
LA-1351 4-T
Thesis

Approved for public release;
distribution is unilmited.

Development of Monteburns: A Code

That Links MCNP and ORIGEN2

in an Automated Fashion for

Burnup Calculations

I

Los Alamos
N A T I O N A L L A B O R A T O R Y

Los Alamos National Laboratory is operated by the University of California
for the United States Departmenf of Energy under contract W-7405-ENG-36.

This thesis was accepted by the Department of Chemical and Nuclear
Engineering, the University of New Mexico, Albuquerque, New
Mexico, in partial fulfi'llment of the requirementsfor the degree of
Master of Science. The text and illustrations are the independent
work of the author and only theponf matter has been edited by the
CIC-2 Writing and Editing Staffto conform with Department of
Energy and Los Alamos National Laborato y publication policies.

An Afirmative Acfion/Equal Opportunity EmpZoyer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither The Regents of the University of California, the United States
Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility@ the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any spec@ commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents
ofthe University of Calijbmia, the United States Government, or any agency there$ The
views and opinions of authors expressed herein do not necessarily state or rgect those of
The Regents of the University o f California, the United States Government, or any agency
thereof. Los Alamos National Laborato y strongly supports academicfreedom and a
researcher's right to publish; as an institution, howewr, the Laborato y does not endorse the
viewpoint of a publication or guarantee its technical mrrectness.

Portions of this document may be illegible
in electronic image products. Images are

produced from the best available original

document.

DISCLAIMER

LA-1351 4-T
Thesis

Development of Monteburns: A Code

That Links MCNP and ORIGEN2

in an Automated Fashion for

Burnup Calculations

Holly R. Trellue

Los Alamos
N A T I O N A L L A B O R A T O R Y

UC-700 and UC-714
Issued: December 1998

Los Alamos, New Mexico 87545

ACKNOWLEDGMENTS

First, I sincerely thank everybody in the Nuclear Systems Design and Analysis

Group (TSA-IO) at Los Alamos National Laboratory. I especially thank Dave Poston for

coming up with this idea and for all your enormous help and knowledge - you’ve taught

me so much! John Buksa and Stacey Eaton, thank you for supporting me and allowing

me the freedom to work on this research. Thanks also to Mike Houts and Paul Chodak

for your technical advice and support. Additionally, I send a “thank you” to Deborah

Bennett and A1 Neuls for taking the time to care about the students in your group!

Next, I acknowledge Larry Sanchez at Sandia National Laboratories for introducing

me to the world of FORTRAN77 programming, MCNP, and ORIGEN2, as well as for all

the knowledge you gave me. I also thank my committee members at UNM, Dr. Norm

Roderick, Dr. Robert Busch, and Dr. Gary Cooper, for taking the time to read this

document and for everything you taught me both as a undergraduate and a graduate

student.

Finally, I thank my parents, Judy Emmett and Ron and Patricia Trellue, and my

best fkiend, Rosa Canchucaja, for always being there for me, and my boyfriend Dave

Fuehne for all your encouragement and support. I also have to thank my dog girls,

Cleopatra and Penelope, for your comic relief and doggie kisses - don’t worry - now I’ll

have more time to give you belly rubs and biscuits!

V

vi

TABLE OF CONTENTS

LIST OF FIGURES ...

LIST OF TABLES .. XII

1.0 INTRODUCTION ... 1

2.0 BACKGROUND .. 4

2.1 MCNP .. 5

2.2 ORIGEN2 .. 7

2.3 PREVIOUS WORK ... 9

2.3.1 Linkage Codes .. 11

2.3.2 Discrete Ordinate Burnup Codes ... 12

3.0 DESCRIPTION OF CODE/THEORY ... 14

3.1 DESCRIPTION OF MONTEBURNS ... 15

3.2 CALCULATIONS ... 20

3.2.1 Recoverable Energy per Fission ... 20

3.2.2 Flux TalIy Normalization .. 22

3.2.3 Reactor Physics Constants ... 25

3.2.4 Effective Multiplication Factor .. 26

3.2.5 Power ... 26

3.2.6 Importance Fraction ... 26

3.3 USER INPUT ... 29

MCNP Input File .. 30

Monteburns Input File .. 30

Feed Input File .. 37

Identijer Input File ... 38

3.3.1

3.3.2

3.3.3

3.3.4

vii

3.4 OUTPUT ... 4 0

4.0 BENCHMARKING/STATISTICS .. 44

4.1 BENCHMARKING ... 44

4.1.1 Isotopic Concentration ... 45

4 . 1 . 1 .I Description .. 45

4.1.1.3 Resonance Self-shielding ... 46

. .

4.1.1.2 Results ... 45

4.1.1.4 Cross Sections ... 49

4.1.1.5 Fission Products .. 50

4.1.2 Pin-Cell Burnup .. 51

4.1.2.1 Description .. 52

4.1 -2.2 Results ... 55

4.1.2.3 Differences in Energy Spectra ... 57

4.1.2.4 Recoverable Energy Per Fission .. 57

4.1.2.5 Fission Yields .. 58

4.1.2.6 Statistical Variances ... 59

4.1.2.7 Additional Burnup .. 59

4.1.3 Assembly Burnup .. 60

. .
4.1.3.1 Description .. 60

4.1.3.2 Results ... 61

4.1.3.3 Actinides ... 63

4.1.3.4 Fission Products .. 64

4.1.3.5 Comparison to SCALE ... 65

4.1.4 Power Distribution ... 65

4.1.4.1 Description .. 66

. .

4.1.4.2 Results ... 66

viii

4.1.5 Activity Calculation ... 67

4.1.5.1 Description .. 67

4.1 S.2 Results ... 68

4.1.5.3 Actinides ... 70

4.1.5.4 Fission Products .. 71

4.2 STATISTICAL ANALYSES .. 72

4.2.1 Input Parameters .. 72

. .

4.2.1.1 Number of Outer and Internal Bum Steps .. 73

4.2.1.2 Number of Predictor Steps .. 76

4.2.1.3 Importance Fraction .. 77

4.2.1.4 Recoverable Energy Per Fission .. 80

4.2.2 System-Dependent Changes ... 81

4.2.2.1 Modeling a System .. 82

4.2.2.2 Temperature- and Material-Dependent Parameters 84

4.2.2.3 Axial Boundary Conditions ... 85

5.0 APPLICATIONS OF MONTEBURNS .. 87

5.1 ACCELERATOR TRANSMUTATION OF WASTE .. 87

5.2 PLUTONIUM DESTRUCTION .. 92

5.2.1 Fuel Form ... 92

5.2.2 Isotopic Composition .. 93

5.2.3 Energy Spectrum .. 94

. .

6.0 LIMITATIONS OF AND FUTURE WORK FOR MONTEBURNS 97

7.0 CONCLUSIONS ... 98

APPENDIX A . LISTING OF C-SHELL FILE MONTEBURNS 101

APPENDIX B . LISTING OF FORTRAN77 PROGRAM M0NTEB.F 110

APPENDIX C . SAMPLE MCNP INPUT FILE .. 183

APPENDIX D . SAMPLE MONTEBURNS INPUT FILE ... 184

APPENDIX E . SAMPLE FEED INPUT FILE .. 185 ~ ~-~ ~~~~~~~~ ~

REFERENCES .. 186

X

LIST OF RGURES

FIGURE 1 . INTERACTION OF MONTEBURNS WITH MCNP AND ORIGEN2 15

FIGURE 2 . MONTEBURNS FLOW CHART ... 19

FIGURE 3 A . CALCULATED ISOTOPIC DISTRIBUTION AS A FUNCTION OF BURNUP AS

PREDICTED BY MONTEBURNS ... 45

FIGURE 3 B . PUBLISHED[71 ISOTOPIC DISTRIBUTION AS A FUNCTION OF BURNUP 46

FIGURE 3 C . DIFFERENCES IN HIGHER ISOTOPES OF PLUTONIUM ... 48

FIGURE 4 . PINCELL D~AGRAM .. 52

FIGURE 5 . LAYOUT OF ASSEMBLY FOR TEST CASE #3 ... 61

FIGURE 6 . 3x3 ASSEMBLY .. 66

FIGURE 7 . SAMPLE OF CORE CONFIGURATION FOR ATW .. 89

FIGURE 8 . PLUTONIUM DESTRUCTION AS A FUNCTION OF BURNUP 93

LIST OF TABLES

TABLE 1 . CONDITIONS OF K... .. 6

TABLE 2 . COMPARISON OF LINKAGE AND/OR BURNUP CODES ... 10

TABLE 3 . FRACTION OF RECOVERABLE ENERGY PER FISSION FOR CERTAIN ACTINIDES

DIVIDED BY THE RECOVERABLE ENERGY PER FISSION FOR U-235 22

TABLE 4 A . COMPARISON OF THE CHANGE IN THE FISSION-TO-CAPTURE RATIO IN

kfONTEBURNS WITH BURNUP TO THERMAL ONES USED IN REF . 7 49

TABLE 4 B . COMPARISON OF THE CHANGE IN THE ABSORPTION CROSS SECTION IN

MONTEBURNS WITH BURNUP TO THERMAL ONES USED IN REF . 7 50

TABLE 5 . PARAMETERS FOR TEST CASE #2 ... 53

TABLE 6 A . RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO A 55

TABLE 6 B . RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO B 56

TABLE 7 A . RESULTS FOR BURNUPS OF 16.00 AND 23.84 GWD/MTHM (G/G u 0 2) 62

TABLE 7B . RESULTS FOR BURNUPS OF 28.64 AND 3 1.86 GWD/MTHM (G/G u02) 62

TABLE 8 . PIN POWER DISTRIBUTION .. 67

TABLE 9 . RESULTS FROM ACTIVITY CALCULATION ... 68

TABLE 1 o A . COMPARISON OF RESULTS AS A FUNCTION OF NUMBER OF OUTER BURN STEPS

.. 74

TABLE 1 o B . COMPARISON OF RESULTS AS A FUNCTION OF NUMBER OF INTERNAL BURN

STEPS .. 74

xii

TABLE 1oC. RESULTS AS A FUNCTION OF INTERNAL BURN STEP FOR CONTINUOUS FEED ... 75

TABLE 1 OD. COMPARISON OF RESULTS AS A FUNCTION OF NUMBER OF PREDICTOR STEPS .76

TABLE 1oE. COMPARISON OF RESULTS AS A FUNCTION OF IMPORTANCE FRACTION...........^^

TABLE 1oF. RESULTS AS A FUNCTION OF RECOVERABLE ENERGY PER FISSION (G/G u02) .81

TABLE 1 1. RESULTS AS A FUNCTION OF KEF, AND CROSS SECTION (TEST CASE #2, SCENARIO

A - MG/G UOz) .. 83

TABLE 12. EFFECT OF TEMPERATURE ON POWER DISTRIBUTION ... 84

TABLE 13. RESULTS OF CHANGES IN AXIAL PARAMETERS (MG/G U02) 86

TABLE 14. FEED MATERIAL FOR ATW (KG) ... 90

TABLE 15. AMOUNT OF MATERIAL PRODUCED(+)/DESTROYED(-) BY ATW (KG) 91

TABLE 16. FISSION-TO-CAPTURE RATIOS OF ISOTOPES IN EACH SPECTRUM 95

XiV

Development of Monteburns: A Code That Links MCNP and ORIGEN2

in an Automated Fashion for Burnup Calculations

bY

Holly R. Trellue

ABSTRACT

Monteburns is a fully automated tool that links the Monte Carlo transport code

MCNP with the radioactive decay and burnup code ORIGEN2. Monteburns produces

many criticality and burnup computational parameters based on material feedhemoval

specifications, power(s), and time intervals. This code processes input from the user

indicating the system geometry, initial material compositions, feedremoval, and other

code-specific parameters. Results from MCNP, ORIGEN2, and other calculations are

then output successively as the code runs. The principle function of monteburns is to

first transfer one-group cross sections and fluxes from MCNP to ORIGEN2, and then

transfer the resulting material compositions (after irradiation andor decay) from

ORIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the

code is that the user have a working MCNP input file and other input parameters; all

interaction with OlUGEN2 and other calculations are performed by monteburns.

This report presents the results obtained from the benchmarking of monteburns to

measured and previously obtained data from traditional Light Water Reactor systems.

The majority of the differences seen between the two were less than five percent. These

were primarily a result of variances in cross sections between MCNP, cross section

libraries used by other codes, and observed values. With this understanding, this code can

now be used with confidence for burnup calculations in three-dimensional systems. It

was designed for use in the Accelerator Transmutation of Waste project at Los Alamos

National Laboratory but is also being applied to the analysis of isotopic

productioddestruction of transuranic actinides in a reactor system. The code has now

been shown to sufficiently support these calculations.

1.0 INTRODUCTION

The past few decades have brought growth in a number of areas, two of which

include the nuclear industry and computer technology. As restrictions placed upon and

costs involved with experimental facilities increase (due to environmental and radiological

health concerns), the value of computer modeling also increases. It has become possible

to model various types of nuclear systems (including full reactor cores) and perform

complex decay and bumup calculations in a matter of seconds. With the increase in

computer technology, the number of computer codes available to perform nuclear-related

calculations has increased, and oAen the user wants to run two or more codes

concurrently. Thus, many linkage codes have been written to allow concurrent use of

these “main“ codes in an automated fashion. Two popular codes used in the design of

nuclear systems are MCNPTM and ORIGEN2, and the code presented in this report is a

linkage code for these two “main” codes.’

MCNP (Monte Carlo N-Particle transport code) is widely used to perform

Monte Carlo calculations of neutron, photon, andor electron transport.[’] MCNP is

primarily used for analyzing the exact geometry and material composition of a system to

determine the behavior of particles in that system (see Section 2.1 for a more detailed

description of MCNP). It cannot, however, determine the effect that irradiation (burnup)

has on the materials within the system (i.e-, radioactive decay and burnup calculations).

Instead, this is the hnction of the code ORIGEN2 (The Oak Ridge National Laboratory

(ORNL) Isotope Generation and Depletion Code), which analyzes the burnup and

concurrent decay of isotopes in a system over time.r21 The limitation of ORIGEN2 is

that it does not take into account the geometry of a system. The geometry, among other

things, influences cross sections and neutron fluxes at various positions in the

materiaYregion(s) being analyzed. These geometry-dependent parameters of the s ys tem

‘ Radiation Safety Information Computational Center (RSICC) Code Packages CCC-660 and CCC-37 1

1

can be determined by MCNP. Thus, it is desirable to link MCNP and ORIGEN2 to

allow accurate calculations of spatial isotope generation and depletion in a physical

system.

The basis for the work presented in this paper is the need for a fully automated

linkage code that transfers material compositions and cross sections for any three-

dimensional (3-D) system from MCNP to ORIGEN2, transfers the materials remaining

after irradiation from ORIGEN2 to MCNP, obtains new cross sections, criticality

parameters, and flwdenergy spectrums from MCNP, and then transfers materials back to

ORIGEN2 in a cyclic fashion for as many time steps as needed. Additionally, three other

features related to overall performance were desired: 1) the option to irradiate more than

one material as separate ORIGEN2 analyses from a single MCNP output file and

combine them again after irradiation into a single MCNP input file, 2) the ability to

transfer material from one region in MCNP to another, and 3) the capability to add or

remove specified materials after each step in an automated fashion.

Initially, monteburns was specifically developed for use in the Accelerator

Transmutation of Waste (ATW) projectr3] because it could combine a detailed 3-D

system model with burnup calculations in an automated fashion. The goal of the ATW

project is to reduce the radiotoxicity of nuclear waste so that the radiotoxicity of ATW-

treated waste after 300 years is less than that of untreated waste after 100,000 years (see

Section 5.1 for more information). For this project, it is desired to have a linkage code

that allows addition (referred to as “feed” in this document) andor removal of material

either continuously or discretely (all at one time). In addition, the code must be capable

of burning more than one material region in ORIGEN2 and of combining isotopic

compositions for each material into one main MCNP input file for a series of burnup

steps. For ATW, all of these functions are performed and regions of spent fuel are

rotated fkom the outside to the inside of the system to allow different amounts of

2

irradiation to occur in each. The code was also designed so that it can be used for reactor

systems, as shown in Sections 4.1 and 5.2.

The name montebums was chosen because it is a Monte Carlo burnup tool. The

purpose of this document is threefold 1) to present information relevant to the

development of montebums (i.e., backgroundprevious work, theory and calculations used

in the code), 2) to display results of benchmark calculations used to verify the

performance of monteburns and of statistical analyses for several input parameters, and

3) to show current and future applications of monteburns.

3

2.0 BACKGROUND

Over the past few decades, the development of numerous computer codes has

increased the utilization of computer modeling in solving nuclear design problems. For

example, Los Alamos National Laboratory developed a Monte Carlo code, MCNP, which

is used to model particle transport in a variety of nuclear systems. In addition, Oak Ridge

National Laboratory designed a number of codes, including ORIGEN2, the radioactive

decay and burnup code discussed in this document, and the SCALE package, which is a

“Modular Code System for Performing Standardized Computer Analyses for Licensing

Evaluation.” * The SCALE package encompasses a variety of codes, including several

(Le., MORSE and KENO) that perform Monte Carlo transport calculations, and

ORIGEN-S, which performs radioactive decay and burnup calculations (ORIGEN-S is a

“newer” version of ORIGEN2). Concurrently, many commercial nuclear companies

(both in the United States (US) and Europe), developed their own methodskodes for

analyzing the effects of burnup on a reactor core. Many of these methods have been used

and tested extensively, but many are not publicly available.

There have also been several codes written to link MCNP and ORIGEN2, some of

which are discussed in Section 2.3. However, each of these linkage codes appears to have

been developed for specific purposes and thus has certain limitations. Monteburns was

developed to be as versatile as possible so that it can be applied to a large number of

situations and give the user a variety of choices of operational parameters while

simplifying required user training.

Descriptions of the two codes linked by monteburns, MCNP and ORIGEN2, are

included below, followed by a discussion of previously developed burnup codes. One of

the main assumptions made by monteburns is that MCNP and ORIGEN2 perform

Radiation Safety Information Computational Center (RSICC) Code Package CCC-545.
2

4

calculations well; benchmarking of them has already been performed, so no additional

benchmarking is necessary.

2.1 MCNP

MCNP is a transport code that uses the Monte Carlo technique. The Monte

Carlo technique is a statistical method in which estimations for particle characteristics are

obtained through multiple computer simulations of the behavior of individual particles in

a system. The probability that a particle behaves in a certain manner (scatters, absorbs,

fissions) is obtained from the cross sections for the material(s) with which the particle

interacts. For example, if a material is a pure absorber, the probability that a particle

interacting with this material is absorbed is 100%. If the material is both an absorber and

a scatterer, then the probability of absorption is equal to the ratio of the absorption cross

section to the total cross section (absorption plus scatter). It follows that the probability

of scatter is equal to the ratio of the scattering cross section to the total cross section.

After a particle has undergone a scatter, it remains in the system to undergo another

interaction. A Monte Carlo code keeps track of the position of each particle before and

after it scatters andor is absorbed, as well as any neutrons produced from fission

interactions. If a particle travels outside of the system, then it is considered to have

“leaked.” At the end of the “life” of the particle, it either leaks from the system or is

absorbed in a material. In the case of a neutron being absorbed in fissile material and

causing a fission, the location and number of new neutrons created is recorded.

A Monte Carlo code generates a statistical history for a particle based on random

samples from probability distributions used in calculations to determine 1) the type of

interaction the particle undergoes at each point in its life, 2) the resulting energy of the

particle if it scatters, andor 3) the number of neutrons it produces if it causes a fission.

Thus, a Monte Carlo code models the series of events that occur in the lives of a large

number of particles to determine the flux of different types of particles in various

5

locations in the system. The particles of the most interest in criticalityhurnup

calculations are neutrons because they are the ones that interact with fissile materials to

produce energy as well as more neutrons.

MCNP is used to model the events in the lives of neutrons, photons, andor

electrons. The cross sections for the particles are obtained from numerous material cross

section libraries containing a number of isotopes at various operating temperatures.

MCNP uses these libraries in a continuous-energy fashion, which means that it obtains

the specific cross section for a given energy rather than looking at grouped cross section

sets, in which the cross sections represent an average of a particular range of energies.

MCNP can also calculate the effective multiplication factor (kff) for a system,

which is the number of neutrons produced in one generation divided by the number of

neutrons that existed in the previous generation, indicating how close the system is to

being critical (hff of 1.0). Table 1 shows the condition of a system at various values of

hfi. A reactor is typically operated at a hff around 1 .O as the system is self-sustaining at

that point (i.e., requires no new source of neutrons).

MCNP is a valuable tool in that it helps to design a system to operate at a certain

condition. MCNP was developed by personnel at Los Alamos National Laboratory

(LANL), serves a large number of government and institutional organizations, and has

been well maintained and updated, For more information about Monte Carlo codes or

MCNP in particular, see Ref. 1 or 5.

Table 1. Conditions of bff

11 Value of k p ~ I Condition 14] 11
ll k,w < 1 .O I Subcritical 11

kff= 1.0 Critical

kff > 1.0 Supercritical

6

2.2 ORIGEN2

ORIGEN2 is a version of the ORIGEN computer code, which is an isotope

generation and depletion code used for performing radioactive decay and burnup analyses

for a material. ORIGEN calculates the concentration of nuclides at numerous points

throughout a decay or irradiation primarily using the matrix exponential method of

equation solving. ORIGEN treats the full isotopic matrix of materials generated through

irradiation by considering time-dependent formulation, destruction, and decay

concurrently. The main calculation performed by ORIGEN is shown in Equation 1 .I6]

dNi - = y j i ~ f , j N j @ + C T ~ , ~ - , ~ - ~ @ + AiNj - of ,iNi# - C T ~ , ~ Ni@ - AiNi
dt

dNi
where: - = change in concentration of nuclide i with time =

dt

Formation rate - Destruction rate - Decay rate

Formation terms:

x ~ , ~ o ~ , ~ N , @ = fission yield rate of N, from fissionable nuclides NJ

C T ~ , , - ~ N,-,$

A, N;

J

= transmutation rate of N,-l into N, by neutron capture

= radioactive decay rate of N,’ into N,

Destruction terms:

LT ,, N,@ = fission rate of nuclide N,

o,,,N,$ = capture rate of nuclide N, - (n,y),(n,a),(n,p),(n,2n), and (n,3n)

Decay term:

A, N, = radioactive decay rate of nuclide N,

= fission yield of nuclide i from nuclide j (obtained from libraries)

= microscopic fission cross section of nuclide j (cm’ - from libraries)

= concentration of nuclide j (gram-atoms - calculated)

where: yJl

of,

NJ

7

= neutron flux in system (n/cm2-s - input)

oc,i-l microscopic capture cross section of nuclide i-1

(cm2 - from libraries)

= decay constant of nuclide i’ (s-’ - obtained from decay library) xi

The matrix exponential method used to solve this problem with a spectrum-averaged flux

and one-group cross sections is shown in Equations 2 and 3.

