Cs-136, H-3,I-135, Kr-85, Nb-95m, Rb- 

86, Rh-105, Sb-127, Te-127, Te-1291~1, Xe-I3lm, Xe-133, Xe-l33m, Xe-135, Xe-I35m, 

and Y-93. From a list of 53 different fission products, having only 19 with a percent 

difference over 5% and only 13 greater than 10% is pretty good. This means that 

monteburns calculated almost 75% of all fission product concentrations fairly well (less 

than 10% difference) in comparison to SCALE and about two-thirds of them to a less 

than 5% difference. The deviations seen with these fission products were probably due 

to fission yield andor cross section variances between the two codes. Thus, having 

relatively good results for 75% of the fission products was considered to be acceptable. 

Overall, the results obtained using monteburns were fairly close to those expected 

for each test case, and a majority of them were within a relative erroddifference of 5% of 

measured results. Almost all were within the range(s) of published calculations fiom 

other codes. First, the change in relative concentrations of uranium and plutonium 

isotopes were comparable to those referenced.17] Next, a full assembly model was shown 

to produce better results than a pin-cell geometry due to a more accurate spectrum 

representation. Finally, more similarities were found when comparing results fiom 

monteburns to calculations performed with another code (such as SCALE) using the same 

geometry/model than comparing to measured results from a rod irradiated in a full reactor 

system influenced by leakage, interfacing between assemblies, and other features. 

71 



Both PWR and BWR cases were tested in monteburns, along with both uranium- 

and plutonium-based fuels. The technique used in monteburns for generating cross 

sections differed from what other codes such as SCALE use @e., one-group spectrum- 

averaged ones obtained from continuous energy data versus multi-group ones), but the 

differences between the two did not appear to be significant. Thus, monteburns was 

considered adequate for the problems presented here. Unfortunately, there is not 

currently any readily available experimental data for a fast system, such as that used in 

ATW, so no benchmarks were performed for one. However, it is assumed that since the 

code has been shown to work well for a thermal system, it can calculate decent results for 

a fast system as well. 

4.2 Statistical Analyses 

Another important aspect of developing andor running a computer code is to 

determine how statistics affect the results. The term statistics, when used in reference to 

monteburns, refers to how results vary using different input parameters or modeling a 

system in different ways. To test this variance, several of the test cases discussed in the 

previous section were further examined No MCNP statistical runs are presented here; 

many of these have already been performed by others in the industry (for example, Ref. 

11). 

4.2. I Input Parameters 

The input parameters analyzed for their effect(s) on statistics were: the number 

of outer bum steps, the number of internal burn steps, the number of predictor steps, the 

importance fraction, and the recoverable energy per fission. The majority of tables in this 

section show both the measured and calculated values for Scenario 1 of Test Case #3 at a 

bumup of - 16 GWdMTHM for four different isotopes: U-235, U-236, Pu-239, and 

Pu-240. Unless otherwise stated, the number of internal bum steps was 80, the number 
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of outer burn steps was 8 (4 irradiation, 4 decay), the number of predictor steps was one, 

the importance fraction was 0.01, the U-235 recoverable energy per fission was 200 

MeV, the number of neutrons per cycle was 1000, the number of active cycles was 100, 

and the number of skipped cycles in MCNP was 15. 

4.2.1.1 Number of Outer and Internal Bum Steps 

The first parameter a user typically wants to determine in monteburns is the 

length of the time intervals over which irradiation occurs. There are two input parameters 

that can affect this length of time: the number of outer burn steps, and the number of 

internal bum steps. First, using more outer bum steps not only decreases the length of 

each time interval but also increases the accuracy of the system because the spectrum- 

averaged one-group cross sections for the system are updated more frequently 

(consequently increasing the run time). Second, the way to use shorter time steps in 

ORIGEN2 without having to perform additional MCNP runs is through the use of 

internal burn steps. The more internal burn steps used, the shorter the time intervals for 

each ORIGEN2 irradiation. As discussed in Section 2.2, this is important because 

ORIGEN2 performs different calculations (Le., the Bateman equations versus the matrix 

exponential method) for isotopes with half-lives less than 10% of the time interval.r6* 

Thus, using shorter time intervals may provide more accurate results for the problem. 

The optimum number of internal b u n  steps should also depend upon whether continuous 

or discrete (a11 at one time) feed is used. By using continuous feed with different 

beginning and ending feed rates, it was assumed when designing monteburns that it would 

be necessary to break the time steps in ORIGEN2 into even shorter periods. This is 

because the amount of feed added during each internal burn step is interpolated from the 

beginning and ending feed rates for that outer bum step and averaged over each internal 

burn step. 
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For the first scenario of test case #3 (a discrete feed case), the effects of the 

number of outer and internal bum steps on the results are shown in Tables loa and 10b 

(these were performed with forty internal bum steps and eight outer bum steps 

respectively). Results for a continuous feed case (representing ATW, which will be 

discussed in Section 5.1) are then displayed in Table 1 Oc. 

Table loa. Comparison of Results as a Function of Number of Outer Burn Steps 

Experimental (grams/ 5360 1097 1823 546 

Results assembly) 

Bum Steps ORIGEN2 

steps (days) 

# of Outer Length of U-235 U-236 Pu-239 Pu-240 

8 6.09 5500 1060 1860 569 

16 3.04 5530 1060 1880 571 

24 2.03 5500 1060 1870 574 

Table lob. Comparison of Results as a Function of Number of Internal Burn Steps 

Experimental 

Results 

# of Internal 

Bum Steps 

2 

4 

6 

8 

10 

20 

30 

40 

50 

(grams/ 5360 1097 

assembly) 

ORIGEN2 

steps (days) 

Length of U-235 U-236 

121.75 5510 1060 

60.88 I 5510 I 1060 
~ ~~ - - 

40.58 5510 1070 

30.44 5500 1070 

24.35 5540 1060 

~ 12.18 5530 1060 

' 8.12 5520 1070 

6.09 5560 1060 

4.87 5 500 1070 

1860 I 559 
~ 

1860 56 1 

1860 569 

1860 562 

1850 565 

1860 568 
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Table 1Oc. Results as Function of Internal Burn Step for Continuous Feed 

(grams) 

## of Internal Length of U-238 Pu-239 Pu-240 Am-24 1 

Burn Steps ORIGEN2 

steps (days) 

10 12.2 7.97E+2 1.70E+5 2.08E+5 1.79E+4 

20 6.09 7.93E+2 1.68E+5 2.07E+5 1.76E+4 

- 30 4.06 7.97E+2 1.71E+5 2.07E+5 1.79E+4 

40 3.04 7.95E+2 1.70E+5 2.08E+5 1.79E+4 

Surprisingly, all three of these tables show little increase in accuracy with more 

than the minimum required number of outer or internal burn steps (i.e. two for discrete 

feed and ten for continuous feedr'']) for these sample test cases, The number of outer 

burn steps is thus recommended to be the lowest needed to represent all system changes. 

For example, in this case, eight were required because there were four irradiation cycles 

with different amounts of power and soluble boron as well as a cooling period following 

each. It also appeared that using only two internal bum steps for the discrete feed case 

with a thermal spectrum (with an irradiation period of about 120 days) and using ten for 

the continuous case with a fast spectrum (corresponding to a length of approximately 12 

days each) produced as good of results as using more. Thus, for similar cases to those 

presented here, it is recommended to use the minimum number of internal bum steps even 

though using additional internal burn steps does not significantly affect the run time. 

Additionally, this test case at least showed that the results obtained from 

montebums for both a fast and thermal spectrum were consistent if not influenced by 

changes in the number of burn steps. Nonetheless, the user should verify that the number 

of bum steps used provides enough accuracy for hisher specific system and associated 

irradiation periods. This is because ORIGEN2 may still produce poor results for 

irradiation periods greater than 125 days (the maximum studied here was 12 1.75 days) or 

for other types of systems or problems (such as decay-only over thousands of years). 
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4.2.1.2 Number of Predictor Steps 

The next parameter analyzed was the number of predictor steps. For each 

predictor step during each outer burn step (with the exception of the first step, in which 

case an extra predictor step is run - see Section 3.3.2), MCNP is run to obtain one-group 

spectnun-averaged cross sections. Thus, increasing the number of predictor steps 

increases the degree to which the cross sections calculated by MCNP represent the 

average system spectrum for the step, but it also increases the run time of the problem. 

The results from this analysis appear in Table 1Od. 

Table 10d. Comparison of Results as a Function of Number of Predictor Steps 

(grams/assembly) 

Experimental 5360 1097 1823 546 

Results 

Stem 

Predictor U-235 U-236 PU-239 PU-240 

0 I 5540 I 1050 I 1870 I 450 11 
1 I 5500 I 1060 I 1860 I 569 11 

~~ ~~ 

2 I 5500 I 1060 I 1870 I 580 11 

With eight outer bum steps and eighty internal bum steps, a large difference was 

seen between using zero and one predictor step because cross sections were calculated 

only once in the former case (i-e., only for the first step) and nine times in the latter. This 

indicates that it is indeed important to calculate cross sections several times throughout an 

irradiation. However, the difference between using one and two predictor steps was 

minimal, meaning that the one-group spectrum-averaged cross sections calculated with 

one predictor step were fairly good representations of the system at each step. Because 

the run time significantly increases with each predictor step, it was found that for this 

system and others studied thus far, there is no advantage in using more than one predictor 

step per outer burn step. Again, the differences may have become more definitive if a 
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case with a longer time interval andor fewer required outer bum steps had been studied 

(however, one was not used because experimental data for such a system was not readily 

available). Either way, the user is advised to make sure that one predictor step is 

adequate enou& for hisher system by comparing the flux spectrum and isotopic 

compositions (in mass) halfway through each predictor and actual step to obtain the best 

results. 

4.2.1.3 Importance Fraction 

Another input parameter vaned in this statistical analysis was the importance 

fraction. This effectively selects which fission products are passed back to MCNP from 

ORIGEN2. If this value is positive, then individual fission products are passed back to 

MCNP (assuming their cross sections exist), allowing temperature- and system- 

dependent parameters to influence these individual fission product cross sections. If this 

value is negative, fission products produced in ORIGEN2 are added together as a total 

mass and sent back to MCNP as one of two general fission product representations 

(those from U-235 and those from Pu-239) at room temperature (see Section 3.3.2). In 

this case individual fission product cross sections in ORIGEN2 are not updated because 

only general lumped sum ones are used in MCNP and cannot effectively replace 

individual ones in ORIGEN2. Results from this statistical analysis appear in Table 10e. 

The lower the value of the importance fraction, if positive, the smaller a 

contribution an isotope has to make to the system in either absorption or fission 

interactions, mass, or atom density (see Equations 18-21) to be included in MCNP. 

Surprisingly, the most accurate results for this analysis occurred when the importance 

fraction was relatively large (0.1 or 1.0). This is because a steady-state spectrum was 

best represented in these cases. The system[l9] was initially modeled near critical, and as 

the number of fission products added to the system increased @e., a lower importance 

fraction), keff decreased because the fission products absorbed many neutrons that would 
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Table 10e. Comparison of Results as a Function of Importance Fraction 

(grams/assembly) 

Experimental I 5360 I 1097 I 1823 I 546 11 
Results I I I I II 

Importance I U-235 1 U-236 I Pu-239 I Pu-240 11 
fiac tion I I I I II 

565 

1 5480 1060 1820 

0.1 5470 1060 1810 

0.00 1 5550 1060 1900 565 

0.00001 5520 1070 1910 573 

-0.1 6690 1050 4340 539 

-0.0 1 6690 1050 4340 554 

have otherwise contributed to fission. Thus, the spectrum andor cross sections were no 

longer representative of the system at steady-state. If this case could have been modeled 

more accurately (i-e-, include leakage and interaction with the sides of the reactor core), 

then as more fission products were added to the system, then the spectrum would have 

been more accurate and better results would have been obtained (to represent what 

actually occurs in a reactor). 

In this analysis the lump sum option for fission products (ie. a negative fiactional 

importance) produced poor results. This lump sum option in monteburns means that all 

fission products are combined into two general representations, homogenizing an 

otherwise heterogeneous combination of fission products. It produced poor results 

because the general fission product cross sections in MCNP appear to have either 

relatively large absorption cross sections or large atom densities compared to the case(s) 

where fission products are assessed individually in MCNP. As the mass of summed 

fission products increased with burnup, the absorption and fission interactions that 

occurred in U-235 and Pu-239 in MCNP decreased because too many neutrons were 

absorbed by the lump fission products instead. Additionally, more U-238 was 

transmuted to Pu-239 than should have been. This may have been because absorption 
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resonances exist at slightly larger energies for U-238 than U-235 and Pu-239 (above 

MeV[251) and many neutrons were absorbed there instead of in resonances at lower 

energies (this could be due to resonance self-shielding, less available moderation to slow 

neutrons down, and/or a shift in the energy spectrum of the system). Fewer neutrons 

existed in the resonance regions of U-235 and Pu-239 compared to U-238, so their one- 

group absorption cross sections decreased and less U-236 and Pu-240 was formed. In 

contrast, Pu-240, which also has absorption resonances in this higher energy range, was 

transmuted more quickly than in the case of individual fission products (i.e., a positive 

importance fraction). 

The addition of fission products in the actual steady-state system also induces the 

effects discussed above, but the general fission product representations in MCNP seemed 

to exaggerate it. There are potentially two main explanations for this poor representation: 

the effective absorption cross sections of these two general fission products were too 

large relative to others in the system being studied, or the atomic weights used by MCNP 

to convert the weight percents obtained by monteburns into atom densities for Monte 

Carlo calculations were too small. The latter would occur if the average weights of fission 

products produced by ORIGEN2 were larger than the representative ones in MCNP, 

causing the atom density of fission products to be too large and too much absorption to 

occur (atom density is inversely proportional to atomic weight). Upon examination, the 

total weight of fission products with an atomic mass above I17 (the weight of Pu-239 

general fission products) was about 1.5 times that of fission products with atomic masses 

below 115 (the weight of U-235 general fission products), whereas more than half of the 

fissions occurred from U-235. This probably resulted from the fact that many higher 

actinides (such as Pu-241, americium, etc.) fissioned along with U-235 and Pu-239, 

producing fission products with larger atomic weights than those representative of Pu- 

239 (which is what they lumped together as). The ending result was that the atomic 

weight of the representative fission product for Pu-239 was too small and the atom 
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density of this fission product was too large, adversely affecting the spectrum of the 

system. In addition, using the lump sum option does not allow individual fission product 

cross sections to be modified in ORIGEN2, also decreasing the accuracy of the 

calculations. Overall, the user is not recommended to use the lump sum option for a 

reactor system unless he/she completely understands the implications. 

Additionally, the only effect of a negative importance fraction is in determining 

the contribution that actinides must make to the system to be passed back to MCNP (i.e., 

individual fission products are no longer included in the MCNP input file because a lump 

sum is used instead). The results for U-235, U-236, and Pu-239 were not affected when 

the importance fraction went from negative 0.1 to negative 0.01, but those for Pu-240 

were affected, most likely because additional actinides were included in MCNP. Such an 

increase was also seen for Pu-240 as more actinides were added to the system with a 

positive fraction importance (at least from 1 to 0.1 and 0.001 to 0.0001). This increase 

was not seen between 0.1 and 0.001, probably due to statistics. 

4.2.1.4 Recoverable Energy Per Fission 

The last input parameter varied in this statistical analysis was the value of the 

recoverable energy per fission (Qfs) input by the user for the actinide U-235. The input 

value of Qfis was varied between 190 and 210 MeV, and the value of Qfis calculated by 

monteburns at the end of the irradiation period was about 4 MeV greater than the input 

value (see Table 1Of for results) due to the contribution of other actinides in the system. 

The number of fissions that occur in a system are determined by the required power level 

of the system and the value of Qfis. The more energy released by each fission (i.e., the 

larger Qfis is), the fewer fissions that must occur to meet the overall power requirement. 

This means that the amount of material burned is lower, causing the final concentration of 

fissile material initially in the system &e., U-235) to increase proportionally with the 

value of Qfs. 
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Table 1Of. Results as a Function of Recoverable Energy Per Fission (g/g U02) 

(gras/assembly) 

Experimental 5360 1097 1823 546 - 
Results 

Input Qfis U-235 U-236 Pu-239 Pu-240 Ending Qh 

190 5310 1090 1890 603 1 94 

195 5370 1090 1870 591 199 

198 5490 1060 1870 57 1 202 

200 5500 1060 1860 569 204 

202 5530 1060 1840 552 206 

205 5590 1050 1840 548 209 

210 5730 1030 1830 532 214 

(MeV) (MeV) I 

- 

Additionally, the fission-to-capture ratios in the system analyzed here were only 

a little smaller for the higher values of Qfis than the lower ones, so the number of captures 

that take place are also proportional to the number of fissions. When fewer fissions were 

required @e., higher value of Qfis), fewer absorptions occurred in U-235, and less U-236 

was produced. Similarly, less Pu-239 and Pu-240 was produced because the number of 

absorptions in U-238 was also proportional. Thus, the concentrations of U-236, Pu-239, 

and Pu-240 decreased as the value of Qfis increased (meeting measured results for Pu-239 

and Pu-240). However, lower values of Qfis produced more comparable results for U-235 

and U-236. Thus, the user should probably use the accepted value of 200 MeV although 

he/she can enter higher or lower values to tailor the results for specific isotopes. 

4.2.2 System-Dependent Changes 

One of the largest factors that contributes to errors in montebuvns is the geometry 

and material compositions modeled in the system. Although it is primarily up to the user 

to model the system correctly, a few suggestions are presented here. In particular, the 

factors discussed in the section are: modeling a system as accurately as possible, using 
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temperature- and material-dependent factors, and applying appropriate axial boundary 

conditions. 

4.2.2.1 Modeling a System 

First, in modeling most reactor systems, it is difficult to include all the details that 

keep the system at steady-state throughout its life (i.e., keeping track of each rod 

individually, adding fresh fuel, rotating fuel fiom one region to another, adjusting the 

position of the control rods as a function of burnup, changing the soluble boron 

concentration, etc.). To avoid such complications, computer models commonly combine 

rods/assemblies into lumped regions, make control rods stationary, and use an average 

boron concentration in the moderator throughout each burn step. Modeling a larger 

representative system (i.e., an infinite lattice of assemblies) produces better results than 

modeling a smaller system (i.e., an infinite number of fuel pins together) because it can 

take more system-dependent effects into account (i.e., burnable poison fuel rods, control 

rods, instrumentation tubes, etc.) and more easily keep the model at steady-state. This 

difference was seen in Test Cases #2 and 3, where both a pin and an assembly case were 

presented. Because the compositions of surrounding fuel pins in Test Case #2 were not 

known, it was not possible to model the case as accurately as an assembly to get better 

results (although neither model would account for leakage or other system-dependent 

effects). However, it was possible to adjust the amount of soluble boron in the water 

surrounding the pins to produce a representative spectrum of a critical system (excluding 

leakage considerations). As can be seen from Table 11, answers were closer to measured 

values in this system than with the referenced input parameters (although these were used 

in the test case for a better comparison to the other codes). This is because with a keff 

around 1.0, a more realistic spectrum and more representative cross sections were 

obtained. 
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Table 11. Results as a Function of K& and Cross Section (Test Case #2, Scenario 

A-mg/gU02) 

Parameters U-235 U-236 PU-239 Pu-240 

measured value 8.470 3.140 4.264 1.719 

hff from 1.3 to 1.0 8.104 3 -206 3.944 1.685 

kff around 1 .O (ENDF/B-V) 8.623 3.178 4.1 12 1.701 

k~ around 1 .O (ENDFB-VI) 8.463 3.178 4.072 1.681 

However, the best spectrum would have been obtained by using a detailed reactor core 

model, including water surrounding the assembly, the pressure vessel, etc., to account for 

leakage and other total system effects. 

In addition, a comparison of ENDFB-V and ENDFB-VI cross sections was 

performed (see Table 11). The ENDFB-V libraries produced better results for U-235, 

but the ENDF/B-VI libraries produced better results for Pu-239 and Pu-240. This is 

because it has been shown that the neutron flux associated with U-235 in ENDFB-VI is 

greater than that in ENDFPB-V in some energy ranges (for example lo4 to 10” and 0.1 to 

1 MeV), while the neutron flux associated with U-238 in those energy ranges is about the 

same in both ENDF/B-VI and ENDF/B-V.r26J Thus, more U-235 is burned in ENDF/B- 

VI than ENDFPB-V and less Pu-239 and Pu-240 is created. This reduction in plutonium 

isotopes could also be a result of the fact that their neutron fluxes in this same energy 

range in ENDFPB-VI were also higher than those in ENDFB-V, possibly causing more 

plutonium atoms to be depleted and matching measured results better. Nonetheless, it is 

up to the user to determine which data set to use. 

In the future it is advisable to model an entire system with as realistic a spectrum 

as possible to produce the best results in rnonteburns. However, modeling a complex 

system in MCNP can also significantly increase the run time required, so the user must 

weigh the benefits of each model against the consequences. 
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4.2.2.2 Temperature- and Material-Dependent Parameters 

Next, the effect of using temperature- and material-dependent parameters in 

modeling a system is also important. Along with using temperature-dependent cross 

sections in MCNP (typically processed by NJOY), the temperature of each cell (in MeV) 

should be included in the MCNP input file using the TMP card.['] To show this, Test 

Case #4 with gadolinium in the center pin was run with both temperature-dependent 

cross sections (xs) and the TMP card in MCNP, temperature-dependent cross sections 

without this card, and neither. In addition, effect of using S(a,p) treatment for the light 

water in the system was studied. S(a,p) treatment accounts for the binding effects of 

hydrogen and oxygen nuclei in light water at thermal energies.l5] This binding affects 

interactions between thermal neutrons and the material and can be important for LWR 

systems. The three analyses discussed above used S(a,p) treatment, and the case with 

temperature-dependent cross sections and the TMP card was rerun without S(a,p) 

treatment to complete the comparison. The results from these analyses are in Table 12. 

Table 12. Effect of Temperature on Power Distribution 

As expected, the greatest accuracy was achieved when temperature-dependent 

cross sections, the TMP card, and S(a,p) treatment were used. In fact, monteburns did 

not even calculate a power distribution in the correct range when temperature-dependent 

cross sections were included without the TMP card. When neither were included, the 
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results were close to the published range but were not within it. S(a,p) treatment slightly 

decreased the accuracy of the results, but not as much as using all temperature parameters 

for this particular case. Other cases andor increaseddecreased statistics may produce 

better results or may not make the outcome as exaggerated as it appears here. 

Nonetheless, it is recommended to include temperature-dependent cross sections, the 

TMP card, and S(a ,p )  treatment in the MCNP input files analyzed by monteburns to 

obtain the correct power distribution and other results. 

4.2.2.3 Axial Boundary Conditions 

Another parameter that can contribute to the accuracy of the results is the axial 

boundary conditions used in the model. For the models used in all the test cases 

discussed in Section 4.1, reflective boundary conditions were placed on all six sides of the 

system being analyzed to simulate that it (i-e., either a pin or an assembly) was one 

within an infinite lattice of similar ones. These models were consistent with those 

described in the referenced input in the radial direction, but how the other codes modeled 

the system in the axial direction was unknown. Because the composition of the material 

at the ends of the fuel rods in the experimental system was also not specified in the 

referenced input, it was assumed that all neutrons were reflected back into the rod once 

they reached the ends (ie., no leakage occurred). This assumption may not have been 

fully representative of the experimental reactor because some amount of leakage probably 

did occur. To quantify this effect, Scenario B of Test Case #2 was rerun with reflective 

boundary conditions in the axial direction, 10 cm of water on the ends of the each fuel rod, 

and a vacuum at both ends of each fuel rod (to simulate the maximum amount of leakage). 

The results of this analysis compared to measured data appear in Table 13. 
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Table 13. Results of Changes in Axial Parameters (mg/g UOz) 

This table shows that the differences in the axial representation of the system 

actually had little effect on the results, although the case with reflective boundary 

conditions did come the closest to the measured results. This either means that the 

material at the ends of the fuel rods in the measured system was probably a large scatterer 

and effectively sent a majority of the neutrons back into the pin, or the pins were long 

enough that axial edge effects were not important. The amount of leakage that actually 

occurred was probably slightly larger than that portrayed by reflective boundary 

conditions and smaller than that with water. Thus, the use of reflective boundary 

conditions in the axial direction is justified for the test cases in Section 4.1. 

Overall, using the best statistics possible without compromising the run time is 

the key to obtaining the most eficient results. Both by determining optimum input 

parameters and by modeling the system most effectively, good statistics can be obtained. 

However, using good statistics often means increasing the required run time of the 

problem. It is thus up to the user to determine required statistical accuracy and balance 

this against the run time. 
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5.0 APPLICATIONS OF MONTEBURNS 

Monteburns was written to be applicable for a wide variety of systems, including 

both reactor and accelerator-driven problems. One of the limitations of other llnkage 

codes between MCNP and ORIGEN2 (discussed in Section 2.3.1) is that they can only 

be used for relatively simple geometries and may not be applicable for more than one 

burnup step in an automated fashion (i.e., decay periods following multiple irradiation 

periods, etc.). Monteburns was written to be flexible and accommodating to any type of 

MCNP input file and irradiation information to minimize limitations, and it is still being 

modified to incorporate additional options. Two examples of applications for which 

monteburns is currently being used in the Nuclear Design and Analysis Group (TSA-10) 

at Los Alamos National Laboratory are presented in this section. These are the 

Accelerator Transmutation of Waste (ATW) project and non-fertile (i.e., non-uranium) 

fuel applications. Although representative, they are not inclusive of the full spectrum of 

problems to which monteburns can be applied in other groups, laboratories, and 

industries. 