N = A N

N = Noe

where: N

A

N

No

At

= change of nuclide concentration with time

= transition matrix with rate coefficients (decay, absorption, fission)

= vector of nuclide concentrations at time t

= vector of initial nuclide concentrations

The equation is then solved by obtaining a series expansion for the term eAt .

Sometimes difficulties occur in generating accurate values using the matrix

exponential method, and either the Bateman equations[71 or the Gauss-Seidel iterative

technique[’] is applied. The number of nuclides removed from the transition ma& and

processed using the Bateman nuclide chain equations are determined by how many have

half-lives (both absorption and fission) less than 10% of the time interval being

investigated. Thus, having a shorter time interval in ORIGEN allows the Bateman

8

equations to be used in solving for the concentrations of a larger number of isotopes (as

discussed in Section 3.3). This can be advantageous in that it often allows more accurate

results to be obtained.

The input required for ORIGEN2 consists of three parts: cross section libraries,

information about each decay/irradiation step, and initial material compositions. First,

ORIGEN2 contains over 40 different data sets with one-group cross sections for various

energyhystem spectra. The user must decide which one to use, and transfer both the

ORIGEN2 decay library and that cross section library to a file that can be read by

ORIGEN2 (typically calledfovt. 9). Hehhe must then enter identifiers for these libraries

in the main ORIGEN2 input file. Second, this main ORIGEN2 input file must also

contain detailed infomation required to run the code, including the length(s) of each decay

andor irradiation, the flux or power associated with each irradiation, and a description of

what output parameters (and units of these parameters) are desired. Finally, the initial

composition of the material being irradiated must be entered. This can either be part of

the main ORIGEN2 input file, or it can be self-contained in its own file (usually called

fort.4). The output for ORIGEN2 includes cross sections and fission yields used by the

code as well as nuclide concentrations at each time step as specified by the user.

2.3 Previous Work

There are two main classes of codes that can be used to perform criticality

calculations for nuclear systems: a Monte Carlo code, and a deterministic code. Monte

Carlo techniques typically produce a statistical approximation of the answer for the exact

geometry of the system, whereas deterministic codes numerically produce an exact

solution of the diffusion andor transport equations for the problem as modeled.

Deterministic codes generally cannot solve such equations easily for complex geometries,

so approximations on the geometry must be made.[’] Additionally, deterministic codes

generally utilize less accurate cross section data (ie., grouped versus continuous). With a

9

Monte Carlo code such as MCNP, a supplemental code, such as ORIGEN2, must be

used to perform burnup analyses, and another code @e., a llnkage code) is needed to

interact between the two. Examples of such llnkage codes include MOCUP,[91

COUPLE,['O1 and SCAMP,["] which are further discussed in the following sections and

are compared in Table 2.

Table 2. Comparison of Linkage and/or Burnup Codes

MOCUP3

SCALE/

COUPLE

SCAMP

HELIOS

CASMO

ANDROMEDA4

DANTSY S5/

ORIGEN2

The United States E
**

Light Water Reactors

Descript iodComparison

Includes Monte Carlo, 3-D techniques and system-dependent parameters

Links MCNP and ORIGEN2 with existing input files for each

Modifies reaction rates, fluxes, and cross sections in ORIGEN2

Modifies nuclide compositions in MCNP after one burnup period

Allows Monte Carlo 3-D modeling and system-dependent parameters

Develops multi-group cross sections and neutron fluxes for ORIGEN-S

Modifies cross sections and fluxes at each time step

Is a fully automated suite of programs and requires detailed training

Links MCNP and ORIGEN-S for burnup calculations of LWRs**

Transfers material compositions after burnup to MCNP

Does not transfer cross sections or fluxes

Performs transport calculations for a two-dimensional (2-D) geometry

Couples subcomponents to perform fast, efficient calculations

Uses multi-group ENDF* cross section libraries

Does not include system-dependent axial effects

Performs one-dimensional diffusion calculations for fast reactors

Calculates criticality parameters using transport theory

Multi-group cross sections must be collapsed to one-group for ORIGEN2

Can perform detailed 3-D geometry calculations, but only with difficulty

luated Nuclear Data Files, particularly ENDF/B-V'or ENDF/B-VI ver~ions''~'

Radiation Safety Infomation Computational Center (RSICC) Code Package PSR-365.
http://www.nea.fr/abs/html/nea-032 1 .html
Radiation Safety Information Computational Center (RSICC) Code Package CCC-547.

3

10

http://www.nea.fr/abs/html/nea-032

In contrast, many deterministic codes used by the commercial nuclear industry

(for example, HELIOS[121 and ANDROMEDA4) actually incorporate burnup as well as

criticality calculations. These codes are designed for one- or two-dimensional lattice

geometries and are often large, complex programs to execute. The other way to use a

deterministic code that does not perform burnup calculations (for example, the Diffusion

Accelerated Neutral Particle Transport System (DANTSYS) suite of codes)[131 is to link

it with a burnup code such as ORIGEN2. Although deterministic codes can perform

burnup calculations, they do not have the physical accuracy associated with a Monte

Carlo code that models a detailed, 3-D geometry. These two categories of codes are

discussed in the following sections with examples of each, but these only represent a

small sample of the codes that have been written for burnup analyses; there are most

likely other types of codes not presented here.

2.3. I Linkage Codes

MOCUP (MCNP-ORIGEN2 Coupled Utility Program) is a MCNP/ORIGEN

linkage code designed to transfer fluxes, reaction rates, nuclides, and cross sections fiom

MCNP to ORIGEN2 using a number of user-supplied skeleton ORIGEN2 files, which

are then modified with MCNP results. Then it extracts nuclide compositions from the

ORIGEN2 output files and converts them into number densities, which are placed back

into MCNP. However, it requires a certain structure for the initial MCNP input file

(with comments indicating different locations in the file) and requires the user to create

skeleton ORIGEN2 input files. It does not interact in an automated fashion with MCNP

and ORIGEN2 for more than one time step; instead, the user must run each time step

manually, adding feed materials, removing waste, and/or rotating regions. Although the

MOCUP utility can be very useful for simple analyses involving MCNP and ORIGEN2,

it does not work well with repeated structures, multi-materials, or the other limitations

discussed previously.

11

COUPLE is one of the many modules that exist in the SCALE (Standardized

Computer Analyses for Licensing Evaluation) suite of programs. The purpose of

COUPLE is to produce multi-group cross section libraries from the ENDF data base and

multi-group neutron fluxes, which are required as input for ORIGEN-S, from a detailed

model of the system (typically developed using the SCALE module KENO). This

program, along with other modules in SCALE (such as NITAWL, BONAMI, and/or

XSDRNPM), allows system-dependent design characteristics (such as operating

parameters and material compositions) to influence multi-group cross sections. This

system is fully automated with the feature that a large suite of programs are used to

represent a system as accurately as possible. Unfortunately, although these modules

offer a number of options for performing calculations, they also require extensive, detailed

training to execute properly.

SCAMP (SCALE-to-MCNP Post Processor) was a code written to link

ORIGEN-S and MCNP for Pressurized-Water-Reactor (PWR) fuel assembly

configurations. It transfers actinide and fission product compositions from the SCALE

module ORIGEN-S to MCNP. However, it does not perform automated calculations for

numerous steps or generate spectrum-averaged cross sections from MCNP to ORIGEN-

S. The advantage of this program is that ORIGEN-S uses cross sections representative of

typical PWR systems, whereas the data base for ORIGEN2 may not be as representative.

2.3.2 Discrete Ordinate Burnup Codes

There are a number of discrete ordinate burnup codes used in the commercial

nuclear industry for analyzing the components of a nuclear reactor during operation. Two

such examples are HELIOS and ANDROMEDA.

HELIOS perfoms neutron and gamma transport and burnup calculations for two-

dimensional lattice geometries. the main

program, a pre-processor, and a post-processor. It was developed by Scandpower A/S

It consists of three different processors:

12

as a two-dimensional collision probability-based -ansport code. The associated HELIOS

libraries are 34-energy group libraries based upon ENDFB-VI data for a variety of

temperatures. HELIOS is useful for performing quick calculations for various reactor

physics constants but needs to be coupled with another code to obtain temperature

coefficients or to model 3-D system effects. HELIOS is also fairly expensive to obtain.

Additionally, CASMO, another widely used burnup code in the US commercial nuclear

industry, performs calculations fairly similar to HELIOS.[121

ANDROMEDA is a one-dimensional multi-group diffusion-burnup code

developed in the Netherlands for use with fast reactor systems. The code is designed

primarily for fuel-cycle analysis of fast breeder reactors by calculating regular and adjoint

fluxes, material bucklings, kinetics parameters, material (he1 or poison) concentrations,

and region dimensions at various steps throughout irradiation. ANDROMEDA collapses

multi-group cross sections to several groups and analyzes cylindrical, spherical, andor

slab geometries. A variety of multi-group cross section libraries for ANDROMEDA are

available.

13

3.0 DESCRIPTION OF CODElTHEORY

Although the linkage and burnup codes discussed in the previous section perform

adequate calculations for the irradiation of materials in a system, they do not provide the

entire range of parameters and functions useful in advanced nuclear burnup problems. For

ATW and certain reactor systems (see Section 5), it is desired to have a code that

performs automated bumup calculations for a 3-D system for more than one time step. It

is also desirable to calculate spectrum-averaged cross sections and fluxes for each of these

burnup steps. The Monte Carlo code MCNP was chosen to model the system because it

is widely known and is capable of modeling in three dimensions as well as calculating

spectrum-averaged cross sections and fluxes in different regions of the system. The code

ORIGEN2 was chosen to perform calculations involving the change of nuclide

concentrations because it is a stand-alone radioactive decay and burnup code with the

characteristic that cross sections and material compositions can each be contained within

separate input files, making them easy to modify for numerous bum steps.

In addition, it is preferred to have a linkage code involving little interaction with

ORIGEN2 and with the ability to work with any MCNP input file (Le., no format

requirements for an ORIGEN2 or MCNP input file) without requiring detailed training.

Other desired features include the ability to add andor remove certain materials in a

system at different bum steps, bum more than one material from the initial MCNP input

file, and rotate materials from one region in the system to another. None of the llnkage

codes presented in Section 2.3.1 exhibit all of these options, and the deterministic codes in

Section 2.3.2 do not analyze detailed, 3-D systems easily. Thus, the linkage code

monteburns was designed to model the system accurately, incorporate all desired features,

and make the input and training requirements as simple as possible. This section includes

a brief description of the code, presents the calculations it performs, and describes the

input required by and the output produced by monteburns.

14

3.1 Description of Monteburns

Monteburns is a UNIX c-shell command file (see Appendix A) that frequently

interacts with a FORTRAN77r'51 program, rn0nteb.J; (see Appendix B) to produce

criticality and burnup results based on material feedremoval specifications, power(s), and

time intervals. Figure 1 shows how monteburns interacts with MCNP and ORIGEN2.

rnonteb urns

initial material compositions

ORIGEN2

material compositions

Figure 1. Interaction of Monteburns with MCNP and ORIGEN2

The primary way in which MCNP and ORIGEN2 interact through monteburns is

that MCNP provides spectrum-averaged one-group microscopic cross sections and fluxes

required for OlUGEN2, and ORIGEN2 provides material compositions halfway through

and at the end of each irradiation step. These calculations may occur more than once

throughout an irradiation period to obtain the best representation for a particular bum

step (see Section 3.3.2 for more information about predictor steps).

15

Monteburns acts as a post-processor for MCNP and a pre- and post-processor

for ORIGEN2. For each irradiation step, MCNP is run with material compositions

halfway through the step (obtained from ORIGEN2), and relevant parameters are

extracted by monteburns and input into ORIGEN2. A majority of information desired by

the user is contained in the monteburns output (see Section 3.4), and additional

information can be obtained in the future if desired (see Section 6). Nonetheless,

monteburns was designed to eliminate the user’s need to search through MCNP output

files for results.

In addition, input files for ORIGEN2 are complex to write, and output files

generated by ORIGEN2 are bulky and complicated to read. Thus, monteburns eliminates

the user’s need to create hisher own ORIGEN2 input files and to extract information

from ORIGEN2 output files. Monteburns provides a file with cross section and decay

libraries (fort.9), a material composition input file (fort.4), and a main ORIGEN2 input

file (mbori), which contains commands as well as some feed and removal information

(optional). All three of these files are created by monteburns for each material, and they

provide all the information needed to execute ORIGEN2.

The FORTRAN77 program, m0nteb.A which interacts with the c-shell file

monteburns, consists of fifteen different parts, each of which performs a different

function. These functions are displayed in the detailed flow chart of the c-shell file

monteburns in Figure 2, where the numbers correspond to the list below.

1.

2.

3.

4.

5.

read input parameters,

create basic ORIGEN2 input files for each main bum step based on continuous

feedremoval information,

put the user’s MCNP input file into monteburns format,

create tally requests for MCNP,

write ORIGEN2 composition input file, separating natural elements into individual

isotopes,

16

6. update the monteburns input file to indicate the current step number and to update

the list of isotopes being tracked,

7. determine which material is located in each region,

8. add discrete feed to ORIGEN2 composition input file (if requested by the user),

9. modify the previous MCNP input file with new material compositions,

10. modify ORIGEN2 input files for predictor steps to calculate compositions halfway

through each burn step,

11. modify ORIGEN2 libraries with cross sections calculated by MCNP and ORIGEN2

input files with fluxes fiom MCNP,

12. calculate the recoverable energy per fission based on the actinide distribution,

13. perform discrete removal in the ORIGEN2 composition input file,

14. output results of ORIGEN2, and

15. calculate the amount of material burned and produced based on feed and inventory

information.

The full range of calculations performed by monteburns is presented in Section

3.2, detailed input requirements are described in Section 3.3, and the results currently

output by monteburns are displayed in Section 3.4.

17

1. Readinput parameters to determine:

Number of MCNP Materials Being Analyzed(nmat),

Number of Outer Burn Steps (nom),

Number of Predictor Steps (npre), I Current Bum Step (nrst), and I
I If Intermediate keff Calculations Occur(nkeff; O=no, 1 =yes) /

f
2. Create basic ORIGEN2 input files

-

Run MCNP to obtain initial

of materials to put into ORIGEN2

T
4. Create limited tally requests for MCNP

v
5. Write ORIGEN2 composition input tile 1

I Obtain files frorr previous runs 1

Yes

Reduce resulting number

of output files to two including value of nrst

t
7. Determine which material is located i

each region; Organize files

18

no

9. Modify previous MCNP input file with new material compositions

Run MCNP to determine effect(s) of discrete feed

no

A
Run ORIGEN2 for entire step

10. Modify ORIGEN2 input

I Run ORIGEN2 for predictor step I

with new material compositions

13. Perform discrete removal
I 1

1 9. Modify previous MCNP input file I with new material compositions

Run MCNP for entire step --L+
14. Output results of ORIGEN2 G?

4. Create tally requests; Form full MCNP input fil

Run MCNP to calculate cross sections and fluxes

1 1 . Modify ORIGEN2 input files

with cross sections and fluxes

=

5. Calculate the amount of material burnedlproduced

12. Calculate recoverable energy per fission Save information for a restart case

I j = j + l L

Figure 2. Monteburns Flow Chart

19

3.2 Calculations

The calculations performed by monteburns are divided into six different

categories: recoverable energy per fission, flux normalization, reactor physics constants,

effective multiplication factor, power, and importance fraction.

3.2.1 Recoverable Energy per Fission

The user has two options for calculating the recoverable energy produced per

fission in a system. Either he/she can enter the desired Q-value (the average energy

released by the entire system) into the monteburns input file, or the user can enter the Q-

value for U-235 that he/she thinks is most representative for the nuclear system being

evaluated (preceded by a negative sign in the input file), and the code calculates the

average Q. In this case, the following equations are used by monteburns to calculate the

recoverable energy produced per fission in each material (see Equation 8 for the Q-value

of the entire system) according to the distribution of actinides in that material. I
a i s = lQ"-2351* Q r a (5)

where: Qfi = total amount of recoverable energy produced per fission

Qu-z3s= recoverable energy per fission for U-235 (input by user -

recommended value is 200

Qrat = weighting factor to include recoverable fission energy for all

actinides present (calculated by Equation 6)

n

Qm = q a t (i) * fiat (i)
i= 1

where: n = number of actinides in material (calculated by ORIGEN2)

qral(i)= ratio of recoverable energy per fission for isotope i divided by the

recoverable energy per fission for U-235 (see Table 3)

20

frar(i) = ratio of fissions resulting from isotope i to total number of

fissions (calculated by Equation 7)

(7)
@(i) * n(i)

k(cri(i) * n(i))

jA(i) =

r=l

where: oJzj = spectrum-averaged one-group microscopic fission cross section of

isotope i (calculated by MCNP)

n(i) = number density of isotope i

(calculated by ORIGEN2 in units of gram-atoms)

Next, the average energy produced per fission for the system as a whole is calculated.

j=I Z(Qjd *q; *XfJ * V J)
Q a w =

!(d *Xf j *vi)
J = l

where: ea,, = average recoverable energy per fission for entire system (MeV)

@is /= average recoverable energy per fission in material j (MeV)

(calculated by Equation 5)

40; = neutron flux (n/cm2-s) in region containing material j

(calculated by MCNP)

Cfj = macroscopic fission cross section of material j (cm-')

n

(= coj(i) * n(i) - obtained from ORIGEN2 files)
i=l

VJ' = volume of all cells containing material j (cm3)

(calculated by MCNP or input by user)

m = number of materials being analyzed (input by user)

21

Table 3. Fraction of Recoverable Energy Per Fission for Certain Actinides Divided

by the Recoverable Energy Per Fission for U-235

* The fiac

Isotope I Fraction[”] *

Th-227 0.90

Th-229 1 0.92
...

Th-232 0.96

Pa-23 1 0.95

Pa-233 0.98

U-232 0.96

U-233 0.99

...

..

..

..

U-234 0.98

U-235 1 .oo
U-236 1 .oo
U-237 1.01

..

..

..

U-238 1.02 ..
Np-237 1.01

Np-23 8 1.02
..

..
PU-23 8 1.02

PU-239 1.04
..

IS displayed here are an average of thc

IsotoDe I Fraction
~~ ~~~~

PU-240

PU-24 1

PU-242 1.06

Am-24 1 1.05

Am-242m 1.06

Am-243 1.07

Cm-242 1.06

Cm-243 1.07

..

..

...

..

..

Cm-244 1.08

Cm-245 1.09

Cm-246 1.10

Cm-248 1.12

Cm-249 1.13

..

..

..

...

Cf-25 1

ES-254

ractions calculated for thermal and fast spectrums

3.2.2 Flux Tally Normalization

For each material j, the flux used in ORIGEN2 (see Equation 1) is calculated fiom

the flux tallied by MCNP and is either normalized per MCNP fission neutron for a

“kcode” source definition or per MCNP source neutron for “nps” source definition, both

according to Equation 9.

I

(P = (P n * c (9)

where: = true value of the flux (normalized to system power)

= flux tally normalized per fission or source neutron (from MCNP) (pn

22

C = the neutron source term (calculated by Equation 10 or 1 1)

When an MCNP input file with a “kcode” (criticality) source definition is used, the flux is

normalized per fission neutron, and the value of k,ff and its associated error are found in

the MCNP output file. In this case, the value of C is given by Equation 10.

2) * P * lo6 w / m
c=

(1.602 * J / MeV) * kff * Qave

where: v = average number of neutrons produced per fission

(calculated by Equation 12)

P = total power (MW) of system (input by user)

k e , = effective multiplication factor (calculated by MCNP)

When the MCNP input file has a “nps” source definition, the flux is normalized per

source neutron, and the value of C is instead:

si-c * P* lo6 W 1 MW

j ? 0 s s * (1 . 6 0 2 * 1 O - ~ ~ J / M e V) * Q ~ ~ ~
c=

where: SYC = weight of source neutrons (approximately equal to one)

(calculated by MCNP)

Jloss = weight of neutrons lost to fission (calculated by MCNP)

The reason that the equation for the neutron source term has the variable keH(or

floss/src, which represents the fraction of neutrons lost in fission in a “nps” source

definition) in the denominator is that it modifies the value of the neutron flux of systems

not modeled at critical. For a “kcode” problem, the flux calculated by MCNP is

normalized per fission neutron, which assumes that the number of neutrons that fission in

23

the system modeled are representative of how many fission to produce the given steady-

state power level (steady-state power is only produced at critical). However, if the

system is subcritical, then the flux normalized per fission neutron is only a fraction (l<kff)

of the flux produced at steady-state because only that fraction of neutrons in a

steady-state system are represented. Dividing by k,ff increases the value of this flux

appropriately. Similarly, the relative number of fission neutrons produced in a

supercritical system are greater than those in a reactor at steady-state, so the flux must be

reduced to accurately reflect power production. Additionally, a system designed to be

subcritical (such as ATW) must rely upon source neutrons to remain at steady-state, and

these neutrons are not included in the flux calculated by MCNP. Again, in both cases,

dividing by kff produces the desired result.

The condition of a system not only influences the neutron flux in each region but

also the energy spectrum. If the system modeled is subcritical but the actual system is

critical, then the spectrum of the modeled system may not be representative of the actual

one, cross sections may be inaccurate, and incorrect ratios of fission, capture, and leakage

may be obtained. These three are competing processes that produce different nuclides (or

none in the case of leakage) such that the resulting isotopic compositions of the system

are affected by any misrepresentation of the spectrum. However, monteburns is not

designed to account for such a spectrum shift in either direction. Instead, it only accounts

for a linear change in the true flux as a hnction of l/&K. For a system designed to be

subcritical (such as ATW), this effect is not as dominant because it does not have to be

modeled exactly at critical throughout life to be representative of the actual system. In

either case, it is recommended that user model a system such that k,ff at all time steps is

as close to true values as possible so that the correct spectrum and results are obtained.

24

3.2.3 Reactor Physics Constants

For both types of source definitions, the value of ’u (number of neutrons produced

per fission) is calculated from results in the MCNP output file. For a “kcode” source

definition, it is calculated using Equation 12.

v = ke# * src#loss (12)

where: src = weight of source neutrons (approximately equal to one)

(calculated by MCNP)

floss = weight of neutrons lost to fission (calculated by MCNP)

For a “nps” source definition, the value of 2) is:

v = fsrc@oss (13)

where: fsrc = weight of source neutrons gained in fission (calculated by MCNP)

For either type of MCNP input file, the number of neutrons produced per neutron

destroyed (q) in a material is:

(vcp + 2.0 * O n 2 n)

(U T 4- of + U 2 n)
7 7 =

where: q = fission cross section of material (calculated by MCNP)

or

onZn = (n,2n) cross section of material6 (calculated by MCNP)

= (n,y) cross section of material (calculated by MCNP)

Additional cross sections for neutron interactions producing neutrons (i.e., (n,3n), (n,4n), etc.) are
assumed to be negligible.

25

3.2.4 Effective Multiplication Factor

The value of the effective multiplication factor for a “nps” source defrnition must

be calculated from the value of the net multiplication obtained from MCNP output:

kef = (fmult - 1)

@mu& - l/v)

where: fmuZt = net multiplication in the system (calculated by MCNP)

The relative error (0) associated with &ff is then:

[r = { (fmult *(I +err) - I) - kef]/keH
@mult *(I +err)- I/v)

where: err = relative error associated with net multiplication in system

(calculated by MCNP)

3.2.5 Power

Finally, the power produced by each material is:

. (Q a V e * q ’ * X / *V~*1.60219*10-’3J/A4eV)
pJ =

lo6 W l M W
(17)

where: = power produced by material j (MW)

(P‘ = neutron flux (n/cm2-s) in region containing material j

(calculated by Equation 9)

3.2.6 Importance Fraction

A key factor in balancing accuracy with execution time in monteburns is

determining the number of isotopes for which spectrum-averaged one-group cross

sections are calculated in MCNP. It is important for isotopes to be included in MCNP

26

for two primary reasons: they may significantly affect the system flux spectrum and

reactivity, andor an MCNP modified spectrum-averaged one-group cross section

produces more accurate transmutation and fission rates in ORIGEN2. For some isotopes

it may be important to modify this cross section, while for others, the default ORIGEN2

value may be used with little effect on the accuracy of the solution. Thus, it is inefficient

to calculate a spectrum-averaged one-group cross section for every isotope included in the

associated MCNP libraries because it increases execution time, although this can be done

if desired. Isotopes are deemed “important” in two ways. The first way is to explicitly

list an isotope in the monteburns input file (i-e., designate it as an “automatic” isotope);

this insures that spectrum-averaged one-group cross sections are calculated for this

isotope during each burn step (and that this isotope is included in the primary

monteburns output). The other way in which an isotope is deemed “important” is based

on a user input variable called the importance fraction.

If an isotope contributes a fraction to the system neutron absorption, fission,

mass, or atom density higher than the importance fraction, then this isotope is deemed

“important,” and a spectrum-averaged one-group cross section is calculated in MCNP and

modified in ORIGEN2. If any of the values calculated by Equations 18-21 (fraction of

absorption, fraction of fission, weight fraction, and atom fraction respectively) are greater

than the value of the importance fraction assigned by the user, then the isotope is

considered “important” and is included in all transfers between ORIGEN2 and MCNP for

the remainder of the run.

27

gadi * Ai

f: (gadi * Ai)
wfi =

i=l

gadi
a$=

i=l

where: n = total number of isotopes in system (input by user)

f (qJ i = fraction of absorption that isotope i contributes to system

gadi = amount of isotope in system (gram-atoms)

(calculated by ORIGEN2)

oai = microscopic absorption cross section of isotope i

(obtained from ORIGEN2 library or calculated by MCNP)

f(ojjj = fraction of fission that isotope i contributes to system

0- = microscopic fission cross section of isotope i

(obtained from ORIGEN2 library or calculated by MCNP)

wr;

A;

al;

= weight fraction of isotope i in system

= atomic weight (grams) of isotope i (calculated by rnontebums)

= atom fraction of isotope i in system

In this document (and within rnontebums), the word “absorption” solely refers to

capture interactions brimarily (n,y)) and excludes the probability of fission.

Nonetheless, both types of interactions influence the value of kff and what occurs to the

neutrons in a system (i-e., if a neutron is absorbed in a material, its “life” ends, whereas if

that absorption leads to fission, it produces even more neutrons as a result). If an isotope

significantly contributes to either one or both of these areas, it is included in further

MCNP calculations.

28

Not all isotopes produced from irradiation interactions are included in the initial

ORIGEN2 cross section libraries and are thus not deemed “important” by their

absorption or fission contribution because their cross sections are effectively zero. If

such an isotope comprises a significant portion of the material (either by weight or atom

density), then it should also be included in MCNP because it could significantly

contribute to interactions in the system. Thus, if the weight andor atom fraction of an

isotope in ORIGEN2 is greater than the importance fraction, then the isotope is also

passed back to MCNP. Additionally, even if an isotope does not have an absorption or

fission fraction greater than the importance fraction but still exists in a material in

significant amounts, it may still contribute to scatter interactions in the system. By

allowing the atom and weight fractions to be included in “importance” checks for an

isotope, such a potential scatterer can be included.

3.3 User Input

The user must generate two to four different input files before executing

monteburns. The two required input files are the MCNP input file (designated here by

mbJiIe but can be any name up to 8 characters), and a general monteburns input file (this

must have the same prefix “mbfile” with an extension of “.inp” for a name of mbJie.inp).

For many complex burnup scenarios, the user must also generate a feed input file (with a

name of mbJile.feed), which contains detailed instructions for monteburns at each time

step (Le., time interval, power, material feedremoval). The only case in which a feed

input file is not required is for a constant power burn with no material feed or removal.

Finally, monteburns uses one other input file, mbxs.inp, which contains a list of default

MCNP cross section identifiers for isotopes that may be produced in the irradiation

process and are not initially specified by the user.

29

3.3. I MCNP Input File

The MCNP input file represents the system being analyzed, including the

geometry and compositions of materials. There is no required format of this input file in

monteburns, except that material numbers must not be greater than 100 and user tally

cards cannot have numbers greater than 100 (this is to keep monteburns tallies from

interfering with user input). This file must run in MCNP (for example, complete enough

active cycles to produce a “final result” for hff in a “kcode” problem) before it can work

in monteburns.

3.3.2 Monteburns Input File

The following pages list input parameters required for monteburns that must be

provided by the user in the monteburns input file. These input parameters are read in

free format, but they must be in the order listed below (for more information, see the

Monteburns User’s Manual[”]). In addition, sensitivity analyses were performed for

several input parameters to see how their values affected results. The outcome of these

analyses is located in Section 4.2.1.

Number of MCNP Materials - this indicates the number of materials the user wants

to irradiate from the MCNP input file @.e., transfer back and forth between MCNP

and ORIGEN2).

MCNP Material Number(s) - the identification number of the material(s) in the

MCNP input file for which a burnup analysis is desired (the average flux for all cells

and parts of a repeated structure or lattice with this material are obtained). Note: the

number of entries here must equal the number of MCNP materials entered above.

Material Volume(s) - the sum of the volume (cm3) of all cells in the MCNP input

file for each material number(s) listed above (again, the number of entries must equal

the number of MCNP materials). If the user enters a value of 0.0 for one or more of

these, then the volume calculated by MCNP is used (if it exists). However, often the

30

geometry is too complex for MCNP to calculate the volume, in which case, unless the

user has input a non-zero volume for that material number, an error message appears,

monteburns terminates, and it must be rerun with non-zero values. Additionally, in

most cases of repeated structures, MCNP calculates the volume of cells containing a

given material incorrectly. For each of these cases (and for any other instances the

user desires), the user must enter the sum of the volumes of cells containing each

material being analyzed.

Total Power of System - the power (MW) generated by the entire system

represented in the MCNP model (note: this is not necessarily the same as the power

generated solely by the materials burned in monteburns). This value, along with the

recoverable energy per fission, is used to normalize the flux from MCNP in each

burned region for ORIGEN2. This flux is then converted to fission power and

output. Additionally, the user can enter the fiaction of this power to be used during

each outer burn step (if power is not constant over the entire bum) in the feed input

file. By entering a power fraction of zero for a step, then it effectively becomes a

decay-only step, which is useful for analyzing cooling periods of systems. Note: the

value of fission power output is subject to statistical errors and may not be exactly

the same as the power input. Increased statistics in MCNP may minimize this

problem, but nonetheless, the user should check the value of power output to ensure

that it is close to the amount of power desired.

Recoverable energy per fission - this value represents the average recoverable

energy per fission (Q) in MeV in the aforementioned MCNP model. I f the user does

not know the exact amount of energy generated by a combination of several isotopes,

then he/she can enter the recoverable energy per fission for U-235 in that system (see

Equations 5-8). WARNING: the fissile isotopics used for the calculation of Q are

based only on the materials burned by monteburns. If the fissile isotopics of the

entire system are significantly different from the fissile isotopics of the materials

31

burned, then the average value of Q may be in error, thus the flux normalization may

be incorrect (although in most cases this should be a relatively small effect).

Total number of days burned - this number represents the length of time for which

a material is irradiated in ORIGEN2 (or the decay time if power equals zero). If the

user provides a feed input file, then the irradiation lengths (in days) for each outer

bum step (described below) must be provided in this file. Otherwise, the total

irradiation time (in days) is entered in the monteburns input file.

Number of outer burn steps - this number indicates how many outer burn steps are

desired. If a feed input file exists, then this must equal the number of steps described

in the feed input file. If a feed input file does not exist, then the length of the

irradiation period for each outer bum step equals the total days burned divided by the

number of outer burn steps. Each of these steps represents a time period for which a

bumup calculation is performed and representative cross sections are obtained (the

burn step then uses spectrum-averaged one-group cross sections calculated at a

predictor step halfway through that step). Each outer step can also indicate the

addition and/or removal of a material.

Number of internal burn steps - this is the number of additional times into which

the irradiation period is divided for ORIGEN2 calculations. As mentioned in Section

2.2, the results obtained from ORIGEN2 (and as a result, rnontebuvns) may be more

accurate if long irradiation periods are broken up into smaller lengths of time,

especially at the beginning of a system’s life. This is because the Bateman equations

andor the Gauss-Seidel iterative technique are used to solve for compositions of

materials when the half-life of an isotope is less than 10% of the irradiation interval.[61

Additionally, the physics and composition of materials in the system may change

significantly with time. Thus, the user can specify that the outer bum steps be

divided into even smaller time segments for use in ORIGEN2. In addition, there is

*

32

virtually no penalty on execution time by using smaller time steps in ORIGEN2

because most of the execution time lies with MCNP.

Number of predictor steps - this is another variable affecting the accuracy of the

results. As the isotopic composition of a material changes during an irradiation step

(both due to burnup and potential variances in continuous feed fiom beginning to

end), the cross sections may change as well. To obtain the most accurate results,

spectrum-averaged one-group cross sections for a burn step should represent an

average over the time interval. In a monteburns calculation, ORIGEN2 is run halfway

through each outer burn step, and the resulting isotopics are used in MCNP to

calculate spectrum-averaged one-group cross sections and fluxes for that step. Then

a complete ORIGEN2 run is performed with the new values to determine final

compositions. This assumes that the isotopics of the system at the midpoint are a

reasonable approximation of the isotopics over the entire bum step and that cross

sections are representative of the step (actually it is only important that the neutron

flux energy spectrum is representative of the entire burn step). The user must be

aware of this assumption, and consequently, ensure that bum intervals are not too

long.

If the initial cross sections for a step are not accurate, then the ORIGEN2

compositions halfway through the step may not be a good representation of the bum

step. Thus, it is often beneficial to perfom a “predictor” step (derived from a basic

form of the predictor-corrector method[’]) to calculate cross sections more than once

at the midpoint of a burn step and to compare the neutron energy spectrum and

isotopic compositions halfway through the step (these values are printed in the

output files) to make sure that the final cross sections are representative of the

system at that step. The number of times for which cross sections are calculated

halfway through each step is the number of predictor steps. Executing multiple

predictor steps increases the accuracy of the burnup calculation because the

33

I spectrum-averaged one-group cross sections used to perform the predictor step

approach the ones calculated by the predictor step @e., they converge). In addition,

monteburns automatically adds a predictor step for the initial burn step because the

actual spectrum-averaged one-group cross sections for a system may be different than

those supplied in the chosen default ORIGEN2 library. For all subsequent bum

steps, monteburns uses the modified spectrum-averaged one-group cross section

library from the previous burn step, thus an extra predictor step is not required.

Step to restart after - a user can use this parameter to restart a run that ended

unexpectedly, or to branch off from a previous monteburns run with different input

variables (for example, if keff drops too low during the n* bum step, the user can

change the feed rate for the nh step and restart from the previous step). The “restart

step” indicates the outer bum step after which monteburns should start, using all

previously created input files and results for the outer burn steps up to that point.

To use this variable effectively, all input files that were created by monteburns during

the previous run must remain in the directory in which monteburns is running (most

of these appear in the tmpfiIe subdirectory of the main directory). If a restart run is

not being performed, then the “restart step” value should be zero. This value gets

modified during each step to reflect the value of the current step.

Number of ORIGEN2 library - this number represents the number of the ORIGEN2

library from which initial one-group cross sections are obtained (these values are then

modified to be system-dependent as calculated by MCNP tallies after the first step

for “important” isotopes). The ORIGEN2 manualr2] contains a list of over forty

different cross section libraries (with two-digit identifiers) from which the user can

choose for different types of systems. The value of this two-digit identifier must be

entered by the user.

OlUGEN2 library location - this line of input must contain the location of the

ORIGEN2 libraries (both decay and cross section ones) in the user’s file space or in

34

the directory of another user on the system that has the library files. This way, only

one user on a UNIX operating system needs to have a copy of the libraries.

Importance Fraction - this value represents the lower limit (tolerance) for the

importance of one isotope relative to the rest of the system based on results obtained

from ORIGEN2 and MCNP. If an isotope contributes a large enough fraction (i.e.,

greater than the importance fraction) to absorption or fission interactions, mass, or

atom density (see Section 3.2.6 for more information), then the isotope is considered

“important.” Flux and one-group spectrum-averaged cross sections tallies are then

performed in MCNP for this isotope. If the importance fraction is zero, then all

activation, fission products, and actinides generated in ORIGEN2 are tallied (except

those for which no MCNP cross section exists - see Section 3.3.4 for more

information). If the importance fraction is one, then no isotopes are deemed

“important” except those specified as “automatic” in the input. Additionally, it is

advised that the initial ORIGEN2 library be somewhat representative of the system,

or “important” isotopes may not be properly identified. The only way to absolutely

avoid this problem is to track every isotope or to generate a problem specific library

with a previous run of monteburns that replaces the original default ORIGEN2

library.

The user must also decide how to deal with fission products. I f the user enters

the importance fraction as a positive value, then only those fission products deemed

“important” are included in MCNP. However, since MCNP cross sections for many

fission products do not exist, monteburns contains the option to lump all fission

products together as one sum (except for those fission products, if any, designated as

“automatic” in the monteburns input file) by using a negative value here. These

lumped fission products are then given one of two general fission product cross

sections in MCNP - the average fission product from Uranium-235 and the average

fission product from Plutonium-239 (these have the identifiers 45 1 17.90~ and

35

461 19.90~ respectively[’]). The fraction of the total fission product mass separated

into each category is determined by comparing the number of fissions that result from

isotopes with an atomic number less than or equal to that of uranium (92) to those

that occur in other transuranic actinides with an atomic number greater than 92.

Intermediate flag - this flag indicates whether intermediate k,ff calculations are

performed. Normally, MCNP is only run once per predictor step, and these runs

occur halfway through each outer burn step (i.e., halfway through each irradiation

period). However, it is often desired to obtain a value of k,ff at the beginning andor

end of each burn step. When the value of this parameter is one, these additional

MCNP calculations are performed. Neither cross sections nor fluxes are recalculated

by MCNP for these runs, so ORIGEN2 results are not influenced. The only purpose

“intermediate” MCNP calculations have is to provide the value of k,ff at more than

one point during each outer burn step to see how the system changes. When a

discrete feed addition (see Section 3.3.3) occurs, three MCNP runs are performed for

the step (at the beginning, middle, and end); otherwise two MCNP runs are performed

(at the middle and end) because the beginning value of k,ff equals the ending value of

k,ff from the previous step. If the value of this parameter is zero, then only one

MCNP run is performed for each outer burn step (in the middle) regardless if discrete

feed occurs.

Number and list of automatic tally isotopes for each material - this integer

represents the number of isotopes/elements for which the user wants tallies to be

performed in MCNP and results written to monteburns output files (i-e., automatic

“important” isotopes). The user must then enter the MCNP identification number

for each of these isotopes/elements (these can indicate library preference andor

temperature dependence). It also allows the user to use a cross section not specified

in the default cross section file discussed in Section 3.3.4, rnbxs.inp (i.e., the cross

section identifier listed here has precedence over the one in mbxxinp).

36

3.3.3 Feed Input File

The purpose of a feed input file in monteburns is to list the lengths of each time

step, to vary the fraction of power generated by the system during each time steps, to

shuMe materials from one region to another, andor to specify amounts of materials to

add to or remove from the system during each outer bum step. The user can also specify

continuous or discrete (all at one time) feed (addition of isotopes) and/or removal (of

specified elements) for each material at each time step in this file. First, for each outer

bum step and (excluding the first two items) material, the user enters the following

parameters :

e

e

length of the irradiation (in days),

fraction of power produced relative to the total power entered in the monteburns

input file,

region in which each material is located,

feed group (defined below),

feed rate(s) (both beginning and ending rates for continuous and a flag and a rate for

discrete),

removal group (positive for continuous feed, negative for discrete), and

removal fraction (the fraction of each element removed (for example, a fractional

removal of 0.9 means that 90% of the removal group is removed and 10% remains)).

The next part of the feed input file allows the user to enter information about the

feed group(s). This includes:

then, for each feed group,

the number of feed groups,

the number of isotopes in that group, and

37

a list of those isotopes (atomic number followed by atomic mass number (for

example, 92235 for U-235)).

Continuous feed OCCUTS at several points throughout the irradiation process, the amount

of feed being interpolated from the beginning and ending rates, and discrete feed occurs all

at the beginning.

The final part of the feed input file consists of information about the removal

group(s), including:

then, for each removal group,

the number of removal groups,

the number of ranges of elements to be removed,

the range(s) of elements (for example, 28 to 68 means that all elements between nickel

and erbium are removed (which represents a majority of fission products), the two

ranges 28 to 42 and 44 to 68 mean that all fission products in this same range except

technetium (2 ~ 4 3) are removed, and the range 43 to 43 indicates that only the element

technetium is being removed).

For continuous removal (a removal group number greater than 0), the appropriate

elements are removed both after the halfway predictor step and at the end of the bum

(simulating continuous removal), whereas for discrete removal (a removal group number

less than 0), the elements are removed only at the end of the bum step.

3.3.4 IdentiJier Input File

The identifiers used to recognize isotopes in MCNP are different than those in

ORIGEN2. Thus, monteburns is designed to determine which identifiers to use for each

code. In ORIGEN2, the identifier is simply the atomic number followed by the atomic

mass number and a “0” for most isotopes (metastable isotopes are followed by a “I”).

MCNP not only requires the atomic number and atomic mass number but also a cross

38

section identifier. A file containing a list of default MCNP identifiers for all isotopes

used or potentially created by decay or irradiation processes must be present in the

directory in which the user is running (Note: cross section libraries for many fission

products may not exist and obviously cannot be listed here). This file is named mbxs.inp

and can either be provided by the user or obtained with the source code and modified by

the user as necessary. For any isotopes deemed “important” by monteburns but do not

have a cross section identifier in this file, monteburns gives a warning that the cross

section is not found, continues to use the default ORIGEN2 cross section, and does not

transfer the material to MCNP. The identifiers in this file can either be cross section

libraries provided by MCNP, or they can be ones generated by the user with ENDF

libraries and/or the code NJOY,’ or ones fiom other sources. In fact, the user is

encouraged to use a code such as NJOY to generate temperature-dependent cross section

libraries, which can then be used by MCNPIPnonteburns to process temperature-

dependent data. In addition, mbxs. inp must include the general fission product identifiers

45 117.90~ and 461 19.90~ for MCNP if the lump sum of fission products option is used

(as discussed in Section 3.2.6 and 3.3.3).

There are a number of elements in MCNP for which “natural” cross sections exist.

However, ORIGEN2 does not recognize natural elements, so monteburns contains data to

separate natural elements into individual isotopes. I f a natural cross section exists in the

MCNP input file, monteburns separates this element into its isotopic components, and

then ORIGEN2 burns these isotopes individually (with the default ORIGEN2 library

cross sections). After the ORIGEN2 burn, monteburns then lumps them back into the

element’s natural isotopics for use in MCNP. Although this may not be completely

accurate because the initial ORIGEN2 cross sections are not modified by MCNP @e.,

’ Versions of NJOY are available at the Radiation Safety Information Computational Center (RSICC) as

codes PSR-171 and PSR-355.

39

they are not fully representative of the material in the system), it is dictated by the lack

of MCNP cross sections for many individual isotopes.

3.4 output

Two large, primary output files are produced by monteburns. These output files

consist of the name of the MCNP input file created by the user followed either by the

extension “.mbout” or “.mbchk.” For each of the output groups listed below (except the

first two, which contain system, not material dependent parameters), results appear for

each monteburns materialkegion being analyzed. Note: this is not necessarily the same as

the initial MCNP material number assigned to each region due to shullling between

regions. The user must keep track of each MCNP material individually through the

various regions when shuffling occurs.