5.1 Accelerator Transmutation of Waste 

One of the largest issues currently being addressed in the nuclear industry is what 

should be done with radioactive waste. Included in this category is spent fuel, which is 

contained in fuel assemblies removed from nuclear reactor cores after irradiation. This 

fuel contains significant amounts of plutonium, numerous actinides, and fission products, 

some of which have relatively long half-lives. The purpose of the ATW project is to 

design a system to enhance repository performance by reducing long-term radiotoxicity of 

spent fuel and other high-level wastes by three orders of magnitude (ie., after processing 

in ATW, this waste after 300 years should have a lower toxicity than untreated waste 

after 1 W,OOO years). 133 
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For this purpose, the following goals were set for the project: 

0 

Separate strontium and cesium (short-lived fission products that significantly 

Destroy over 99.9% of residual actinides 

Destroy over 99.9% of technetium and iodine (long-lived fission products) 

contribute to the heat loading of the repository) 

Separate the uranium from the other spent fuel so that it can be stored or re-used and 

to reduce the amount of plutonium produced during transmutation 

Produce electricity (destruction of actinides could potentially produce energy, which 

could both power the accelerator and be sold) 

The ATW system would be powered by a high-power proton linear accelerator 

similar to the one being considered for the Accelerator Production of Tritium (APT) 

project. A pyrochemical spent fuel treatment/waste cleanup system would be used to 

process the materials remaining after irradiation. The waste itself would be contained in 

solid waste pins with a configuration similar to the one in Figure 7. The waste 

transmutation region is designed as three separate zones, where pins in Zone 2 have been 

irradiated for a cycle in Zone 3, and pins in Zone 1 have been irradiated for one cycle in 

Zone 3 and one cycle in Zone 2. Once these pins are burned in Zone 1, the material is 

processed so that the actinides are concentrated to obtain the desired reactivity, and the 

waste is refabricated into pins and inserted as “fresh” waste into Zone 3. The spallation 

target would be a heavy metal target made of liquid lead-bismuth eutectic (LBE), which 

helps produce a high intensity neutron source for the outer zones. The system would 

operate in a subcritical regime and with a fast neutron spectrum, which allows for more 

efficient destruction of actinides because the fission-to-capture ratio of many plutonium 

isotopes and higher actinides is larger at fast energies. 
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Ref lector 

Figure 7. Sample of core configuration for ATW 

Monteburns can incorporate all aspects of this design; it moves material fiom one 

region to another in MCNP and analyzes the burnup in as many materials as desired for 

each irradiation step before transferring the resulting material compositions back to 

MCNP for further analysis. According to preliminary calculations, the following results 

were both desired and achieved 

A 2 GW, ATW can burn almost any combination of higher actinides at a rate of more 

than 500 kglyr. with a minimum cycle length of 100 days; 

Technetium can be used as a burnable poison and to harden the spectrum; Tc-99 can 

be transmuted at a rate greater than 40 kglyr.; and 

The harder the neutron spectrum, the more efficiently ATW destroys higher actinides 

because the fission-to-capture ratios of the actinides increase. 

Using four-month (12 1 day) cycles and the feed specified in Table 14, the amount 

of transmutatioddestruction experienced by various actinides in ATW are shown in Table 
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15. 

destruction. 

Positive values in this table correspond to production and negative ones to 

Table 14. Feed Material for ATW (kg) 
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Table 15. Amount of Material Produced(+)/Destroyed(-) by ATW (kg) 

total 1 -2906 I -495 I -64 I -5731 I -1962 I -738 I -257 I -564 I -658 1 -12587 

With an initial system input of about 2300 kg of actinides and 700 kg Tc-99 and a 

steady-state feed rate of approximately 320 kg of actinides and 14 kg Tc-99 per four- 
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month cycle, over 900 kg of actinides and around 45 kg of Tc-99 are destroyed per year. 

This successfully exceeded the goals of 500 kg and 40 kg per year, respectively. 

5.2 Plutonium Destruction 

Although monteburns was initially designed for the ATW project, it has been 

expanded (and tested as shown in Section 4.1) for reactor uses. One of the current uses of 

monteburns in a reactor-based system is to study various parameters and fuel cycle 

concepts for their effectiveness in the destruction of plutonium. There is a great deal of 

reactor-grade plutonium currently contained in spent fuel that may become a proliferation 

risk in the next century if it is not destroyed. In addition, there are about 50 metric tons 

of surplus weapons-grade plutonium in the US being proposed for disposition, possibly 

in a 

Studies are currently being performed to determine the best way of destroying this 

plutonium, including examining different fuel forms, plutonium isotopic compositions, 

and neutron energy spectra. Figure 8 shows the percentage of plutonium destroyed in 

each system as a function of burnup. Unless stated otherwise, the parameters used in 

this figure were: non-fertile fuel (described below), reactor-grade (RG) plutonium, and a 

light-water reactor system. 

5.2.1 Fuel Form 

First, the two fuel forms being investigated are: MOX fuel (monteburns 

calculations for this fuel were demonstrated in Test Case #5), and non-fertile (NF) fuel 

(plutonium dioxide (PuO,) in a calcia (Ca0)-stabilized zirconium dioxide (21-0,) matrix 

with an erbia (Ea,)  poison).['*] The MOX fuel modeled in this analysis consisted of 

93w% depleted uranium oxide and 7w% RG Pu02, and the non-fertile fuel was comprised 

of 7w% RG PuOa, lw% Er02, 85.6w% Zr02, and 6.4w% CaO. The purpose of using 

non-fertile fuel for the destruction of plutonium is to transmute plutonium actinides 
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without building them. The absence of uranium in the NF fuel leads to a lack of 

production of plutonium due to transmutation of the uranium isotopes, and hence to 

higher destruction rates. Thus, from Figure 8, it can be seen that the non-uranium-based 

NF fuel allows better net plutonium destruction than MOX he1 and should be further 

considered for this purpose. 
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Figure 8. Plutonium Destruction as a Function of Burnup 

5.2.2 Isotopic Composition 

Second, the initial plutonium isotopes in the fuel also influence how effectively 

plutonium is destroyed. This is because the fission-to-capture ratio of every plutonium 

isotope is different, and the higher this value is, the more fissions occur relative to 

transmutations, and the more plutonium is destroyed (instead of higher actinides built 
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up). The two plutonium isotopes with the largest fission-to-capture ratios are Pu-239 

and Pu-241 (see Table 4a for sample values) because they are fissile isotopes. Thus, the 

more Pu-239 and Pu-241 that exist in the plutonium relative to other plutonium isotopes 

(such as Pu-238 and Pu-240), the faster the plutonium fissions and is destroyed. Some 

plutonium can also be destroyed through decay of Pu-241 to americium, but not as fast as 

that which fissions. However, specifying the composition of the plutonium isotopes in 

the material is not an option, so although this is not an input parameter, it is shown here 

solely for comparison purposes. The two types of plutonium compared in this example 

were reactor-grade plutonium (with a representative composition of I S7w% Pu-238, 

57 .54~% Pu-239, 26 .65~% Pu-240, 8 . 8 5 ~ %  Pu-241, and 5.39Woh Pu-242), and 

weapons-grade plutonium (with an average composition of 93w% Pu-239 and 7w% Pu- 

240). 

As expected, the weapons-grade plutonium was destroyed faster than the reactor- 

grade because it initially contained more fissile Pu-239 atoms than non-fissile Pu-240 

ones. Pu-240 is more likely to transmute than fission, so a material starting with more 

Pu-240 has only one main chance to fission (when it is Pu-241) before it transmutes to 

higher actinides whereas Pu-239 atoms have two main chances (Pu-239 and Pu-241). The 

number of fissions that take place in the system must be the same in both cases, so higher 

actinides are probably contributing to relatively more fission interactions in the former 

case than in the latter case, which is why less net destruction of plutonium occurs. 

5.2.3 Energy Spectrum 

Finally, the energy spectrum of neutrons in the system in which the fuel is being 

irradiated also contributes to the results. The three different spectra analyzed in this 

example were a representative light-water, heavy-water, and fast system. The first two 

of these systems were modeled in monteburns as one assembly of NF fuel surrounded by 

a matrix of system-representative fuel assemblies @e., LEU fuel in a PWR[281 for the 
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LWR case and depleted-uranium CANDU assemblies[291 for the heavy water case) to 

keep the bff of the system around 1.0. The third, a fast system, was difficult to model in 

MCNP without a detailed system design for this purpose, so an ORIGEN2 run using 

cross sections representative of the Fast Flux Test Facility (FFTF) was performed 

instead. 

By comparing the LWR RG Pu case to the CANDU and Fast cases run with RG 

Pu, Figure 8 indicates that the heavy-water (CANDU) system was the most effective in 

destroying plutonium, which is probably a result of the fact that fission-to-capture ratios 

were greater for it than for the light-water system (see Table 16). This is because a 

heavy-water system has a more thermal spectrum than a LWR, and neutrons probably 

avoid many of the absorption resonances. In addition, neutrons can be absorbed in 

hydrogen at thermal energies in a LWR system, whereas they are absorbed and/or fission 

in plutonium isotopes instead in the heavy-water system. 

Table 16. Fission-to-Capture Ratios of Isotopes in Each Spectrum 

Isotope Light-Water Heavy- Water Fast 

U-235 3.4 to 5.3 4.46 to 5.64 3.8 

Pu-239 1.78 to 1.88 - 1.98 4.59 

Pu-24 1 2.77 to 2.75 2.91 to 2.78 6.02 

Table 16 also indicates that the fission-to-capture ratios for the plutonium 

isotopes in the fast system were also relatively large, which means that the neutron 

energies were large enough that they avoided resonances altogether and primarily fissioned 

instead. Thus, plutonium should have been destroyed more quickly with this fast system 

than the thermal ones, but Figure 8 shows that this is not the case at high burnups. This 

is probably because the fast system was modeled in ORIGEN2 instead of monteburns, 

and system-dependent effects were not taken into account as a function of burnup. The 
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6.0 LIMITTATIONS OF AND FUTURE WORK FOR MONTEBURNS 

One limitation of monteburns is that it is currently designed to run only on a 

UNIX system. Not all users may have this type of system, and monteburns is not yet 

capable of running on VMS or PC systems. Significant changes must be made to the 

command file (currently a c-shell file), and minor modifications must be made to the 

FORTRAN77 file so that the code can operate on any type of machine and/or system. 

Monteburns currently only extracts a few reactor physics constants (q, v, etc.) 

Grom MCNP output files. It can, however, be modified in the firture to extract more 

values, depending on what uses the program may eventually have. It may also be 

modified to calculate activation and decay powers, and the input may be simplified 

further to make it even more user-friendly. Any of these suggestions should enhance the 

capability and versatility of the code. 

Another modification that could be made to monteburns is to allow it to interface 

with another burnup code besides ORIGEN2. Examples of such codes include ORIGEN- 

S (part of the SCALE package) and CINDER90 (primarily used for calculations involving 

accelerator-driven systems).[”] Whether the benefit of this addition is great enough to 

offset the additional requirement of more complex input has yet to be determined. All of 

these limitations can be resolved by modifying the FORTRAN77 program and/or the c- 

shell executable. 

Throughout this document, references to resonance self-shielding and the variable 

increase or decrease of cross sections with burnup are mentioned. However, no detailed 

analyses were performed to determine how resonances affect the value of the flux or the 

effective cross sections, A detailed analysis could be performed in the future to study 

these affects and determine exactly why the results presented in this document were 

obtained. This, along with the activities discussed above, constitutes the proposed future 

work activities for monteburns. 
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7.0 CONCLUSIONS 

This document provided a thorough description and benchmarking results of the 

automated burnup code monteburns, which links the transport code MCNP and the 

radioactive decay and burnup code ORIGEN2. This linkage code was designed to limit 

the amount of information the user is required to input and still perform detailed, 

automated burnup calculations for any type of system and number of irradiation periods. 

The advantages it has over other burnup codes are: 1) it allows the user to model a 

detailed, 3-D system, 2) it modifies material cross sections as a function of burnup and 

flw distributions within a system, 3) it offers a variety of options and allows system 

changes to be made frequently throughout a burn interval, and 4) it is fully automated and 

relatively easy to learn. The purpose of this document is not only to serve as a thesis but 

is also to assist those who plan to use monteburns by providing a validation of the code 

and discussions of “tricks” found useful when running the code. 

Monteburns is comprised of a combination of a c-shell UNIX executable file and a 

FORTRAN77 program and primarily acts as a pre- and post-processor for ORIGEN2 

and a post-processor for MCNP. The main calculations that it performs are: 1) the 

recoverable energy per fission according to the distribution of actinides in the system, and 

2) the conversion of the flux calculated by MCNP for a region(s) to the actual flux seen 

by that region as well as the power produced by the region. Only two main input files 

are required for monteburns (others are optional): 1) a working MCNP input file, and 2) 

a monteburns input file containing a list of parameters relevant to the system being 

analyzed. A number of variables are currently output, including reactor physics 

constants, cross sections, and compositions of materials in the system before and after 

each step. The code is frequently being updated and modified to suit user’s needs and 

desires. 

The most important portion of this document is the benchmarking section, which 

showed that monteburns performs burnup calculations just as well as or better than those 
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performed using other codes. Different geometries, fuel types, and reactor systems were 

modeled and compared to measured andor published calculations from other codes, and 

the errorddifferences obtained by these comparisons were all considered to be acceptable. 

In addition, a number of statistical analyses were performed for monteburs, both to 

analyze the effect(s) of several input parameters on the results and to describe the 

importance of modeling the system as accurately a fashion as possible. Some examples of 

problems for which montebums is currently being used were presented as well, along 

with suggestions of future work that may be performed for monteburns. 

In conclusion, the code montebums has now been described and benchmarked for 

the burnup scenarios in Section 4.1. It produces comparable results to other well-known 

burnup codes, such as those in the SCALE suite of programs. Monteburns is a 

straightforward yet versatile solution requiring little training other than that required for 

MCNP and will soon be publicly available through the Radiation Safety Information 

Computational Center (RSICC) at Oak Ridge National Laboratory. 
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APPENDIX A. LISTING OF C-SHELL FILE MONTEBURNS 

#!/bin/csh 

# Version 4 September 1998 
date 
cp $l.inp mb.inp 
# 

if (-e $l.feed) cp $1-feed feed 
if ( -e tmpfile) then 
else 
mkdir tmpfile 
endi f 
# 

monteb a 
@ nout = 'awk '$2 == "nout" {print int($l))' ./tmpfile/params' 
4 npre = 'awk '$2 == "npre" {print int($1)1' ./tmpfile/params' 
Q nrst = 'awk '$2 == "nrst" {print int($l)}' ./tmpfile/params' 
8 nkeff = 'awk '$2 == "nkeff" {print int($l)I' ./tmpfile/params' 
@ m a t  = 'awk ' $ 2  == "nmat" {print int($l)}' ./tmpfile/params' 
echo Snout $npre $nrst $nkeff Snmat 
# 

echo ... MonteBurns: Write natural element and origen input files 
monteb e 
monteb 5 
# 

if ($nrst == 0) then 
# set up initial run ____________-__----_-__--__---_ 
# ..Backup fort.9 
# 

4 i 3 = 1  
while (Si3 <= $nmat) 
if ( - e  fort.9.0) then 
cp fort.9.0 fort-Si3.9 
else 
cp fort-Si3.9 fort.9.0 
endi f 
@ i3 ++ 
end 
echo ... MonteBurns: Delete Old MCNP Files 
if (-e mbmcm ) rm mbmcm 
if (-e mbmco ) rm mbmco 
if (-e mbmcr ) rm mbmcr 
if (-e mbmcs ) rm mbmcs 
echo ... MonteBurns: Check Print Card and create skeleton mcnp input 
monteb 1 <$1 
echo . . .  MonteBurns: Run MCNP Input Module to get initial comps 
mcnp ix n=mbmc 
echo ... MonteBurns: Write tally file tal2.inp 
# Get number of predictors from status 

# File management ________________-____-------_----- 

# Get shell variables ____________-____-__-_-------- 
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monteb 2 <mbmco 
echo ... MonteBurns: Write initial origen comp file fort.7 and nat isos 
monteb 4 <mbmco 
@ i l = O  
else 
# 

@ il = $nrst + 1 
@ i 3 = 1  
while (Si3 <= $nmat) 
cp ./tmpfile/fortg_$i3.$nrst fort-Si3.9 
cp ./tmpfile/fort7-$i3.$nrst fort-Si3.7 
if (-e ./tmpfile/mbori-$i3.$il.tmp) then 
else 
cp ./tmpfile/mbori-$i3.$il ./tmpfile/mbori-$i3.$il.tmp 
endi f 
@ i3 ++ 
end 
cp ./tmpfile/mbmc.$nrst mbmc 
cp ./tmpfile/mbinp.$nrst mb.inp 
endi f 
# 

while (Si1 <= Snout) 
# 

echo ... MonteBurns: Begin outer loop $il 
# 

# tally nrst in mb.inp so monteb knows what step 
# 

if (Si1 > 0) monteb 9 
# 

# determine material in each MCNP region 
# 

if (Si1 > 0) monteb c 
@ i 3 = 1  
while (Si3 <= $nmat) 
if (Si1 > 0 ) then 
mv ./tmpfile/mbori-$i3.$il.tmp ./tmpfile/mbori-$i3.$il 
cp ./tmpfile/mbori-$i3.$il mbori-$i3 
0 nval = 'awk '$2 == "nval" {print int($l)}' ./tmpfile/param3-$i3' 
# 

# see if the same material is present in each region and if not, 
# copy new material to current $i3 value fort.7 file 
# 

if (Snval == 0 )  then 
cp fort-Si3.7 fort-Si3.7.tmp 
cp mnat-Si3.tmp mnat-$i3.t.tmp 
else 
if (Snval !=  $i3) then 
cp fort-Snval.7 fort-$i3.7.tmp 
cp mat-$nval.tmp mnat-$i3.t.tmp 

# Set up restart run __---__------------------- 

# Beginning of outer loop ...................... 

102 



else 
cp fort-Si3.7 fort-Si3.7.tmp 
cp mnat-Si3.tmp mnat-Si3.t.trnp 
endi f 
endi f 
endi f 
4 i3 ++ 
end 
@ i 3 = 1  
while (Si3 <= Snmat) 
if (Si1 > 0) then 
mv fort-Si3.7.trnp fort-Si3.7 
mv mnat-Si3.t.tmp mnat-Si3.tmp 
endi f 
cp fort-Si3.7 fort-Si3.4 
4 i3 ++ 
end 
# 

if (Si1 == 1) then 
4 npre2 = $npre + 1 
else 
4 npre2 = $npre 
endi f 
if (Si1 == 0) @ npre2 = 1 
# 

@ i 2 = 1  
4 ndsc = 0 

@ i 3 = 1  
while (Si3 <= Snmat) 
if (-e ./tmpfile/param-$i3.$il) then 
4 ndisc = 'awk '$2 == "ndisc" {print int(S1))' ./tmpfile/param-$i3.$il' 
if (Sndisc == 1) then 
4 ndsc = 1 
endi f 
endi f 
4 i3 ++ 
end 
if (Sndsc == 1) then 
echo ... Monteburns: Add discrete feed to fort.7 
monteb b 
@ i 3 = 1  
while (Si3 <= Snmat) 
mv fort-Si3.7.tmp fort-Si3.7 
cp fort-Si3.7 fort-Si3.4 
@ i3 ++ 
end 
if (Snkeff == 1) then 
echo . . .  Monteburns: Add discrete feed to mcnp input file 
monteb 7b 
cp mbmc.tmp mbmc.sk1 
cp mbmc-skl mbmc-temp 
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@ i 3 = 1  
while (Si3 <= $mat) 
cat mb7t-Si3.out mb7-Si3.out > mb7t-Si3.tmp 
mv mb7t-Si3.tmp mb7t-Si3.out 
cat mbmc-temp rnat-Si3.h~ > mbm.tmp 
mv mbm.tmp mbmc.temp 
@ i3 ++ 
end 
mv mbmc . temp mbmc 
echo ... MonteBurns: Run MCNP for discrete feed 
if (-e mbmcm) rm mbmcm 
if (-e mbmco) rm mbmco 
if (-e mbmcr) rm mbmcr 
if (-e mbmcs) rm mbmcs 
mcnp n=mbmc 
monteb 6b 
cat mbllt-out mbll.out > mbllt.tmp 
mv mbllt.tmp mbllt-out 
cat mbl3t.out mbll-out > mbl3t.tmp 
mv mbl3t. tmp mbl3t. out 
endi f 
endi f 
# 

# Determine grams of feed at the beginning of each step 
monteb 8b 
@ i 3 = 1  
while (Si3 <= $mat) 
cat mb12t-Si3.out mbl2-Si3.out > mb12t-Si3.tmp 
cat mb12a-Si3.out mb12x-$i3.out > mb12a-$i3.tmp 
mv mb12t-Si3.tmp mb12t-Si3.out 
mv mb12a-Si3.tmp mb12a-Si3.out 
@ i3 ++ 
end 
# 

while (Si2 <= Snpre2) 
if (Si1 > 0 )  then 
echo ... MonteBurns: Run origen predictor Si2 for outer $il 
@ i 3 = 1  
while (Si3 <= $mat) 
cp mbori-Si3 mbori 
cp fort-Si3.9 fort.9 
cp fort-Si3.4 fort.4 
origen2 <mbori >mboro 
mv fort.9 fort-Si3.9 
mv fort.7 fort-Si3.7 
@ i3 ++ 
end 
endi f 
echo ... Monteburns: Determine important players / make new mcnp mat 
monteb 7m 

# Begninning of inner loop _-____-----------_----_ 
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cp mbmc-tmp mbmc-skl 
echo ... MonteBurns: Write new mcnp tallies and cat new mcnp input 
monteb 3 
echo . . .  MonteBurns: Create complete MCNP input file 
cp mbmc.skl mbmc 
@ i 3 = 1  
while (Si3 <= $mat) 
cat mb7t-$i3.out mb7-Si3.out > mb7t-Si3.tmp 
mv mb7t-Si3.tmp mb7t-Si3.out 
cat mbmc mat-Si3.inp tall-Si3.inp tal2-Si3.inp tal3-Si3.inp > mbmc-temp 
mv mbmc.temp mbmc 
rm tall-$i3.inp tal3-Si3.inp 
@ i3 ++ 
end 
echo ... MonteBurns: Run MCNP 
if (-e mbmcm ) rm mbmcm 
if (-e mbmco ) rm mbmco 
if (-e mbmcr ) rm mbmcr 
if (-e mbmcs ) rm mbmcs 
mcnp n=mbmc 
echo ... MonteBurns: Modify 
monteb 6m 
@ i 3 = 1  
while (Si3 <= $mat) 
if (Si1 > 0 ) mv mbori-$i3 

orig xs file fort.9 and mbori with new flux 

tmp mbori-$i3 
mv fort-Si3.9.tmp fort-Si3.9 
cat mb4a-$i3.out mb6-$i3.out > mb4a-$i3.tmp 
mv mb4a-$i3.tmp mb4a-Si3.0ut 
B i3 ++ 
end 
B i2 ++ 
end 
cat mbllt.out mbll.out > mbllt.tmp 
mv mbllt.tmp mbllt.out 
if (Si1 == 0) then 
if ($nkeff == 1) then 
cat mbl3t.out mbll.out > mbl3t.tmp 
mv mbl3t.tmp mbl3t.out 
endi f 
endi f 

# 

if (Si1 > 0 )  then 
echo ... MonteBurns: Run origen to compare 1/2 way comps 
@ i 3 = 1  

while (Si3 <= $mat) 
cp fort-$i3.9 fort. 9 

cp fort-Si3.4 fort.4 
cp mbori-$i3 mbori 
origen2 <mbori >mboro 
mv fort.7 fort-Si3.7 

# End of inner loop ____________---__-__----------- 
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I 

I 

mv fort.9 fort-Si3.9 
4 i3 ++ 
end 
# 

monteb 8e 
@ i 3 = 1  
while (Si3 <= $mat) 
cat mb4b-Si3.out mb5-Si3.out > mb4b-Si3.tmp 
mv mb4b-Si3.tmp mb4b-Si3.out 
4 i3 ++ 
end 
# 

# Remove 1/2 way predictor stuff in mbori 
monteb 0 
4 i 3 = 1  
while (Si3 <= $mat) 
mv mbori-Si3.tmp mbori-$i3 
echo ... MonteBurns: Run origen for complete outer step $il 
cp fort-Si3.9 fort. 9 
cp fort-Si3.4 fort.4 
cp mbori-$i3 mbori 
origen2 <mbori >mboro 
mv fort.7 fort-Si3.7 
mv fort.9 fort-Si3.9 
cp fort-Si3.9 ./tmpfile/fort9-$i3.$il 
4 i3 ++ 
end 
# 