The first output file, mbJile.mbout, contains the results displayed below for each

outer burn step:

Monteburns MCNP 4ff Versus Time - a list of the cumulative time (in days) over

which irradiation has occurred as well as the effective multiplication factor (bff),

associated relative error, 2) (see Equations 12 or 13), average recoverable energy per

fission calculated by monteburns (see Equations 5-8), and q for the system (see

Equations 8 and 14 respectively).

Monteburns MCNP kefr at Beginning of Step - a list of the cumulative time of

irradiation (in days) that has occurred before each step begins as well as the effective

multiplication factor, relative error, and 2) at the beginning of each outer burn step

(after discrete feed occurs). This data is only included in the output if discrete feed is

used and intermediate kff calculations are requested.

40

For each material and outer burn step, the following parameters are output:

Monteburns Transport History - the recoverable energy per fission (see Equation 5),

neutron flux (see Equation 9), macroscopic fission cross section (&), power

generation, burnup (in gigawatt-days per metric ton heavy metal (i.e., actinides)

(GWd/MTHM)), capture - (n,y), fission - (n,f), and (n,2n) cross sections, fission-to-

capture ratio, and q (see Equation 14) for both the material as a whole and the

actinides only.

Monteburns Flux Spectrum - the percent of neutrons with energies in each of the

following ranges: 0 to 0.1 eV, 0.1 to 1 eV, 1 to 100 eV, 100 eV to 100 keV, 100 keV

to 1 MeV, and 1 MeV to 20 MeV. To obtain a more detailed spectrum, the user must

enter hidher own tallies into the MCNP input file or modify monteburns to provide

the values desired.
.

The following results are provided for each “automatic” isotope in each material for each

outer burn step:

Monteburns One-Group (n,y) Cross Sections - the value bf the microscopic capture

cross section (oc). This capture cross section is assumed to be equal to the (n,y) cross

section for the isotope, which is its primary constituent. Other reactions, such as

(n,p), (n,d), (n,t), etc. may contribute to the total capture cross section, but not in

significant amounts.

Monteburns One-Group Fission Cross Sections - the value of the microscopic

fission cross section (of).

Monteburns Fission-to-Capture Ratio - the ratio of the microscopic fission cross

section to the microscopic capture (n,y) cross section (q hc).

Monteburns Grams of Material at Beginning of Steps - this represents the amount

of material (in grams) that exists in the system at the beginning of each step.

41

rn

rn

0

rn

rn

Monteburns Grams of Material at End of Steps - the amount of material (in grams)

at the end of each step.

Monteburns Grams of Feed - the amount of material (in grams) added to the system.

Monteburns Grams Produced (or Destroyed) - the amount of material (in grams)

produced (or destroyed if the output is negative) during irradiation. The

interpretation of this data may depend on feed, removal, andor material shuffling.

Summary of Inventory/Feed/Production - the total amount of material in the

system at the beginning and end of monteburns (not of each step), the amount added

through feed, and the net change. The interpretation of this data may also depend on

feed, removal, andor material shuffling.

Feed Rate - the average continuous feed rate (in grams per day).

Production/Destruction Rate - the rate of change (in grams per day) of material

produced to that destroyed during irradiation. The interpretation of this data may

depend on feed, removal, or material shuffling.

Feed Input File - if it exists, this file is included at the end of this output file so that

the user can determine what feed parameters he/she used to produce the results

presented in this output file.

In the second output file, mb$le.mbchk, many intermediate results from the

execution of monteburns are listed. In this output file, the following results are reported

for each monteburns material analyzed for each predictor step:

Monteburns Spectrum for Each Predictor - the percent of neutrons with energies in

each of the following ranges: 0 to 0.1 eV, 0.1 to 1 eV, 1 to 100 eV, 100 eV to 100

keV, 100 keV to 1 MeV, and 1 MeV to 20 MeV. This can be used to determine if

smaller time intervals or more predictor steps need to be run.

42

Monteburns Grams at Midpoint - the amount of each isotope (in grams) present

halfivay through the irradiation for both the predictor and the actual steps. The grams

of each automatic “important” isotope present halfivay through each predictor step

are listed first for each outer burn step followed by the composition of these isotopes

halfway through the actual step. This way the user can determine if the predictor

step(s) provided enough accuracy or if more predictor steps (or smaller time intervals)

are needed. If the two values for any isotope are significantly different, then

monteburns should be rerun using more predictor steps or outer burn steps to obtain

more representative cross sections.

Importance Fraction of Isotopes Sent From OIUGEN2 to MCNP - the isotopes

deemed “important,” both automatically and through the importance fraction. This

list contains the total mass of the isotope in the specified region and the contribution

of each isotope in the following four categories: absorption, fission, mass fraction, and

atom fraction. For example, if the fission column for an isotope reads 0.1, then 10%

of the fissions resulted from this isotope. This file also includes a warning message if

an isotope deemed “important” by monteburns or “automatic” by the user is not

found in the MCNP cross section library used by monteburns.

43

4.0 BENCHMARKING/STAXISTICS

One of the most important aspects of developing a new computer code is

benchmarking it against existing experimental data and/or published calculations fiom

other codes. The linkage code monteburns is no exception. To show that it is capable of

performing burnup calculations well, a variety of test cases were run. Statistical analyses

were also performed for selected input parameters and various system models to

determine how they affect the outcome. Results from the benchmarking and the

statistical analyses are presented in this section.

4.1 Benchmarking

The benchmarking process for monteburns used five different test cases,

representing a variety of burnup scenarios. These test cases show the versatility of

monteburns in performing all types of burnup calculations. First, changes in the

concentrations of uranium and plutonium isotopes were calculated as a function of

burnup, and then both a pin in a simple cell geometry and a fill reactor assembly were

analyzed. The first three test cases examined a PWR system and low-enriched uranium

(LEU) fuel, the fourth involved a Boiling Water Reactor (BWR) system, and the fifth

used mixed-oxide (MOX) fuel. The broad range of these cases is useful in showing the

validity of monteburns in handling a variety of parameters. All cases were modeled using

temperature-dependent cross sections derived from the ENDFB-V data set and

processed by NJOY.[I4] Brief descriptions of these five test cases are:

1. Uranium and Plutonium Isotopic Concentrations as a Function of Burnup

2. Composition of Isotopes in a Fuel Pin at Fixed Burnups

3. Concentrations of Isotopes in a PWR Lattice at Fixed Burnups

4. Power Distribution of Pins Within a Small BWR Lattice

5. Activity of MOX-Based Spent Fuel After Removal from a Reactor

44

4.1. I Isotopic Concentration

The first test case involved tracking the weight percents of several uranium (U)

and plutonium (Pu) isotopes as well as fission products (FPs) in a typical PWR system

as a function of burnup.

4.1.1 - 1 Description

A number of textbooks and other sources have published this information, and one

representative figuref7] was compared to the results obtained by monteburns for a

standard Westinghouse PWR The monteburns output is shown in Figure

3a, and the isotopic concentrations calculated by basic burnup equations in Ref. 7 appear

in Figure 3b.

4.1.1.2 Results

l o p

4

c
r 1

n

a
0

a
L

E

3 0.1

cn
a
.-

0.01 l

0 1 0 20 30 4 0 50

Burnup (GWd/MTU)

Figure 3a. Calculated Isotopic Distribution as a Function of Burnup as Predicted

by Monteburns

45

-- - I

I

+-U-235

U-236
Pu-239

*"" Pu-240

X -Pu-241
---*---- p u - 2 4 2

4- FPs

/'

0.01 +.----- i , ' I ,L. I I

0 1 0 2 0 3 0 4 0

Burn up (G W d/MTH M)

Figure 3b. Publishedf71 Isotopic Distribution as a Function of Burnup

The differences seen for actinides are discussed in terms of two categories:

resonance self-shielding, and cross sections. Then variances in fission product

concentrations are discussed.

4.1.1.3 Resonance Self-shielding

Figures 3a and 3b display fairly similar results, with the exception of the isotopes

Pu-240, Pu-241, and Pu-242. This variance was expected because, as the text in Ref. 7

states, the burnup equations that generated Figure 3b used one-group effective thermal

cross sections for a PWR and did not account for resonance absorption, self-shielding, or

the change in cross sections with burnup as monteburns does. When a system is initially

started, it has a thermal spectrum, which means that a majority of neutrons in the system

are at relatively low energies and are more likely to be absorbed than if they were at higher

energies (the absorption cross section is higher at thermal energies because of l/v

46

effects['61 (i.e., cross sections are indirectly proportional to neutron energy)). As burnup

in a system increases, the number of isotopes built into the system also increases. The

creation by fission and absorption of additional isotopes adds new resonance energies to

the system in the resonance region (approximately 0.1 eV to 3 keV).[I3] Neutrons created

by fission typically have energies greater than 50 keV, and as they slow down (assuming

enough moderator exists), they can be absorbed in resonances. If many of these neutrons

are absorbed in the first (highest energy) resonance, then the neutron flux that would

otherwise go to resonances at lower energies (and consequently, the total amount of

resonance absorption) would decrease. The flux around this resonance is also depressed

because many neutrons at that energy are absorbed, decreasing the flux seen by the

Thus, resonance self-shielding (as this process is called) can significantly decrease the

neutron flux in regions of multiple, closely-spaced resonances.

The one-group cross section for an isotope is calculated by weighting the

absorption cross section at each energy by the neutron flux at that energy, and having low

fluxes at energy(ies) with large absorption cross sections (i.e. resonances) decreases the

overall one-group absorption cross section of many actinides. The energy spectrum then

either becomes more soft or more hard, depending on the ratio of neutrons that exist in the

thermal energy region (below the resonances) to those in the fast region (above the

resonances).

Additionally, as plutonium is built into the system during irradiation, the energy

spectrum of neutrons somewhat hardens because the absorption cross sections of several

plutonium isotopes are larger than those of uranium ones, and a large thermal resonance

exists for Pu-239 and Pu-241 at an energy lower than that of the resonances of U-235 and

U-238 (about 0.1 eV compared to around 5 ev). Thus, the neutron flux in both the

thermal and the resonance regions decreases with burnup because as additional plutonium

is built into the system, more absorption occurs (due to a larger absorption cross section),

and the spectrum slightly shifts to higher energies.

47

The effects of resonance self-shielding are especially significant for Pu-240, which

has a large absorption cross section at resonance energies, but as burnup increases, the

cross section of this isotope significantly decreases (363 to 92 barns) due to resonance

self-shielding. Figure 3c shows the variance in the compositions of Pu-240, Pu-241, and

Pu-242 between the concentrations calculated by the equations in the reference (eq) and

those calculated by monteburns (mb). The amount of Pu-240 calculated by monteburns

was greater than that calculated by the equations in Ref. 7 because less of it was depleted

through absorption interactions (i-e., 0, was lower). It follows that the concentrations of

Pu-241 and Pu-242 were smaller in monteburns than the referenced equations because less

of them were built up &om neutron absorption in Pu-240. However, all concentrations

seen in Figure 3a do match those obtained using another code, CELL.[71

1 , 1

[

i
1

c

@ +Pu-240 eq

A Pu-242 eq

Pu-240 mb

m Pu-241 mb

0 Pu-242 mb

/

0 1 0 2 0 3 0 4 0 5c

Burnup (GWd/MTHM)

Figure 3c. Differences in Higher Isotopes of Plutonium
* eq means the equations in the reference and mb stands for monteburns

48

4.1.1.4 Cross Sections

Another parameter compared in this analysis was the fission-to-capture ratios of

the uranium and plutonium isotopes analyzed (see Table 4a). The fission-to-capture ratio

in Ref. 7 for U-235 was smaller than the ratio calculated by monteburns at the various

bum steps. This means that more fissions occurred per U-235 atom in monteburns than

in the reference, causing more to be burned (as can be seen by comparing Figures 3a and

3b). The fission-to-capture ratio of U-238, however, decreased slightly with bumup,

which means that the rate of capture slightly increased relative to the rate of fission,

producing a few more plutonium atoms in monteburns. In addition, the fission-to-capture

ratios of plutonium isotopes increased slightly as a function of burnup in response to the

decrease of the absorption cross sections due to resonance self-shielding. For Pu-240,

even though its fission-to-capture ratio increased, its probability of fission was so small

that it was still not depleted as rapidly as when constant cross sections that did not

account for resonance self-shielding were used and more transmutation occurred.[71

Table 4a. Comparison of the Change in the Fission-to-Capture Ratio in

Monteburns with Burnup to Thermal Ones Used in Ref. 7

4.54 to 4.60
11 U-236 I 0.035 to 0.043 I - II

________ ~

11 U-238 0.109 to 0.108 I - 11
h-239 1.74 to 1.81 1.84

Pu-240 0.0025 to 0.006 -
Pu-24 1 2.68 to 2.73 2.66

I Pu-242 1 0.012 to 0.014 I -
’ of/oc is the fission-to-capture ratio of the isotope.

1

49

I Another difference seen in this analysis was that the absorption cross sections

used by montebums were not as large as those given in the reference (see Table 4b). This

was because the reference used constant, thermal cross sections for PWRs most likely at

room temperature (ie., an energy of 0.0253 ev), whereas monteburns calculated

spectrum-dependent cross sections at actual temperatures. This higher temperature

affected the cross section in two ways. First, higher temperatures cause resonances to

broaden, increasing resonance absorption in the system. Second, as the temperature of

the moderator increases, its density decreases, causing less of it to be present, and

absorption cross sections decrease because neutrons are not slowed down as effectively.

The result of these two effects is that a one-group cross section can either increase or

decrease with temperature (in this case they decreased).

Table 4b. Comparison of the Change in the Absorption Cross Section in

Monteburns with Burnup to Thermal Ones Used in Ref. 7

II Isotope 1 Monteburns I Published 11
Change in 0, 0L71

U-235 58 to 66 556

11 U-236 I 9 to 6

11 U-238 I - 1 +/- 0.05 I 2.23 11
PU-239 - 190+/- 15

PU-240 363 to 92

PU-24 1 166 to 192

PU-242 35 to 26

* oa is considered here to be the total effective microscopic absorption cross section (i.e., capture + fission)
in barns (b), but in the remainder of the document, absorption solely refers to capture interactions

4.1.1.5 Fission Products

The change in relative concentrations of fission products calculated by

monteburns matched almost identically to those produced using thermal cross sections

and the equations in the reference. To model the amount of buildup of all fission

products (and not just those with cross sections in MCNP), the lump sum fission

50

product option in MCNP was used (see Section 3.3.2 for a description). This test case

showed that this option in monteburns did calculate fission product compositions

correctly. Unfortunately, it adversely affected uranium and plutonium isotopic

compositions. Either the absorption cross sections of these general fission products were

too large relative to the rest of the system, or the atom densities of fission products

calculated by MCNP were too large (see Section 4.2.1.3 for more information). In either

case, the addition of these lump summed fission products caused the h. of the system to

decrease significantly as a function of burnup. A subcritical system significantly alters

the neutron energy spectrum, influencing the value of the spectrum-averaged one-group

cross sections as well as the relative ratios of fission, capture, and leakage. Because this

system was modeled as an infinite lattice with no leakage, simply the ratio of fission to

capture was altered, causing too little U-235 to be depleted and too many plutonium

isotopes to be built up. Thus, the results presented in this test case were obtained fiom

two different runs; one to obtain actinide concentrations as a function of burnup for a

near-critical system, and one to calculate the change in the total fission product

concentrations with burnup.

4. I .2 Pin-Cell Burnup

The next test case compared results from monteburns to experimental data and

results from previous calculations using other codes for a simple fuel pin within a square-

pitched cell (pin-cell geometry). The Organization for Economic Cooperation and

DevelopmentINuclear Energy Agency (OECD/NEA) Burnup Credit Calculational

Criticality Benchmarks are a compendium of calculations performed by 16 different

organizations (21 sets of results) and measured burnup data.[''] The purpose of these

benchmarks was to determine if various computer codes/models could accurately calculate

the composition of spent fuel assemblies for the Burnup Credit program. Results fiom

Burnup Credit Benchmark Phase I-B were used in the benchmarking process for

51

monteburns to determine if similar nuclide concentrations were calculated as a function of

burnup for a simple pin-cell geometry. The percent errors in this case were calculated

relative to the measured data, and the results obtained by monteburns were compared to

the data published by other organizations and codes.

4.1.2.1 Description

The pin-cell geometry used for this benchmark case consisted of a fuel pin

(initially comprised of U02) with a thin layer of cladding (Zircaloy-2) surrounded by

water in a square-pitched cell (see Figure 4). Reflective boundary conditions were used

on all four edges to simulate that the pin was infinitely surrounded by similar pins. The

parameters used for this test case are given in Table 5, and the input files used to run

monteburns for this test case appear in Appendices C-E (which is why detailed geometry

information is provided for this test case and not the others).

Fuel

Figure 4. Pin-Cell Diagram

52

Table 5. Parameters for Test Case #2

Value Parameter Value

Fuel Density 10.045 g/cc Length of Irradiation - Cycle 1 306 days

Water Density 0.7569 g/cc Time Between Cycles 1 and 2 71 .O days

Rod Pitch 1 S586 cm Length of Irradiation - Cycle 2 382 days

Rod Outside Radius 0.559 cm Time Between Cycles 2 and 3 83.1 days

Rod Inside Radius 0.493 cm Length of Irradiation - Cycle 3 466 days

Fuel Pellet Radius 0.4782 cm Time Between Cycles 3 and 4 85.0 days

Active Fuel Length 347.2 cm Length of Irradiation - Cycle 4 461 days

Effective Fuel Temp. 841 K Length of Final Cool-Down 1870 days

Cladding Temperature 620 K Boron Concentration - Cycle 1 33 1 ppm *

Water Temperature 558 K Boron Concentration - Cycle 2 470 ppm

Ending Fuel Burnup for 27.35 Boron Concentration - Cycle 3 504 ppm

Scenario A (GWdMTHM)

Ending Fuel Burnup for 37.12 Boron Concentration - Cycle 4 493 ppm

Scenario B (GWdMTHM)

* ppm (or parts per million) means the grams of boron particles per million grams of water in the system

The soluble boron concentration in the water was fixed for each burn step and was

not burned (the ability to change the composition of material in a region during burn steps

without burning the material is one of the unique features of monteburns). If the boron

were burned, the ratio of Boron-10 to Boron-1 1 throughout the burn step would have

been affected because Boron-10 burns faster than Boron-1 1, and the results would not

have reflected a representative neutron spectrum due to an inaccurate boron composition.

In a reactor system, the coolant flows in and out of the reactor vertically and does not

stay in one location for too long to be irradiated (it only takes the coolant about 0.7

seconds to flow through the reactor (see Equation 22)). Thus, it was assumed for this

test case that the boron concentration going in was fxed as natural boron (about 20% B-

10 and 80% B-1 1) and that it came out at the same concentration.

53

p * A * L
t =

cf

where: t = time coolant spends in core (s) = 0.7 s

p = density of coolant = 0.7569 g/cm3 [201

A = cross sectional area of coolant flow = 50,500 cm2 for a PWRr4]

L

cf

= length of fuel rod = 347.2 cm r201

= coolant flow = 19*106 g/s [201

The isotopic compositions (in mg/g initial U02) resulting from burnup calculations

in monteburns for two different scenarios appear in Tables 6a and 6b. The values

calculated by monteburns, the measured data from Ref. 20, the percent error between the

two (calculated using Equation 23), and the range of values calculated by other

organizations are all listed in these tables.

% Error = (Calculatedhfeasured - 1) * 100% (23)

The geometry used in this test case, an infinite lattice of fuel pins, was not

completely representative of the actual system in which the measured fuel pin was

burned. Thus, the main purpose of this test case was not necessarily to analyze how well

it represented an actual fuel pin, but to show that monteburns calculated results of

burnup calculations within the range of values calculated by other codes using the same

geometry. The only difference between the system modeled in monteburns and that

described in the reference is that it was difficult to obtain the exact amount of burnup in

monteburns that was specified in the problem. This is because monteburns requires the

user to input the total system power, irradiation time, and fraction of power produced in

each step, and it then calculates how much power is generated by each region (see

Equations 9-1 7). The resulting flux is subject to statistical errors and may not correspond

54

to the exact flux and power specified in the input, but this problem can be corrected by

running MCNP with better statistics. The actual burnups calculated by monteburns for

Scenarios A and B in this test case were 27.34 and 37.38 GWdMTHM respectively,

which were fairly close to the specified inputs of 27.35 and 37.12 GWdIMTHM

respectively.

4.1.2.2 Results

Table 6a. Results and a Comparison of Experimental Data for Scenario A

-
Isotope Monteburns Published Value % Error Range of Values fiom

Value (mg/g UO~) (mg/g UO,) l2O1 Other Codesr201

U-234 0.156 0.160 -2.45 0.1330 to 0.1750

U-235 8.10 8.47 -4.32 7.445 to 8.661

U-236 3.21 3.14 2.09 3.128 to 3.540

U-238 838 843 -0.50 836.7 to 841.5

N ~ - 2 3 7 0.286 0.268 6.65 0.2527 to 0.3396

11 Pu-238 I 0.095 I 0.101 I -6.12 I 0.05721 to0.1083

PU-239 3.94 4.26 -7.50 3.660 to 4.690

PU-240 1.68 1.72 -2.00 1.573 to 1.860

PU-24 1 0.663 0.681 -2.72 0.5310 to 0.7335

PU-242 0.308 0.289 6.65 0.2000 to 0.3 192

Am-24 1 0.232 NIA NIA 0.2269 to 0.2598

Am-243 0.041 1 NIA NIA 0.03480 to 0.04672

MO-95 0.563 NIA NIA 0.5590 to 0.5795

TC-99 0.595 NIA NIA 0.5648 to 0.6904

CS-1 33 0.866 0.850 1.91 0.6820 to 0.8640

11 Cs-135 I 0.376 I 0.360 I 4.46 I 0.3728 to 0.3959

Nd-143 0.61 1 0.613 -0.36 0.6040 to 0.6792

Nd- 145 0.51 1 0.5 10 0.19 0.4984 to 0.5 15 1

Sm- 147 0.160 NIA NIA 0.1564 to 0.1932

Sm-149 0.00157 0.00290 -45.76 0.001626 to 0.002900

Sm-150 0.180 0.207 -13.22 0.1713 to 0.2146

Sm-15 1 0.00890 NIA N/A 0.006376 to 0.01413

Sm- 152 0.0858 0.0870 -1.35 0.07947 to 0.1073

EU-153 0.0830 0.0790 5.1 1 0.06730 to 0.08921

11 Gd-155 I 0.00394 I NIA I N/A I 0.001507 to 0.005762

55

Table 6b. Results and a Comparison of Experimental Data for Scenario B

Isotope Montebums Published Value % Error Range of Values from

Value (mg/g U O ~) (mg/g UO~) [201 0 ther Codes[2o1

U-234 0.133 0.140 -5.05 0.1080 to 0.1570

U-235 4.67 5.17 -9.66 4.022 to 5.5 10

U-236 3.62 3.53 2.68 3.526 to 3.930

U-238 830 833 -0.28 829.2 to 836.0

Mo-95 I 0.735 I NIA I NIA i 0.7214 to0.7545 II
Tc-99 0.782 NIA NIA 0:7327 to 0.8372

CS-1 33 1.12 1.09 2.55 0.8784 to 1.117

CS- 135 0.419 0.400 4.79 0.3967 to 0.43 17

Nd- 143 0.71 1 0.716 -0.76 0.7013 to 0.8254

Nd- 145 0.655 0.653 0.26 0.6326 to 0.6600

Sm-147 0.170 N/A N/A 0.1659 to 0.2201

Sm-150 0.247 0.271 -8.96 0.2.297 to 0.3152

Sm-151 0.00958 NIA NIA 0.008614 to 0.01571

Sm- 1 52 0.104 0.104 -0.20 0.09761 to 0.1416

Eu-153 0.123 0.109 13.17 0.09960 to 0.1309

Gd-155 0.00703 NIA N/A 0.002538 to 0.01028

Sm-149 0.001 64 0.00300 -45.1 8 0.001 736 to 0.003092

The results calculated by monteburns fell within the range of values calculated by

other codes for both scenarios with the exception of the fission products Cesium (Cs)-

133 and Samarium (Sm)-149. However, neither of these two isotopes’ compositions

were too far out of range, which means that monteburns represented the system just as

well as or better than the other burnup codes. It is difficult to calculate fission product

56

concentrations accurately (as discussed in Section 4.1.2.5), so this benchmark was indeed

considered to be successful.

The results of calculations performed in monteburns for Scenario A matched the

measured results from this test case to within a 5% error for most isotopes with the

exception of Neptunium (Np)-237, Pu-238, Pu-239, Pu-242, Europium (Eu)-l53,

Samarium (Sm)-149, and Sm-150. The errors seen in these calculations could be a result

of four different effects: 1) the system, as modeled, was supercritical and produced a

different spectrum than was seen experimentally, 2) the recoverable energy per fission

may not have been represented correctly, 3) incorrect fission yields in ORIGEN2, and 4)

stat is tical errors.

4.1.2.3 Differences in Energy Spectra

First, the simple system modeled in this test case was an infinite pin-cell

geometry and did not represent the exact spectrum that would have been seen with a pin

taken from an experimental reactor operating at steady-state. A pin in an actual reactor

would be subject to the influences of other poisons (besides soluble boron) in the system,

and the effects of leakage would decrease the relative reaction rates of fission and capture

because it is a competing process. However, in this infinite lattice of fuel pins, no leakage

occurred, so the fraction of neutrons that would have previously left the system

contributed to fission and capture interactions instead. This could explain why more U-

235 was depleted in monteburns than experimentally.

4.1.2.4 Recoverable Energy Per Fission

The second source of error could have been that the value input in monteburns for

the recoverable energy per fission may have been too low. In monteburns, the user has

the option to input the recoverable energy per fission for U-235, and the actual

recoverable energy per fission (Qfis) in the system is scaled relative to the presence of

57

other actinides in the system and the ratio of their recoverable energies to that of U-235

(see Equations 5-7). For this case, an estimated value of 200 MeV was used.['61 Thus,

because only 200 MeV was generated per fission, a larger number of fissions were

required for a given power level than if a larger value, such as 202 MeV, were entered.

For example, results from using 202 MeV showed that U-235 was not burned as quickly

because fewer total fissions occurred. However, the fission-to-capture ratio of each

actinide remained the same even though the recoverable energy per fission changed, so the

plutonium isotopes still did not build up as much as in the measured data. In either case,

it was difficult to justify using a higher recoverable energy per fission in this test case

without experimentally showing that a PWR system provides that much more energy per

fission.

4.1.2.5 Fission Yields

Third, for both scenarios the compositions of Sm-149, Sm-150, and Eu-153

calculated by monteburns at the end of the irradiation were smaller than measured results

(by almost a factor of 2 for Sm-149 although much better for the other two). This is

probably a result of estimations of the fission yields made by ORIGEN2 for these

isotopes. For example, the total fission yield from Pu-239 for Sm is around 0.2% in the

ORIGEN2 libraries while it is 0.7% experimentally,[211 causing fewer Sm atoms to be

produced in monteburns than experimentally. However, this is a facet of the code

ORIGEN2 and cannot currently be modified by monteburns, so these errors must be

accepted. Additionally, the ratio of fissions due to Pu-239 versus Pu-241 may also have

affected the results. The fission yields of both Sm-149 and Sm-150 are slightly greater

from Pu-239 than Pu-241 according to the relevant ORIGEN2 library. Because excess

Pu-242 was produced, it was assumed that a great deal of Pu-241 was also produced

(although it was depleted rather quickly). Thus, more fissions probably occurred &om

Pu-241 than Pu-239 in the modeled system than the measured one, and fewer Sm-149 and

58

Sm-150 atoms were produced. The errors associated with Eu-153 and other fission

products were probably a result of similar reasons. Fortunately, ORIGEN2 contains

more representative fission yields for a majority of the fission products, overall producing

acceptable results (i.e. < 5% error).

4.1.2.6 Statistical Variances

The last possible source of error could have been a result of the statistical

variances involved with obtaining spectrum-averaged, one-group cross sections in MCNP,

which were produced using tally cards. The accuracy of these depend on the statistics

with which MCNP was run and the accuracy with which it calculates fluxes in each

region. For example, Pu-238 displayed a 6.12% error in Scenario A but only a 3.84%

error in Scenario B. The accuracy to which the ENDF/B-V cross section set(s)

represented resonances may also have affected the outcome. Either way, variances in

cross sections may have altered the amount of resonance absorption versus self-shielding

and influenced results.

4.1.2.7 Additional Burnup

For Scenario B, a number of additional actinides had errors greater than 5%. This

case involved higher burnups than Scenario A as well as a larger variance between the final

burnup in monteburns and measured data, so greater percent errors were expected. This

was because variances in cross sections and fission yields became more prominent as

power times time increased because each burn step became relatively longer (in terms of

GWd) to make differences more prominent. In this scenario of the test case, it was

particularly obvious that U-235 was burned faster using monteburns than experimentally,

creating almost a 10% error. This was again due to the reasons discussed previously.

However, all actinides still fell within the range of computational values produced by

59

other codes for both scenarios, showing the validity of monteburns in modeling the

system described by the reference.

Overall, the ability of monteburns to calculate the change in composition of a

system with burnup has been shown to be fairly good and within the range of values

calculated by other codes. More accurate answers may be obtained using better statistics

(as further discussed in Section 4.2) or by modeling the entire system rather than just one

fuel pin to represent a more accurate spectrum and to include the effects of leakage.

4.1.3 Assembly Burnup

The purpose of the third test case was to compare the burnup results calculated

by monteburns to experimental values for a full PWR assembly.

4.1.3.1 Description

The assembly modeled in this example was H.B. Robinson’s Unit 2, which uses a

Westinghouse 15x15 fuel lattice, and the assembly layout is shown in Figure 5 (for

detailed information, see Ref 19). This test case studied four different scenarios, each

with a different final burnup. To simulate an assembly located in the middle of a reactor

with identical assemblies surrounding it, reflective boundary conditions were placed on all

four sides of the assembly.

This model was considered to be more accurate than the simple pin-cell one in

Test Case #2 because burnable poisons as well as guide and instrumentation tubes were

represented, thus, the spectrum of the system should have been more accurate. However,

the same number of outer burn steps were used for each scenario with increasing amounts

of power times time, so representative cross sections were calculated over a shorter time

frame in the first scenario and over a longer one in the last one. The same average boron

concentration was also used for each but probably represented the middle two cases best.

60

0 FuelRod

--

0

0

0

0 GuideTube

@ Burnable Poison Rod Instrumentation Tube

Figure 5. Layout of Assembly for Test Case #3

The system turned out to be slightly supercritical for the first scenario and

slightly subcritical for the last one, so the results for the middle two cases were expected

to be better than for the first and last. Again, there were difficulties achieving the exact

amount of burnup specified in the input, but the values were fairly close nonetheless

(16.00, 23.84, 28.64, and 31.86 GWd/MTHM compared to 16.02, 23.81, 28.47, and

3 1.66 GWd/MTHM for Scenarios 1-4 respectively).

4.1.3.2 Results

One rod within this assembly was measured for isotopic content, and the

measured results for this rod were compared to those calculated by monteburns in Tables

61

7a and 7b (in dg UOz) for the four burnup scenarios. The percent errors displayed in

these tables were calculated using Equation 23.

Table 7a. Results for Burnups of 16.00 and 23.84 GWd/MTHM (g/g U02)

Table 7b. Results for Burnups of 28.64 and 31.86 GWd/MTHM (gig U02)

*The units for these are given in Curies/gram U02 (Ci/g) instead of s/g UOZ like the other isotopes.

62

As can be seen from these tables, the percent error associated with a majority of

the isotopes in these cases was below 5% with the exception of several actinides and the

fission product Technetium (Tc)-99.

4.1.3.3 Actinides

In each burnup case, at least one actinide concentration resulted in a percent error

greater than 5%, but none consistently produced poor resuIts. These errors were

probably a result of any or all of the reasons presented in Test Cases 1 and 2 (Le.,

resonance self-shielding, cross sections, inaccurate system modeling, variances in

recoverable energy per fission, statistics, etc.). Because the first scenario was slightly

supercritical and the last subcritical, the spectrums were probably not representative of a

steady-state system, and cross sections may have suffered accuracy as a result. This is

probably a result of differences in the locations of resonances and the amount of

resonance absorption versus self-shielding that occurred. For example, in Scenarios 1 , 2,

and 4, too much U-238 was depleted, producing excess Pu-239, and in Scenario 3, too

little U-238 was depleted, not producing enough Pu-239 or higher plutonium isotopes. In

contrast, too much U-235 was depleted in Scenario 3 because Pu-239 did not contribute

to as many fissions as it should have, and excess U-236 was produced. In turn, not

enough U-235 was depleted in Scenarios 1,2, and 4 because too much Pu-239 and Pu-241

fissioned, resulting in too little production of U-236. This probably means that in

Scenario 3, the absorption cross section of U-235 was too large compared to that of U-

238, whereas in the other test cases, it was too small. Thus, the number of U-235

captures appeared to be indirectly proportional to the number of U-238 captures in this

test case, and in all scenarios were slightly different than the actual system.

63

4.1.3.4 Fission Products

The percent errors associated with the concentration of Tc-99 were around 20-15

percent for each burnup case. There are three potential sources of error for this

calculation. First, the fission yields for Tc-99 used by ORIGEN2 may not have been

truly representative of the probability that it was produced by fission (as discussed in

Section 4.1.2.5). Second, the absorption cross section calculated by monteburns for Tc-

99 may have been too small because not enough of it was transmuted to Tc-100. Finally

(but least likely), the concentration of Tc-99 was given in Ci/g UOz instead of g/g UOZ as

the actinides were, and the conversion may have been performed incorrectly. Monteburns

outputs the concentrations of isotopes in grams, so it was converted from grams to Curies

by multiplying by the specific activity of Tc-99 (see Equation 24 1221).

- 1.7e-2 Ci/g for Tc-99
4.17 *

SA =
MT

where: SA = specific activity (Bq/g) (where 1 Ci = 3.7*10" Bq [221)

M = atomic weight of isotope =: atomic mass number = 99 for Tc-99

T = half-life of isotope in seconds = 2.1 3* lo5 years r2'1

However, the errors associated with the fission product Cs-137 were less than

2.5% using the same ORIGEN2 library and specific activity equation. Therefore, the

errors associated with Tc-99 were more likely a result of the differences in the fission

yields or cross sections. Even a 10-15% error for a fission product was not considered to

be too unreasonable in this analysis considering all the uncertainties and potential

statistical errors involved.

64

4.1.3.5 Comparison to SCALE

The percent errors seen using the code SCALE were similar to those obtained

from monteburns. For Tc-99 the average percent error was 11.7% in SCALE and

between 8-15% in monteburns. Similarly, the errors associated with the other fission

product, Cs-137, were only on average, 1.2% in SCALE and between 0.7 and 2.5% in

monteburns. This means that the two codes produced similar results, which is probably

because the same (or similar) fission yields andor cross sections were used in each (this is

because ORIGEN-S, the code used by SCALE containing fission yields, is simply a

newer version of ORIGEN2, which is used in monteburns) as well as the same model.

The largest percent errors seen in SCALE for actinides were associated with Pu-239, Pu-

241, and Np-237 (8.2%, 5.4%, and l l .l% respectively) for this test case, and comparing

these to Tables 7a and 7b, monteburns performed as well as SCALE for burnup

calculations. A more accurate system model would be needed to match measured results

more closely.

Overall, modeling a full reactor assembly proved to be more accurate than just

modeling an infinite lattice of identical fuel pins, and it was shown that monteburns

performs calculations for a given system model just as well as a code such as SCALE.

4.1.4 Power Distribution

One of the many capabilities of monteburns is that it can calculate the amount of

power produced in each regiodmaterial of a system given the total system power. Power

distribution is important because it determines how much energy is released from each

region, thereby indicating which one(s) is depleted the fastest. It does this by obtaining

the flux and macroscopic fission cross section tallies for the region(s) of interest from

MCNP, “normalizing” these values, and then calculating the power in each region from

these results (see Equations 9-1 7 for more information).

65

4.1.4.1 Description

The test case used to validate this calculation modeled a sample 3x3 BWR

assembly with eight fuel pins on the outside and a rod capable of containing burnable

poison in the middle.1231 The layout of the 3x3 assembly is shown in Figure 6, and the

pins are numbered according to three different regions. The average power produced per

pin in the assembly was calculated, and then the power produced by a pin in each region

was divided by this average.

Centerpin With

or Without Gd

Fuel Rod 0
Figure 6. 3x3 Assembly

4.1.4.2 Results

Table 8 displays the differences between the results calculated by monteburns and

the range of values obtained using other codes given in Ref. 23 for both a scenario with

gadolinium (Gd) in thc center pin and one without. This table shows that the power

distributions for both cases fell within the range of published values, indicating that not

only does monteburns perform power distribution calculations correctly, but it also

analyzes a BWR fuel assembly well.

66

Table 8. Pin Power Distribution

Montebums Value* Published Range of Values 1231

Pin 1 with 3% Gd 1.055 1.053 to 1.062

Pin 2 with 3% Gd 0.437 0.413 to 0.460

Pin 3 with 3% Gd 1.086 1.082 to 1.087

Pin 1 with 0% Gd I 1.03 1 I 1.029 to 1.032 II
Pin 2 with 0% Gd 0.766 0.766 to 0.779

Pin 3 with 0% Gd 1.028 1.026 to 1.027

‘This is the average power produced per pin in each region divided by the average power produced per pin
in the 3x3 assembly.

Additionally, it shows that the continuous pointwise cross sections output as one-group

in MCNP produce compatible results to the group-wise ones used by the other codes in

this reference.[231

4.1.5 Activity Calculation

One of the proposed future uses of monteburns is to provide activation and/or

decay powers of materials (see Section 6.0). To do this, the activities of various isotopes

in a material must be calculated. This test case compares the activity of a spent fuel

assembly containing MOX fuel after irradiation in monteburns to published results fiom

SCALE. The purpose of using MOX fuel in this test case was to show the versatility of

montebums in calculating the burnup of plutonium- as well as uranium-based fuels.

4.1 -5.1 Description

First, the composition of the materia1 after irradiation was calculated using

monteburns, and then it was converted and output as activity as a function of decay time

using ORIGEN2 (although only the activity immediately after removal is compared here).

This information can be used to generate dose rates as a function of cooling time for a

spent fuel assembly, which could be useful in both repository analyses and proliferation

issues.

67

4.1.5.2 Results

The differences between monteburns and published values using SCALE are

shown in Table 9 for a Combustion Engineering System 80+ PWR System containing

mixed-oxide (MOX) fuel.[241 The percent difference between the values calculated by

montebums and those given in Ref. 24 for SCALE were calculated by Equation 23, where

the measured value was replaced by the SCALE value.

Table 9. Results from Activity Calculation

11 Activitv (Ci) I Monteburns I SCALE[241

II H-3 I 3.48E+02 I 2.76E+02

II Kr-85 I 2.85E+03 I 2.69E+03

II Kr-85m I 5.25E+04 I 5.07E+04 ~~

I
~

I

Rb-86 I 4.91E+02 I 3.72E+02
KI-88 1.27E+05 1.30E+05

Sr-89 1.66E+05 1.69E+05

Sr-90 1 .94E+04 2.00E+04

II Y-90 I 2 .OOE+04 I 2.03E+04
~ ~~~~~ ~ ~

Sr-9 1 2.3 5E+05 2.45E+05

Y-91 2.3 9E+05 2.46E+05

Y-91m I .36E+05 1.42E+05

Sr-92 2.80E+05 2.90E+05

II Y -92 I 2.82E+05 I 2.9 1 E+05
~ ~

Y-93 ~ 3.60E+05 2.45E+05

Nb-95 4.54E+05 4.56E+05

Nb-95m 3.2 1 E+03 5.21E+03

II Zr-95 I 4.52E+05 I 4.5 8E+05

Zr-97 4.93E+05 4.86E+05

MO-99 5.65E+05 5.89E+05

Tc-99m 4.99E+05 5.22Et-05

Rh- 105 4.4 1 E+05 4.99E+05
~

Rh-105m 1.39E+05 1.45E+05

RU- 105 4.96E+05 5.1 OE+05

RU- 106 3.76E+05 3.74E+05

I1 I I Sb-127 4.52E3-04 3.86E+04

% difference t-7F-I
I 5.99 II

3 1.88

-2.95

-1.38 II

-3.13

46.86

-38.35

-1.35

1.42

-4.13

-4.35

-1 1.64

17.10 I1

68

Table 9 (cont.)

69

Table 9 shows that the percent differences associated with most of the actinides

(with the exception ofNp-238, Am-241 and Cm-244) were less than 5%, but they were

larger for some of the fission products.

4.1.5.3 Actinides

The percent differences seen for all plutonium isotopes and most other actinides

were less than 5% (excluding Np-238, Am-241, and Cm-244), showing the validity of

both codes in performing burnup calculations involving major system isotopes in the

given geometry. Because this test case was not compared to experimental data, the causes

of error discussed in Test Cases 1-3 were minimal here. Instead, errors associated with

Np-238, Am-241, and Cm-244 were most likely due to variances in cross sections and the

ways the codes model an assembly with reflective boundary conditions. SCALE uses

multi-group cross section sets, whereas monteburns uses one-group spectrum-averaged

ones obtained from continuous-energy data in MCNP. SCALE also typically uses the

Monte Carlo code KENO, whereas monteburns uses MCNP. Additionally, even though

results from the two codes were comparable, they may not complement measured data as

well without a better system model.

The Am-241 concentration in monteburns was probably smaller than that in

SCALE because not enough Pu-241 was present to decay by beta emission to Am-241,

which was probably a result of fewer neutron absorptions in Pu-240. Another

explanation could be that the Am-241 absorption cross section was larger in monteburns

than in SCALE, producing higher actinide concentrations while depleting Am-241. This

explanation is probably more likely because the monteburns concentrations for Cm-242

and Cm-244 were larger than those in SCALE. By the absorption of a neutron, Am-241

is transmuted to Am-242, which beta decays to Cm-242; Cm-242 then absorbs neutrons

to create Cm-244. The small concentration of Am-241 in monteburns relative to SCALE

also contributed to the relatively small concentration of Np-238 (Am-241 decays by

70

alpha emission into Np-237, which absorbs a neutron to become Np-238). As the Am-

241 concentration was relatively low in monteburns, the resulting decay process

produced less Np-237, and in turn, fewer Np-238 atoms.

4.1.5.4 Fission Products

Fission products with a deviation greater than 5% between SCALE and

monteburns include: Ba-140, (3-134, Cs-134m, Cs-136, H-3,I-135, Kr-85, Nb-95m, Rb-

86, Rh-105, Sb-127, Te-127, Te-1291~1, Xe-I3lm, Xe-133, Xe-l33m, Xe-135, Xe-I35m,

and Y-93. From a list of 53 different fission products, having only 19 with a percent

difference over 5% and only 13 greater than 10% is pretty good. This means that

monteburns calculated almost 75% of all fission product concentrations fairly well (less

than 10% difference) in comparison to SCALE and about two-thirds of them to a less

than 5% difference. The deviations seen with these fission products were probably due

to fission yield andor cross section variances between the two codes. Thus, having

relatively good results for 75% of the fission products was considered to be acceptable.

Overall, the results obtained using monteburns were fairly close to those expected

for each test case, and a majority of them were within a relative erroddifference of 5% of

measured results. Almost all were within the range(s) of published calculations fiom

other codes. First, the change in relative concentrations of uranium and plutonium

isotopes were comparable to those referenced.17] Next, a full assembly model was shown

to produce better results than a pin-cell geometry due to a more accurate spectrum

representation. Finally, more similarities were found when comparing results fiom

monteburns to calculations performed with another code (such as SCALE) using the same

geometry/model than comparing to measured results from a rod irradiated in a full reactor

system influenced by leakage, interfacing between assemblies, and other features.

71

Both PWR and BWR cases were tested in monteburns, along with both uranium-

and plutonium-based fuels. The technique used in monteburns for generating cross

sections differed from what other codes such as SCALE use @e., one-group spectrum-

averaged ones obtained from continuous energy data versus multi-group ones), but the

differences between the two did not appear to be significant. Thus, monteburns was

considered adequate for the problems presented here. Unfortunately, there is not

currently any readily available experimental data for a fast system, such as that used in

ATW, so no benchmarks were performed for one. However, it is assumed that since the

code has been shown to work well for a thermal system, it can calculate decent results for

a fast system as well.