# Save stuff for restart ------------------- 
# 

cp mbmc ./tmpfile/mbmc.$il 
cp mb.inp ./tmpfile/mbinp.$il 
# 

# Calculate k-eff at end of burn step ------ 
# 

if ($nkeff == 1) then 
echo ... MonteBurns: Determine important players / make new mcnp mat 
monteb 7e 
cp mbmc-tmp mbmc-skl 
cp mbmc-skl mbmc-temp 
4 i 3 = 1  
while (Si3 <= $mat) 
cat mb7t-Si3.out mb7-Si3.out > mb7tV$i3.tmp 
mv mb7t-Si3.trnp mb7t-Si3.out 
cat mbmc.temp mat-Si3.inp > mbm.tmp 
mv mbm.tmp mbmc-temp 
@ i3 ++ 
end 
mv mbmc-temp mbmc 
echo ... MonteBurns: Run MCNP for complete outer step Si1 
if (-e mbmcm ) rm mbmcm 
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if (-e mbmco ) rm mbmco 
if (-e mbmcr ) rm mbmcr 
if (-e mbmcs ) rm mbmcs 
mcnp n=mbmc 
monteb 6e 
cat mbllt-out mbll-out > mbllt.tmp 
mv mbllt-tmp mbllt.out 
endi f 
# 

# Remove discrete removal group elements 
# 
monteb d 
@ i 3 = I  
while (Si3 <= $nmat) 
if (-e fort-Si3.7.tem) mv fort-Si3.7.tem fort-Si3.7 
cp fort-Si3.7 ./tmpfile/fort7-$i3.$il 
Q i3 ++ 
end 
endi f 
# 

monteb 8e 
@ i 3 = 1  
while (Si3 <= $mat) 
cat mb5tV$i3.out mbS-Si3.out > mb5t-Si3.tmp 
cat mb5tx-Si3.out mb5x-Si3.out > mb5tx-Si3.tmp 
mv mb5t-Si3.tmp mb5t-Si3.out 
mv mb5tx-Si3.tmp mb5tx-Si3.out 
Q i3 ++ 
end 
if (Si1 > 0) then 
monteb z 

@ i 3 = 1  
while (Si3 <= $nmat) 
cat mb9t-Si3.0ut mb9-$i3.out > mb9t-Si3.tmp 
mv mb9t-$i3.tmp mb9t-Si3.out 
Q i3 ++ 
end 
endi f 
# 
# copy to output files ....................... 
@ i 3 = 1  
while (Si3 <= $mat) 
cat mblt-Si3.out mbl-Si3.out > mblt-tmp 
mv mblt.tmp mblt-Si3.out 
cat mb6t-Si3.out mb6-Si3.out > mb6t.tmp 
mv mb6t.tmp mb6t-$i3.out 
cat mb2t-Si3.out mb2-Si3.out > mb2t.tmp 
mv mb2t.tmp mb2t-Si3.out 
cat mb3tV$i3.out mb3-Si3.out > mb3t.tmp 
mv mb3t.tmp mb3t-Si3.out 
cat mb8t-Si3.0ut mb8-Si3.out > mb8t.tmp 
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mv mb8t.tmp mb8t-$i3.out 
cat rnb4b-Si3.out mb4-Si3.out > mb4b.tmp 
mv mb4b.tmp mb4b-Si3.0ut 
@ i3 ++ 
end 
# 

(3 il ++ 
echo Snout S i 1  

end 

@ i 3 = 1  
while (Si3 <= $mat) 
cat mbl mblt-Si3.out > mbl.tmp 
mv mbl.tmp mbl 
cat mb2 mb2t-$i3.out > mb2.tmp 
mv mb2.tmp mb2 
cat mb3 mb3t-Si3.out > mb3.tmp 
mv mb3.tmp mb3 
cat mb4a mb4a-Si3.out > mb4a.tmp 
mv mb4a.tmp mb4a 
cat mb4b mb4b-Si3.out > mb4b.tmp 
mv mb4b.tmp mb4b 
cat mb5 mb5t-Si3.out > mb5.tmp 
mv mb5.tmp mb5 
cat mb6 mb6t-Si3.out > mb6.tmp 
mv mb6.tmp mb6 
cat mb7 mb7t-Si3.out > mb7.tmp 
mv mb7.tmp mb7 
cat mb8 mb8t-Si3.out > mb8.tmp 
mv mb8.tmp mb8 
cat mb9 mb9t-Si3.out > mb9.tmp 
mv mb9.tmp mb9 
cat mbl0 mblOt-$i3.out > mblO.tmp 
mv mblO.tmp mbl0 
cat mb12 mb12t-Si3.out > mb12.tmp 
mv mb12.tmp mb12 
@ i3 ++ 
end 
if (Snkeff == 1) then 
cat mbllt.out mbl3t.out > crit 
else 

cp mbllt.out crit 
endi f 
cat crit mbl mb6 mb2 mb3 mb8 mb12 mb5 mb9 mbl0 > $l.mbtmp 
cat mb4a mb4b mb7 > $l.mbchk 
if ( -e feed) then 
cat $l.mbtmp feed > $l.mbout 
else 
mv $l.mbtmp $l.mbout 
endi f 
# 

# End of outer loop __________-_----------------------- 
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txt2ps-sw $l.mbout > $l.ps 
txt2ps-s~ $l.mbchk > $lC.pS 

txt2ps-xs $l.mbout > $l.pss 

txt2ps-x~ $l.mbchk > $lC.pSS 

# 
echo ... Monteburns: Completed 
date 
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APPENDIX B. LISTING OF FORTRAN77 PROGRAM M0NTEB.F' 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 
c Version 4 September 1 9 9 8  

c For info please contact Dave Poston (505) -667-4336 - poston@lanl.gov 
c or Holly Trellue ( 5 0 5 ) - 6 6 5 - 9 5 3 9  - trellue@lanl.gov 
C 

c...MONTEB call a variety of subroutines based on call line ARG 

C 

common / m b i n p / n m a t , m t ( 4 9 ) , v o l i ( 4 9 ) , p o w , q u 2 3 5 , d a e r ,  

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr ( 9 9 9 , 4 9 )  
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,pos~t 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 

C 

c...Read in command line argument getarg for sun, igetarg for HP 
C 

character arg*8 
call getarg ( 1, arg) 

C call igetarg(l,arg,l) 
C 

c. ..Read in input file into common block data from standard input 
( initial 
c... read (with arg = a) is different than preceding ones b/c nauto 
c... has not yet been defined. 
C 

if (arg.eq.'a'.or.arg.eq.'wparamsO then 

else 

endi f 

call read 

call readco 

C 

c...execute based on arg 
C 

if arg.eq.'l'.or.arg.eq.'pcard') call pcard 
if arg.eq.'2'.or.arg.eq.'wtally2') call wtal2 

if arg.eq.'3'.or.arg.eq.'wtally') call wtally 
if arg.eq.'4'.or.arg.eq.'worcomp') call worcom 

if arg.eq.'5'.or.arg.eq.'worinp') call worinp 
if (arg.eq.'6b'.or.arg.eq.'worxsb') then 

posit = 'b' 
call worxs 

posit = 'm' 

call worxs 

posit = 'e' 
call worxs 

elseif (arg.eq.'6m'.or.arg.eq.'worxsm') then 

elseif (arg.eq.'6e1.0r.arg.eq.'worxse') then 

endi f 
if (arg.eq.'7b'.or.arg.eq.'wmcinpb') then 

posit = 'b' 
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call wmcinp 

posit = 'm' 

call wmcinp 

posit = 'e' 
call wmcinp 

elseif (arg.eq.'7m'.or.arg.eq.'wmcinpm') then 

elseif (arg.eq.'7e1.0r.arg.eq.'wmcinpe') then 

endi f 
if (arg.eq.'8bt.or.arg.eq.'gramsb') then 

posit = 'b' 
call grams 

posit = 'e' 
call grams 

elseif (arg.eq.'8e'.or.arg-eq.'gramse1) then 

endi f 

if (arg.eq.'9'.or.arg.eq.'wmbinp') then 
nrst=nrst+l 
call wmbinp 

end if 
if (arg.eq.'O'.or.arg.eq.'rmhalf') 
if (arg.eq.'b'.or.arg.eq.'discrete') 
if (arg.eq.'c'.or.arg.eq.'region') 
if (arg.eq.'d'.or.arg.eq.'discremo') 
if (arg.eq.'e'.or.arg.eq.'natelem') 
if (arg.eq.'z'.or.arg.eq.'burncalc') 

c...Write variables 'params' to be read by 
c... user's input file 

C 

C 

if (arg.eq.'a'.or.arg.eq.'wparams') 
call wparam 
call wmbinp 

endi f 

call rmhalf(nmat) 
call discr 
call region 
call dremo 
call natele 
call burnca 

shell and make more detailed 

then 

C 

end 
C 

~23456789*123456789*123456789*123456789~123456789*123456789*1234567~9*12 

c...WPARAMS writes scratch file containing variables to be read by 
c...shell with the AWK command 

subroutine wpararn 
common /mbinp/nmat,mt(49),voli(49),pow,~235,days,nouter,ninner, 

C 

C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 

C 

open (ll,file=' ./tmpfile/params',status='unknown') 
write (11,902) nouter 
write (11,903) npre 
write (11,904) nrst 

111 



write (11,905) nkeff 
write (11,906) nmat 

close (11) 
C 

902 format (i4,' nout') 
903 format (i4, ' npre' ) 
904 format (i4,' nrst') 
905 format (i4,' nkeff') 
906 format (i4,' nmat') 

return 
end 

C 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...READCOM reads in common block data from input file 
C 

C 

subroutine read 
common / m b i n p / n m a t , m t ( 4 9 ) , v o l i ( 4 9 ) , p o w , q u 2 3 5 , d a e r ,  

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr (999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character nisor5*5,met*l 

C 

c...Read mburn input file, read twice to get niso & nisn, have to 
c...read as real variable first and then convert to integer so that it 
c...works both on Sun and H P .  

C 

open (ll,file='mb.inp' ,status='old') 
read (ll,'(a72)') title 
read (ll,*) m a t  
do 20 j=l,nmat 

20 read (ll,*) mt(j) 
do 3 0  j=l,nmat 

30 read ll,*) voli(j) 
read ll,*) pow 
read ll,*) qu235 

read 11, * )  days 
read ll,*) nouter 
read (ll,*) ninner 
read (11,*) npre 
read (ll,*) nrst 
read (11, (a2) ' ) olib 
read (11, (a72) ' )  locale 
read (11,*) frimp 
read (ll,*) nkeff 
do 60 j=l,nmat 
read (ll,*) nauto(j) 
ntot(j) = nauto(j) 
do 60 i=l,ntot(j) 
read (11,'(a10)') niso(i,j) 
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backspace (11 ) 
read (11, ' (f6.1) ' ) x 

close (11) 
60 nisn(i, j)=x 

C 

c...Assign origin is0 names 
C 

do 10 j=l,nmat 
do 10 i=l,ntot(j) 
nisor5=niso(i,j) 
met= ' 0 
if (nisor5.eq.'95242') met='l' 

10 nisor(i,j)=nisor5//met 
C 

C 

do 15 j=l,nmat 
do 15 i=l,ntot(j) 
nisnr(i,j)=nisn(i,j)*lO 
if (nisnr(i,j).eq.952420) nisnr(i,j)=nisnr(i,j)+l 

15 continue 

return 
end 

C 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...READCOM reads in common block data from input file 
C 

C 

subroutine readco 
common /mbinp/nmat,mt(49),voli~49~,pow,~235,days,nouter,ninner, 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character nisor5*5,met*l 

c...Read mburn input file, read twice to get niso & nisn, have to 
c...read as real variable first and then convert to integer so that it 
c...works both on Sun and HP. 
C 

open (ll,file='mb.inp',status='old') 
read (11, ' (a721 ' ) title 
read (ll,*) m a t  
do 20 j=l,nmat 

20 read (ll,*) mt(j) 
do 30 

30 read 
read 
read 
read 
read 
read 

j=l,nmat 
ll,*) voli(j) 
ll,*) pow 
ll,*) qu235 
ll,*) days 
ll,*) nouter 
11, * )  ninner 
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read (ll,*) npre 
read (ll,*) nrst 

read (11, (a21 ' ) olib 
read (11, ' (a72) ' ) locale 
read (ll,*) frimp 
read (11, * )  nkeff 
do 60 j=l,nmat 
read (11,*) nauto(j) 
read (ll,*) ntot(j) 
do 60 i=l,ntot(j) 
read (11, (a10) ' 1  niso(i, j) 
backspace ( 11 ) 
read (11, ' (f6.1) ' )  x 

close (11) 
60 nisn(i,j)=x 

C 

c...Assign origin is0 names 

do 10 j=l,nmat 
do 10 i=l,ntot(j) 
nisor5=niso(i,j) 
met= 0 ' 
if (nisor5.eq.'95242') met='l' 

C 

10 nisor(i,j)=nisor5//met 
C 

do 15 j=l,nmat 
do 15 i=l,ntot(j) 
nisnr(i,j)=nisn(i,j)*lO 
if (nisnr ( i , j ) . eq -9 52420 ) nisnr ( i , j ) =nisnr ( i , j ) +1 

15 continue 

return 
end 

C 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...PCARD checks mcnp input file for print card, and alters or adds one 
c...(only run once at beginning of monteburns) 

C 

C 

subroutine pcard 
common /mbinp/nmat, mt (49) , voli (49) ,pow, qu235, days, nouter, ninner, 

& npre,nrst, frimp,nauto(49) ,ntot (49) ,nkeff ,nisn(999,49), 
& nisnr (999,49) 
common /mbinp2/niso(999,49),nisor(999,49) ,title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character ju5*5,ju80*80,m(20)*l,filelt*l2,file2t*12 
character file3t*12,file4a*12,file4b*l2,file5t*l2,file5~*12 
character file7t*12,file8t*12,fname*l2,fill2t*l2,fill2a*l2 

open (12,file='mbmc',status='unknown') 
C 

C 
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10 k=k+l 
read (5,  ' (a5) ' ,end=15) ju5 
if (ju5.eq.'print1) ni=k 

goto 10 
15 rewind (5 )  

20 do 30 n=l,k-1 
read (5, ' (a80) ' 1  ju80 
if (n.ne.ni) then 

else 

end if 
30 continue 

if (ni.eq.0) write (12, (a81 ' 1  'print 40' 

close (12) 

write (12,'(a80)') ju80 

write (12, ' (a81 ' ) 'print 40 ' 

C 

C 

c...Remove mt card and write mbmc-skl 
C 

open (11, file='mbmc' ,status='old' ) 

open (12,fi1e='mbmc.skl',status='unknown1) 
C 

if lag=O 
n = O  

ifd = 0 
nogo= 0 
do 45 i=1,20 

40 read (11,'(20al)',end=50) (m(i),i=1,20) 

45 if (m(i1.ne.I ' )  nogo=l 
C 

c...Determine numerical value of material 
C 

if (nogo.eq.O.and.iflag.eq-1) goto 40 
if (m(1) .eq. 'm' ) then 
iflag = 1 
do 47 i=6,2,-1 
if (m(i) .eq. ' )  ii=i 

matr=O 
47 continue 

do 48 i=2,ii-l 
48 matr=matr+(ichar(m(i))-48)*lO**(ii-l-i) 

C 

c... Identify if MCNP material is one of the user requested materials 

do 49 j=l,nmat 
C 

49 if (matr.eq.abs(rnt(j))) ifd=l 
end if 

C 

c... Print lines excluding user-specified material identifiers 
skeleton 
C 

to 
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if (ifd.eq.0) then 

backspace(l1) 
read (ll,'(a80)') ju80 
write (12,'(a80)') ju80 

goto 40 
else 

C 

c.. . If MCNP material is equal to user specified one, then print 
material 
c... identification cards to appropriate output file. Remove blank 

1 ines 
c... from end of MCNP input file 
C 

do 52 j=l,nmat 
if (matr.eq.abs(mt(j))) then 
if (j.lt.10) then 

elseif (j.ge.10) then 
fname = 'mat_'//char(j+48)//'.inp' 

jl = j/lO 
j2 = j - jl*10 
fname = 'mat-'//char(jl+48)//char(j2+48)//'.inp' 

endi f 
open (13,file=fname,status='unknown') 
n = n + l  

endi f 
52 continue 

endi f 
backspace ( 11 ) 
read (ll,'(a80)') ju80 
write (13,'(a80)') ju80 

noma t = 0 
nomat2 = 0 
do 53 i=1,5 

do 54 i=1,20 

if (nomat.eq.l.or.nomat2-eq.0) then 

51 read (11,'(20al)') (m(i),i=1,20) 

53 if (m(i).ne.' ' 1  nomat=l 

54 if (m(i) .ne. ' ) nomat2=l 

backspace ( 11) 
goto 40 

backspace (11) 
read (11, ' (a80) ' ) ju80 
write (13,'(a80)') ju80 
goto 51 

else 

endi f 
50 close(l2) 

close (11) 
C 

c... Create output files and label them. "mbllt.out' does not depend on 
the 

116 



c... material, the others do. mbl3t.out contains only beginning of step 
C 

if (frimp.lt.0.) frimp = abs(frimp) 

open (14,file='mbllt.out',status='unknown') 
write (14, ' (a72) ' )  title 
write (14,961) pow,days,nouter,ninner,npre,frimp 
write (14,'(a33)') 'Monteburns MCNP k-eff Versus Time' 

write (14, ' (a34,a28) ' )  ' days k-eff re1 err', 

close (14) 
& nu avQf is eta I 

C 

open (14,file='mbl3t.out',status='unknown') 
write (14,'(/,a42)') 'Monteburns MCNP k-eff at Beginning of Step' 

write (14, ' (a34,a6) ' )  I days k-ef f re1 err', 

close (14) 

c... Create file names 

1 & nu I 

C 

C 

C 

do 70 j=l,nmat 
if (j.lt.10) then 
filelt = ' m b l t - ' / / c h a r ( j + 4 8 ) / / ' . o u t '  

file2t = 'mb2t-'//char(j+48)//'.out1 
file3t = 'mb3t_'//char(j+48)//'.outt 
file4a = 'mb4a- ' / / cha r ( j+48) / / ' . ou t1  

file4b = 'mb4b-'//char(j+48)//'.out1 
file5t = 'mb5t-'//char(j+48)//'.out1 
file5x = 'mb5tx-'//char(j+48)//'.out1 
file7t = 'mb7t_'//char(j+48)//'.outt 
file8t = 'mb8t-'//char(j+48)//'.out' 
fill2t = 'mbl2t-'//char(j+48)//'.out1 
fill2a = 'mb12a_'//char(j+48)//'.out' 

jl = j/lO 
j2 = j - jl*10 
filelt = 'mblt~'//char(jl+48)//char(j2+48)//'.outs 
file2t = 'mb2t-'//char(j1+48)//char(j2+48)//'.out8 
file3t = 'mb3t-'//char(j1+48)//char(j2+48)//'.out1 
file4a = 'mb4a-'//char(j1+48)//char(j2+48)//'.outP 
file4b = 'mb4b-'//char(jl+48) //char(j2+48)//' .out' 
file5t = 'mb5t-'//char(jl+48)//char(j2+48)//'.out' 
file5x = 'mb5tx-'//char(j1+48)//char(j2+48)//'.out1 
file7t = 'mb7t-'//char(j1+48)//char(j2+48)//'.outa 
file8t = 'mb8t-'//char(jl+48)//char(j2+48)//'.outi 
fillat = 'mbl2t-'//char(jl+48)//char(j2+48)//'.out' 
fill2a = 'mb12a-1//char(j1+48)//char(j2+48)//1.0utt 

elseif (j .ge.lO) then 

endi f 

open (14,file='mbl',status='unknom1) 
write (14,' (/,a291 ' 1  'Monteburns Transport History 
close (14) 
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open (14,file=filelt,status='unknown') 
write (14,'(/,a29,a12,i3,1lx,a14,32x,a20)') 

& 'Monteburns Transport History I ,  

& 'for material',j, 'total material', 'for actinide I 

write (14,'(a31,a51,a50,al7)') ' Qf is Flux SigmaF ' , 
& i Power Burnup n, gamma n, fission fis/cap' , 

& I n2n eta n,gamma n, fission fis/cap', 
& ' n2n eta ' 
close (14) 
open (14,file='mb2',status='unknown') 
write (14,' (/,a41)') 'Monteburns 1-group n , g m a  Cross Sections' 

close (14) 
open (14,file=file2t,status='unknown') 
write (14,'(/,a33,a2l,i3)') 

& 'Monteburns 1-group n,gamma Cross I ,  

& 'Sections for material',j 
write (14, I (3x,a9,30(lx,a9)) ' )  (niso(i,j) ,i=l,nauto(j)) 
close (14) 
open (14,file='mb3',status='unknown') 
write (14,'(/,a41)') 'Monteburns 1-group Fission Cross Sections' 
close (14) 
open (14,file=file3t,status='unknown') 
write (14, ' (/,a33,a21,i3) ' )  

& 'Monteburns 1-group Fission Cross ' ,  
& 'Sections for rnaterial',j 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)) 

close (14) 
open (14,fi1e='mb4a',status='unknown1) 
write (14, I (/,a72) ' 1  title 
write (14,961) pow,days,nouter,ninner,npre,frimp 
write (14,'(a43)') 'Monteburns Spectrum for Each Predictor Step' 
close (14) 
open (14,file=file4a,status='unknom') 
write (14, ' (/,a30,a27,53) ' )  

& 'Monteburns Spectrum for Each I ,  

& 'Predictor Step for material',j 

& '  <.lev <lev <100eV <100keV 
write (14, ' (a631 ' 

close (14) 
open (14,file='mb4b',status='unknown') 
write (14,'(/,a29)') 'Monteburns Grams at Midpoint' 

close (14) 
open (14,file=file4b,status='unknown') 
write (14, '(/,a29,a13,i3) ' 1  

& 'Monteburns Grams at Midpoint', 
& ' for material',j 
write (14,'(a40)') '1st row is actual, 2nd row was predicted' 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)), 'actinide' 
close (14) 
open (14,file='mb5',status='unknown') 
write (14, I (/,a44) ' )  

<1MeV 

I 
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& 'Monteburns Grams of Material at End of Steps' 
close (14) 
open (14,file='mbl2',status='unknown') 

write (14, ' ( / ,a501 ' ) 

close (14) 
open (14,file=file5t,status='unknown') 
write (14, (/,a44,a13,:3) I )  

& 'Monteburns Grams of Material at Beginning of Steps' 

& 'Monteburns Grams of Material at End of Steps', 
& ' for material',j 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide' 
close (14) 
open (14,file=fill2t,status='unknown') 
write (14, '(/,a47,a13,i3)') 

& 'Monteburns Grams of Material at Begin. of Steps', 
& ' for material',j 
write (14,' (3x,a9,30(lx,a9))') (niso(i,j) ,i=l,nauto(j)) , 'actinide' 
close (14) 
open (14,file=file5x,status='unknown') 
write (14, I (/,a44,a13,i3) ' )  

& 'Monteburns Grams of Material at End of Steps', 
& ' for material',j 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide' 
close (14) 
open (14 , f i le=f i l l2a , s ta tus= 'unknown' )  

write (14,' (/,a47,a13,i3)') 
& 'Monteburns Grams of Material at Begin-of Steps', 
& ' for material',j 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide' 
close (14) 
open (14,file='mb7',status='unknown') 
write (14,'(/,a35,a28,i3)') 'Fractional Importance of Radionuclid' 

close (14) 
open (14,file=file7t,status='unknown1) 
write (14, ' (/,a60, /,a20, i3) ' ) 

& ,'es Sent From ORIGEN2 to MCNP' 

& 'Fractional Importance of Radionuclides Sent From ORIGEN2 to ' ,  
& ' MCNP for material',j 

& '  isotope grams mass fra atom fra capture fission' 
write (14,'(/,a5,a62)') 'step#', 

close (14) 
open (14,file='mb8t,status=tunkno~1) 
write (14,'(/,a35,a12,i3)') 'Monteburns Fission-to-Capture Ratio' 
close (14) 
open (14,file=file8t,status='unknown') 
write (14,'(/,a35,a13,i3)') 

& 'Monteburns Fission-to-Capture Ratio', 
& ' for material',j 
write (14,'(3x,a9,3O(lx,a9))') (niso(i,j),i=l,nauto(j)) 
close (14) 

961 format (/'Total Power (MW) =',lpe10.2,' Days =',lpe10.2,/ 
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& ' #  outer steps =',i2,', # inner steps =',i3, 
& I ,  # predictor steps =',i2,/ 
& 'Importance Fraction = ',Opf6.4/) 

70 continue 

return 
end 

C 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...WTALLY2 writes the tally cards to tal2.inp which is appended 
c. ..to mcnp input file, and creates new mbmc file that does not 
c...include tallied materials (run only once at beginning of monteburns) 

C 

C 

subroutine wtal2 
character ju6*6,tce11(999,49)*6,ncel1*6,file6t*12,file2*12 
comon /mbinp/nmat,mt(49),voli(49),pow~~235,days,nouter,ni~er, 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,o~ib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
dimension vo1(49),ntc(49) 

C 

c...Determine cells to tally 
C 

40 

C 

50 

55 

C 

read (5, ' (a6) ' 1  ju6 
if (ju6.ne.'lce1lst) goto 40 

read (5, I ( / / / I  ' ) 
read ( 5, (i6, a6, i5, lx, lp3e12.5 ' ) n, ncell, nmt , aden, gden, voll 
do 55 j=l,nmat 
if (nmt.eq.abs(mt(j))) then 
ntc (j) =ntc (j) +l 
tcell (ntc (j ) , j ) =ncell 
vol (j ) =vol (j +voll 

end if 
continue 
if (n.ne.0) goto 50 

c...Write tally2 file 

do 100 j=l,nmat 
if (j .lt.10) then 

C 

file2 = 'ta12-'//char(j+48)//'.inp8 
file6t = 'mb6t-'//char(j+48)//'.out' 

jl = j/lO 
j2 = j - jl*10 
file2 = 'ta12_'//char(j1+48)//char(j2+48)//'.inp1 
file6t = 'mb6t-'//char(j1+48)//char(j2+48)//'.out1 

elseif (j .ge.lO) then 

endi f 
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if (voli (j ) .ne. 0. ) vol ( j ) =voli ( j ) 
if (vol(j) .eq.O) then 
write (6,") I * * * * *  MB ERROR: No tally volume' 
stop 

end if 
open (ll,file=file2,status='unknown') 

C 

c...Write energy tallies (tally numbers range from 14 to 494) 
c... (1 to 49 represents material number) 
C 

write (11,911) (lo+ j ) 

do 80 i=l,ntc(j) 
911 format ('ct/'f',i2,'4:n ( I )  

80 write (11,912) tcell(i,j) 
912 format (7x,a6, I )  

write (11,913) 
913 format (14x,')') 

write (11,915) (lO+j),(lO+j),vol(j),(lO+j) 
915 format ('fc',i2,'4 MonteBurns Energy Spectrum Tallies'/ 

& 'sd',i2, '4 ',lpe12.5/ 
& 'e',i2,'4 1.0e-7 1.0e-6 1.0e-4 1.0e-1 1.0 20.0') 

C 

c...Write header for xs tallies 
C 

write (11,911) ( 5 0 + j )  

do 90 i=l,ntc(j) 
90 write (11,922) tcell(i,j) 
922 format (7x,a6,' ' )  

write (11,923) 
923 format (14x,')') 

write (11,924) ( 5 0 + j ) ,  (50+j),vol(j), (50+j) 
924 format ('fc',i2,'4 MonteBurns Cross Section Tallies'/ 

& 'sd',i2,'4 ',lpe12.5/'fm',i2,'4 (1)') 
C 

C 

open (14,file='mb6',status='unknown1) 
write (14,'(/,a24)') 'Monteburns Flux Spectrum' 
close (14) 
open (14,file=file6t,status='unknown') 
write (14,' (/,a25,a12,i3)') 'Monteburns Flux Spectrum I ,  

write (14, ' (a63) I ) 

& 'for material',j 

& '  

close (14 

close (11 
100 continue 

return 
end 

<lev 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 
C 
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c...WTALLY writes the tally cards to tall.inp and tal3.inp which 
c...are appended to mcnp input file 
C 

subroutine wtally 
common /mbinp/nmat, mt (49) , voli (49) ,pow, ~ 2 3 5 ,  days, nouter, ninner, 

L npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr (999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character filel*12,file3*12 

C 

c...Write tally files 1 and 3 
C 

ii = 100 
ij = 900 
do 100 j=l,nmat 
iflag = 0 
if (j .lt.lO) then 
filel = 'tall-'//char(j+48)//'.inpt 
file3 = 'ta13-'//char(j+48)//'.inp' 

jl = j/lO 
j2 = j - jl*10 
filel = 'tall-'//char(jl+48)//char(j2+48)//'.inp' 
file3 = 'ta13-'//char(j1+48) //char(j2+48) //'.inp' 

elseif (j.ge.10) then 

endi f 
open (ll,file=filel,status='unknown') 
open (12,file=file3,status='unknown') 
do 90 i=l,ntot(j) 
ii=ii+l 

write (11,901) ii,niso(i,j) 
901 format ('mt,i3,4x,a10,' 1.0') 

C 

c Equate (n,t) reaction to (n,alpha) for Lithium-6 
c All others are true (n,alpha) cross sections 
C 

if (nisn(i,j).eq.3006) then 
ii 
.It. 89000) then 
ii 
.ge.89000) then 

write (12,920) 
elseif (nisn(i, j 
write (12,921) 

elseif (nisn(i,j 
iflag = 1 
write (12,922) 

endi f 
90 continue 

ij = ij + 1 

ii 

if (iflag.eq.1) write (12,923) ij 
write (12,923) abs(mt(j)) 
close (11) 

100 continue 
C 
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C 

-2 is the total capture cross section 
16 is (n,2n) cross section 
105 is (n,t) cross section 
107 is (n,alpha) cross section 
103 is (n,p) cross section (for activation products) 
17 is (n,3n) cross section 
-6 is the total fission cross section (for actinides) 
452 is nu bar - only used for verification purposes 

920 format (8x,'(1 ',i3,' (102) (16) (105) (103))') 
921 format (8x, ' (1 ',i3, ' (102) (16) (107) (103)) ' 1  
922 format (8x,'(1 ',i3,' (102) (16) (17) (-6))') 

923 format (8x,'(1 ',i3,' (-2) (16) (452) ( - 6 ) ) ' )  

return 
end 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...WORCOMP writes composition input file for origen fort.7, which is 
c...read by origen as fort.4. Units are g-atoms (grams / atomic mass) 
c...(one time execute at beginning of monteburns) 

C 

C 

C 

subroutine worcom 

dimension nuc(99,49),f 
dimension ij(491,nelem 

& nisot(999,49,20),naix 
& aix(999,49,20) 
character ju6*6,ju10*10,met*1,ninat*lO,fname*l2,fnat*12, 

common /mbinp/nmat,mt(49),voli(49~,pow,qu235,days,nouter,ninner, 
& fmcnp*12, nmcnp*20 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 

C 

10 read (5,'(32x,a10)') jul0 
if (julO.ne.'mass fract') goto 10 

C 

c...Read mass fractions f o r  material 
C 

ifd = 0 

read ( 5 , * )  

20 read ( 5 ,  '(i6,5~,4(6x,i5,2x,lpeIl.5))') 
& mtn, (nc(i),fn(i),i=1,4) 
ii = 0 
im = 0 

do 25 j=l,nmat 
if (mtn.eq.abs(mt(j))) then 
do 22 i=1,4 
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nuc(i,j) = nc(i) 

nmt = j 

im = 1 
ifd = ifd + 1 

22 f(i,j) = fn(i) 

endi f 
25 continue 

if (im.eq.0) goto 20 
C 

30 ii=ii+4 
read (5,'(a6)') ju6 
if (ju6.eq. 'lcells') then 

ii~ii-4 

ij(nmt) = ii 
goto 42 

backspace ( 5 ) 
else 

endi f 
read (5, ' (i6,5~,4(6x,i5,2x,lpell.5)) ' )  

if (mtn.gt.O.and.mtn.ne.abs(mt(nmt))) ii=ii-4 
if (mtn.eq.O.and.nuc(4+ii,mt).ne.O) goto 3 0  

ij(nmt) = ii 
if (i fd. ne. nmat ) then 

& mtn, (nuc(i,nmt) ,f (i,nmt) ,i=l+ii,4+ii) 

backspace(5) 
goto 20 
endi f 

C 

c...Determine gram density and volume of cells (for now just 1) 
C 

40  

C 

42 
50 

51 

C 

read (5, ' ( / / / I  ' )  

read (5, (2i6, i5, lx, lp3e12.5) ' ) n, ncell, nmt, aden, gdenl, voll 
do 51 j=l,nmat 
if (nmt . eq. abs (mt (j ) ) then 
vol ( j =vo1( j +voll 
gden ( j ) =gdenl 

end if 
continue 
if (n.ne.0) goto 50 

c...Make sure isos have been read correctly, erase spurios readings 
C 

do 80 j=l,nmat 
do 52 i=l,4+ij(j) 
nogo= 0 
if (nuc(i,j).lt.1000) nogo=l 
if (nogo.eq.1) nuc(i,j)=O 

52 continue 
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C 

c...Write grams of material to fort.7 (origen comp file) or mnat.tmp 
c...if a natural is0 appears in mcnp input file 
C 

if (voli(j).ne.O.) vol(j)=voli(j) 
voli(j) = vol(j) 
call wmbinp 

C 

if (j.lt.10) then 
fnat = 'mnat-'//char(j+48)//'.tmpr 
fname = 'fort_'//char(j+48)//'.7' 

jl = j/lO 
j2 = j - jl*10 
fnat = 'mnat-'//char(jl+48)//char(j2+48)//'.tmp' 
fname = 'fort-'//char(jl+48)//char(j2+48)//'.7' 

elseif ( j  .ge.lO) then 

endi f 
open (ll,file=fname,status='unknown') 
open (12,file=fnat,status='unknown') 
do 58 i=1,4+ij(j) 
iflag(i,j) = 0 

if (nuc(i,j)-1000*(nuc(i,j)/lOOO)~eq.O.and~nuc(i,j).gt.O) then 

54 

56 
& 

53 

55 

57 
& 

open (16,file='natelem',status='unknown') 
read (16,*) 
read (16,*) 
read (16,*) nelem(i,j) 
read (16,*) nisop(i,j) 
do 56 n=l,nisop(i, j) 
read (16,'(i5,3x,f10.5)',err=56,end=53) 

nisot(i, j,n),atomfr(i, j,n) 
if (nelem(i,j).eq.nuc(i,j)/lOOO) then 
iflag(i,j) = 1 
goto 53 

goto 54  

else 

endi f 
close (16) 
open (13,file='mbxs.inp',status='unknown') 
ifd=0 
read (13, * , end=57 ) nixs 
if (nixs.eq.nuc(i,j)) ifd=l 
if (ifd.eq.0) goto 55 
backspace (13) 
read (13, (a10) ' )  ninat 
write (12, (i2,4x,a10) ' 1  nelem(i, j )  ,ninat 
if (ifd.eq.0) write (6,*) 
I * * * * *  MB WARNING: Natural is0 xs not found ',nuc(i,j) 
close (13) 

elseif (nuc(i, j) .ne.O) then 
if ( j  - It. 10) then 
fmcnp = 'mcnp_'//char(j+48)//'.inpt 
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elseif (j.ge.10) then 
jl = j/lO 
j2 = j - jl*lO 
fmcnp = 'mcnp-'//char(jl+48)//char(j2+48)//'.inp' 

endi f 
open (17,file=fmcnp,status='unknown') 
open (l3,file='mbxs.inp',status='unknown1) 
ifd=O 

if (nixs.eq.nuc(i,j)) ifd=l 
if (ifd.eq.0) goto 66 
backspace (13) 
read (13, ' (a10) ' ) nmcnp 
write (17, ' (a5,2x,a10) ' 1  nmcnp(1:5) ,nmcnp 

66 read (13,*,end=67) nixs 

67 if (ifd.eq.0) write (6,*) 
& I * * * * *  MB WARNING: Is0 xs not found ',nuc(i,j) 
close (13) 
end if 

58 continue 
close (12) 
close (17) 

C 

c...Write non-actinides to fort.7, sort numerically for xs file read 
C 

do 65 k=1,4+ij(j) 
nmin=9 9 9 9 9 
ni=O 
do 60 i=l,4+ij(j) 
a=float(nuc(i,j))-float(lOOO*(nuc(i,j) /1000)) 
if (nuc(i,j).lt.8300O.and.nuc(i,j).gt.l000) then 
if (nuc(i, j) .lt.nmin) then 
nmin=nuc (i , j ) 
if (iflag(i,j).ne.l) then 

else 
ai=a 

do 59 n=l,nisop(i, j) 
naix(i,j,n)=nisot(i,j,n) - 1000*(nisot(i,j,n)/lOOO) 

59 aix(i,j,n) = float(nisot(i,j,n)) 
& - float(1000*(nisot(i,j,n)/lOOO)) 

endi f 
ni=i 

end if 
end if 

60 continue 
if (ni. gt .O) then 
kxs=l 
met= ' 0 
if (iflag(ni, j) .eq.l) then 
do 62 n=l, nisop (ni , j 1 
gmat(ni,j,n) = f(ni,j)*gden(j)*vol(j)/aix(ni,j,n) 
gmat(ni, j,n) = gmat(ni, j,n)*atomfr(ni, j,n) 
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C 

c.. 
C 

if (naix(ni, j,n) .lt.10) then 

elseif (naix(ni, j,n) .lt.100) then 

else 

endi f 

write (11,912) kxs, nelem(ni, j ) , naix (ni, j , n) ,met, gmat (ni, j , n) 

write (11,913) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n) 

write (11,914) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n) 

62 continue 
else 
gma=f(ni,j)*gden(j)*vol(j)/ai 
write (11,911) kxs,nuc(ni,j) ,met,gma 

endi f 
nuc (ni, j ) = O  

end if 
65 continue 

.Write actinides to fort.7, sort numerically for xs file read 

do 75 k=1,4+ij (j) 
nmin=99 99 9 
ni=O 
do 70 i=l,4+ij(j) 
a=float(nuc(i,j))-float(lOOO*(nuc(i,j)/lOOO)) 
if (nuc( i , j ) .ge .83000.and .a .g t .O-)  then 
if (nuc(i, j) .lt.nmin) then 
nmin=nuc ( i , j ) 
if (iflag(i,j).ne.l) then 

else 
ai=a 

do 69 n=l , nisop (i, j 1 

naix(i,j,n)=nisot(i,j,n) - 1000*(nisot(i,j,n)/lOOO) 
69 aix(i,j,n) = float(nisot(i,j,n)) 

& - float (1000* (nisot (i, j ,n) /1000) ) 
endi f 
ni=i 

end if 
end if 

70 continue 
if (ni.gt.0) then 
kxs=2 
met= ' 0 
if (nuc(ni,j).eq.95242) met='l' 
if (iflag(ni,j).eq.l) then 
do 72 n=l,nisop(ni,j) 
gmat(ni,j,n) = f(ni,j)*gden(j)*vol(j)/aix(ni,j,n) 
gmat(ni, j,n) = gmat(ni, j,n)*atomfr(ni, j,n) 
if (naix(ni, j,n) .lt.lO) then 

elseif (naix(ni,j,n).lt.lOO) then 

else 

write (11,912) kxs,nelem(ni,j) ,naix(ni,j,n) ,met,gmat(ni,j,n) 

write (11,913) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n) 
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72 

write (11,914) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n) 

endi f 

continue 

gma=f (ni, j ) *gden( j ) *vo1 (j ) /ai 
write (11,911) kxs,nuc(ni,j),met,gma 

else 

endi f 
nuc (ni, j ) = O  

end if 
75 continue 

write (ll,'(a12)') '0 0 0 0' 

close (11) 
911 format (i4,i6,al,lpe12.4, 

912 format (i4,i3, '00',il,al,lpe12.4, 

913 format (i4,i3,'0',i2,al,lpe12.4, 

914 format (i4,i3,i3,al,lpe12.4, 

& '  0 0.0000E+00 0 O.OOOOE+OO 

& '  0 0.0000E+00 0 0.0000E+00 

& '  0 0.0000E+OO 0 O.OOOOE+OO 

& '  0 0.0000E+00 0 0.0000E+OO 
80 continue 

return 
end 

C 

0 O.OOOOE+OO') 

0 O.OOOOE+OO') 

0 O.OOOOE+OO') 

0 O.OOOOE+OO') 

C 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...WORINP writes the origen input files. 
c...put GTO 9 card 1/2 way for predictor step. 
c. ..Do not write over restart files 

C 

C 

subroutine worinp 
C 

C 

common /mbinp/nmat,mt(49),voli(49),p0~,~235,days,nouter,ni~er, 
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*~ 
character libnam*80,xslib*6,lib(99)*lO,decayl*80 
character ju3*3,fname*22,flname*22,file9t*12,dec80*80 
integer end,olibn 
dimension day(99),nfeed(99,49),gfl(99,49),gf2(99,49),mfeed(lO), 

& kfeed(10),kfeed1(10,3O~,kfeed2(10,30),tmst~99~, 
& ifeed(10,30),ffeed(lO,3O),tfeed(999,49),ttfeed(999,49), 
& nf1(99,49),rf(99,49),pfra(99),lb(99,4),nt(49) 

itwo=2 
if (olib(2:2).eq.' ' )  olibn=ichar(olib(l:l))-48 
if (olib(2:2).ne.' ' )  olibn=(ichar(olib(l:1))-48)*10+ 

& ichar(olib(2:2))-48 
C 
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c...Add cross section values to existing fort.9 file, which previously 
only 
c...contained the origen2 decay library. 
C 

open (15,file='fort.9.0',status='unknown') 

xsl ib ( 1 : 4 ) = orig ' 
xslib(5:6) = olib(l:2) 
do 2 i=72,1,-1 
if (locale(i:i).eq.' ' )  end=i-1 

decay1 = locale(l:end)//'/orig21' 
open (12,file=decayl,status='old') 

write (15,'(a80)') dec80 
goto 3 

open (18,file=libnam,status='old') 

write (15,'(a80)') dec80 
goto 5 

6 close(l2) 
close (15) 
close (16) 

2 continue 

3 read (12, ' (a80) ' , end=4) dec80 

4 libnam=locale(l:end)//'/'//xslib 

5 read (18, ' (a80) ' ,end=6) dec80 

C 

c...Create data file from scratch ; First read feed rate data file 
C 

if(days.eq.0.0) then 
nfd = 1 
open (ll,file='feed',status='old') 

c...First read the two lines of headings 
C 

C 

read (ll,*) 
read (ll,*) 
do 8 i=l,nouter 
do 7 j=l,nmat 
if (j.eq-1) then 
read (ll,*) tmst(i) ,day(i), 

& pfra(i),nmt(l),nfeed~i,l~,gfl~i,l~,gf2~i,l~,nfl~i,l~,rf~i,l~ 
elseif (j.ge.2) then 

read (ll,*) nmt(j), 
& nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j) 

endi f 
ndisc = 0 

if (gfl(i,j).eq.-2.) ndisc = 1 

if (j.lt.10) then 
if (i.lt.10) then 

elseif (i.ge.10) then 
flname = './tmpfile/param-'//char(j+48)//'.'//char(i+48) 

il = i/10 
i2 = i - il*10 
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flname = './tmpfile/param-'//char(j+48)//'.' 

& //char(i1+48) //char(i2+48) 
endi f 

jl = j/lO 
j2 = j - jl*10 
if (i.lt.10) then 

elseif ( j . ge. 10) then 

flname = './tmpfile/param_'//char(jl+48)//char(j2+48)//'.' 
& //char (i+48) 
elseif (i.ge.10) then 
il = i/10 
i2 = i - il*10 
flname = './tmpfile/param_'//char(jl+48)//char(j2+48)//'.' 

& / / c h a r ( i l + 4 8 ) / / c h a r ( i 2 + 4 8 )  

endi f 
endi f 
open (16,file=flname,status='unknown') 
write (16,910) ndisc 

910 format (i4,' ndisc') 
close (16) 

7 if (i.gt.l.and.gfl(i,j)-eq.-l.) gfl(i,j)=gf2(i-l,j) 
8 days=days+day(i) 
read (11, (i4) ' )  nfs 
do 9 n=l,nfs 
read (11, ' (i4) ' )  mfeed(n) 
do 9 m=l,mfeed(n) 

read (11, ' (i4) ' 1  nrs 
do 10 n=l,nrs 
read (ll,'(i4)') kfeed(n) 
do 10 k=l, kfeed(n) 

9 read (11, (i5, f9.7) ' )  ifeed(n,m), ffeed(n,m) 

10 read (11, (i4,i4) I )  kfeedl(n,k),kfeed2(n,k) 
C 

c...Rewrite mb.inp with new days (later add feed data to output) 
C 

call wmbinp 
else 
do 42 i=l,nouter 

42 day(i) = days/float (nouter) 
endi f 

45 continue 
close (11) 

C 

c...Write flag to file that indicates whether a feed file 
c...exists or not 
C 

open (17,file='./tmpfile/params2',status='unknomi) 
write (17,950) nfd 

950 format (i4,' nfd') 
close (17) 

C 
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c...Write origen input file for each step and write feed data to mb9.out 
C 

do 100 j=l,nmat 
if (j.lt.10) then 

elseif (j .ge. 10) then 
file9t = 'mb9t_'//char(j+48)//'.outJ 

jl = j/lO 
j2 = j - jl*10 
file9t = 'mb9t-'//char(jl+48)//char(j2+48)//'.out' 

endi f 
open (14,file='mb9',status='unknown') 
write (14,'(/,a21)') 'Monteburns Inventory ' 

close (14) 
open (14,file=file9t,status='unknown') 
write (14, ' (/,a33,a13,i3) ' 1  

& 'Monteburns Grams of Feed per Step', 
& ' for material',j 

& 'mat #','days', (niso(i,j),i=l,nauto(j)), 'actinide' 
write (14, ' (a5,2x, a4,5x, a9,30 (lx, a91 ) ' ) 

do 48 i=l,nouter 
zero= 0.0 

& 

& 

c...If restart read flux from o ld  mbori and put in new mbori 
C 

if (i.eq.nrst+l.and.nrst.gt.O) then 
if (j.lt-10) then 
if (i.lt.10) then 

elseif (i.ge.10) then 
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48) 

il = i/10 
i2 = i - il*lO 
fname='./tmpfile/mbori-'//char(j+48)//'.' 

& //char(il+48)//char(i2+48) 
end if 

jl = j/lO 
j2 = j - jl*10 
if (i. It. 10) then 

elseif ( j - ge. 10 ) then 

fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'~' 
//char(i+48) 

elseif (i.ge.10) then 
il = i/10 
i2 = i - il*10 
fname='./tmpfile/mbori-'//char(jl+48)//char(j2+48)//'.' 

//char(il+48)//char(i2+48) 
endi f 
endi f 
open (ll,file=fname,status='unknown') 

if (ju3.ne.'1RF1) goto 12 
backspace (11) 

12 read (11, ' (a3) I ,  end=14) ju3 
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read (11,900) zero 
14 close (11) 
900 format (19x,lpe13.5) 

end if 
C 

13 n=nfeed(i, j) 
dstep=day(i)/float(ninner) 
do 15 m=l,nauto(j)+l 

15 tfeed(m,j)=O. 
C 

if ( 3  .lt.10) then 
if (i-lt.10) then 

elseif (i.ge.10) then 
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48) 

il = i/10 
i2 = i - il*lO 
fname='./tmpfile/rnbori-'//char(j+48)//'.' 

& //char(il+48)//char(i2+48) 
end if 

jl = j/lO 
j2 = j - jl*10 
if (i . It - 10) then 

& //char(i+48) 

elseif (j .ge.lO) then 

fname='./trnpfile/mbori-'//char(jl+48) //char(j2+48)//'.' 

elseif (i .ge -10 ) then 
il = i/10 
i2 = i - il*lO 
fname='./tmpfile/mbori_'//char(jl+48)//~har(j2+48)//~.' 