4.2 Statistical Analyses

Another important aspect of developing andor running a computer code is to

determine how statistics affect the results. The term statistics, when used in reference to

monteburns, refers to how results vary using different input parameters or modeling a

system in different ways. To test this variance, several of the test cases discussed in the

previous section were further examined No MCNP statistical runs are presented here;

many of these have already been performed by others in the industry (for example, Ref.

11).

4.2. I Input Parameters

The input parameters analyzed for their effect(s) on statistics were: the number

of outer bum steps, the number of internal burn steps, the number of predictor steps, the

importance fraction, and the recoverable energy per fission. The majority of tables in this

section show both the measured and calculated values for Scenario 1 of Test Case #3 at a

bumup of - 16 GWdMTHM for four different isotopes: U-235, U-236, Pu-239, and

Pu-240. Unless otherwise stated, the number of internal bum steps was 80, the number

72

of outer burn steps was 8 (4 irradiation, 4 decay), the number of predictor steps was one,

the importance fraction was 0.01, the U-235 recoverable energy per fission was 200

MeV, the number of neutrons per cycle was 1000, the number of active cycles was 100,

and the number of skipped cycles in MCNP was 15.

4.2.1.1 Number of Outer and Internal Bum Steps

The first parameter a user typically wants to determine in monteburns is the

length of the time intervals over which irradiation occurs. There are two input parameters

that can affect this length of time: the number of outer burn steps, and the number of

internal bum steps. First, using more outer bum steps not only decreases the length of

each time interval but also increases the accuracy of the system because the spectrum-

averaged one-group cross sections for the system are updated more frequently

(consequently increasing the run time). Second, the way to use shorter time steps in

ORIGEN2 without having to perform additional MCNP runs is through the use of

internal burn steps. The more internal burn steps used, the shorter the time intervals for

each ORIGEN2 irradiation. As discussed in Section 2.2, this is important because

ORIGEN2 performs different calculations (Le., the Bateman equations versus the matrix

exponential method) for isotopes with half-lives less than 10% of the time interval.r6*

Thus, using shorter time intervals may provide more accurate results for the problem.

The optimum number of internal b u n steps should also depend upon whether continuous

or discrete (a11 at one time) feed is used. By using continuous feed with different

beginning and ending feed rates, it was assumed when designing monteburns that it would

be necessary to break the time steps in ORIGEN2 into even shorter periods. This is

because the amount of feed added during each internal burn step is interpolated from the

beginning and ending feed rates for that outer bum step and averaged over each internal

burn step.

73

For the first scenario of test case #3 (a discrete feed case), the effects of the

number of outer and internal bum steps on the results are shown in Tables loa and 10b

(these were performed with forty internal bum steps and eight outer bum steps

respectively). Results for a continuous feed case (representing ATW, which will be

discussed in Section 5.1) are then displayed in Table 1 Oc.

Table loa. Comparison of Results as a Function of Number of Outer Burn Steps

Experimental (grams/ 5360 1097 1823 546

Results assembly)

Bum Steps ORIGEN2

steps (days)

of Outer Length of U-235 U-236 Pu-239 Pu-240

8 6.09 5500 1060 1860 569

16 3.04 5530 1060 1880 571

24 2.03 5500 1060 1870 574

Table lob. Comparison of Results as a Function of Number of Internal Burn Steps

Experimental

Results

of Internal

Bum Steps

2

4

6

8

10

20

30

40

50

(grams/ 5360 1097

assembly)

ORIGEN2

steps (days)

Length of U-235 U-236

121.75 5510 1060

60.88 I 5510 I 1060
~ ~~ - -

40.58 5510 1070

30.44 5500 1070

24.35 5540 1060

~ 12.18 5530 1060

' 8.12 5520 1070

6.09 5560 1060

4.87 5 500 1070

1860 I 559
~

1860 56 1

1860 569

1860 562

1850 565

1860 568

74

Table 1Oc. Results as Function of Internal Burn Step for Continuous Feed

(grams)

of Internal Length of U-238 Pu-239 Pu-240 Am-24 1

Burn Steps ORIGEN2

steps (days)

10 12.2 7.97E+2 1.70E+5 2.08E+5 1.79E+4

20 6.09 7.93E+2 1.68E+5 2.07E+5 1.76E+4

- 30 4.06 7.97E+2 1.71E+5 2.07E+5 1.79E+4

40 3.04 7.95E+2 1.70E+5 2.08E+5 1.79E+4

Surprisingly, all three of these tables show little increase in accuracy with more

than the minimum required number of outer or internal burn steps (i.e. two for discrete

feed and ten for continuous feedr'']) for these sample test cases, The number of outer

burn steps is thus recommended to be the lowest needed to represent all system changes.

For example, in this case, eight were required because there were four irradiation cycles

with different amounts of power and soluble boron as well as a cooling period following

each. It also appeared that using only two internal bum steps for the discrete feed case

with a thermal spectrum (with an irradiation period of about 120 days) and using ten for

the continuous case with a fast spectrum (corresponding to a length of approximately 12

days each) produced as good of results as using more. Thus, for similar cases to those

presented here, it is recommended to use the minimum number of internal bum steps even

though using additional internal burn steps does not significantly affect the run time.

Additionally, this test case at least showed that the results obtained from

montebums for both a fast and thermal spectrum were consistent if not influenced by

changes in the number of burn steps. Nonetheless, the user should verify that the number

of bum steps used provides enough accuracy for hisher specific system and associated

irradiation periods. This is because ORIGEN2 may still produce poor results for

irradiation periods greater than 125 days (the maximum studied here was 12 1.75 days) or

for other types of systems or problems (such as decay-only over thousands of years).

75

4.2.1.2 Number of Predictor Steps

The next parameter analyzed was the number of predictor steps. For each

predictor step during each outer burn step (with the exception of the first step, in which

case an extra predictor step is run - see Section 3.3.2), MCNP is run to obtain one-group

spectnun-averaged cross sections. Thus, increasing the number of predictor steps

increases the degree to which the cross sections calculated by MCNP represent the

average system spectrum for the step, but it also increases the run time of the problem.

The results from this analysis appear in Table 1Od.

Table 10d. Comparison of Results as a Function of Number of Predictor Steps

(grams/assembly)

Experimental 5360 1097 1823 546

Results

Stem

Predictor U-235 U-236 PU-239 PU-240

0 I 5540 I 1050 I 1870 I 450 11
1 I 5500 I 1060 I 1860 I 569 11

~~ ~~

2 I 5500 I 1060 I 1870 I 580 11

With eight outer bum steps and eighty internal bum steps, a large difference was

seen between using zero and one predictor step because cross sections were calculated

only once in the former case (i-e., only for the first step) and nine times in the latter. This

indicates that it is indeed important to calculate cross sections several times throughout an

irradiation. However, the difference between using one and two predictor steps was

minimal, meaning that the one-group spectrum-averaged cross sections calculated with

one predictor step were fairly good representations of the system at each step. Because

the run time significantly increases with each predictor step, it was found that for this

system and others studied thus far, there is no advantage in using more than one predictor

step per outer burn step. Again, the differences may have become more definitive if a

76

case with a longer time interval andor fewer required outer bum steps had been studied

(however, one was not used because experimental data for such a system was not readily

available). Either way, the user is advised to make sure that one predictor step is

adequate enou& for hisher system by comparing the flux spectrum and isotopic

compositions (in mass) halfway through each predictor and actual step to obtain the best

results.

4.2.1.3 Importance Fraction

Another input parameter vaned in this statistical analysis was the importance

fraction. This effectively selects which fission products are passed back to MCNP from

ORIGEN2. If this value is positive, then individual fission products are passed back to

MCNP (assuming their cross sections exist), allowing temperature- and system-

dependent parameters to influence these individual fission product cross sections. If this

value is negative, fission products produced in ORIGEN2 are added together as a total

mass and sent back to MCNP as one of two general fission product representations

(those from U-235 and those from Pu-239) at room temperature (see Section 3.3.2). In

this case individual fission product cross sections in ORIGEN2 are not updated because

only general lumped sum ones are used in MCNP and cannot effectively replace

individual ones in ORIGEN2. Results from this statistical analysis appear in Table 10e.

The lower the value of the importance fraction, if positive, the smaller a

contribution an isotope has to make to the system in either absorption or fission

interactions, mass, or atom density (see Equations 18-21) to be included in MCNP.

Surprisingly, the most accurate results for this analysis occurred when the importance

fraction was relatively large (0.1 or 1.0). This is because a steady-state spectrum was

best represented in these cases. The system[l9] was initially modeled near critical, and as

the number of fission products added to the system increased @e., a lower importance

fraction), keff decreased because the fission products absorbed many neutrons that would

77

Table 10e. Comparison of Results as a Function of Importance Fraction

(grams/assembly)

Experimental I 5360 I 1097 I 1823 I 546 11
Results I I I I II

Importance I U-235 1 U-236 I Pu-239 I Pu-240 11
fiac tion I I I I II

565

1 5480 1060 1820

0.1 5470 1060 1810

0.00 1 5550 1060 1900 565

0.00001 5520 1070 1910 573

-0.1 6690 1050 4340 539

-0.0 1 6690 1050 4340 554

have otherwise contributed to fission. Thus, the spectrum andor cross sections were no

longer representative of the system at steady-state. If this case could have been modeled

more accurately (i-e-, include leakage and interaction with the sides of the reactor core),

then as more fission products were added to the system, then the spectrum would have

been more accurate and better results would have been obtained (to represent what

actually occurs in a reactor).

In this analysis the lump sum option for fission products (ie. a negative fiactional

importance) produced poor results. This lump sum option in monteburns means that all

fission products are combined into two general representations, homogenizing an

otherwise heterogeneous combination of fission products. It produced poor results

because the general fission product cross sections in MCNP appear to have either

relatively large absorption cross sections or large atom densities compared to the case(s)

where fission products are assessed individually in MCNP. As the mass of summed

fission products increased with burnup, the absorption and fission interactions that

occurred in U-235 and Pu-239 in MCNP decreased because too many neutrons were

absorbed by the lump fission products instead. Additionally, more U-238 was

transmuted to Pu-239 than should have been. This may have been because absorption

78

resonances exist at slightly larger energies for U-238 than U-235 and Pu-239 (above

MeV[251) and many neutrons were absorbed there instead of in resonances at lower

energies (this could be due to resonance self-shielding, less available moderation to slow

neutrons down, and/or a shift in the energy spectrum of the system). Fewer neutrons

existed in the resonance regions of U-235 and Pu-239 compared to U-238, so their one-

group absorption cross sections decreased and less U-236 and Pu-240 was formed. In

contrast, Pu-240, which also has absorption resonances in this higher energy range, was

transmuted more quickly than in the case of individual fission products (i.e., a positive

importance fraction).

The addition of fission products in the actual steady-state system also induces the

effects discussed above, but the general fission product representations in MCNP seemed

to exaggerate it. There are potentially two main explanations for this poor representation:

the effective absorption cross sections of these two general fission products were too

large relative to others in the system being studied, or the atomic weights used by MCNP

to convert the weight percents obtained by monteburns into atom densities for Monte

Carlo calculations were too small. The latter would occur if the average weights of fission

products produced by ORIGEN2 were larger than the representative ones in MCNP,

causing the atom density of fission products to be too large and too much absorption to

occur (atom density is inversely proportional to atomic weight). Upon examination, the

total weight of fission products with an atomic mass above I17 (the weight of Pu-239

general fission products) was about 1.5 times that of fission products with atomic masses

below 115 (the weight of U-235 general fission products), whereas more than half of the

fissions occurred from U-235. This probably resulted from the fact that many higher

actinides (such as Pu-241, americium, etc.) fissioned along with U-235 and Pu-239,

producing fission products with larger atomic weights than those representative of Pu-

239 (which is what they lumped together as). The ending result was that the atomic

weight of the representative fission product for Pu-239 was too small and the atom

79

density of this fission product was too large, adversely affecting the spectrum of the

system. In addition, using the lump sum option does not allow individual fission product

cross sections to be modified in ORIGEN2, also decreasing the accuracy of the

calculations. Overall, the user is not recommended to use the lump sum option for a

reactor system unless he/she completely understands the implications.

Additionally, the only effect of a negative importance fraction is in determining

the contribution that actinides must make to the system to be passed back to MCNP (i.e.,

individual fission products are no longer included in the MCNP input file because a lump

sum is used instead). The results for U-235, U-236, and Pu-239 were not affected when

the importance fraction went from negative 0.1 to negative 0.01, but those for Pu-240

were affected, most likely because additional actinides were included in MCNP. Such an

increase was also seen for Pu-240 as more actinides were added to the system with a

positive fraction importance (at least from 1 to 0.1 and 0.001 to 0.0001). This increase

was not seen between 0.1 and 0.001, probably due to statistics.

4.2.1.4 Recoverable Energy Per Fission

The last input parameter varied in this statistical analysis was the value of the

recoverable energy per fission (Qfs) input by the user for the actinide U-235. The input

value of Qfis was varied between 190 and 210 MeV, and the value of Qfis calculated by

monteburns at the end of the irradiation period was about 4 MeV greater than the input

value (see Table 1Of for results) due to the contribution of other actinides in the system.

The number of fissions that occur in a system are determined by the required power level

of the system and the value of Qfis. The more energy released by each fission (i.e., the

larger Qfis is), the fewer fissions that must occur to meet the overall power requirement.

This means that the amount of material burned is lower, causing the final concentration of

fissile material initially in the system &e., U-235) to increase proportionally with the

value of Qfs.

80

Table 1Of. Results as a Function of Recoverable Energy Per Fission (g/g U02)

(gras/assembly)

Experimental 5360 1097 1823 546 -
Results

Input Qfis U-235 U-236 Pu-239 Pu-240 Ending Qh

190 5310 1090 1890 603 1 94

195 5370 1090 1870 591 199

198 5490 1060 1870 57 1 202

200 5500 1060 1860 569 204

202 5530 1060 1840 552 206

205 5590 1050 1840 548 209

210 5730 1030 1830 532 214

(MeV) (MeV) I

-

Additionally, the fission-to-capture ratios in the system analyzed here were only

a little smaller for the higher values of Qfis than the lower ones, so the number of captures

that take place are also proportional to the number of fissions. When fewer fissions were

required @e., higher value of Qfis), fewer absorptions occurred in U-235, and less U-236

was produced. Similarly, less Pu-239 and Pu-240 was produced because the number of

absorptions in U-238 was also proportional. Thus, the concentrations of U-236, Pu-239,

and Pu-240 decreased as the value of Qfis increased (meeting measured results for Pu-239

and Pu-240). However, lower values of Qfis produced more comparable results for U-235

and U-236. Thus, the user should probably use the accepted value of 200 MeV although

he/she can enter higher or lower values to tailor the results for specific isotopes.

4.2.2 System-Dependent Changes

One of the largest factors that contributes to errors in montebuvns is the geometry

and material compositions modeled in the system. Although it is primarily up to the user

to model the system correctly, a few suggestions are presented here. In particular, the

factors discussed in the section are: modeling a system as accurately as possible, using

81

temperature- and material-dependent factors, and applying appropriate axial boundary

conditions.

4.2.2.1 Modeling a System

First, in modeling most reactor systems, it is difficult to include all the details that

keep the system at steady-state throughout its life (i.e., keeping track of each rod

individually, adding fresh fuel, rotating fuel fiom one region to another, adjusting the

position of the control rods as a function of burnup, changing the soluble boron

concentration, etc.). To avoid such complications, computer models commonly combine

rods/assemblies into lumped regions, make control rods stationary, and use an average

boron concentration in the moderator throughout each burn step. Modeling a larger

representative system (i.e., an infinite lattice of assemblies) produces better results than

modeling a smaller system (i.e., an infinite number of fuel pins together) because it can

take more system-dependent effects into account (i.e., burnable poison fuel rods, control

rods, instrumentation tubes, etc.) and more easily keep the model at steady-state. This

difference was seen in Test Cases #2 and 3, where both a pin and an assembly case were

presented. Because the compositions of surrounding fuel pins in Test Case #2 were not

known, it was not possible to model the case as accurately as an assembly to get better

results (although neither model would account for leakage or other system-dependent

effects). However, it was possible to adjust the amount of soluble boron in the water

surrounding the pins to produce a representative spectrum of a critical system (excluding

leakage considerations). As can be seen from Table 11, answers were closer to measured

values in this system than with the referenced input parameters (although these were used

in the test case for a better comparison to the other codes). This is because with a keff

around 1.0, a more realistic spectrum and more representative cross sections were

obtained.

82

Table 11. Results as a Function of K& and Cross Section (Test Case #2, Scenario

A-mg/gU02)

Parameters U-235 U-236 PU-239 Pu-240

measured value 8.470 3.140 4.264 1.719

hff from 1.3 to 1.0 8.104 3 -206 3.944 1.685

kff around 1 .O (ENDF/B-V) 8.623 3.178 4.1 12 1.701

k~ around 1 .O (ENDFB-VI) 8.463 3.178 4.072 1.681

However, the best spectrum would have been obtained by using a detailed reactor core

model, including water surrounding the assembly, the pressure vessel, etc., to account for

leakage and other total system effects.

In addition, a comparison of ENDFB-V and ENDFB-VI cross sections was

performed (see Table 11). The ENDFB-V libraries produced better results for U-235,

but the ENDF/B-VI libraries produced better results for Pu-239 and Pu-240. This is

because it has been shown that the neutron flux associated with U-235 in ENDFB-VI is

greater than that in ENDFPB-V in some energy ranges (for example lo4 to 10” and 0.1 to

1 MeV), while the neutron flux associated with U-238 in those energy ranges is about the

same in both ENDF/B-VI and ENDF/B-V.r26J Thus, more U-235 is burned in ENDF/B-

VI than ENDFPB-V and less Pu-239 and Pu-240 is created. This reduction in plutonium

isotopes could also be a result of the fact that their neutron fluxes in this same energy

range in ENDFPB-VI were also higher than those in ENDFB-V, possibly causing more

plutonium atoms to be depleted and matching measured results better. Nonetheless, it is

up to the user to determine which data set to use.

In the future it is advisable to model an entire system with as realistic a spectrum

as possible to produce the best results in rnonteburns. However, modeling a complex

system in MCNP can also significantly increase the run time required, so the user must

weigh the benefits of each model against the consequences.

83

4.2.2.2 Temperature- and Material-Dependent Parameters

Next, the effect of using temperature- and material-dependent parameters in

modeling a system is also important. Along with using temperature-dependent cross

sections in MCNP (typically processed by NJOY), the temperature of each cell (in MeV)

should be included in the MCNP input file using the TMP card.['] To show this, Test

Case #4 with gadolinium in the center pin was run with both temperature-dependent

cross sections (xs) and the TMP card in MCNP, temperature-dependent cross sections

without this card, and neither. In addition, effect of using S(a,p) treatment for the light

water in the system was studied. S(a,p) treatment accounts for the binding effects of

hydrogen and oxygen nuclei in light water at thermal energies.l5] This binding affects

interactions between thermal neutrons and the material and can be important for LWR

systems. The three analyses discussed above used S(a,p) treatment, and the case with

temperature-dependent cross sections and the TMP card was rerun without S(a,p)

treatment to complete the comparison. The results from these analyses are in Table 12.

Table 12. Effect of Temperature on Power Distribution

As expected, the greatest accuracy was achieved when temperature-dependent

cross sections, the TMP card, and S(a,p) treatment were used. In fact, monteburns did

not even calculate a power distribution in the correct range when temperature-dependent

cross sections were included without the TMP card. When neither were included, the

84

results were close to the published range but were not within it. S(a,p) treatment slightly

decreased the accuracy of the results, but not as much as using all temperature parameters

for this particular case. Other cases andor increaseddecreased statistics may produce

better results or may not make the outcome as exaggerated as it appears here.

Nonetheless, it is recommended to include temperature-dependent cross sections, the

TMP card, and S(a ,p) treatment in the MCNP input files analyzed by monteburns to

obtain the correct power distribution and other results.

4.2.2.3 Axial Boundary Conditions

Another parameter that can contribute to the accuracy of the results is the axial

boundary conditions used in the model. For the models used in all the test cases

discussed in Section 4.1, reflective boundary conditions were placed on all six sides of the

system being analyzed to simulate that it (i-e., either a pin or an assembly) was one

within an infinite lattice of similar ones. These models were consistent with those

described in the referenced input in the radial direction, but how the other codes modeled

the system in the axial direction was unknown. Because the composition of the material

at the ends of the fuel rods in the experimental system was also not specified in the

referenced input, it was assumed that all neutrons were reflected back into the rod once

they reached the ends (ie., no leakage occurred). This assumption may not have been

fully representative of the experimental reactor because some amount of leakage probably

did occur. To quantify this effect, Scenario B of Test Case #2 was rerun with reflective

boundary conditions in the axial direction, 10 cm of water on the ends of the each fuel rod,

and a vacuum at both ends of each fuel rod (to simulate the maximum amount of leakage).

The results of this analysis compared to measured data appear in Table 13.

85

Table 13. Results of Changes in Axial Parameters (mg/g UOz)

This table shows that the differences in the axial representation of the system

actually had little effect on the results, although the case with reflective boundary

conditions did come the closest to the measured results. This either means that the

material at the ends of the fuel rods in the measured system was probably a large scatterer

and effectively sent a majority of the neutrons back into the pin, or the pins were long

enough that axial edge effects were not important. The amount of leakage that actually

occurred was probably slightly larger than that portrayed by reflective boundary

conditions and smaller than that with water. Thus, the use of reflective boundary

conditions in the axial direction is justified for the test cases in Section 4.1.

Overall, using the best statistics possible without compromising the run time is

the key to obtaining the most eficient results. Both by determining optimum input

parameters and by modeling the system most effectively, good statistics can be obtained.

However, using good statistics often means increasing the required run time of the

problem. It is thus up to the user to determine required statistical accuracy and balance

this against the run time.