& //char(il+48)//char(i2+48) 
endi f 
endi f 
open (13,file=fname,status='unknown') 

C 

c...Write group info to new file, then write initial commands. 
C 

data (lb(22,ii) ,ii=l,3) ,lib(22) /204,205,206, 'PWRU'/ 
data 
data 
data 
data 
data 
data 
data 
data 

lb(23,ii),ii=1,3),lib(23) 
lb(24,ii) ,ii=l,3) ,lib(24) 
lb(25, ii) , ii=l, 3),lib(25) 
lb(26, ii) , ii=l, 3), lib(26) 
lb(27,ii),ii=1,3),lib(27) 
lb(28, ii) , ii=l, 3),lib(28) 
lb(29,ii) ,ii=l,3) ,lib(29) 
lb(30,ii),ii=1,3),lib(30) 

data (lb(31,ii),ii=1,3),1ib(31) /254,255,256,'BWRPUUf/ 
data (lb(32,ii) ,ii=l,3) ,lib(32) /257,258,259, 'BWRPUPU'/ 
data (lb(33,ii),ii=1,3),1ib(33) /201,202,203,'THERMAL1/ 
data (lb(34,ii),ii=1,3),1ib(34) /401,402,403,'CANDUNAU'/ 
data (lb(35,ii) ,ii=l,3) ,lib(35) /404,405,406, 'CANDUSEU'/ 
data (lb(36,ii),ii=1,3),1ib(36) /311,312,313,'AMOPUUUC'/ 
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data (lb(37,ii),ii=1,3),1ib(37) 
data (lb(38,ii) ,ii=l,3) ,lib(38) 
data (lb(39,ii),ii=1,3),1ib(39) 
data (lb(40, ii) , ii=l, 3 ) ,  lib(40) 
data (lb(4l,ii),ii=1,3),lib(41) 
data (lb(42,ii) ,ii=l,3) ,lib(42) 
data (lb(43,ii),ii=1,3),1ib(43) 
data (lb(44, ii) , ii=l, 3),lib(44) 
data (lb(45,ii),ii=1,3),1ib(45) 
data (lb(46,ii),ii=1,3),1ib(46) 
data (lb(47,ii),ii=1,3),1ib(47) 
data (lb(48,ii),ii=1,3),1ib(48) 
data (lb(49,ii) ,ii=l,3) ,lib(49) 
data (lb(5O,ii),ii=l,3) ,lib(50) 
data (lb(51,ii) ,ii=l,3) ,lib(51) 
data (lb(52, ii), ii=l, 3), lib(52) 
data (lb(53,ii),ii=1,3),1ib(53) 
data (lb(54,ii),ii=1,3),1ib(54) 
data (lb(55, ii) , ii=l, 3) , lib(55) 
data (lb(56,ii),ii=1,3),1ib(56) 
data (lb(57,ii),ii=1,3),1ib(57) 
data (lb(58,ii),ii=1,3),1ib(58) 
data (lb(59, ii) , ii=l, 3), lib(59) 
data (lb(60,ii) ,ii=l,3) ,lib(60) 
data (lb(65,ii),ii=1,3),1ib(65) 
data (lb(66,ii),ii=l,3),1ib(66) 

/ 3 1 4 , 3 1 5 , 3 1 6 , ' A M O P U U U A ' /  

/317,318,319,'AMOPUUR'/ 
/301,302,303,'EMOPUUUC'/ 
/304,305,3O6,'EMOPWUA'/ 
/307,308,309,'EMOPUUUR'/ 
/321,322,323,'AMORUUUC'/ 
/324,325,326,'AMORUUUA1/ 
/327,328,329,'AMORUUR1/ 
/331,332,333,'AMOPUUTC1/ 
/334,335,336,'AMOPUUTA'/ 
/337,338,339,'AM0PUUTR1/ 
/341,342,343,'AMOPTTTC'/ 
/344,345,346,'AMOPTTTA1/ 
/347,348,349,'AMOPTTTR1/ 
/361,362,363, 'AMOITTTC'/ 
/364,365,366, 'AMOITTTA'/ 
/367,368,369,'AMOITTTR1/ 
/371,372,373,'AM02TTTCt/ 
/374,375,376,'AM02TTTA'/ 
/377,378,379,'AM02TTTR1/ 
/351,352,353,'AMOXTTTCt/ 
/354,355,356,'AMOXTTTA1/ 
/357,358,359,'AMOXTTTR'/ 
/381,382.383,'FFTFC1/ 
/381,382.383,'ADV3'/ 
/204,205,206,'PWRSPEC'/ 

C 

write (13,921) 
nn = abs(nfl(i,j)) 
if(nfl(i,j).le.O) then 

write (13,921) 
got0 19 

endi f 
do 16 m=1,9 

16 write (13,918) m 
do 17 m=10,14 

17 write (13,922) m 
write (13,920) (1.0 - rf(i,j)) 
write (13,921) 
if(nn.gt.nrs) then 
write (6,919) i 

919 format ( I * * * * *  MB: Invalid removal group I ,  

& 'entered for outer step number',i4) 
stop 

endi f 
do 18 k=l,kfeed(nn) 
do 18 m=abs(kfeedl(nn,k)),abs(kfeed2(nn,k)) 

18 write (13,923) m 
19 write (13,921) 

write (13,924) 
write (13,925) 
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write (13,926) lb(olibn,l),lb(olibn,2),lb(olibn,3),lib(olibn) 
write (13,927) lb(olibn,l),lb(olibn,2),lb(olibn,3) 
write (13,928) 
write (13,929) 
write (13,930) 
write (13,931) 
write (13,932) 
write (13,933) 
write (13,934) 
write (13,935) 
write (13,905) 
kk=2 
icont=O 
if (n.gt.O.and.gfl(i,j).ne.-2) icont=l 
if (icont.eq.1) kk=lO 

C 

c... Write various loops into origen input file 
C 

do 22 k=l, kk 
write (13,901) 
if (icont.eq.1) then 
write (13,911) 
write (13,902) ninner/lO 
dburn=dstep*float(ninner/lO) 

write (13,902) ninner/2 
dburn=dstep*float(ninner/2) 

else 

end if 
write (13,903) dstep, zero 
write (13,904) 
write (13,905) 

C 

if (n.gt.0) then 
do 21 m=l,mfeed(n) 
nm=2 
if (ifeed(n,m) .lt.89000) nm=l 
ifd6=ifeed(n,m)*lO 
if (ifd6.eq.952420) ifd6=ifd6+1 
if (gfl(i, j )  .ne.-2) then 

g f s = ( f l o a t ( k ) - . 5 ) / f l o a t ( k k l " ( g f 2 ( i , j ) - g f l ( i , j ) ) + g f l ( i , j )  

gfeed=ffeed(n,m)*gfs*dburn 

if (k.eq.1) then 

else 

endi f 

else 

gf eed= f f eed (n, m) *gf 2 ( i , j ) *day ( i ) 

gfeed = 0.0 

endi f 
if (ifeed(n,m).ge.89000) then 

endi f 
tfeed(nauto(j)+l,j)=tfeed(nauto(j)+l,j)+gfeed 
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do 29 mm=l,nauto(j) 
if (ifd6.eq.nisnr(mm,j)) then 

endi f 
tfeed(mm,j)=tfeed(mm,j)+gfeed 

29 continue 
C 

if (icont.eq.1) write (13,913) nm,ifd6,ffeed(n,m)*gfs 

if (icont.eq.1) write (13,914) 
21 continue 

end if 
C 

c... Write end of run 1/2 way through for predictor step 
C 

ihalf = 0 
if (k.eq.5) ihalf = 1 
if (k.eq.l.and.icont.eq.0) ihalf=l 
if (ihalf .eq.l) then 
write (13,938) 
if (nfl(i,j).gt.O) write (13,936) 
write (13,937) 
write (13,939) 
end if 

C 

22 continue 
C 

C complete end of origen input file 
C 

if(nfl(i,j).gt.O) write (13,936) 
write (13,937) 

C 

25 close (13) 
write (14,'(i2,lx,f8.2,3x,lpe9.2,30e10.2)') 

do 46 m=l,nauto(j)+l 
& i, day (i ) , (tfeed (m, j ) , m=l, nauto ( j ) +1) 

46 ttfeed(m,j)=ttfeed(m,j)+tfeed(m,j) 
48 continue 

write (14,'(a3,f8.2,3x,lpe9.2,30e10.2)') 

write (14,'(/,a41,a13,i3)'1 
& 'tot',days,(ttfeed(m,j),m=l,nauto(j)+l) 

& 'Monteburns Grams Produced (or Destroyed) per Step', 
& ' for materia1I.j 

& (niso(i,j),i=l,nauto(j) ),'actinide' 
write (14, '(3x,a9,30(lx,a9)) ' I  

close (14) 

901 format ( ' B U P ' )  

902 format ( 'DOL 1 ',i4) 

904 format ('MOV 3 2 0 l.O'/'CON l'/'BUP') 
905 format ( ' S T P  2') 

C 

903 format ('IRF ',lp2e13.5, ' 2 3 4 1') 

911 format ('INP 1 0 1 -1 4 4') 
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913 format (il,i8,lpel2-4,' 0 0 . 0 ' )  

914 format ( ' 0 ' )  

918 format (il,t4, '1 1.0') 
920 format ('15',t4,'1 ' , f 7 . 3 )  

921 format ('-1') 
922 format (i2,t4,'1 1.0') 
923 format (i2,' 15') 
924 format ( 'TIT ORIGEN2 input file for monteburns') 
925 format ( ' L I P  0 1 0 ' )  

926 format ('FDA * * *  Libs ,i3, I ,  ',i3, I ,  ' ,i3, ' = ',a10) 
927 format ( 'LIB 0 1 2 3 ',3(i3,1x),'9 3 0 3 0 ' )  

92 8 format ( ' RDA 1 Bundle of fuel',/, 
& 'FDA Read initial comps into vector 1 from fort.4 in I ,  

& ' gram-atoms ' ) 
929 format ( ' INP 1 -2 0 -1 4 4 ' )  

930 format ( 'MOV 1 2  0 l.O',/, 
& ' MOV 1 3  0 O . O ' , / ,  

& ' MOV 1 4 0 0 . 0 ' )  

931 format ('FDA * * * I , / ,  

932 format ( 'HED 1 INITIAL') 

934 format ('OPTA 4*8 7 19*8',/, 
& 'OPTL 4*8 7 19*8',/, 
& ' OPTF 4*8 7 19*8') 

& 'RDA Begin burn, add cards after STP 2, remove FP at', 

& end of burn') 
936 format ('PRO 2 3 4 -1') 
937 format ( 'MOV 3 2 0 l.O',/, 

& ' OUT 4 1 1 0 I , / ,  

& ' PCH 2 2 2  ' , I ,  

& ' RDA " 1 ,  

& ' END ' 1  

& 'RDA * * *  Set output options (print in grams) ' )  

933 format ( 'CUT 5 1.0-10 -1') 

935 format ('RDA * * * I  I / ,  

938 format ('RDA First of 1/2 way predictor cards') 
939 format ('FDA Last of 1/2 way predictor cards') 

100 continue 
return 
end 

C 

C 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 
C 

c...Wo~Xs calculates new xs from mcnp and modifies the cross 
c...sections in fort.9. Also calculates flux and modifies mbori 
c...for 1/2 step 
C 

subroutine worxs 

character ju10*10,ju80*80,ju3*3,fort7*12,ju6*6,blanks*4,mtuf*20 
C 
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common /mbinp/nmat,mt~49~,voli(49~,~ow,~235,days,nouter,ni~er, 
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr (999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,t~tle*72,olib*2,locale*72,posit*l 
character tal*3,nm*2,file8*12,file6*12,fname*21,fname2*25 
character fort9*12,f9tmp*l5,filel*l2,file2*l2,file3*l2,filelt*l2 
dimension xs(999,4,49),eflx(7,49),day(99),nfeed(99,49),flx(49), 

& gf1(99,49),gf2(99,49),nfl(99,49),rf(99,49),~fra(99), 
& nmt(49),nisq(49),gad(49),fismac(49),tmst(99), 
& qfis(~~),flux(49),flux2(49),fiscap(999),~01(49),~wr(49), 
& ava1(4,49),absmac(49),frfast(49),frth(49),n2~ac(49), 
& burnup(0:99,49), fluxy(49), fluxy2 (49) 
real keff,nu,macfis,macabs,macn2n,kinfin(49),kinf,mtu(49) 

C 

c...First obtain data from feed input file 
C 

open (17,file='./tmpfile/params2',status='old') 
read (17, ' (i4) ' )  nfd 
if (nfd.eq.1) then 
open (ll,file='feed',status='old') 
read (ll,*) 
read (11,*) 
daynum = 0.0 

do 10 i=l,nouter 
do 5 j=l,nmat 
if (j.eq.1) then 
read (ll,*) tmst(i),day(i),pfra(il, 

& nmt(l),nfeed(i,l),gfl(i,l),gf2(i,l),nfl(i,l),rf(i,l) 
elseif (j .ge.2) then 
read (ll,*) 

& nmt(j),nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j) 
endi f 

5 continue 
if (i.eq.nrst+l) goto 15 

10 daynum = daynum + day ( i ) 
else 

do 12 i=l,nouter 
day(i) = days/float(nouter) 
pfra(i) = 1.0 
if (i.eq.nrst+l) goto 15 

12 daynum = daynum + day(i) 
endi f 

C 

c...Read mass fraction section to get volume of each material 
C 

do 13 j=l,nmat 
13 vol(j) = 0.0 

15 close (11) 
open (ll,file='mbmco',status='old') 

280 read (ll,'(a6)') ju6 
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read (11, ' ( / / / )  ' ) 

do 295 j=l,nmat 
if (nt .eq.abs (mt (j ) then 

end if 

if (n.ne.0) goto 290 

290 read (11,'(i6,a6,i5,1x,lp3e12.5)') n,ncell,nt,aden,gden,voll 

vol (j ) =vol (j ) +voll 

295 continue 

C 

c...Read keff and calculate nu 

20 read (ll,'(alO)') jul0 
C 

if (julO.ne.' neutron c') goto 20 
C 

C 

read (11, ' ( / )  I ) 

read (11, (31x,lpe10.4) ' )  src 
read (11, ' ( / / / / / / / / / / / I  ' ) 
read (11,'(31x,lpe10.4,54x,lpelO.4)') fsrc,floss 
read (11, ' ( / / / / / )  I ) 

read (11, (35x, lpe10.4, Op, f7.4) ) fmult,err 

if (fsrc.ne.0.) then 
nu=fsrc/floss 
keff = (fmult-l.)/(fmult-l./nu) 
relerr = (fmult*(l.+err)-l.)/(fmult*(l.+err)-l./nu) 
relerr = (relerr - keff)/keff 

else 
30 read (ll,l(alO)') jul0 

if (julo-ne. 1 _ _ _ _ _ - _ _ _ I  ) goto 30 
read (11, I (/72x,f7.5,41x,f7.5)') keff,relerr 
nu=keff*src/floss 

endi f 
C 

c...Read energy spectrum tallies (if tallies don't exist in mbmco, 
c...then tal='yes' (used in later commands) 
C 

if (posit .eq. 'm' then 
do 68 j=l,nmat 

if (julO(l:6).ne.'ltally') goto 55 
tal = ' yes '  

mat = 0 
do 6 0  m=l,nmat 
if (m.ge.10) then 
ml = m/10 
m2 = m - ml*lO 
ml = ml + 1 
nm = char(ml+48)//char(m2+48) 

55 read (ll,'(alO) ',end=67) jul0 

elseif (m.lt.10) then 

I 
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nm = 'l'//char(m+48) 
endi f 

if (nm.eq.jul0(8:9)) then 
mat = m 
goto 61 
endi f 

60 continue 
if (mat.eq.0) goto 55 

C 

61 read (11, ' (a10) I )  jul0 
if (jul0.ne. ener' ) goto 61 

do 65 i=1,7 

frfast(mat) = 0. 

frth(mat) = (eflx(l,mat)+eflx(2,mat))/eflx(7,mat) 
do 66 i=3,6 

C 

65 read (11, '(17x,lpe11.5) ' )  eflx(i,mat) 

66 frfast(mat1 = frfast(mat) + eflx(i,mat)/eflx(7,mat) 
C 

if (mat.lt.10) then 

elseif (mat.ge.10) then 
file6 = 'mb6-'//char(mat+48)//'.out' 

jl = mat/l0 
j2 = mat - j1*10 
file6 = 'mb6_'//char(j1+48)//char(j2+48)//'.out' 

endi f 
open (14,file=file6,status='unknom1) 
write (14,'(i2,1x,6f10.2)') nrst, 

& (100.*eflx(~,mat)/eflx~7,mat),i=l,6) 
close (14) 
goto 68 

67 write (6,*) I * * * * *  MB ERROR: 
& ' materials were 
stop 

68 continue 
C 

c...Read tallies and calculate new 

Not all user-specified MCNP', 
found in MCNP output file' 

cross sections 
C 

7 0  

do 88 j=l,nmat 
iflag = 0 

read (11, ' (a10) ' 1 jul0 
if (ju10(1:6) .ne. 'Itally' ) goto 70 
mat = 0 
do 72 m=l,nmat 
if (m.ge.10) then 
ml = m/10 
m2 = m - ml*10 
ml = ml + 5 
nm = char(m1+48) //char(m2+48) 

nm = '5'//char(m+48) 
elseif (m.lt.10) then 
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endi f 
if (nm.eq.jul0(8:9)) then 
mat = m 

goto 74 
endi f 

72 continue 
if (mat.eq.0) goto 70 

C 

74 read (ll,'(alO)') jul0 
if (ju1O.ne.l multiplie') goto 74 

C 

82 

read (ll,'(l7x,lpell.5)') flx(mat) 
if (flx(mat).eq.O) write (6,") I * * * * *  MB: Tally read error' 
do 80 i=l,ntot(j) 
do 80 m=1,4 

if (ju1O.ne.l multiplie') goto 76 
read (11,'(17x,lpe11.5)') xs(i,m,j) 
xs (i , m, j ) =xs (i , m, j ) / f lx ( j 
if (nisn(i,j).ge.89000) iflag = 1 

if (iflag.eq.1) then 

76 read (ll,'(alO)') jul0 

80 continue 

do 85 m=1,4 
read (ll,'(alO)') jul0 
if (jul0.ne. ' multiplie' ) goto 82 
read (11, (17x,lpe11.5) ' )  xs(ntot(j)+l,m,j) 
xs(ntot(j)+l,m,j)=xs(ntot(j)+l,m,j)/flx(j) 

85 continue 
endi f 
do 87 m=1,4 

86 read (11, ' (a101 ' 1  jul0 
if (ju1O.ne.l multiplie') goto 86 
read (11,'(17x,lpe11.5)') xs(ntot(j)+2,m,j) 
xs(ntot(j)+2,m,j)=xs(ntot(j)+2,m,j)/flx(j~ 

87 continue 
if (xs(ntot(j)+2,l,j) + xs(ntot(j)+2,4,j).ne.O.O) then 
kinfin(j) = (nu*xs(ntot(j)+2,4,j) + 2.0*xs(ntot(j)+2,2,j))/ 

& (xs(ntot (j )+2,1, j) + xs(ntot (j 1 +2,4, j 1 )  
else 

endi f 
88 continue 

close (11) 
endi f 

write ( 6 , * )  I * * * * *  MB ERROR: Cross Section Tallies Not Correct' 

C 

c...Modify library 

totpwr = 0.0 
totfis = 0.0 
if (posit.eq.'m') then 
do 260 j=l,nmat 

C 
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mtu(j) = 0.0 
write (6,*) ' . .. MB: Modifying Library for material ',j 
if (j -1t.10) then 
fort7 = 'fort_'//char(j+48)//'.7' 
fort9 = 'fort_'//char(j+48)//'.9' 
f9tmp = 'fort-'//char(j+48)//'-9.tmp' 
mtuf = './tmpfile/mtu_'//char(j+48)//'.tmp' 

jl = j/lO 
j2 = j - jl*10 
fort7 = 'fort-'//char(jl+48)//char(j2+48)//'.7' 
fort9 = 'fort-'//char(jl+48)//char(j2+48)//'.9' 
f9tmp = 'fort-'//char(jl+48)//char(j2+48)//'.9.tmp' 
mtuf = './tmpfile/mtu_'//char(jl+48)//char(j2+48)//'.tmp' 

elseif (j .ge.lO) then 

endi f 
open (12,file=fort9,status='old') 
open (13,file=f9tmp,status='unknownt) 
if (nrst.eq.0) open (17,file=mtuf,status='unknowni) 

C 

90 ixs=O 
read (l2,913,err=97,end=99) nflag,blanks 
if (nflag.gt.3.and.blanks.ne.' ' ) then 
backspace(l2) 

nxs, nnuc, xsl , xs2, xs3, xs4, xs5, xs6, xf lag 
do 95 i=l,ntot(j) 
if (nisnr(i,j).eq.nnuc) then 

92 read (12,921, err=92 ) 
& 

ixs=l 
write (13,921) nxs,nnuc,(xs(i,m,j),m=l,4),xs5,xs6,xflag 
end if 

95 continue 

97 if (ixs.eq.0) then 
end if 

backspace (12) 
read (12,'(a80)') ju80 
write (13,'(a80)') ju80 

end if 
got0 90 

913 format (i4,a4) 
921 format (i4,i8,lp6el0.3,f7.1) 

C 

99 continue 
close (12) 
close (13) 

C 

c...Calculate energy per fission qfis and flux norm factor 
c...need to determine contribution of each is0 to fission 
C 

100 qrat=l.O 
if (qu235.lt.O.) call calcq(qrat,fort7,fort9) 
qf is (j ) =abs ( ~ 2 3 5 )  *qrat 
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C 

c...Calculate the macroscopic fission cross section of the 
c...isotopes from the number densities multiplied by the 
c...microscopic fission cross section 

c...Read fort.7 and fort.9 to get density and fis xs 
C 

C 

open (16,file=fort7,status='old') 
open (13,file=f9tmp,status='old1) 
nact = 27 

C 

c...Calc relative fission per nuclide 
C 

fismac(j) = 0. 
n2nmac(j) = 0. 

absmac(j) = 0. 
n = O  

do 240 m=1,4 
220 read (16,91l,err=220,end=250) kxs, (nisq(m),gad(m),m=1,4) 

230 

232 
& 

235 
C 

ixs=O 
read (l3,913,err=235,end=239) nflag,blanks 
if (nflag.gt.3.and.blanks.ne.' ' )  then 
backspace(l3) 
read (13,92l,err=232) 
nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag 

goto 230 
else 

endi f 
if (nnuc.eq.nisq(rn)) ixs=l 
if (ixs.eq.0) goto 230 

if (voli(j).eq.O.O) voli(j) = vol(j) 
aval (m, j ) = gad (m) * 0.6022 /voli ( j ) 
absmac (j = absmac (j ) + aval (m, j ) *xs1 
n2nmac ( j  ) = n2nmac ( j  ) + aval (m, j ) *xs2 
if (kxs.eq.2) fismac(j) = fismac(j) + aval(m,j)*xs4 
nisql=nisq(m)/lO 
nz=nisq1/1000 
a=float(nisql)-float(lOOO*(nisql/lOOO)) 
if (nrst.eq.0) then 
if (nz.ge.90) then 

endi f 
endi f 
n = n + l  

mtu(j) = mtu(j) + gad(m)*a 

C 

239 if (ixs.eq.0) rewind(l3) 
240 continue 

goto 220 
C 

c...Two different fluxes must be calculated: one for the end 
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c...of step nrst, and one for the beginning of step (nrst+l) 
c...The reason these two values are different is that the 

c...power fraction for each outer loop step is different 
c 
250 totpwr = totpwr + (qfis(j)*flx(j)*fismac(j)*voli(j)) 

totfis = totfis + (flx(j)*fismac(j)*voli(j)) 
qave = totpwr/totfis 
if (nrst.eq.0) write (17,'(1pe10.3)') mtu(j) 

260 continue 
C 

if (nrst.eq.0) then 
pfracl = pfra(1) 
pfrac2 = pfra(1) 

pfracl = pfra(nrst) 
pfrac2 = pfra(nrst) 

pfracl = pfra(nrst) 
pfrac2 = pfra(nrst+l) 

elseif (nrst.eq.nouter) then 

else 

endi f 
C 

c. .. Normalize the flux obtained from MCNP by using the factors "nu" 
c.. . power, energy per fission, and k-eff 
C 

if (fsrc.eq.0.) then 
fnorm = nu*l.0e+6*pow*pfracl/1.602e-l3/qave/keff 
f2norm = nu*l.0e+6*pow*pfrac2/1.602e-l3/qave/keff 

fnorm = src*l.0e+6*pow*pfracl/l.6O2e-l3/qave/floss 
f2norm = src*l.0e+6*pow*pfrac2/1~602e-l3/qave/floss 

else 

endi f 
C 

c... Write xs data to various mb files 
C 

do 160 j=l,nmat 
if (tal.ne.'yes') goto 120 
fsabs=xs(ntot(j)+l,l,j) 
fsfis=xs(ntot(j)+l,4,j) 
fsn2n=xs(ntot(j)+l,2,j) 
falabs=xs(ntot(j)+2,l,j) 
falfis=xs(ntot(j)+2,4,j) 
faln2n=xs(ntot(j)+2,2,j) 

C 

if (j-lt.10) then 
file1 = 'mbl_'//char(j+48)//'.out' 
filelt= ' m b l t - ' / / c h a r ( j + 4 8 ) / / ' . o u t '  

file2 = 'mb2_'//char(j+48)//'.out' 
file3 = 'mb3-'//char(j+48)//'.out' 
file8 = 'mb8_'//char(j+48)//'.out1 
mtuf = *./tmpfile/mtu-'//char(j+48)//'.tmp1 

elseif (j .ge.lO) then 
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jl = j/lO 
j2 = j - j1*10 
file1 = 'mbl-'//char(jl+48)//char(j2+48)//'.out' 
filelt= 'mblt_'//char(jl+48)//char(j2+48)//'.out' 
file2 = 'mb2_'//char(j1+48)//char(j2+48)//'.out1 
file3 = 'mb3_'//char(j1+48)//char(j2+48) //'.out' 
file8 = 'mb8-'//char(j1+48)//char(j2+48)//'.out' 
mtuf = './tmpfile/mtu_'//char(j1+48)//char(j2+48)//'.tmp' 

endi f 
open (14,file=file2,status='unknown') 
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(xs(i,l,j),i=l,nauto(j)) 
close (14) 
open (14,file=file3,status='unknown') 
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(xs(i,4,j),i=l,nauto(j)) 
close (14) 
do 119 i=l,nauto(j) 
if (xs(i,l,j).ne.O.O.and.nisn(i,j).ge.89000) then 

else 

endi f 
119 continue 

open (14,file=file8,status='unknown1) 
write (14,'(i2,1x,Opf9.4,3Ofl0.4)') 

close (14) 

fiscap(i) = (xs(i,4, j)/xs(i,l, j)) 

fiscap(i) = 0.0 

& nrst, ( f iscap (i) , i=l, nauto ( j ) ) 

C 

c... Write mcnp output to mblt-out 
C 

120 flux(j)=fnorm*flx(j) 
flux2 (j ) =f2norm*flx( j ) 
pwr(j)=qave*flux(j)*fismac(j) *voli(j)*1.602e-13/1.Oe+6 

C 

c.. Calculate total accumulated burnup 
C 

open (14,file=filelt,status='unknown') 
read (14,*) 
read (14,*) 
read (14,*) 
do 121 i=O,nrst-1 

close (14) 
if (nrst.ge.1) then 

121 read (14,'(43x,Opf10.3)') burnup(i,j) 

open (17,file=mtuf,status='unknown') 
read (17,'(1pe10.3)') mtu(j) 

endi f 
if (mtu(j) .ne.O.O.and.nrst.ne.O) then 
burnup(nrst,j) = burnup(nrst-1,j) 

E€ + pwr(j)*lOOO.O*day(nrst)/mtu(j) 
else 
burnup (nrst, j ) = 0.0 
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endi f 
write (6,900) j,flux(j),fismac(j),pwr(j),burnup(nrst,j) 

C 

C 

if (fsfis.ne.O.O.and.fsabs.ne.O.0) then 

else 

endi f 
if ((nu*fsfis+2.*fsn2n).ne.O.O.and.(fsabs+fsfis).ne.O.O)then 

else 

endi f 
if (falfis.ne.O.O.and.falabs.ne.O.0) then 

else 

endi f 
if ((nu*falfis+2.*faln2n).ne.O.O.and.(fala~sifalfis).~e.O.O)the~ 

fisabs = fsfis/fsabs 

fisabs = 0.0 

eta = (nu*fsfis+2.*fsn2n)/(fsabs+fsfis) 

eta = 0.0 

fisall = falfis/falabs 

fisall = 0.0 

aeta = (nu*falfis+2.*faln2n)/(falabs+falfis) 

aeta = 0.0 
else 

endi f 
open (14,file=filel,status='unknown') 
write ( 14,9 02 ) nrs t , qf is ( j ) I flux ( j ) I f iSmaC ( j ) , Pwr 

& burnup(nrst,j), 
& falabs,falfis,fisall,faln2n,aeta,fsabs,fsfis,fis 
close (14) 

C 

c...Modify flux in origen files 
C 

do 150 ii=1,2 
if (ii.eq.1) then 
if (j . It. 10) then 
fname='mbori-'//char(j+48) 
fname2='mbori_'//char(j+48)//'.tmp' 

jl = j/lO 
j2 = j - jl*10 
fname='mbori-'//char(jl+48)//char(j2+48) 

elseif ( j . ge -10) then 

j), 

bs, fsn2n,eta 

- 

fname2='mbori_'//char(jl~48)//char(j2+48)//'.tmp1 
endi f 

i=nr s t + 1 
if (j -It. 10) then 

else 

if (i-lt.10) then 
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48) 
fname2='./tmpfile/~ori_'//char(ji48)//'.'//char(i+48~//'.t~~' 

il = i/10 
else 
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i2 = i - il*10 
fname='./tmpfile/mbori_'//char(j+48)//'.' 

& //char(i1+48) //char(i2+48) 
fname2='./tmpfile/mbori_'//char(j+48)//'.' 

& //char(il+48)//char(i2+48)//'.tmp' 
end if 

jl = j/lO 
j2 = j - jl*10 
if (i.lt-10) then 

& //char(i+48) 

& //char(i+48)//' .tmp' 

elseif (j .ge.lO) then 

fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.' 

fname2='./tmpfile/mbori_'//char(jl+48)//~har(j2+48)//'~~ 

elseif (i.ge.10) then 
il = i/10 
i2 = i - i1*10 
fname='./tmpfile/mbori-'//char(jl+48) //char(j2+48)//': 

fname2='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.' 
& //char(i1+48) //char(i2+48) 

& //char (i1+48) //char (i2+48) / /  ' - tmp' 
end if 
endi f 
end if 

C 

open (12,file=fname,status=",err=140) 
open (13,file=fname2,status='unknown') 
if (mt(j) .lt.O) then 
flux(j) = 0.0 
flux2(j) = 0.0 

endi f 
C 

130 read (12,'(a3)',end=140) ju3 
if ( j u 3  .eq. 'IRF' then 
backspace(l2) 
read (12,'(a6,lpe13.5)',end=140) ju6,dstep 
if (ii-eq-1) then 

else 

endi f 

backspace(l2) 
read (12,'(a80)',end=140) ju80 
write (13,'(a80)') ju80 

write (13,992) dstep,flux(j) 

write (13,992) dstep, flux2 (j) 

else 

end if 
goto 130 

140 continue 
close (12) 
close (13) 

150 continue 
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& 

& 

160 continue 
C 

c . .  . Obtain power fraction for ALL steps for flux calculations 
C 

if (npre.eq.0) then 
if (nfd.eq.1) then 
open (15,file='feed',status='old') 
read (15,*) 
read (15,*) 
do 111 i=l,nouter 
do 111 j=l,nmat 
if (j .eq.l) then 
read (15,*) tmst(i) ,day(i) ,pfra(i), 
nmt(l),nfeed(i,l),gfl(i,lI ,gf2(i,l),nfl(itl) ,rf(i,l) 

elseif (j.ge.2) then 
read (15,*) 
nmt(j),nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j) 

endi f 
c on t i nue 
close (15) 

do 112 i=l,nouter 

111 

else 

112 pfra(i) = 1.0 
endi f 

C 

c...Modify flux in origen files. For zero predictor steps, modify all 
fluxes 
C 

do 170 j=l,nmat 
do 168 i=2,nouter 
if (j .It. 10) then 
if (i. It. 10) then 
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48) 
fname2='./tmpfile/mboxi-'//char(j+48)//'.'//char(i+48)//'.tmp' 

il = i/10 
i2 = i - il*10 
fname='./tmpfile/mbori_'//char(j+48)//'.' 

& //char(il+48)//char(i2+48) 
fname2='./tmpfile/mbori_'//char(j+48) / / ' . I  

& //char(il+48)//char(i2+48)//'.tmpt 

else 

end if 

jl = j/lO 
j2 = j - jl*lO 
if (i.lt.10) then 

& //char(i+48) 

& //char(i+48)//'.tmp' 

elseif (j.ge.10) then 

fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.' 

fname2='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.' 

elseif (i.ge.10) then 

147 



il = i/10 
i2 = i - il*10 
fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.' 

fname2='./tmpfile/mbori_'//char(jl+48)//char~j2+48~//'.' 
& //char(il+48)//char(i2+48) 

& //char(il+48)//char(i2+48)//'.trnp1 
end if 
endi f 

C 

C 

c... Normalize the flux obtained from MCNP by using the factors "nu" 
c... power, energy per fission, and k-eff 
C 

i f ( f src . eq . 0 . ) then 
fnrm = nu*l.0e+6*pow*pfra(i)/1.602e-l3/qave/keff 
f2nrm = nu*l.Oe+6*pow*pfra(i)/1.602e-13/qave/keff 

fnrm = src*l.0e+6*pow*pfra(i)/1.602e-l3/qave/€loss 
f2nrm = src*l.0e+6*pow*pfra(i)/1.602e-l3/qave/floss 

else 

endi f 
fluxy(j)=fnrm*flx(j) 
fluxy2 (j ) =f2nrm*flx (j ) 
if (mt (j) .It. 0) then 
fluxy(j) = 0.0 
fluxyZ(j) = 0.0 

endi f 
open (12,file=fname,status='old',err=l66) 
open (13,fi1e=fname2,status='unknownr) 

C 

164 read (12,'(a3)',end=166) ju3 

if (ju3.eq. ' I R F ' )  then 
backspace(l2) 
read (12,'(a6,1pe13.5)',end=166) ju6,dstep 
if (ii-eq.1) then 

else 

endi f 

backspace ( 12 ) 
read (12,'(a80)',end=166) ju80 
write (13,'(a80)') ju80 

write (13,992) dstep,fluxy(j) 

write (13,992) dstep,fluxy2(j) 

else 

end if 
goto 164 

166 continue 
close (12) 
close (13) 

168 continue 
170 continue 

endi f 
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endi f 

open (15,file='mbll.out',status='unknown') 
if (nrst.eq.0) then 

else 

C 

time = 0.0 

if (posit.eq.'b') then 

elseif (posit-eq. 'm' ) then 

else 

endi f 

time = daynum - day(nrst) + 0.01 

time = daynum - day(nrst)/2.0 

time = daynum 

endi f 
C 

c...Calculate k infinity and output results 
C 

if (posit.eq.'m') then 
macfis = 0.0 

macabs = 0.0 
macn2n = 0.0 

do 167 j=l,nmat 
macn2n = macn2n + n2nmac(j) 
macabs = macabs + absmac(j) 

167 macfis = macfis + fismac(j) 
kinf = (nu*macfis + 2.0*macn2n)/(macfis + macabs) 
write ( 15,903 ) nrs t , posit , time , kef f , relerr , nu, qave , kinf 

write (15,904) nrst,posit,time,keff,relerr,nu 
else 

endi f 
close (15) 
write ( 6,9 01 ) kef f , nu 

900 format ( '  ... MB: mcnp flux for material ',i3,' = ',lpe9.2, 
& ' SigmaF = ',lpe9.2,' power = ',Opf10.3 
& 'MW Burnup = ',Opf10.3,' GWd/MTHM') 

901 format ( '  ... MB: mcnp keff = ',f7.5,' nu = ',f5.3) 
902 format (i2,1x,0pf10.3,lp3el0.2,0pf10.3,lp4e10.2,0pf8.3,2x, 

903 format (i2,al, lx, f8.2, lx, 2f10.4, f10.3, lx, 2f10.3) 
904 format (i2,al,lx,f8.2,1x,2f10-4,2f10.3) 
911 format (i4,4 (lx, i6,2x, lpe10.4) 

& lp4e10.2,Opf8.3) 

992 format ('IRF ',lp2e13.5,' 2 3 4 1') 
return 
end 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 
C 

c...CALCQ calculates the MeV per fission based on fission distribution 
c...and qu235 (recov. MeV per U235 fission) 
C 

subroutine calcq(qrat,fort7,fort9) 
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C 

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ni~er, 
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character fort7*12,fort9*12,blanks*4 
dimension nisq(4),gad(4) 
dimension nisact(0:50),qract(0:50),fis(0:50) 

data (nisact(i),qract(i),i=0,31) / 
C 

& 0,1.0, 
& 90227,0.9043, 90229,0.9247, 
& 90232,0.9573, 91231,0.9471, 
& 91233,0.9850, 92232,0.9553, 
& 92233,0.9881, 92234,0.9774, 
& 92235,1.0000, 92236,0.9973, 
& 92237,1.0074, 92238,1.0175, 

& 94238,1.0175, 94239,1.0435, 
& 94240,1.0379, 94241,1.0536, 
& 94242,1.0583, 95241,1.0513, 
& 95242,1.0609, 95243,1.0685, 
& 96242,1.0583, 96243,1.0685, 
& 96244,1.0787, 96245,1.0889, 
& 96246,1.0991, 96248,1.1195, 

& 99254,1.1807 / 

& 93237,1.0073, 93238,1.0175, 

& 96249,1.1296, 98251,1.1501, 

qrat=O. 
nac t = 3 1 

C 

c...Read fort.7 and fort.9 to get density and fis xs 
C 

open (12,file=fort7,status='old') 
open (13,file=fort9,status='old') 

C 

c...Calc relative fission per nuclide 
C 

10 

20 

30 

32 
& 

do 10 k=O,nact 
fis (k) = O  - 
f istot=O - 
read (12,91l,err=20,end=50) kxs,(nisq(j),gad(j),j=l,4) 
if (kxs.eq.2) then 
do 40 j=1,4 
ixs=O 
read (l3,913,err=35,end=39) nflag,blanks 
if (nflag.gt.3.and.blanks.ne.I ' )  then 

backspace(l3) 
read (13,92l,err=32) 
nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag 

endi f 
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if (nnuc.eq.nisq(j)) ixs=l 
35 if (ixs.eq.0) goto 30 

C 

nisql=nisq(j)/lO 
kk= 0 
do 37 k=l,nact 
if (nisact(k).eq.nisql) kk=k 

fis(kk)=fis(kk)+gad(j)*xs4 
fistot=fistot+gad(j)*xs4 

37 continue 

C 

39 if (ixs.eq.0) rewind(l3) 
40 continue 

end if 
goto 20 

C 

50 continue 
C 

c...Calculate Q based on fission percentage 
C 

if (fistot.eq.0.) then 

else 
qrat = 0. 

do 60 k=O,nact 
qrat = qrat + fis(k)/fistot*qract(k) 

60 continue 
end if 

C 

911 format (i4,4(lx,i6,2x,lpel0.4)) 
913 format (i4, a4) 
92 1 format ( i4, i8,lp6e10 - 3, f 7.1 ) 

return 
end 

C 

C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...WMCINP modifies the mcnp input file with new compositions, materials 
c...are added if they are deemed "important players". Data is 
c...read from fort.7 in gram-atoms, and put into mass fractions. 

C 

C 

subroutine wmcinp 

common /mbinp/nmat,mt(49),voli(49),p0~,~235,days,nouter,ninner, 
C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr (999,49) 
common /mbinp2/niso(999,49),nisor(999,49) ,title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
dimension nisq(4),gad(4),nele(4),nisop(4),gmnat(999),~cnp(999), 

integer o,b(lO),e(10) 
& gden (49) 
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double precision gm(999,49) 
character ninat*l0,f7name*12,f9name*l2,file7*l2,file4*l2, 

& fnat*12,finp*12,fmcnp*l2,nmcnp*lO,blanks*4, 
& nPufp*lO,nUfp*1O,f9err*8,line80*8O,char5*5, 
& line*80 

C 

c...Read fort.7, and fort.9. sum total gamma and fission, and 
c...then step back through and determine contributors, sum mass 
c...of each contibutor. 
C 

do 180 j=l,nmat 
gfp = 0. 
iflag = 0 

iflg = 0 
if (j.lt.10) then 
f7name = 'fort_'//char(j+48)//'.7' 
f9name = 'fort-'//char(j+48)//'.9' 
f9err = 'fgerr-'//char(j+48) 
file4 = 'mb4-'//char(j+48)//'.out' 
file7 = 'mb7-'//char(j+48)//'.out' 
fnat = 'mnat_'//char(j+48)//'.tmp' 
fmcnp = 'mcnp_'//char(j+48)//'.inp' 
finp = 'mat_'//char(j+48)//'.inp' 

jl = j/lO 
j2 = j - jl*lO 
f7name = 'fort-'//char(jl+48)//char(j2+48)//'.7' 
f9name = 'fort-'//char(jl+48)//char(j2+48)//'.9' 
f9err = 'f9err-'//char(jl+48)//char(j2+48) 
file4 = 'mb4-'//char(j1+48)//char(j2+48)//'.out' 
file7 = 'mb7-'//char(j1+48)//char(j2+48)//'.out' 
fnat = 'mnat-'//char(j1+48)//char(j2+48)//'.tmp1 
fmcnp = 'mcnp-'//char(jl+48)//char(j2+48)//'.inp' 
finp = 'mat-'//char(jl+48)//char(j2+48)//'.inp' 

elseif ( j . ge -10) then 

endi f 
open (12, file=f7name,status='old') 
open (13,file=f9name,status='old') 
open (15,file=f9err,status='unknown') 

C 

c...Sum total density, gamma and fission 
C 

t den= 0 . 
tmas=O - 
tabs=O. 
tfis=O. 
do 15 n=1,999 
gmcnp(n) = 0. 

15 gmnat(n) = 0. 
20 read (12,91l,err=20,end=50) kxs,(nisq(k),gad(k),k=l,4) 

do 40  k=1,4 
if (nisq(k).gt.O) then 
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ixs=O 

if (nflag.gt.3.and.blanks.ne.' I )  then 
30 read (l3,913,err=35,end=39) nflag,blanks 

backspace(l3) 
32 read (13,92l,err=32) 

& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag 
else 

endi f 
if (nnuc.eq.nisq(k)) ixs=l 

goto 30 

35 if (ixs.eq.0) goto 30 
39 if (ixs.eq.0) then 

rewind ( 13 ) 
xsl = 0.0 

xs4 = 0.0 
endi f 

nisql=nisq(k)/lO 
a=float(nisql)-float(lOOO*(nisql/lOOO)) 
tmas=tmas+gad( k) *a 
tden=tden+gad(k) 
tabs=tabs+gad(k)*xsl 
if (kxs.eq.2) then 

C 

iflg = 1 
tfis=tfis+gad(k) *xs4 

endi f 
C 

c... Obtain composition (in grams) of all isotopes in MCNP input file 
c.. . to transfer them in case they are not found "important" 
C 

if (kxs.eq.l.or.kxs.eq.2) then 
open (17,file=fmcnp,status='unknown') 
id = 0 
m = O  

m = m + l  
36 read (17,'(i5)',err=37,end=38) numcnp 

if (numcnp.eq.nisq1) then 
id = 1 

gmcnp(m)= a*gad(k) 
endi f 

37 if (id.eq.0) goto 36 
38 close (17) 

elseif (kxs.eq.3) then 
gfp = gfp + a*gad(k) 

endi f 
end if 

40 continue 
C 

c... Add up gram totals for natural isotopes 
C 

backspace (12 ) 
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46 

48 
47 

49 

50 
C 

911 
912 
913 
92 1 

C 

read ( 12,912, end=49 ) kxs , (nele (k) , nisop (k) , gad (k) , k=l , 4  ) 

if (kxs.eq.l.or.kxs.eq.2) then 
do 47 k=l, 4 
n = O  
open (ll,file=fnat,status='unknown') 
read (ll,'(i2,4x,alO)',err=46,end=48) nelem,ninat 
n = n + l  
if (nele(k).eq.nelem) then 
nisql=nisq(k)/lO 
a=float(nisql)-float(lOOO*(nisql/lOOO) ) 

gmnat (n) = m a t  (n) +a*gad(k) 
endi f 
goto 46 
close (11) 
continue 
endi f 
goto 20 

continue 
close (11) 
close (17) 
format ( i4,4 ( lx, i6,2x, 1pelO. 4 ) ) 
format ( i 4 , 4 ( 1 x , i 2 , i 4 , 2 x , l p e 1 0 . 4 )  1 
format ( i4, a4 ) 
format (i4,i8,lp6e10.3,f7.1) 

c...Begin list of mcnp input isos with automatic tallies list 
C 

ntot ( j ) =nauto ( j ) 
C 

c...Now determine which iso's contribute based on frimp or are 
c..already selected (auto due to input or may occur twice in table) 
C 

60 

C 

7 0  

72 

rewind(l2) 
rewind(l3) 
gmtot=o. 
U235f=0. 
Pu239f=0 - 
open (16,file=file7,status='unknown') 
write (16,*) 
read (12,9ll,err=60,end=90) kxs,(nisq(k),gad(k),k=l,4) 
backspace ( 12 ) 
read (12,912) kxs, (nele(k),nisop(k),gad(k),k=l,4) 

do 80 k=1,4 
if (nisq(k) .gt.O) then 
ixs=O 
read (l3,913,err=75,end=79) nflag,blanks 
if (nflag.gt.3.and.blanks.ne.' I )  then 
backspace(l3) 
read (13,92l,err=72) 
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& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag 
else 

endi f 
if (nnuc.eq.nisq(k)) ixs=l 

goto 70 

75 if (ixs.eq.0) goto 70 
79 if (ixs.eq.0) then 

rewind ( 13 ) 
if (kxs.ne.3) then 
write (15,'(a27,i6,a20)') I * * * * *  MB WARNING: Isotope 

& nisq(k),' not found in fort.9' 

endi f 
xsl = 0.0 
xs4 = 0.0 

endi f 
C 

c...Determine which isos qualify, or are automatic or repeat. 
C 

C 

icon=O 
nisql=nisq(k)/lO 
a=float(nisql)-float(lOOO*(nisql/lOOO)) 
gmtot=gmtot+a*gad(k) 
gpct=gad(k)*a/tmas 
dpct=gad(k)/tden 
apct=gad(k)*xsl/tabs 
fpct=O. 
nz = nisq1/1000 
if (kxs.eq.2.and.tfis.ne.O.) then 
fpct=gad(k)*xs4/tfis 
if (nz. le. 92 ) 

if (nz.gt.92) 
endi f 

if (gpct.gt.abs 
if (dpct . gt . abs 

U235f = U235f + fpct 
Pu239f = Pu239f + fpct 

frimp) ) icon=l 
frimp) ) icon=l 

1 

if (apct.gt.abs(frimp)) icon=l 
if (fpct.gt.abs(frimp)) icon=l 
kk= 0 
do 77 m=l,ntot(j) 
if (nisnr(m,j) .eq.nisq(k)) then 

kk=m 
C 

c... If a fission product is flagged "automatic", then don't include it 
in 
c.. . lump sum of FPs.  Otherwise, do. (kk=O indicates it was not 
"automatic" ) 
C 

if (kxs.eq.3) gfp = gfp - a*gad(k) 
endi f 

77 continue 
C 
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c. .. Make sure natural isotopes are not deemed "important" since they 
are 

c... included later 
C 

open (ll,file=fnat,status='unknown') 

if (nele(k) .eq.nelem) then 

endi f 
goto 78 

92 close (11) 

78 read (ll,'(i2,4x,alO)',err=78,end=92) nelem,ninat 

icon = 0 

C 

c...If repeat or automatic isotope 
C 

if (kk.gt.0) then 

gm(kk, j )=gm(kk, j 1 +a*gad(k) 
if (gm(kk,j).gt.a*gad(k)) then 
write ( 6,953 ) nrst , kk, nisnr (kk, j , gm (kk, j , gpct , dpct , apct , fpct 
write ( 16,953 ) nrst , kk, nisnr (kk, j ) , gm (kk, j ) , gpct , dpct , apct , fpct 
else 
if (icon.eq.1) write(6,951) nrst,kk,nisnr(kk,j),gm(kk,j),gpct, 

if (icon.eq.0) write(6,952) nrst,kk,nisnr(kk,j),gm(kk,j),gpct, 

if (icon.eq.1) write(16,951) nrst,kk,nisnr(kk,j),gm(kk,j),gpct, 

if (icon.eq.0) write(16,952) nrst,kk,nisnr(kk,j),gm(kk,j),gpct, 

end if 

& dpct, apct, fpct 

& dpct, apct, fpct 

& dpct, apct, fpct 

& dpct,apct, fpct 

end if 
C 

c... Fission products that were not previously deemed "important" will 
c... be treated as a lump sum 
C 

if (kxs.eq.3.and.kk.eq.O.and.frimp.lt.O.O) then 
else 

C 

c.. - If new qualifying isotope, first check if xs exists then add to 
ntot 
C 

if (icon.eq.l.and.kk.eq.0) then 

95 

open (15,file='mbxs.inp',status='unknownt) 
ifd=0 
read (15,*,end=105) nixs 
nixsl0 = nixs*lO 
if (nixs.eq.95242) nixslO = nixslO + 1 
if (nisq(k).eq.nixslO) ifd=l 
if (ifd.eq.0) goto 95 
backspace (15) 
read (15,'(alO)') niso(ntot(j)+l,j) 
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C 

c... Print error message if no cross section exists in MCNP for isotope 
C 

105 if (ifd.eq.0) then 
write (6,*) I * * * * *  MB WARNING: mcnp xs not found I ,  nisq(k) 
write (16,*) I * * * * *  MB WARNING: mcnp xs not found I ,  nisq(k) 
end if 
close (15) 

C 

c... Print isotope-specific information if xs does exist 
C 

if (ifd.eq.1) then 
ntot (j)=ntot (j) +1 
nisnr (ntot (j 1,  j ) =nisq(k) 
nisn(ntot(j),j)=nisnr(ntot(j),j)/lO 
gm(ntot(j),j)=a*gad(k) 
write (6,951) nrst,ntot(j),nisnr(ntot(j),j),gm(ntot(j),j), 

write (16,951) nrst,ntot(j),nisnr(ntot(j),j),gm(ntot(j),j), 
& gpct, dpct, apct, fpct 

& gpct, dpct, apct, fpct 
end if 
end if 
endi f 
end if 

80 continue 
goto 60 

C 

90 continue 
951 format (i4,i4,ilO,lp5e10.2) 
952 format (i4,i4,ilO,lp5e10.2.'automatic') 
953 format (i4,i4,ilO,lp5elO.2,'repeat') 

close (16) 
C 

c...Write grams of material 
C 

if (posit.eq.'m') then 
open (14,file=file4,status='unknown') 
write (14,' (i2,1x,lpe9.2,30e10.2) ' 1  nrst, (9m(i,j),i=l,nauto(j)) 
close (14) 
endi f 

C 

close (12) 
close (13) 

C 

c...Rewrite mb-inp 
C 

call wmbinp 
C 

c...Check if mass of 

gmtot2=0. 
C 

isos sent back to mcnp is same as came in. 
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do 140 i=l,ntot(j) 
140 gmtot2=gmtot2+gm(i,j) 

C 

c...Read natural is0 file and add to total mass 
C 

n = O  
open (ll,file=fnat,status='unknown') 

n = n + l  
gmtot2=gmtot2+gmnat (n) 
goto 142 

144 continue 

142 read (11, (6x,a10) ,end=144) ninat 

C 

c... Add isotopes in original MCNP input file 
C 

m = O  
open (17,file=fmcnp,status='unknown') 

145 read (17, ' (i5,2x,a10) ',end=148) nmc,nmcnp 
m = m + l  
ifg = 0 
do 147 i=l,ntot(j) 
if (nisn(i,j).eq.nmc) ifg = 1 

147 continue 
if (ifg.ne.1) then 

endi f 
goto 145 

148 continue 

gmtot2=gmtot2+gmcnp(m) 