86

5.0 APPLICATIONS OF MONTEBURNS

Monteburns was written to be applicable for a wide variety of systems, including

both reactor and accelerator-driven problems. One of the limitations of other llnkage

codes between MCNP and ORIGEN2 (discussed in Section 2.3.1) is that they can only

be used for relatively simple geometries and may not be applicable for more than one

burnup step in an automated fashion (i.e., decay periods following multiple irradiation

periods, etc.). Monteburns was written to be flexible and accommodating to any type of

MCNP input file and irradiation information to minimize limitations, and it is still being

modified to incorporate additional options. Two examples of applications for which

monteburns is currently being used in the Nuclear Design and Analysis Group (TSA-10)

at Los Alamos National Laboratory are presented in this section. These are the

Accelerator Transmutation of Waste (ATW) project and non-fertile (i.e., non-uranium)

fuel applications. Although representative, they are not inclusive of the full spectrum of

problems to which monteburns can be applied in other groups, laboratories, and

industries.

5.1 Accelerator Transmutation of Waste

One of the largest issues currently being addressed in the nuclear industry is what

should be done with radioactive waste. Included in this category is spent fuel, which is

contained in fuel assemblies removed from nuclear reactor cores after irradiation. This

fuel contains significant amounts of plutonium, numerous actinides, and fission products,

some of which have relatively long half-lives. The purpose of the ATW project is to

design a system to enhance repository performance by reducing long-term radiotoxicity of

spent fuel and other high-level wastes by three orders of magnitude (ie., after processing

in ATW, this waste after 300 years should have a lower toxicity than untreated waste

after 1 W,OOO years). 133

87

For this purpose, the following goals were set for the project:

0

Separate strontium and cesium (short-lived fission products that significantly

Destroy over 99.9% of residual actinides

Destroy over 99.9% of technetium and iodine (long-lived fission products)

contribute to the heat loading of the repository)

Separate the uranium from the other spent fuel so that it can be stored or re-used and

to reduce the amount of plutonium produced during transmutation

Produce electricity (destruction of actinides could potentially produce energy, which

could both power the accelerator and be sold)

The ATW system would be powered by a high-power proton linear accelerator

similar to the one being considered for the Accelerator Production of Tritium (APT)

project. A pyrochemical spent fuel treatment/waste cleanup system would be used to

process the materials remaining after irradiation. The waste itself would be contained in

solid waste pins with a configuration similar to the one in Figure 7. The waste

transmutation region is designed as three separate zones, where pins in Zone 2 have been

irradiated for a cycle in Zone 3, and pins in Zone 1 have been irradiated for one cycle in

Zone 3 and one cycle in Zone 2. Once these pins are burned in Zone 1, the material is

processed so that the actinides are concentrated to obtain the desired reactivity, and the

waste is refabricated into pins and inserted as “fresh” waste into Zone 3. The spallation

target would be a heavy metal target made of liquid lead-bismuth eutectic (LBE), which

helps produce a high intensity neutron source for the outer zones. The system would

operate in a subcritical regime and with a fast neutron spectrum, which allows for more

efficient destruction of actinides because the fission-to-capture ratio of many plutonium

isotopes and higher actinides is larger at fast energies.

88

Ref lector

Figure 7. Sample of core configuration for ATW

Monteburns can incorporate all aspects of this design; it moves material fiom one

region to another in MCNP and analyzes the burnup in as many materials as desired for

each irradiation step before transferring the resulting material compositions back to

MCNP for further analysis. According to preliminary calculations, the following results

were both desired and achieved

A 2 GW, ATW can burn almost any combination of higher actinides at a rate of more

than 500 kglyr. with a minimum cycle length of 100 days;

Technetium can be used as a burnable poison and to harden the spectrum; Tc-99 can

be transmuted at a rate greater than 40 kglyr.; and

The harder the neutron spectrum, the more efficiently ATW destroys higher actinides

because the fission-to-capture ratios of the actinides increase.

Using four-month (12 1 day) cycles and the feed specified in Table 14, the amount

of transmutatioddestruction experienced by various actinides in ATW are shown in Table

89

15.

destruction.

Positive values in this table correspond to production and negative ones to

Table 14. Feed Material for ATW (kg)

90

Table 15. Amount of Material Produced(+)/Destroyed(-) by ATW (kg)

total 1 -2906 I -495 I -64 I -5731 I -1962 I -738 I -257 I -564 I -658 1 -12587

With an initial system input of about 2300 kg of actinides and 700 kg Tc-99 and a

steady-state feed rate of approximately 320 kg of actinides and 14 kg Tc-99 per four-

91

month cycle, over 900 kg of actinides and around 45 kg of Tc-99 are destroyed per year.

This successfully exceeded the goals of 500 kg and 40 kg per year, respectively.

5.2 Plutonium Destruction

Although monteburns was initially designed for the ATW project, it has been

expanded (and tested as shown in Section 4.1) for reactor uses. One of the current uses of

monteburns in a reactor-based system is to study various parameters and fuel cycle

concepts for their effectiveness in the destruction of plutonium. There is a great deal of

reactor-grade plutonium currently contained in spent fuel that may become a proliferation

risk in the next century if it is not destroyed. In addition, there are about 50 metric tons

of surplus weapons-grade plutonium in the US being proposed for disposition, possibly

in a

Studies are currently being performed to determine the best way of destroying this

plutonium, including examining different fuel forms, plutonium isotopic compositions,

and neutron energy spectra. Figure 8 shows the percentage of plutonium destroyed in

each system as a function of burnup. Unless stated otherwise, the parameters used in

this figure were: non-fertile fuel (described below), reactor-grade (RG) plutonium, and a

light-water reactor system.

5.2.1 Fuel Form

First, the two fuel forms being investigated are: MOX fuel (monteburns

calculations for this fuel were demonstrated in Test Case #5), and non-fertile (NF) fuel

(plutonium dioxide (PuO,) in a calcia (Ca0)-stabilized zirconium dioxide (21-0,) matrix

with an erbia (Ea,) poison).['*] The MOX fuel modeled in this analysis consisted of

93w% depleted uranium oxide and 7w% RG Pu02, and the non-fertile fuel was comprised

of 7w% RG PuOa, lw% Er02, 85.6w% Zr02, and 6.4w% CaO. The purpose of using

non-fertile fuel for the destruction of plutonium is to transmute plutonium actinides

92

without building them. The absence of uranium in the NF fuel leads to a lack of

production of plutonium due to transmutation of the uranium isotopes, and hence to

higher destruction rates. Thus, from Figure 8, it can be seen that the non-uranium-based

NF fuel allows better net plutonium destruction than MOX he1 and should be further

considered for this purpose.

b
Q)

I
E
m

J
n
8

100

9 0

80

70

6 0

5 0

4 0

30

20

1 0

0

0 200 400 600 800 1000

Burnup (GWd/MTPu)

Figure 8. Plutonium Destruction as a Function of Burnup

5.2.2 Isotopic Composition

Second, the initial plutonium isotopes in the fuel also influence how effectively

plutonium is destroyed. This is because the fission-to-capture ratio of every plutonium

isotope is different, and the higher this value is, the more fissions occur relative to

transmutations, and the more plutonium is destroyed (instead of higher actinides built

93

up). The two plutonium isotopes with the largest fission-to-capture ratios are Pu-239

and Pu-241 (see Table 4a for sample values) because they are fissile isotopes. Thus, the

more Pu-239 and Pu-241 that exist in the plutonium relative to other plutonium isotopes

(such as Pu-238 and Pu-240), the faster the plutonium fissions and is destroyed. Some

plutonium can also be destroyed through decay of Pu-241 to americium, but not as fast as

that which fissions. However, specifying the composition of the plutonium isotopes in

the material is not an option, so although this is not an input parameter, it is shown here

solely for comparison purposes. The two types of plutonium compared in this example

were reactor-grade plutonium (with a representative composition of I S7w% Pu-238,

57 .54~% Pu-239, 26 .65~% Pu-240, 8 . 8 5 ~ % Pu-241, and 5.39Woh Pu-242), and

weapons-grade plutonium (with an average composition of 93w% Pu-239 and 7w% Pu-

240).

As expected, the weapons-grade plutonium was destroyed faster than the reactor-

grade because it initially contained more fissile Pu-239 atoms than non-fissile Pu-240

ones. Pu-240 is more likely to transmute than fission, so a material starting with more

Pu-240 has only one main chance to fission (when it is Pu-241) before it transmutes to

higher actinides whereas Pu-239 atoms have two main chances (Pu-239 and Pu-241). The

number of fissions that take place in the system must be the same in both cases, so higher

actinides are probably contributing to relatively more fission interactions in the former

case than in the latter case, which is why less net destruction of plutonium occurs.

5.2.3 Energy Spectrum

Finally, the energy spectrum of neutrons in the system in which the fuel is being

irradiated also contributes to the results. The three different spectra analyzed in this

example were a representative light-water, heavy-water, and fast system. The first two

of these systems were modeled in monteburns as one assembly of NF fuel surrounded by

a matrix of system-representative fuel assemblies @e., LEU fuel in a PWR[281 for the

94

LWR case and depleted-uranium CANDU assemblies[291 for the heavy water case) to

keep the bff of the system around 1.0. The third, a fast system, was difficult to model in

MCNP without a detailed system design for this purpose, so an ORIGEN2 run using

cross sections representative of the Fast Flux Test Facility (FFTF) was performed

instead.

By comparing the LWR RG Pu case to the CANDU and Fast cases run with RG

Pu, Figure 8 indicates that the heavy-water (CANDU) system was the most effective in

destroying plutonium, which is probably a result of the fact that fission-to-capture ratios

were greater for it than for the light-water system (see Table 16). This is because a

heavy-water system has a more thermal spectrum than a LWR, and neutrons probably

avoid many of the absorption resonances. In addition, neutrons can be absorbed in

hydrogen at thermal energies in a LWR system, whereas they are absorbed and/or fission

in plutonium isotopes instead in the heavy-water system.

Table 16. Fission-to-Capture Ratios of Isotopes in Each Spectrum

Isotope Light-Water Heavy- Water Fast

U-235 3.4 to 5.3 4.46 to 5.64 3.8

Pu-239 1.78 to 1.88 - 1.98 4.59

Pu-24 1 2.77 to 2.75 2.91 to 2.78 6.02

Table 16 also indicates that the fission-to-capture ratios for the plutonium

isotopes in the fast system were also relatively large, which means that the neutron

energies were large enough that they avoided resonances altogether and primarily fissioned

instead. Thus, plutonium should have been destroyed more quickly with this fast system

than the thermal ones, but Figure 8 shows that this is not the case at high burnups. This

is probably because the fast system was modeled in ORIGEN2 instead of monteburns,

and system-dependent effects were not taken into account as a function of burnup. The

95

96

6.0 LIMITTATIONS OF AND FUTURE WORK FOR MONTEBURNS

One limitation of monteburns is that it is currently designed to run only on a

UNIX system. Not all users may have this type of system, and monteburns is not yet

capable of running on VMS or PC systems. Significant changes must be made to the

command file (currently a c-shell file), and minor modifications must be made to the

FORTRAN77 file so that the code can operate on any type of machine and/or system.

Monteburns currently only extracts a few reactor physics constants (q, v, etc.)

Grom MCNP output files. It can, however, be modified in the firture to extract more

values, depending on what uses the program may eventually have. It may also be

modified to calculate activation and decay powers, and the input may be simplified

further to make it even more user-friendly. Any of these suggestions should enhance the

capability and versatility of the code.

Another modification that could be made to monteburns is to allow it to interface

with another burnup code besides ORIGEN2. Examples of such codes include ORIGEN-

S (part of the SCALE package) and CINDER90 (primarily used for calculations involving

accelerator-driven systems).[”] Whether the benefit of this addition is great enough to

offset the additional requirement of more complex input has yet to be determined. All of

these limitations can be resolved by modifying the FORTRAN77 program and/or the c-

shell executable.

Throughout this document, references to resonance self-shielding and the variable

increase or decrease of cross sections with burnup are mentioned. However, no detailed

analyses were performed to determine how resonances affect the value of the flux or the

effective cross sections, A detailed analysis could be performed in the future to study

these affects and determine exactly why the results presented in this document were

obtained. This, along with the activities discussed above, constitutes the proposed future

work activities for monteburns.

97

7.0 CONCLUSIONS

This document provided a thorough description and benchmarking results of the

automated burnup code monteburns, which links the transport code MCNP and the

radioactive decay and burnup code ORIGEN2. This linkage code was designed to limit

the amount of information the user is required to input and still perform detailed,

automated burnup calculations for any type of system and number of irradiation periods.

The advantages it has over other burnup codes are: 1) it allows the user to model a

detailed, 3-D system, 2) it modifies material cross sections as a function of burnup and

flw distributions within a system, 3) it offers a variety of options and allows system

changes to be made frequently throughout a burn interval, and 4) it is fully automated and

relatively easy to learn. The purpose of this document is not only to serve as a thesis but

is also to assist those who plan to use monteburns by providing a validation of the code

and discussions of “tricks” found useful when running the code.

Monteburns is comprised of a combination of a c-shell UNIX executable file and a

FORTRAN77 program and primarily acts as a pre- and post-processor for ORIGEN2

and a post-processor for MCNP. The main calculations that it performs are: 1) the

recoverable energy per fission according to the distribution of actinides in the system, and

2) the conversion of the flux calculated by MCNP for a region(s) to the actual flux seen

by that region as well as the power produced by the region. Only two main input files

are required for monteburns (others are optional): 1) a working MCNP input file, and 2)

a monteburns input file containing a list of parameters relevant to the system being

analyzed. A number of variables are currently output, including reactor physics

constants, cross sections, and compositions of materials in the system before and after

each step. The code is frequently being updated and modified to suit user’s needs and

desires.

The most important portion of this document is the benchmarking section, which

showed that monteburns performs burnup calculations just as well as or better than those

98

performed using other codes. Different geometries, fuel types, and reactor systems were

modeled and compared to measured andor published calculations from other codes, and

the errorddifferences obtained by these comparisons were all considered to be acceptable.

In addition, a number of statistical analyses were performed for monteburs, both to

analyze the effect(s) of several input parameters on the results and to describe the

importance of modeling the system as accurately a fashion as possible. Some examples of

problems for which montebums is currently being used were presented as well, along

with suggestions of future work that may be performed for monteburns.

In conclusion, the code montebums has now been described and benchmarked for

the burnup scenarios in Section 4.1. It produces comparable results to other well-known

burnup codes, such as those in the SCALE suite of programs. Monteburns is a

straightforward yet versatile solution requiring little training other than that required for

MCNP and will soon be publicly available through the Radiation Safety Information

Computational Center (RSICC) at Oak Ridge National Laboratory.

99

APPENDICES

APPENDIX A . LISTING OF C-SHELL FILE MONTEBURNS 101

APPENDIX B . LISTING OF FORTRAN77 PROGRAM M0NTEB.F 110

APPENDIX C . SAMPLE MCNP INPUT FILE ... 183

APPENDIX D . SAMPLE MONTEBURNS INPUT FILE 184

APPENDIX E . SAMPLE FEED INPUT FILE ... 185

100

APPENDIX A. LISTING OF C-SHELL FILE MONTEBURNS

#!/bin/csh

Version 4 September 1998
date
cp $l.inp mb.inp

if (-e $l.feed) cp $1-feed feed
if (-e tmpfile) then
else
mkdir tmpfile
endi f

monteb a
@ nout = 'awk '$2 == "nout" {print int($l))' ./tmpfile/params'
4 npre = 'awk '$2 == "npre" {print int($1)1' ./tmpfile/params'
Q nrst = 'awk '$2 == "nrst" {print int($l)}' ./tmpfile/params'
8 nkeff = 'awk '$2 == "nkeff" {print int($l)I' ./tmpfile/params'
@ m a t = 'awk ' $ 2 == "nmat" {print int($l)}' ./tmpfile/params'
echo Snout $npre $nrst $nkeff Snmat

echo ... MonteBurns: Write natural element and origen input files
monteb e
monteb 5

if ($nrst == 0) then
set up initial run ____________-__----_-__--__---_
..Backup fort.9

4 i 3 = 1
while (Si3 <= $nmat)
if (- e fort.9.0) then
cp fort.9.0 fort-Si3.9
else
cp fort-Si3.9 fort.9.0
endi f
@ i3 ++
end
echo ... MonteBurns: Delete Old MCNP Files
if (-e mbmcm) rm mbmcm
if (-e mbmco) rm mbmco
if (-e mbmcr) rm mbmcr
if (-e mbmcs) rm mbmcs
echo ... MonteBurns: Check Print Card and create skeleton mcnp input
monteb 1 <$1
echo . . . MonteBurns: Run MCNP Input Module to get initial comps
mcnp ix n=mbmc
echo ... MonteBurns: Write tally file tal2.inp
Get number of predictors from status

File management ________________-____-------_-----

Get shell variables ____________-____-__-_--------

101

monteb 2 <mbmco
echo ... MonteBurns: Write initial origen comp file fort.7 and nat isos
monteb 4 <mbmco
@ i l = O
else

@ il = $nrst + 1
@ i 3 = 1
while (Si3 <= $nmat)
cp ./tmpfile/fortg_$i3.$nrst fort-Si3.9
cp ./tmpfile/fort7-$i3.$nrst fort-Si3.7
if (-e ./tmpfile/mbori-$i3.$il.tmp) then
else
cp ./tmpfile/mbori-$i3.$il ./tmpfile/mbori-$i3.$il.tmp
endi f
@ i3 ++
end
cp ./tmpfile/mbmc.$nrst mbmc
cp ./tmpfile/mbinp.$nrst mb.inp
endi f

while (Si1 <= Snout)

echo ... MonteBurns: Begin outer loop $il

tally nrst in mb.inp so monteb knows what step

if (Si1 > 0) monteb 9

determine material in each MCNP region

if (Si1 > 0) monteb c
@ i 3 = 1
while (Si3 <= $nmat)
if (Si1 > 0) then
mv ./tmpfile/mbori-$i3.$il.tmp ./tmpfile/mbori-$i3.$il
cp ./tmpfile/mbori-$i3.$il mbori-$i3
0 nval = 'awk '$2 == "nval" {print int($l)}' ./tmpfile/param3-$i3'

see if the same material is present in each region and if not,
copy new material to current $i3 value fort.7 file

if (Snval == 0) then
cp fort-Si3.7 fort-Si3.7.tmp
cp mnat-Si3.tmp mnat-$i3.t.tmp
else
if (Snval != $i3) then
cp fort-Snval.7 fort-$i3.7.tmp
cp mat-$nval.tmp mnat-$i3.t.tmp

Set up restart run __---__-------------------

Beginning of outer loop

102

else
cp fort-Si3.7 fort-Si3.7.tmp
cp mnat-Si3.tmp mnat-Si3.t.trnp
endi f
endi f
endi f
4 i3 ++
end
@ i 3 = 1
while (Si3 <= Snmat)
if (Si1 > 0) then
mv fort-Si3.7.trnp fort-Si3.7
mv mnat-Si3.t.tmp mnat-Si3.tmp
endi f
cp fort-Si3.7 fort-Si3.4
4 i3 ++
end

if (Si1 == 1) then
4 npre2 = $npre + 1
else
4 npre2 = $npre
endi f
if (Si1 == 0) @ npre2 = 1

@ i 2 = 1
4 ndsc = 0

@ i 3 = 1
while (Si3 <= Snmat)
if (-e ./tmpfile/param-$i3.$il) then
4 ndisc = 'awk '$2 == "ndisc" {print int(S1))' ./tmpfile/param-$i3.$il'
if (Sndisc == 1) then
4 ndsc = 1
endi f
endi f
4 i3 ++
end
if (Sndsc == 1) then
echo ... Monteburns: Add discrete feed to fort.7
monteb b
@ i 3 = 1
while (Si3 <= Snmat)
mv fort-Si3.7.tmp fort-Si3.7
cp fort-Si3.7 fort-Si3.4
@ i3 ++
end
if (Snkeff == 1) then
echo . . . Monteburns: Add discrete feed to mcnp input file
monteb 7b
cp mbmc.tmp mbmc.sk1
cp mbmc-skl mbmc-temp

103

@ i 3 = 1
while (Si3 <= $mat)
cat mb7t-Si3.out mb7-Si3.out > mb7t-Si3.tmp
mv mb7t-Si3.tmp mb7t-Si3.out
cat mbmc-temp rnat-Si3.h~ > mbm.tmp
mv mbm.tmp mbmc.temp
@ i3 ++
end
mv mbmc . temp mbmc
echo ... MonteBurns: Run MCNP for discrete feed
if (-e mbmcm) rm mbmcm
if (-e mbmco) rm mbmco
if (-e mbmcr) rm mbmcr
if (-e mbmcs) rm mbmcs
mcnp n=mbmc
monteb 6b
cat mbllt-out mbll.out > mbllt.tmp
mv mbllt.tmp mbllt-out
cat mbl3t.out mbll-out > mbl3t.tmp
mv mbl3t. tmp mbl3t. out
endi f
endi f

Determine grams of feed at the beginning of each step
monteb 8b
@ i 3 = 1
while (Si3 <= $mat)
cat mb12t-Si3.out mbl2-Si3.out > mb12t-Si3.tmp
cat mb12a-Si3.out mb12x-$i3.out > mb12a-$i3.tmp
mv mb12t-Si3.tmp mb12t-Si3.out
mv mb12a-Si3.tmp mb12a-Si3.out
@ i3 ++
end

while (Si2 <= Snpre2)
if (Si1 > 0) then
echo ... MonteBurns: Run origen predictor Si2 for outer $il
@ i 3 = 1
while (Si3 <= $mat)
cp mbori-Si3 mbori
cp fort-Si3.9 fort.9
cp fort-Si3.4 fort.4
origen2 <mbori >mboro
mv fort.9 fort-Si3.9
mv fort.7 fort-Si3.7
@ i3 ++
end
endi f
echo ... Monteburns: Determine important players / make new mcnp mat
monteb 7m