C 

c... Add fission products to gram total, then separate into U-235 & Pu- 
239 ones 
C 

if (gfp.gt.O.O.and.frimp.lt.O.0) then 
gmtot2=gmtot2 + gfp 

gUff = U235f*gfp 
gPuff = Pu239f*gfp 
endi f 

C 

c... Compare total of isotopes to total included in MCNP input file 
c... Calculate gram density of material 
C 

write (6,*) 'mass not accounted for and % ',gmtot-gmtot2, 

gden(j) = -gmtot2/voli(j) 
& (gmtot-gmtot2) /gmtot 

C 

c...Modify mt card with input file mat.inp 

160 open (12 , f i le=f inp ,s ta tus= 'unknown' )  

C 

if (abs(mt(j)).lt.lO) write (12,931) abs(mt(j)) 
if (abs(mt(j)).ge.lO.and.abs(mt(j)).lt.lOO) 

& write (12,932) abs(mt(j)) 
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if (abs(rnt(j)).ge.100.and.abs(mt(j)).lt.l000) 

if (abs(mt(j)).ge.1000.and.abs(mt(j)).lt~lOOOO) 
& write (12,933) abs(mt(j)) 

& write (12,934) abs(mt(j)) 
931 format ('c'/'m',il) 
932 format ('c'/'m1,i2) 
933 format ('c'/'m',i3) 
934 format ('c'/'m',i4) 

C 

c... Add isotopes in original MCNP input file 
C 

m = O  
rewind (17) 

m = m + l  
ifg = 0 
do 157 i=l,ntot(j) 

155 read (17, (i5,2x,alO)',end=168) nmc,nmcnp 

if (nisn(i,j).eq.nmc) ifg = 1 
157 continue 

if (ifg.ne.1) then 
if (gmcnp(m) .eq.O.) gmcnp(m)=l.Oe-20*gmtot2 
write (12,'(6x,alO,lpe13.4)') nmcnp,-gmcnp(m)/gmtot2 

endi f 
goto 155 

c...Add natural isos 
C 

C 

168 n = 1 

152 read (ll,'(i2,4x,alO)',end=l54) nelem,ninat 
rewind (11) 

do 153 i=l,ntot(j) 
aa=(nisn(i,j)-1000*(nisn(i,j)/lOOO)) 
if (aa.eq.0) then 

nz=nisn(i, j) /lo00 
if (nz.eq.nelem) then 
ifg = 1 

gm(i,j) = gm(i,j) + smnat(n) 
endi f 

endi f 
153 continue 

if (ifg.ne.1) then 
if (gmnat(n).eq.O.) gmnat(n)=l.Oe-20*gmtot2 
write (12,' (6x,alO,lpe13.4) ' )  ninat,-gmnat(n)/gmtot2 
n = n + l  

endi f 
goto 152 

1 5 4 n = n -  1 
C 

c. - . Add "important" isotopes 

do 150 i=l,ntot(j) 
C 

159 



158 

159 

if (gm(i,j).eq.O.) gm(i,j)=l.Oe-20*gmtot2 
if (nisn(i,j).ne.45117.and.nisn(i,j).ne.46119) then 

endi f 
150 continue 

write (12,'(6x,alO,lpe13.4)') niso(i,j),-gm(i,j)/gmtot2 

C 

c... Add fission products to mat.inp files 
C 

if (gfp.gt.O.O.and.frimp.lt.O.0) then 
open (18,file='mbxs.inp',status='unknown') 
if (gUff.ne.0) then 
ifd=0 
read (18,*,end=159) nixs 
if (nixs.eq.45117) ifd = 1 
if (ifd.eq.0) goto 158 
backspace (18) 
read (18,'(a10) ' 1  nUfp 
if (ifd.eq.0) then 
write ( 6 , * )  I * * * * *  MB WARNING: No Uranium Fission Product I ,  

& 'library was provided in mbxs.inp' 
else 

endi f 
rewind (18) 

write (12,'(6x,alO,lpel3.4)') nUfp,-gUff/gmtot2 

endi f 
C 

161 

if (gPuff.ne.0) then 
ifd=O 
read (18,*,end=162) nixs 
if (nixs.eq.46119) ifd = 1 
if (ifd.eq.0) goto 161 
backspace (18) 
read (18, ' (a10) ' ) nPufp 

162 if (ifd.eq.0) then 
write (6,*) I * * * * *  MB WARNING: No Plutonium Fission Product ' ,  

& 'library was provided in mbxs.inp' 
else 

endi f 
close (18) 

write (12,'(6x,alO,lpe13.4)') nPufp,-gPuff/gmtot2 

endi f 
endi f 

C 

c... End main material input section 
C 

write (12,'(al)') 'c' 

C 

c...Write actinide tally material 
C 

ii = 900 + j 
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do 165 i=l,ntot(j) 
165 if (nisn(i,j).ge.89000) iflag = 1 

if (iflag.eq.1) then 
write (12, (al,i3) I )  'm',ii 
do 170 i=l,ntot(j) 
if (nisn(i,j).ge.89000) then 
if (gm(i,j).eq.O.) gm(i,j)=l.Oe-lO*gmtot2 
write (12,'(6x,alO,lpe13.4)') niso(i,j),-gm(i,j)/4tot2 
end if 

write (12, I (al) ' )  'c' 
170 continue 

endi f 

close (11) 

close (12) 
close (15) 
close (17) 

C 

180 continue 
C 

C 

c... Rewrite density(s) in MCNP input file 
C 

nflag = 0 
open (15,file='mbrnc.skl',status='unknown1) 
open (17,file='mbmc.tmp',status='unknown') 

if (char5(1:l).eq.'C'.or.~har5(1:l).eq-'c'.or- 
181 read (15,'(a5)',end=190) char5 

& char5.eq.I '.or.nflag.eq.l) then 
backspace (15) 
read (15, (a80) ' )  line80 
if (line80(1:42).eq.' 

& .and.line80(43:76).eq.' 
nflag = 1 
write (17, I (a80) ' )  line80 

write (17, (a80) I )  line80 
else 

endi f 
else 
backspace (15) 
read (15,*,err=185,end=190) ncel1,nmater 
ident = 0 
do 187 j=l,nmat 
if (mater. eq. abs (mt ( j ) ) ) then 
ident = 1 
backspace (15) 
read (15,'(a80)') line80 
o = l  
n = l  
ncount = 1 

C 

I 

' )  then 
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c... First find the first number (ncount allows it to always start in 
same position) 
C 

183 if (line80(n:n).ne.' ' )  goto 182 
n = n + l  
ncount = ncount + 1 
goto 183 

C 

c... Then identify the location of the next two numbers relative to 
blanks 

182 
C 

184 

191 

192 

if (line80(n:n).eq.' ' 1  then 
b(o) = n 
if (o.eq.3) goto 185 
m = n  
if (line80(m+l:m+l).eq.' ' 1  then 
m = m + l  
goto 184 

e(o) = m 
else 

endi f 
o = o + l  
n = m + l  
goto 182 

n = n + l  
goto 182 

else 

endi f 

goto 187 
else 

endi f 
187 continue 
185 if (ident.eq.1) then 

C 

c... Replace values before density, density, and then those after 
density 
C 

nident = 0 
do 188 i=b(3),80 
line(i:i) = line80(i:i) 

if (ncount.ge.2) then 
do 191 i=l,ncount-1 
line80(i:i) = ' ' 

endi f 
if (e(2) -1e.24) then 
do 192 i=e(2)+1,25 
line80(i:i) = ' ' 

endi f 
if (nident . eq . 1 ) then 

188 if (line80(i:i).ne.' ' )  nident = 1 

write (17, I (a25,f10.5) ' )  line80(1:25) ,gden(j) 
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do 189 i=l, (b(3)-1) 

write (17,'(a80)') line 

write (17,'(a25,f10.5)') line80(1:25),gden(j) 

189 line(i:i) = ' ' 

else 

endi f 

backspace ( 15 ) 
read (15,'(a80)') line80 
write (17,'(a80)') line80 

else 

endi f 
endi f 
goto 181 

190 return 
end 

C 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...GRAMS reads fort.7 and prints out grams of tracked material to mb5 
C 

C 

subroutine grams 

comon /mbinp/nmat,mt(49),voli(49),pow,qu235,das,nouter,ninner, 
C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999.49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character f7name*12,file5*12,file5x*l2,filel2*l2,fill2x*l2 
dimension nisq(4),gad(4),gm(999,49) 

C 

C 

10 
C 

do 40 j=l,nmat 
if (j .It. 10) then 
f7name = 'fort-'//char(j+48)//'.7' 
file5 = 'mb5_'//char(j+48)//'.out' 
file12 = 'mb12_'//char(j+48)//'.out' 
fill2x = 'mb12x- ' / / char ( j+48) / / ' .ou t '  

file5x = 'mb5x_'//char(j+48)//'.out1 

jl = j/lO 
j2 = j - jl*lO 
f7name = 'fort-'//char(jl+48)//char(j2+48)//'.7' 
file5 = 'mb5-'//char(j1+48)//char(j2+48)//'.out1 

file12 = 'mb12-'//char(j1+48)//char(j2+48)//'.out1 
fillax = 'mb12x-'//char(j1+48) //char(j2+48) / / I  .out' 
file5x = 'mb5x-'//char(j1+48)//char(j2+48)//'.out1 

elseif (j .ge.lO) then 

endi f 
open (12 , f i l e= f7name , s t a tus= 'o ld ' )  

read (12,91l,err=lO,end=30) kxs,(nisq(m),gad(m),m=l,4) 

do 20 m=1,4 
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kk= 0 
do 15 k=l, nauto ( j ) 
if (nisnr(k,j).eq.nisq(m)) kk=k 

15 continue 
C 

if (kk.gt.O.or.nisq(m) .ge.890000) then 
nisql=nisq(m)/lO 
a=float(nisql)-float(lOOO*(nisql/lOOO) 
if (kk.gt.0) gm(kk,j)=gm(kk,j)+a*gad(m) 
if (nisq(m).ge.890000) gm(nauto(j)+l,j)= 

& gm (nauto ( j ) +1, j ) +a*gad (m) 
end if 

20 continue 
C 

got0 10 
C 

30 continue 
C 

911 format ( i4,4 ( lx, i6,2x, 1pelO. 4 ) ) 

C 

if (posit.eq.'e') then 
open (14,file=file5,status='unknown') 
open (15,file=file5x,status='unknom') 
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(gm(i,j),i=l,nauto(j)+l) 
write (15,'(i2,1x,lpe13.7,30el4.7)') nrst,(gm(i,j),i=l,nauto(j)+l) 
close (14) 
close (15) 
elseif (posit.eq.'b') then 
open (14,file=filel2,status='unknown') 
open (15,file=fill2x,status='unknown') 
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(gm(i,j),i=l,nauto(j)+l) 
write (15,'(i2,1x,lpe13.7,30el4.7)') nrst,(gm(i,j),i=l,nauto(j)+l) 
close (14) 
close (15) 
endi f 

close (12) 
C 

40 continue 

return 
end 

C 

C 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...RMHALF removes 1/2 way predictor cards in mbori 
C 

C 

subroutine rmhalf(nmat) 
character ju8*8,ju80*80,fname*12,f2name*12 

do 140 j=l,nmat 
if (j.lt.10) then 

C 
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fname = 'mbori-'//char(j+48) 
faname = 'mbori-'//char(j+48)//'.tmp' 

j l  = j / l O  
j2 = j - jl*10 
fname = 'mbori-'//char(jl+48)//char(j2+48) 
f2name = 'mbori-'//char(jl+48)//char(j2+48)//'-tmp' 

elseif (j .ge.lO) then 

endi f 
open (12,file=fname,status='old') 
open (13,file=f2name,status='unknom') 

ino = 0 
C 

120 read (12,'(a8)',end=125) ju8 
C 

if (ju8.eq.IRDA Firs') ino=l 
if (ino.eq.0) then 
backspace(l2) 
read (12,'(a80)',end=125) ju80 
write (13,'(a80)') ju80 
end if 
if (ju8.eq.IRDA Last') ino=O 
got0 120 

125 continue 
close (12) 
close (13) 

140 continue 
C 

return 
end 

C 

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...BURNCALC calculates material burned/produced based on feed and inven 
C 

C 

subroutine burnca 

common / m b i n p / n m a t , m t ( 4 9 ) , v o l i ( 4 9 ) , p o w , q u 2 3 5 , d a e r ,  

C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr (999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 
character file10*12,file9t*12,file5t*l2,fi.1e5~*12,f~1e9*12 
character file5*12,fi112a*12 
dimension tfeed(999),g1(999),g2(999),bb(999),bb2(999),day(99) 
dimension dfeed(999) 

C 

c...Read feed data 
C 

do 100 j=l,nmat 
if (j .It. 10) then 

file9t='mb9t-'//char(j+48)//'.out' 
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10 

file5 ='mb5t-'//char(j+48)//'.out' 
file5x='mb5tx-'//char(j+48)//'.out' 
fill2a='mbl2a-'//char(j+48)//'.out' 
file9 ='mb9-'//char(j+48)//'.outt 
file10='mb10t~'//char(j+48)//'.out' 

jl = j/lO 
j2 = j - jl*lO 
file9t='mb9t-'//char(jl+48)//char(j2+48)//'.out' 
file5t='mb5t-'//char(jl+48)//char(j2+48)//'.out' 
file5x='mb5tx-'//char(jl+48) //char(j2+48) //'.out' 
fill2a='mbl2a-'//char(jl+48)//char(j2+48)//'.out' 
file9 ='mb9-'//char(j1+48)//char(j2+48)//'.out1 
file10='mb10t~'//char(jl+48)//char(j2+48)//'.out' 

elseif (j.ge.10) then 

endi f 
open (ll,file=file9t,status='unknown') 

read (11, ' ( / / I  ' 1 
do 10 i=l,nrst 
read (11, ' (3x, f8.2,3x, lpe9.2,30e10.2) ' 1 

& day(i), (tfeed(m) ,m=l,nauto(j)+l) 
close (11) 

C 

c...Read inventory data 
C 

open (ll,file=file5x,status='unknown') 
read (11, ' ( / / )  ' 1 
do 20 i=O,nrst 

close (11) 
open (ll,file=fill2a,status='unknown') 
read (ll,'(//)') 
do 22 i=O,nrst 

close (11) 

20 read (11, ' (3x,lpe13.7,30e14.7) ' 1  (g2(m),m=l,nauto(j)+l) 

22 read (11,'(3x,lpe13.7,30el4.7)') (gl(m),m=l,nauto(j)+l) 

C 

c...Write burn data 
C 

do 30 m=l,nauto(j)+l 
30 bb (m) =g2 (m) -gl (m) -tfeed (m) 

open (14,file=file9,status='unknown') 
write (14, ' (i2,1x,lpe9.2,30e10.2) ' )  

& nrst,(bb(m),m=l,nauto(j)+l) 
C 

c...Write final burn data if last step 
C 

if (nrst.eq.nouter) then 

open (ll,file=file9t,status='unknown') 
read (ll,'(//)') 
do 40 i=l,nrst 

C 

40  read (ll,*) 
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read (11,'(3x,f8.2,3x,lpe9.2,3OelO.2)') 

close (11) 
& day(nrst), (tfeed(m) ,m=l,nauto(j)+l) 

C 

open (ll,file=file5x,status='unknown') 
read (11, a ( / / )  ' 1  
read (11,' (3x,lpe13.7,30e14.7) ' )  (gl(rn),m=l,nauto(j)+l) 
close (11) 

C 

C 

C 

C 

do 50 m=l,nauto(j)+l 
50 bb2 (m)=g2 (m) -gl (m) -tfeed(m) 

write (14,'(a3,lpe9.2,30elO-2)') 'tot',(bb2(m),m=l,nauto(j)+l) 
write (14, ' ( / ,  a36, a13, i3, a22, i3, al) ' ) 

& 'Summary of Inventory/Feed/Production', 
& ' for material',j,' (MCNP Material Number',abs(mt(j)),')' 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide' 

write (14,'(a3,lpe9.2,30e10.2)') 'fin', 
write (14,'(a3,lpe9.2,30e10.2)') 'fed', 
write (14,'(a3,lpe9.2,30el0-2)') 'net', 

write (14,'(a3,lpe9.2,30e10.2)') 'ini',(gl(m),m=l,nauto(j)+l) 
92 (m) , m=l , nauto ( j ) +1) 
tfeed(m) ,m=l,nauto( j)+l) 
bb2 (m) , m=l , nauto ( j ) +1) 

end if 

close (14) 
C 

c...Write mblO.out containing feed/burn rates 
C 

if (nrst.eq.nouter) then 
open (14,file='mblO',status='unknown') 
write (14,'(/,a28)') 'Monteburns Inventory (cont.)' 
close (14) 
open (14,file=fi1el0,status='unknown1 ) 

C 

c...Read data and divide by time interval 
C 

open (ll,file=file9t,status='unknown') 
read (11, ' ( / / )  ' ) 
write (14,'(/,a17,a13,i3,a22,i3,al)') 'Feed Rate (g/day)', 

& ' for material',j,' (MCNP Material Number',abs(mt(j)),')' 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide' 

do 80 i=l,nouter 
read (11,'(3x,f8.2,3x,lpe9.2,3OelO.2)') 

open (17,file='./tmpfile/params2',status='oldt) 
read (17,'(i4)') nfd 
close (17) 
if (nfd.eq.1) then 

& day(i), (tfeed(m) ,m=l,nauto(j)+l) 

write (14,'(i2,1x,lpe9.2,30e10.2)') i, 
& (tfeed(m)/day(i),m=l,nauto(j)+l) 
else 
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do 77 m=l, nauto ( j ) +1 

write (14,'(i2,1x,lpe9.2,3Oe10.2)') i, 
77 dfeed(m) = 0.0 

& (dfeed(m),m=l,nauto(j)+l) 
endi f 

80 continue 
read (11, ' ( / / / )  ' ) 

write (14,'(/,a35,a13,i3,a22,i3,al)') 
& 'Production/Destruction Rate (g/day)', 
& for material',j,' (MCNP Material Number',abs(mt(j)),')' 
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide' 
do 90 i=l,nouter-1 
read (11,'(3x,lpe9.2,30e10.2)') (bb2(m),rn=l,nauto(j)+l) 

90 write (14,'(i2,1x,lpe9.2,3Oe10.2)') i, 
& (bb2 (m) /day ( i ) , m=l , nauto ( j ) +1) 

& (bb(m)/day(nouter),m=l,nauto(j)+l) 
write (14,'(i2,1x,lpe9.2,3Oe10.2)') nouter, 

close (11) 
write (14,*) 
close (14) 
end if 

100 continue 
C 

return 
end 

C 

c...DISCRETE makes additions in fort.7 and mat-inp for discrete feed 
C 

subroutine discr 

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner, 
C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 

& nisnr(999,49) 
character line*80,fort7*12,f7tmp*l5,met*l 
dimension nisq(4),gad(4),gmafed(99,49),ifd6(99,49),a(99) 
dimension day(99),nfeed(99,49),gfl(99,49),gf2(99,49),mfeed(99), 

& kfeed(99),kfeedl(99,99),kfeed2(99,99),ifeed(99,99),ncount(99,49), 
& nf1(99,49),rf(99,49),pfra(99),nmt(49),ffeed(99,99), 
& nelem(99,49),tmst(99) 

& iflag(99,49),imfeed(99,99),fmfeed(99,99),~feed(99),gfeed(99,49) 
dimension nisoto(99,49,99),nisop(99,49),atomfr(99,49,99), 

C 

c... Determine if feed file exists 
C 

open (17,file='./tmpfile/params2',status='old') 
read (17, (i4) ' )  nfd 
close (17) 
if (nfd.eq.1) then 
open (Il,file='feed',status='old') 
read (ll,*) 
read (ll,*) 
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& 

12 

do 10 i=l,nouter 
do 10 j=l,nmat 
if (j .eq. 1) then 

read (11, * )  tmst (i) ,day(i) , 
pfra(i),nmt(l),nfeed(i,l),gfl(i,l),gf2(i,l),nfl(i,l),rf(i,l) 

read (ll,*) nmt(j), 
elseif (j.ge.2) then 

& nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j) 
endi f 

10 continue 
read (11, (i4) ' )  nfs 
do 12 n=l,nfs 

do 12 m=l,mfeed(n) 
read (11, (i4) ' )  mfeed(n) 

read (11, I (i5,f9.7) ' )  ifeed(n,m) ,ffeed(n,m) 
read (11, (i4) ' 1  nrs 

read (ll,'(i4) ' )  kfeed(n) 
do 15 n=l,nrs 

do 15 k=l, kfeed(n) 
15 read (11, ' (i4,i4) ' )  kfeedl(n,k),kfeedZ(n,k) 

endi f 

c...Rewrite fort.7 
C 

C 

do 100 j=l,nmat 
i = nrst 
n = nfeed(i,j) 
if (j .It. 10) then 
fort7 = 'fort-'//char(j+48)//'.7' 
f7tmp = 'fort-'//char(j+48)//'.7.tmp' 

jl = j/lO 
j 2  = j - jl*lO 
fort7 = 'fort-'//char(jl+48)//char(j2+48)//'.7' 
f7tmp = 'fort_'//char(jl+48)//char(j2+48)//'.7.tmp1 

elseif (j .ge.lO) then 

endi f 
open (12,file=fort7,status='unknown') 
if (n.eq.0) then 

endi f 
open (13,file='fort.tmp',status='unknown') 

got0 90 

C 

c... Check to see if any feed materials are natural elements 
C 

mmfeed(n) = mfeed(n) 
do 2 5  m=l,mfeed(n) 
iflag(m,j) = 0 
nai = ifeed(n,m)-1000*(ifeed(n,m)/lOOO) 
if (nai.eq.O.and.ifeed(n,m).gt-0) then 
open (16,file='natelem',status='unknown') 
read (16,*) 
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read (16,*) 
18 read (16,*) nelem(m,j) 

read (16,*) nisop(m, j )  

do 20 mm=l,nisop(m, j) 

20 read (16,'(i5,3x,f10.5)',err=2O,end=23) 

if (nelem(m,j).eq.ifeed(n,m)/lOOO) then 
EL nisoto(m,j,mm),atomfr(m,j,m) 

iflag(m,j) = 1 
imfeed(n,m) = nisoto(m,j,l) 
fmfeed(n,m) = ffeed(n,m)*atomfr(m,j,l) 

do 22 m=1, (nisop(m, j 1-11 
imfeed(n,mmfeed(n)+m) = nisoto(m,j,l+mn) 

22 fmfeed(n,mmfeed(n)+m) = ffeed(n,m)*atomfr(m,j,l+mn) 
mmfeed(n) = mmfeed(n) + (nisop(m,j)-1) 
goto 23 

goto 18 
else 

endi f 
23 close (16) 

else 
imfeed(n,m) = ifeed(n,m) 
fmfeed(n,m) = ffeed(n,m) 

endi f 
25 continue 

C 

c...Convert grams of feed to gram-atoms of feed 
C 

do 28 m=l,mmfeed(n) 
ifd6(n,m) = imfeed(n,m)*lO 
if (ifd6(n,m).eq.952420) ifd6(n,m)=ifd6(n,m)+l 
gfeed(m,j)=fmfeed(n,m)*gf2(i,j)*day(i) 
ai = float(imfeed(n,m))-float(lOOO*(imfeed(n,m~/lOOO~) 
gmafed(m,j) = gfeed(m,j)/ai 
ncount (m, j) = 0 

28 continue 
30 read (12,90l,err=45,end=50) kxs, (nisq(k),gad(k),k=1,4) 
901 format (i4,4(lx,i6,2x,lpel0.4)) 

if (kxs.eq.0) goto 45 
do 40  k=1,4 
do 40 m=l,mfeed(n) 
if (nisq(k).eq.ifd6(n,m).and.kxs.le.2) then 

if (ncount(m, j) .eq.O) gad(k) = gad(k) + gmafed(m, j) 
ncount (m, j) = 1 

endi f 
40  continue 

write (13,901) kxs,(nisq(k),gad(k),k=l,4) 
goto 30 

read (12, ' (a80) ' ) line 
write (13,'(a80)') line 
goto 30 

45 backspace (12) 

170 



50 close (12) 
close (13) 

C 

c...Write non-actinides to fort.7 that are part of discrete feed but did 
not 
c... previously exist 
C 

open (13,file='fort.tmpr,status='unknom') 
open (14,file=f7tmp,status='unknomt) 
kxsold = 1 
nadd = 0 

if (kxs.eq.kxsold) then 
63 read (13,'(i4)',err=80,end=99) kxs 

backspace (13 ) 
read (13,'(a80)') line 
write (14, (a80) I )  line 
kxsold = kxs 

else 
kxsold = kxs 
if (nadd.eq.0) then 
do 65 k=l,nunfeed(n) 
nmin=99999 
ni=O 
do 60 m=l,mmfeed(n) 
a(m)=float(imfeed(n,m) )-float(1000*(imfeed(n,m)/lOOO)) 
if (imfeed(n,m).lt.8300O.and.imfeed(n,m).gt.lOOO) then 
if (a(m).gt.O) then 

nmin=imfeed(n,m) 
ni=m 
end if 

if (imfeed(n,m).lt.nmin) then 

endi f 
end if 

60 continue 
if (ni.gt.0) then 
kxs=l 
met= ' 0 ' 
if (ncount(ni,j).eq.O) then 
ncount(ni,j) = 1 
write (14,912) kxs,ifd6(n,ni),gmafed(ni,j) 

endi f 
imfeed(n,ni) = O  

end if 
6 5  continue 

C 

c...Write actinides to fort.7, sort numerically for xs file read 
C 

do 7 5  k=l,mmfeed(n) 
nmin=999 99 
ni=O 
do 7 0  m=l,mmfeed(n) 
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7 0  

75 

80 

90 
95 

99 

100 

911 

a(m)=float(imfeed(n,m))-float(lOOO*(imfeed(n,m)/lOOO)) 
if (imfeed(n,m).ge.8300O.and.a(m).gt.O.) then 
if (imfeed(n,m).lt.nmin) then 
nmin=imfeed(n,m) 
ni =m 
end if 
end if 
continue 
if (ni.gt.0) then 
kxs=2 
met='O' 
if (ncount(ni,j).eq.O) then 
ncount(ni,j) = 1 
write (14,912) kxs,ifd6(n,ni),gmafed(ni,j) 

endi f 
imfeed(n,ni)=O 

end if 
continue 
nadd = 1 
endi f 
if (kxsold.eq.0) goto 80 
backspace (13 ) 
read (13,'(a80)') line 
write (14,'(a80)') line 
endi f 
goto 63 
backspace (13) 
read (13,'(a80)') line 
write (14, ' (a80) ' )  line 
goto 63 
open (14,file=f7tmp,status='unknownt) 
read (12,'(a80)',end=99) line 
write (14, I (a80) I )  line 
goto 95 
close (13) 
close (14) 
continue 
format (i4,i6,al,lpe12.4, 

& '  0 O.OOOOE+OO 0 0.0000E+00 

912 format (i4,lx,i6,lpe12.4, 
& '  0 O.OOOOE+OO 0 O.OOOOE+OO 
end 

0 O.OOOOE+OO') 

0 O.OOOOE+OO') 

C 

subroutine dremo 

common / m b i n p / n m a t , m t ( 4 9 ) , v o l i ( 4 9 ) , p o w , q u 2 3 5 , d a e r ,  

C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
character line*72,fort7*12,f7tmp*l5,nisq2(4)*4 
dimension nisql(4),gad(4),nisq3 (4) 
dimension day(99),nfeed(99,49),gfl(99,49),gf2(99,49),mfeed(99), 
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& kfeed(99),kfeedl(99,99),kfeed2(99,99),ifeed(99,99),tmst(99), 
& nf1(99,49),rf(99,49),pfra(99),nmt(49),ffeed(99,99) 

C 

c... Determine if feed file exists 
C 

12 

open (17,file='./tmpfile/params2',status='old') 
read (17, (i4) ' )  nfd 
close (17) 
if (nfd.eq.1) then 
open (ll,file='feed',status='old') 
read (ll,*) 
read (ll,*) 
do 10 i=l,nouter 
do 10 j=l,nmat 
if (j .eq.l) then 
read (ll,*) tmst(i) ,day(i) ,pfra(i), 

& nmt(l),nfeed(i,l) ,gfl(i,l),gf2(i,l),nfl(i,l) ,rf(i,l) 
elseif (j.ge.2) then 
read (ll,*) 

& nmt(j) ,nfeed(i, j) ,gfl(i, j) ,gf2(i, j) ,nfl(i, j) ,rf (i, j) 
endi f 

10 continue 
read (ll,'(i4)') nfs 
do 12 n=l,nfs 

do 12 m=l,mfeed(n) 
read (11, (i4) I )  mfeed(n) 

read (11, (i5, f9.7) ' ) ifeed(n,m), ffeed(n,m) 
read (11, ' (i4) ' )  nrs 

read (ll,'(i4)') kfeed(n) 
do 15 n=l,nrs 

do 15 k=l, kfeed(n) 
15 read (ll,'(i4,i4)') kfeedl(n,k),kfeed2(n,k) 

endi f 

c...Rewrite fort.7 
C 

C 

do 60 j=l,nmat 
if (nfl(nrst,j).ge.O) goto 6 0  

if (j .It - 10) then 
fort7 = 'fort-'//char(j+48) / / I  -7' 
f7tmp = 'fort-'//char(j+48)//'.7.tem' 

j l  = j / l O  

j2 = j - jl*10 
fort7 = 'fort-'//char(j1+48)//char(j2+48)//'.7' 
f7tmp = 'fort-'//char(jl+48)//char(j2+48)//'.7.temi 

elseif (j .ge.lO) then 

endi f 
open (12,file=fort7,status='unknown') 
open (13,file=f7tmp,status='unknown1) 

c... Remove elements in removal group from fort.7 

C 
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C 

30 read (12,90l,err=45,end=50) kxs,(nisql(k),nisq2(k),gad(k),k=l,4) 
backspace (12 
read (l2,903,err=45,end=50) kxs,(nisq3(k),nisq2(k),gad(k),k=l,4) 

901 format (i4,4(lx,i2,a4,2x,lpe10.4)) 
903 format ( i4,4 ( lx , a2, a4, ZX, 1pelO. 4 ) ) 

nrem = abs(nfl(nrst,j)) 
do 40 k=1,4 
do 40 n=1, kfeed(nrem) 
do 40 m=abs(kfeedl(nrem,n)),abs(kfeed2(nrem,n)) 
if (nisql(k).eq.m) then 
if ((kfeedl(nrem,n).lt.O.and.kxs.eq.3) 

gad(k) = gad(k) - gad(k)*rf(nrst,j) 
& .or.kfeedl(nrem,n).ge.O) then 

endi f 

40 continue 
endi f 

if (kxs.eq.0) then 
write (13,902) kxs, (nisq2(k),gad(k) ,k=1,4) 

902 format (i4,4(1x,2x,a4,2x,lpe10.4)) 
else 

endi f 
goto 30 

read (12, ' (a72) ' )  line 
write (13,'(a72)') line 
goto 30 

SO close (12) 
close (13) 

60 continue 
end 

write (13,903) kxs, (nisq3(k) ,nisq2(k) ,gad(k),k=1,4) 

45 backspace (12) 

C 

c...REGION makes indicates what materials are substituted in various 
c... regions 
C 

subroutine region 

common / m b i n p / n m a t , m t ( 4 9 ) , v o l i ( 4 9 ) , p o w , q u 2 3 5 , d a e r ,  

'3 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
character fname*25 
dimension day(99),pfra(99),nmt(49),nfeed(99,49),gfl(99,49), 

& gf2(99,49) ,nf1(99,49),rf(99,49) ,tmst(99) 
C 

c...First discover if feed input file exists 
C 

open (17,file='./tmpfile/params2',status='oldB) 
read (17,'(i4)') nfd 
if (nfd.eq.1) then 
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C 

c...First read the two lines of headings 
C 

open (ll,file='feed',status='unknown') 
read (ll,*) 
read (ll,*) 
do 8 i=l,nrst 
do 8 j=l,nmat 

if (j .eq.l) then 
read (ll,*) tmst (i) ,day(i), 

& pfra(i),nmt(l),nfeed(i,l),gfl(i,l),gf2(i,l),nfl(i,i),rf(i,i) 
elseif (j-ge.2) then 
read (11, * )  nmt (j), 

& nfeed(i,jl,gfl(i, j),gf2(i,j),nfl(i,j),rf(i, j) 
endi f 

8 continue 
close (11) 

do 10 j=l,nmat 
else 

10 nmt(j) = 0 

endi f 
C 

do 20 j=l,nmat 
if (j -1t.10) then 

elseif (j .ge.lO) then 
fname = './tmpfile/param3-'//char(j+48) 

jl = j / l O  

j2 = j - jl*10 
fname = './tmpfile/param3-'//char(jl+48)//char(j2+48) 

endi f 
open (12,file=fname,status='unknown') 
write (12,905) nmt(j) 

905 format (i4,' nval') 
20 continue 

end 
C 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c...WMBINP rewrites mb.inp 
C 

C 

subroutine wmbinp 

common /mbinp/nmat,mt(49),voli(49),pow,qu235,das,nouter,ninner, 
C 

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49), 
& nisnr(999,49) 
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit 
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l 

C 

c...Rewrite mb.inp 
C 

open (Il,file='mb.inp',status='unknown') 
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write (11, ' (a72) ' )  title 
write (ll,*) mat 
do 20 j=l,nmat 

20 write (ll,*) mt(j) 
do 30 j=l,nmat 

30 write (ll,*) voli(j) 
write (ll,*) pow 
write (ll,*) qu235 
write (ll,*) days 
write (ll,*) nouter 
write (ll,*) ninner 
write (ll,*) npre 
write (ll,*) nrst 
write (ll,'(a2)') olib 
write (11, ' (a72) ' ) locale 
write (ll,*) frimp 
write (11, * )  nkeff 
do 60 j=l,mat 
write (ll,*) nauto(j) 
write (ll,*) ntot(j) 

do 60 i=l,ntot(j) 

close (11) 
60 write (ll,'(alO)') niso(i,j) 

C 

return 
end 

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12 

c This subroutine creates a file containig isotopic breakdowns 
c for natural elements 

C 

C 

subroutine natele 
dimension nelern(40),nisot(40,40),atomfr(40,4O),nisop(40) 

C 

c Isotopic compositions of natural elements 
c Ref: Nuclides and Isotopes, Fifteenth Edition 
C 

open (16,file='natelem',status='unknown') 
data (nelem(i),i=1,33) / 

& 6 ,  12, 14, 16, 17, 18, 19, 20, 22, 
& 2 3 ,  24, 25, 26, 28, 29, 30, 31, 40, 
& 42, 47, 48, 49, 50, 51, 54, 63, 64, 
& 72, 74, 77, 7 8 ,  80, a2 / 

write (16,*) 
write (16,*) 
do 80 i=1,33 
nz = nelem(i) 
if (nz.eq.6) then ! Carbon 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(l,n),atomfr(l,n),n=l,2) / 

& 6012, 0 - 98900, 
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/ 

& 6013, 0.01100 / 
endi f 

if (nz.eq.12) then ! Magnesium 
niso = 3 ! Number of isotopes in natural carbon 
data (nisot(2,n),atomfr(2,n) ,n=1,3) / 

& 12024, 0.78990, 
& 12025, 0.10000, 
& 12026, 0.11010 / 
endi f 
if (nz.eq.14) then ! Silicon 
niso = 3 ! Number of isotopes in natural carbon 
data (nisot(3,n) ,atomfr(3,n) ,n=1,3) / 

& 14028, 0.92230, 
& 14029, 0.04670, 
& 14030, 0.03100 / 

endi f 
if (nz.eq.16) then ! Sulfur 
niso = 4 ! Number of isotopes in natural carbon 
data (nisot(4,n),atomfr(4,n),n=l,4) / 

& 16032, 0.95020, 
& 16033, 0.00750, 
& 16034, 0.04210, 
& 16036, 0.00020 / 

endi f 
if (nz.eq.17) then ! Chlorine 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(5,n),atomfr(5,n),n=l,2) / 

& 17035, 0.75770, 
& 17037, 0.24230 / 
endi f 
if (nz.eq.18) then ! Argon 
niso = 3 ! Number of isotopes in natural carbon 
data (nisot(6,n),atomfr(6,n),n=1,3) / 

& 18036, 0.00337, 
& 18038, 0.00063, 
& 18040, 0.99600 / 

endi f 
if (nz.eq.19) then ! Potassium 
niso = 3 ! Number of isotopes in natural carbon 
data (nisot(7,n),atomfr(7,n),n=l,3) / 

& 19039, 0.93258, 
& 19040, 0.00012, 
& 19041, 0 - 06730 
endi f 
if (nz.eq.20) then ! Calcium 
niso = 6 ! Number of isotopes in natural carbon 
data (nisot(8,n),atomfr(8,n) ,n=1,6) / 

& 20040, 0.96941, 
& 20042, 0.00647, 
& 20043, 0.00135, 
& 20044, 0.02086, 
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/ 

/ 

& 20046, 0.00004, 

& 20048, 0.00187 
endi f 
if (nz.eq.22) then ! Titanium 
riiso = 5 ! Number of isotopes in natural carbon 

data (nisot(9,n) ,atomfr(9,n) ,n=1,5) / 
& 22046, 0.08250, 
& 22047, 0.07440, 
& 22048, 0.73720, 
& 22049, 0.05410, 
& 22050, 0.05180 
endi f 
if (nz.eq.23) then ! Vanadium 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(lO,n),atomfr(lO,n),n=l,2) / 

& 23050, 0.00250, 
& 23051, 0.99750 / 

endi f 
if (nz.eq.24) then ! Chromium 
niso = 4 ! Number of isotopes in natural carbon 
data (nisot(ll,n),atomfr(ll,n),n=l,4) / 

& 24050, 0.04350, 
& 24052, 0.83790, 
& 24053, 0.09500, 
& 24054, 0.02360 / 
endi f 
if (nz.eq.25) then ! Manganese 
niso = 1 ! Number of isotopes in natural carbon 
data (nisot(l2,n),atomfr(12,n),n=l,l) / 

& 25055, 0.10000 / 

endi f 
if (nz.eq.26) then ! Iron 
niso = 4 ! Number of isotopes in natural carbon 
data (nisot(l3,n),atomfr(13,n),n=l,4) / 

& 26054, 0.05850, 
& 26056, 0.91750, 
& 26057, 0.02120, 
& 26058, 0.00280 / 
endi f 
if (nz.eq.28) then ! Nickel 
niso = 5 ! Number of isotopes in natural carbon 
data (nisot(l4,n),atomfr(l4,n),n=l,5) / 

& 28058, 0 - 68080, 
& 28060, 0.26220, 
& 28061, 0.01140, 
& 28062, 0.03630, 
& 28064, 0.00930 / 

endi f 
if (nz.eq.29) then ! Copper 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(l5,n) ,atomfr(l5,n) ,n=1,2) / 

178 



& 29063, 0.69170, 
& 29065, 0.30830 / 

endi f 
if (nz.eq.30) then ! Zinc 
niso = 4 ! Number of isotopes in natural carbon 

data (nisot(l6,n) ,atomfr(l6,n) ,n=1,4) / 
& 30064, 0.48600, 
& 30066, 0.27900, 
& 30067, 0.04100, 
& 30068, 0.18800 / 

endi f 
if (nz.eq.31) then ! Gallium 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(l7,n),atornfr(l7,n),n=l,2) / 

& 31069, 0 - 60110, 
& 31071, 0.39890 / 

endi f 
if (nz.eq.40) then ! Zirconium 
niso = 5 ! Number of isotopes in natural carbon 
data (nisot(l8,n),atomfr(18,n),n=l,5) / 

& 40090, 0.51450, 
& 40091, 0.11220, 
& 40092, 0 - 17150, 
& 40094, 0.17380, 
& 40096, 0.02800 / 
endi f 
if (nz.eq.42) then ! Molybdenum 
niso = 7 ! Number of isotopes in natural carbon 
data (nisot(l9,n),atomfr(l9,n),n=l,7) / 

& 42092, 0.14840, 
& 42094, 0.09250, 
& 42095, 0.15920, 
& 42096, 0.16680, 
& 42097, 0.09550, 
& 42098, 0.24130, 
& 42100, 0.09630 / 
endi f 
if (nz.eq.47) then ! Silver 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(20,n),atomfr(2O,n),n=l,2) / 

& 47107, 0.51839, 
& 47109, 0.48161 / 
endi f 
if (nz.eq.48) then ! Cadmium 
niso = 8 ! Number of isotopes in natural carbon 
data (nisot(21,n) ,atomfr(2l,n) ,n=1,8) / 

& 48106, 0.01250, 
& 48108, 0.00890, 
& 48110, 0.12490, 
& 48111, 0.12800, 
& 48112, 0.24130, 
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& 48113, 0.12220, 
& 48114, 0.28730, 
& 48116, 0.07490 / 

endi f 
if (nz.eq.49) then ! Indium 

niso = 2 ! Number of isotop 

data (nisot(22,n),atomfr(22,n),n=l,2) / 
& 49113, 0.04290, 
& 49115, 0.95710 / 

endi f 
if (nz.eq.50) then ! Tin 

s in n tur 1 r k  

niso = 10 ! Number of isotopes in natural 

data (nisot(23,n) ,atomfr(23,n) ,n=1,10) / 
carbon 

& 50112, 0.00970, 
& 50114, 0.00650, 
& 50115, 0.00340, 
& 50116, 0.14540, 
& 50117, 0.07680, 
& 50118, 0.24220, 
& 50119, 0 - 08590, 
& 50120, 0.32590, 
& 50122, 0.04630, 
& 50124, 0.05790 
endi f 
if (nz.eq.51) then 
niso = 2 
data (nisot (24, n) , at 

& 51121, 0.57300, 
& 51123, 0.42700 
endi f 
if (nz.eq.54) then 
niso = 9 

/ 

! Antimony 
! Number of isotopes in natural carbon 

rnfr(24,n) ,n=1,2) / 

/ 

! Xenon 
! Number of isotopes in natural carbon 

data (nisot(25,n) ,atomfr(25,n) ,n=1,9) / 
& 54124, 0.00100, 
& 54126, 0.00090, 
& 54128, 0.01910, 
& 54129, 0.26400, 
& 54130, 0 - 04100, 
& 54131, 0.21200, 
& 54132, 0.26900, 
& 54134, 0.10400, 
& 54136, 0.08900 1 

endi f 
if (nz.eq.63) then ! Europium 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(26,n) ,atomfr(26,n) ,n=1,2) / 

& 63151, 0.47800, 
& 63153, 0.52200 / 

endi f 
if (nz.eq.64) then ! Gadolinium 
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/ 

/ 

niso = 7 ! Number of isotopes in natural carbon 
data (nisot(27,n) ,atomfr(27,n) ,n=1,7) / 

& 64152, 0.00200, 
& 64154, 0 - 02180, 
& 64155, 0.14800, 
& 64156, 0.20470, 
& 64157, 0.15650, 
& 64158, 0.24840, 
& 64160, 0.21860 
endi f 
if (nz.eq.72) then ! Hafnium 
niso = 6 ! Number of isotopes in natural carbon 
data (nisot(28,n),atomfr(28,n) ,n=1,6) / 

& 72174, 0.00162, 
& 72176, 0.05206, 
& 72177, 0.18606, 
& 72178, 0 - 27297, 
& 72179, 0.13629, 
& 72180, 0.35100 / 

endi f 
if (nz.eq.74) then ! Tungsten 
niso = 5 ! Number of isotopes in natural carbon 
data (nisot(29,n) ,atomfr(29,n) ,n=1,5) / 

& 74180, 0.00120, 
& 74182, 0.26498, 
& 74183, 0.14314, 
& 74184, 0.30642, 
& 74186, 0 -28426 / 

endi f 
if (nz.eq.77) then ! Iridium 
niso = 2 ! Number of isotopes in natural carbon 
data (nisot(30,n) ,atomfr(30,n) ,n=1,2) / 

& 77191, 0.37300, 
& 77193, 0.62700 / 
endi f 
if (nz.eq.78) then ! Platinum 
niso = 6 ! Number of isotopes in natural carbon 
data (nisot(31,n) ,atomfr(3l,n) ,n=1,6) / 

& 78190, 0.00010, 
& 78192, 0 - 00790, 
& 78194, 0.32900, 
& 78195, 0.33800, 
& 78196, 0.25300, 
& 78198, 0 - 07200 
endi f 
if (nz.eq.80) then 
niso = 7 

data (nisot(32,n) ,atomfr(32,n) ,n=1,7) / 
carbon 

& 80196, 0.00150, 
& 80198, 0.09970, 

! Mercury 
! Number of isotopes in natural 
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& 80199, 0.16870, 
& 80200, 0.23100, 
& 80201, 0.13180, 
& 80202, 0.29860, 
& 80204, 0.06870 / 
endi f 
if (nz.eq.82) then ! Lead 
niso = 4 ! Number of isotopes in natural carbon 
data (nisot(33,n),atomfr(33,n),n=l,4) / 

& 82204, 0.01400, 
& 82206, 0.24100, 
& 82207, 0.22100, 
& 82208, 0.52400 / 
endi f 

C 

nisop(i) = niso 
write (16, * )  nelem(i) 
write (16, * )  nisop(i) 
do 60 n=l,nisop(i) 

60 write (16, ' (i5,3x,f10.5) ' 1  

80 continue 
& nisot (i, n) , atomfr (i, n) 

close (16) 
C 

return 
end 
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APPENDIX C. SAMPLE MCNP INPUT FILE 

MCNP Input File for Test Case #2 
C Cell Cards 
C Irradiation of a Single Pin 
C Fuel Pin 
1 1 -10.045 -1 -2 3 

8 8 -0.781e-3 1 -4 -2 3 
6 6 -6.44 4 -6 -2 3 

7 7 -0.7569 6 
C Pin Cell 
20 0 -9 10 -11 12 -7 8 
99 0 #2 0 

C Fuel Rod 
1 cz 0.47815 

C Axial Distribution 
2 pz 347.4 
3 pz 0.0 

C Gap 
4 cz 0.493 
C Fuel Cladding 
6 cz 0.559 
C Unit Cell (Pitch) 
7 pz 347.3 
8 pz 0.1 
*9  px 0.7793 
"10 px -0.7793 
*11 py 0.7793 
*12 py -0.7793 

u=2 
u=2 
u=2 
u=2 

fill=2 

imp:n=l $fuel 
imp:n=l $gap 
imp:n=l $clad 
imp:n=l Swat 

imp:n=l 
imp : n= 0 

C Control Cards 
kcode 1000 1.0 15 115 
ksrc 0 0 173.6 
tmp 7.25e-8 6.5e-8 5.34e-8 4.81e-8 6.0e-8 6.0e-8 
C Material Cards 
C Fuel 
ml 92234.88~ 6.15165e-6 92235.88~ 6.89220e-4 92236.88~ 3.16265e-6 

92238.88~ 2.17104e-2 
6000.88~ 9.13357e-6 7014.88~ 1.04072e-5 8016.88~ 

4.48178e-2 
C Cladding 
m6 26000.85~ -0.005 40000.65~ -0.9791 
C Coolant 
m7 1001 5.06153e-2 8016.85~ 2.53076e-2 

mt7 lwtr.04t 
C Gap 
m8 2004.85~ -1.0 

5010.85~ 2.75612e-6 5011.85~ 1.11890e-5 

50000 -0.0159 
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APPENDIX D. SAMPLE MONTEBURNS INPUT FILE 

Monteburns Input File for Test Case #2 
2 ! Number of MCNP materials 

1 ! MCNP Material #1 (must be less than 100) 
-7 ! MCNP Material #2 
249.378 ! Material volume #1 
502 - 44 ! Material volume #2 
0,001 ! Total Power of System (in M W t )  

-200. ! Recov. energy/fission (MeV); 0. uses default value 
0. ! Total number of days burned (used if no feed) 
8 ! Number of outer burn steps 
40 ! Number of internal burn steps (multiple of 10) 
1 ! Number of predictor steps (+1 on first step) 
0 ! Step number to restart after (O=beginning) 
22 ! Number of origen2 library 

/export/iol/dip/origen/libraries ! location of ORIGEN2 library 
1.0 ! Importance Fraction 
0 ! Intermediate keff calc. 0 )  N o  1) Yes 
28 ! Automatic Isotopes for Region 1 
92234.88~ 
92235.88~ 
92236.88~ 
92238.88~ 
93237.88~ 
94238.88~ 
94239.88~ 
94240.88~ 
94241 - 88c 
94242.88~ 
95241.88~ 
95243.88~ 
42095.88~ 
43099.88~ 
44101.88~ 
45103.88~ 
47109.88~ 
55133.88~ 
55135.88~ 
60143.88~ 
60145.88~ 
62147.88~ 
62149.88~ 
62150.88~ 
62151.88~ 
62152 - 88c 
63153.88~ 
64155.88~ 
2 ! Automatic Isotopes for Region 2 
5010.85~ 
5011.85~ 
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APPENDIX E. SAMPLE FEED INPUT FILE 

Step 
int 

Time PowFr.mat# Feed 
real real int int 

1 306.0  

2 71.0 

3 381.7 

4 83.1 

5 466.0 

6 85.0 

7 461.1 

8 1870.0 

1 
2 

5010 .20 
5011 .80 
1 
1 
5 5 

38.066 1 
2 

0.000 1 
2 

42.9015 1 
2 

0.000 1 
2 

37.624 1 
2 

0.000 1 
2 

32.171 1 
2 

0.000 1 
2 

0 

0 

0 

0 
0 
1 
0 
0 

0 
1 
0 

0 

0 

1 

0 

0 

Beg-Rate End Rem# Fract-Rem. 
real real int real 

0.0 0.0 0 0.000 

0.0 0.0 0 0.000 

0.0 0.0 0 0.000 ! 

0.0 0.0 -1 1.000 
0.0 0.0 0 0.000 ! 

-2.0 4.684e-4 0 0.000 
0.0 0.0 0 0.000 ! 

0.0 0.0 -1 1.000 
0.0 0.0 0 0.000 ! 

-2.0 4.118e-4 0 0.000 
0.0 0.0 0 0.000 ! 

0.0 0.0 -1 1.000 
0.0 0.0 0 0.000 ! 

-2.0 4.066e-4 0 0.000 

0.0 0 . 0  0 0.000 ! 

0.0 0.0 0 0.000 

! # of feed specs 
! # i s o s  in Feed #1 
! B-10 
! B-11 
! # of removal groups 
! # of ranges in removal group 
! 1st range for Feed #1 (B) 
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