Begninning of inner loop _-____-----------_----_

1 04

cp mbmc-tmp mbmc-skl
echo ... MonteBurns: Write new mcnp tallies and cat new mcnp input
monteb 3
echo . . . MonteBurns: Create complete MCNP input file
cp mbmc.skl mbmc
@ i 3 = 1
while (Si3 <= $mat)
cat mb7t-$i3.out mb7-Si3.out > mb7t-Si3.tmp
mv mb7t-Si3.tmp mb7t-Si3.out
cat mbmc mat-Si3.inp tall-Si3.inp tal2-Si3.inp tal3-Si3.inp > mbmc-temp
mv mbmc.temp mbmc
rm tall-$i3.inp tal3-Si3.inp
@ i3 ++
end
echo ... MonteBurns: Run MCNP
if (-e mbmcm) rm mbmcm
if (-e mbmco) rm mbmco
if (-e mbmcr) rm mbmcr
if (-e mbmcs) rm mbmcs
mcnp n=mbmc
echo ... MonteBurns: Modify
monteb 6m
@ i 3 = 1
while (Si3 <= $mat)
if (Si1 > 0) mv mbori-$i3

orig xs file fort.9 and mbori with new flux

tmp mbori-$i3
mv fort-Si3.9.tmp fort-Si3.9
cat mb4a-$i3.out mb6-$i3.out > mb4a-$i3.tmp
mv mb4a-$i3.tmp mb4a-Si3.0ut
B i3 ++
end
B i2 ++
end
cat mbllt.out mbll.out > mbllt.tmp
mv mbllt.tmp mbllt.out
if (Si1 == 0) then
if ($nkeff == 1) then
cat mbl3t.out mbll.out > mbl3t.tmp
mv mbl3t.tmp mbl3t.out
endi f
endi f

if (Si1 > 0) then
echo ... MonteBurns: Run origen to compare 1/2 way comps
@ i 3 = 1

while (Si3 <= $mat)
cp fort-$i3.9 fort. 9

cp fort-Si3.4 fort.4
cp mbori-$i3 mbori
origen2 <mbori >mboro
mv fort.7 fort-Si3.7

End of inner loop ____________---__-__-----------

105

I

I

mv fort.9 fort-Si3.9
4 i3 ++
end

monteb 8e
@ i 3 = 1
while (Si3 <= $mat)
cat mb4b-Si3.out mb5-Si3.out > mb4b-Si3.tmp
mv mb4b-Si3.tmp mb4b-Si3.out
4 i3 ++
end

Remove 1/2 way predictor stuff in mbori
monteb 0
4 i 3 = 1
while (Si3 <= $mat)
mv mbori-Si3.tmp mbori-$i3
echo ... MonteBurns: Run origen for complete outer step $il
cp fort-Si3.9 fort. 9
cp fort-Si3.4 fort.4
cp mbori-$i3 mbori
origen2 <mbori >mboro
mv fort.7 fort-Si3.7
mv fort.9 fort-Si3.9
cp fort-Si3.9 ./tmpfile/fort9-$i3.$il
4 i3 ++
end

Save stuff for restart -------------------

cp mbmc ./tmpfile/mbmc.$il
cp mb.inp ./tmpfile/mbinp.$il

Calculate k-eff at end of burn step ------

if ($nkeff == 1) then
echo ... MonteBurns: Determine important players / make new mcnp mat
monteb 7e
cp mbmc-tmp mbmc-skl
cp mbmc-skl mbmc-temp
4 i 3 = 1
while (Si3 <= $mat)
cat mb7t-Si3.out mb7-Si3.out > mb7tV$i3.tmp
mv mb7t-Si3.trnp mb7t-Si3.out
cat mbmc.temp mat-Si3.inp > mbm.tmp
mv mbm.tmp mbmc-temp
@ i3 ++
end
mv mbmc-temp mbmc
echo ... MonteBurns: Run MCNP for complete outer step Si1
if (-e mbmcm) rm mbmcm

106

if (-e mbmco) rm mbmco
if (-e mbmcr) rm mbmcr
if (-e mbmcs) rm mbmcs
mcnp n=mbmc
monteb 6e
cat mbllt-out mbll-out > mbllt.tmp
mv mbllt-tmp mbllt.out
endi f

Remove discrete removal group elements

monteb d
@ i 3 = I
while (Si3 <= $nmat)
if (-e fort-Si3.7.tem) mv fort-Si3.7.tem fort-Si3.7
cp fort-Si3.7 ./tmpfile/fort7-$i3.$il
Q i3 ++
end
endi f

monteb 8e
@ i 3 = 1
while (Si3 <= $mat)
cat mb5tV$i3.out mbS-Si3.out > mb5t-Si3.tmp
cat mb5tx-Si3.out mb5x-Si3.out > mb5tx-Si3.tmp
mv mb5t-Si3.tmp mb5t-Si3.out
mv mb5tx-Si3.tmp mb5tx-Si3.out
Q i3 ++
end
if (Si1 > 0) then
monteb z

@ i 3 = 1
while (Si3 <= $nmat)
cat mb9t-Si3.0ut mb9-$i3.out > mb9t-Si3.tmp
mv mb9t-$i3.tmp mb9t-Si3.out
Q i3 ++
end
endi f

copy to output files
@ i 3 = 1
while (Si3 <= $mat)
cat mblt-Si3.out mbl-Si3.out > mblt-tmp
mv mblt.tmp mblt-Si3.out
cat mb6t-Si3.out mb6-Si3.out > mb6t.tmp
mv mb6t.tmp mb6t-$i3.out
cat mb2t-Si3.out mb2-Si3.out > mb2t.tmp
mv mb2t.tmp mb2t-Si3.out
cat mb3tV$i3.out mb3-Si3.out > mb3t.tmp
mv mb3t.tmp mb3t-Si3.out
cat mb8t-Si3.0ut mb8-Si3.out > mb8t.tmp

107

mv mb8t.tmp mb8t-$i3.out
cat rnb4b-Si3.out mb4-Si3.out > mb4b.tmp
mv mb4b.tmp mb4b-Si3.0ut
@ i3 ++
end

(3 il ++
echo Snout S i 1

end

@ i 3 = 1
while (Si3 <= $mat)
cat mbl mblt-Si3.out > mbl.tmp
mv mbl.tmp mbl
cat mb2 mb2t-$i3.out > mb2.tmp
mv mb2.tmp mb2
cat mb3 mb3t-Si3.out > mb3.tmp
mv mb3.tmp mb3
cat mb4a mb4a-Si3.out > mb4a.tmp
mv mb4a.tmp mb4a
cat mb4b mb4b-Si3.out > mb4b.tmp
mv mb4b.tmp mb4b
cat mb5 mb5t-Si3.out > mb5.tmp
mv mb5.tmp mb5
cat mb6 mb6t-Si3.out > mb6.tmp
mv mb6.tmp mb6
cat mb7 mb7t-Si3.out > mb7.tmp
mv mb7.tmp mb7
cat mb8 mb8t-Si3.out > mb8.tmp
mv mb8.tmp mb8
cat mb9 mb9t-Si3.out > mb9.tmp
mv mb9.tmp mb9
cat mbl0 mblOt-$i3.out > mblO.tmp
mv mblO.tmp mbl0
cat mb12 mb12t-Si3.out > mb12.tmp
mv mb12.tmp mb12
@ i3 ++
end
if (Snkeff == 1) then
cat mbllt.out mbl3t.out > crit
else

cp mbllt.out crit
endi f
cat crit mbl mb6 mb2 mb3 mb8 mb12 mb5 mb9 mbl0 > $l.mbtmp
cat mb4a mb4b mb7 > $l.mbchk
if (-e feed) then
cat $l.mbtmp feed > $l.mbout
else
mv $l.mbtmp $l.mbout
endi f

End of outer loop __________-_-----------------------

108

I

txt2ps-sw $l.mbout > $l.ps
txt2ps-s~ $l.mbchk > $lC.pS

txt2ps-xs $l.mbout > $l.pss

txt2ps-x~ $l.mbchk > $lC.pSS

echo ... Monteburns: Completed
date

109

APPENDIX B. LISTING OF FORTRAN77 PROGRAM M0NTEB.F'

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12
c Version 4 September 1 9 9 8

c For info please contact Dave Poston (505) -667-4336 - poston@lanl.gov
c or Holly Trellue (5 0 5) - 6 6 5 - 9 5 3 9 - trellue@lanl.gov
C

c...MONTEB call a variety of subroutines based on call line ARG

C

common / m b i n p / n m a t , m t (4 9) , v o l i (4 9) , p o w , q u 2 3 5 , d a e r ,

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr (9 9 9 , 4 9)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,pos~t
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l

C

c...Read in command line argument getarg for sun, igetarg for HP
C

character arg*8
call getarg (1, arg)

C call igetarg(l,arg,l)
C

c. ..Read in input file into common block data from standard input
(initial
c... read (with arg = a) is different than preceding ones b/c nauto
c... has not yet been defined.
C

if (arg.eq.'a'.or.arg.eq.'wparamsO then

else

endi f

call read

call readco

C

c...execute based on arg
C

if arg.eq.'l'.or.arg.eq.'pcard') call pcard
if arg.eq.'2'.or.arg.eq.'wtally2') call wtal2

if arg.eq.'3'.or.arg.eq.'wtally') call wtally
if arg.eq.'4'.or.arg.eq.'worcomp') call worcom

if arg.eq.'5'.or.arg.eq.'worinp') call worinp
if (arg.eq.'6b'.or.arg.eq.'worxsb') then

posit = 'b'
call worxs

posit = 'm'

call worxs

posit = 'e'
call worxs

elseif (arg.eq.'6m'.or.arg.eq.'worxsm') then

elseif (arg.eq.'6e1.0r.arg.eq.'worxse') then

endi f
if (arg.eq.'7b'.or.arg.eq.'wmcinpb') then

posit = 'b'

110

mailto:poston@lanl.gov
mailto:trellue@lanl.gov

call wmcinp

posit = 'm'

call wmcinp

posit = 'e'
call wmcinp

elseif (arg.eq.'7m'.or.arg.eq.'wmcinpm') then

elseif (arg.eq.'7e1.0r.arg.eq.'wmcinpe') then

endi f
if (arg.eq.'8bt.or.arg.eq.'gramsb') then

posit = 'b'
call grams

posit = 'e'
call grams

elseif (arg.eq.'8e'.or.arg-eq.'gramse1) then

endi f

if (arg.eq.'9'.or.arg.eq.'wmbinp') then
nrst=nrst+l
call wmbinp

end if
if (arg.eq.'O'.or.arg.eq.'rmhalf')
if (arg.eq.'b'.or.arg.eq.'discrete')
if (arg.eq.'c'.or.arg.eq.'region')
if (arg.eq.'d'.or.arg.eq.'discremo')
if (arg.eq.'e'.or.arg.eq.'natelem')
if (arg.eq.'z'.or.arg.eq.'burncalc')

c...Write variables 'params' to be read by
c... user's input file

C

C

if (arg.eq.'a'.or.arg.eq.'wparams')
call wparam
call wmbinp

endi f

call rmhalf(nmat)
call discr
call region
call dremo
call natele
call burnca

shell and make more detailed

then

C

end
C

~23456789*123456789*123456789*123456789~123456789*123456789*1234567~9*12

c...WPARAMS writes scratch file containing variables to be read by
c...shell with the AWK command

subroutine wpararn
common /mbinp/nmat,mt(49),voli(49),pow,~235,days,nouter,ninner,

C

C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)

C

open (ll,file=' ./tmpfile/params',status='unknown')
write (11,902) nouter
write (11,903) npre
write (11,904) nrst

111

write (11,905) nkeff
write (11,906) nmat

close (11)
C

902 format (i4,' nout')
903 format (i4, ' npre')
904 format (i4,' nrst')
905 format (i4,' nkeff')
906 format (i4,' nmat')

return
end

C

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...READCOM reads in common block data from input file
C

C

subroutine read
common / m b i n p / n m a t , m t (4 9) , v o l i (4 9) , p o w , q u 2 3 5 , d a e r ,

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr (999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character nisor5*5,met*l

C

c...Read mburn input file, read twice to get niso & nisn, have to
c...read as real variable first and then convert to integer so that it
c...works both on Sun and H P .

C

open (ll,file='mb.inp' ,status='old')
read (ll,'(a72)') title
read (ll,*) m a t
do 20 j=l,nmat

20 read (ll,*) mt(j)
do 3 0 j=l,nmat

30 read ll,*) voli(j)
read ll,*) pow
read ll,*) qu235

read 11, *) days
read ll,*) nouter
read (ll,*) ninner
read (11,*) npre
read (ll,*) nrst
read (11, (a2) ') olib
read (11, (a72) ') locale
read (11,*) frimp
read (ll,*) nkeff
do 60 j=l,nmat
read (ll,*) nauto(j)
ntot(j) = nauto(j)
do 60 i=l,ntot(j)
read (11,'(a10)') niso(i,j)

112

backspace (11)
read (11, ' (f6.1) ') x

close (11)
60 nisn(i, j)=x

C

c...Assign origin is0 names
C

do 10 j=l,nmat
do 10 i=l,ntot(j)
nisor5=niso(i,j)
met= ' 0
if (nisor5.eq.'95242') met='l'

10 nisor(i,j)=nisor5//met
C

C

do 15 j=l,nmat
do 15 i=l,ntot(j)
nisnr(i,j)=nisn(i,j)*lO
if (nisnr(i,j).eq.952420) nisnr(i,j)=nisnr(i,j)+l

15 continue

return
end

C

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...READCOM reads in common block data from input file
C

C

subroutine readco
common /mbinp/nmat,mt(49),voli~49~,pow,~235,days,nouter,ninner,

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character nisor5*5,met*l

c...Read mburn input file, read twice to get niso & nisn, have to
c...read as real variable first and then convert to integer so that it
c...works both on Sun and HP.
C

open (ll,file='mb.inp',status='old')
read (11, ' (a721 ') title
read (ll,*) m a t
do 20 j=l,nmat

20 read (ll,*) mt(j)
do 30

30 read
read
read
read
read
read

j=l,nmat
ll,*) voli(j)
ll,*) pow
ll,*) qu235
ll,*) days
ll,*) nouter
11, *) ninner

113

read (ll,*) npre
read (ll,*) nrst

read (11, (a21 ') olib
read (11, ' (a72) ') locale
read (ll,*) frimp
read (11, *) nkeff
do 60 j=l,nmat
read (11,*) nauto(j)
read (ll,*) ntot(j)
do 60 i=l,ntot(j)
read (11, (a10) ' 1 niso(i, j)
backspace (11)
read (11, ' (f6.1) ') x

close (11)
60 nisn(i,j)=x

C

c...Assign origin is0 names

do 10 j=l,nmat
do 10 i=l,ntot(j)
nisor5=niso(i,j)
met= 0 '
if (nisor5.eq.'95242') met='l'

C

10 nisor(i,j)=nisor5//met
C

do 15 j=l,nmat
do 15 i=l,ntot(j)
nisnr(i,j)=nisn(i,j)*lO
if (nisnr (i , j) . eq -9 52420) nisnr (i , j) =nisnr (i , j) +1

15 continue

return
end

C

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...PCARD checks mcnp input file for print card, and alters or adds one
c...(only run once at beginning of monteburns)

C

C

subroutine pcard
common /mbinp/nmat, mt (49) , voli (49) ,pow, qu235, days, nouter, ninner,

& npre,nrst, frimp,nauto(49) ,ntot (49) ,nkeff ,nisn(999,49),
& nisnr (999,49)
common /mbinp2/niso(999,49),nisor(999,49) ,title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character ju5*5,ju80*80,m(20)*l,filelt*l2,file2t*12
character file3t*12,file4a*12,file4b*l2,file5t*l2,file5~*12
character file7t*12,file8t*12,fname*l2,fill2t*l2,fill2a*l2

open (12,file='mbmc',status='unknown')
C

C

114

10 k=k+l
read (5, ' (a5) ' ,end=15) ju5
if (ju5.eq.'print1) ni=k

goto 10
15 rewind (5)

20 do 30 n=l,k-1
read (5, ' (a80) ' 1 ju80
if (n.ne.ni) then

else

end if
30 continue

if (ni.eq.0) write (12, (a81 ' 1 'print 40'

close (12)

write (12,'(a80)') ju80

write (12, ' (a81 ') 'print 40 '

C

C

c...Remove mt card and write mbmc-skl
C

open (11, file='mbmc' ,status='old')

open (12,fi1e='mbmc.skl',status='unknown1)
C

if lag=O
n = O

ifd = 0
nogo= 0
do 45 i=1,20

40 read (11,'(20al)',end=50) (m(i),i=1,20)

45 if (m(i1.ne.I ') nogo=l
C

c...Determine numerical value of material
C

if (nogo.eq.O.and.iflag.eq-1) goto 40
if (m(1) .eq. 'm') then
iflag = 1
do 47 i=6,2,-1
if (m(i) .eq. ') ii=i

matr=O
47 continue

do 48 i=2,ii-l
48 matr=matr+(ichar(m(i))-48)*lO**(ii-l-i)

C

c... Identify if MCNP material is one of the user requested materials

do 49 j=l,nmat
C

49 if (matr.eq.abs(rnt(j))) ifd=l
end if

C

c... Print lines excluding user-specified material identifiers
skeleton
C

to

115

if (ifd.eq.0) then

backspace(l1)
read (ll,'(a80)') ju80
write (12,'(a80)') ju80

goto 40
else

C

c.. . If MCNP material is equal to user specified one, then print
material
c... identification cards to appropriate output file. Remove blank

1 ines
c... from end of MCNP input file
C

do 52 j=l,nmat
if (matr.eq.abs(mt(j))) then
if (j.lt.10) then

elseif (j.ge.10) then
fname = 'mat_'//char(j+48)//'.inp'

jl = j/lO
j2 = j - jl*10
fname = 'mat-'//char(jl+48)//char(j2+48)//'.inp'

endi f
open (13,file=fname,status='unknown')
n = n + l

endi f
52 continue

endi f
backspace (11)
read (ll,'(a80)') ju80
write (13,'(a80)') ju80

noma t = 0
nomat2 = 0
do 53 i=1,5

do 54 i=1,20

if (nomat.eq.l.or.nomat2-eq.0) then

51 read (11,'(20al)') (m(i),i=1,20)

53 if (m(i).ne.' ' 1 nomat=l

54 if (m(i) .ne. ') nomat2=l

backspace (11)
goto 40

backspace (11)
read (11, ' (a80) ') ju80
write (13,'(a80)') ju80
goto 51

else

endi f
50 close(l2)

close (11)
C

c... Create output files and label them. "mbllt.out' does not depend on
the

116

c... material, the others do. mbl3t.out contains only beginning of step
C

if (frimp.lt.0.) frimp = abs(frimp)

open (14,file='mbllt.out',status='unknown')
write (14, ' (a72) ') title
write (14,961) pow,days,nouter,ninner,npre,frimp
write (14,'(a33)') 'Monteburns MCNP k-eff Versus Time'

write (14, ' (a34,a28) ') ' days k-eff re1 err',

close (14)
& nu avQf is eta I

C

open (14,file='mbl3t.out',status='unknown')
write (14,'(/,a42)') 'Monteburns MCNP k-eff at Beginning of Step'

write (14, ' (a34,a6) ') I days k-ef f re1 err',

close (14)

c... Create file names

1 & nu I

C

C

C

do 70 j=l,nmat
if (j.lt.10) then
filelt = ' m b l t - ' / / c h a r (j + 4 8) / / ' . o u t '

file2t = 'mb2t-'//char(j+48)//'.out1
file3t = 'mb3t_'//char(j+48)//'.outt
file4a = 'mb4a- ' / / cha r (j+48) / / ' . ou t1

file4b = 'mb4b-'//char(j+48)//'.out1
file5t = 'mb5t-'//char(j+48)//'.out1
file5x = 'mb5tx-'//char(j+48)//'.out1
file7t = 'mb7t_'//char(j+48)//'.outt
file8t = 'mb8t-'//char(j+48)//'.out'
fill2t = 'mbl2t-'//char(j+48)//'.out1
fill2a = 'mb12a_'//char(j+48)//'.out'

jl = j/lO
j2 = j - jl*10
filelt = 'mblt~'//char(jl+48)//char(j2+48)//'.outs
file2t = 'mb2t-'//char(j1+48)//char(j2+48)//'.out8
file3t = 'mb3t-'//char(j1+48)//char(j2+48)//'.out1
file4a = 'mb4a-'//char(j1+48)//char(j2+48)//'.outP
file4b = 'mb4b-'//char(jl+48) //char(j2+48)//' .out'
file5t = 'mb5t-'//char(jl+48)//char(j2+48)//'.out'
file5x = 'mb5tx-'//char(j1+48)//char(j2+48)//'.out1
file7t = 'mb7t-'//char(j1+48)//char(j2+48)//'.outa
file8t = 'mb8t-'//char(jl+48)//char(j2+48)//'.outi
fillat = 'mbl2t-'//char(jl+48)//char(j2+48)//'.out'
fill2a = 'mb12a-1//char(j1+48)//char(j2+48)//1.0utt

elseif (j .ge.lO) then

endi f

open (14,file='mbl',status='unknom1)
write (14,' (/,a291 ' 1 'Monteburns Transport History
close (14)

117

open (14,file=filelt,status='unknown')
write (14,'(/,a29,a12,i3,1lx,a14,32x,a20)')

& 'Monteburns Transport History I ,

& 'for material',j, 'total material', 'for actinide I

write (14,'(a31,a51,a50,al7)') ' Qf is Flux SigmaF ' ,
& i Power Burnup n, gamma n, fission fis/cap' ,

& I n2n eta n,gamma n, fission fis/cap',
& ' n2n eta '
close (14)
open (14,file='mb2',status='unknown')
write (14,' (/,a41)') 'Monteburns 1-group n , g m a Cross Sections'

close (14)
open (14,file=file2t,status='unknown')
write (14,'(/,a33,a2l,i3)')

& 'Monteburns 1-group n,gamma Cross I ,

& 'Sections for material',j
write (14, I (3x,a9,30(lx,a9)) ') (niso(i,j) ,i=l,nauto(j))
close (14)
open (14,file='mb3',status='unknown')
write (14,'(/,a41)') 'Monteburns 1-group Fission Cross Sections'
close (14)
open (14,file=file3t,status='unknown')
write (14, ' (/,a33,a21,i3) ')

& 'Monteburns 1-group Fission Cross ' ,
& 'Sections for rnaterial',j
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j))

close (14)
open (14,fi1e='mb4a',status='unknown1)
write (14, I (/,a72) ' 1 title
write (14,961) pow,days,nouter,ninner,npre,frimp
write (14,'(a43)') 'Monteburns Spectrum for Each Predictor Step'
close (14)
open (14,file=file4a,status='unknom')
write (14, ' (/,a30,a27,53) ')

& 'Monteburns Spectrum for Each I ,

& 'Predictor Step for material',j

& ' <.lev <lev <100eV <100keV
write (14, ' (a631 '

close (14)
open (14,file='mb4b',status='unknown')
write (14,'(/,a29)') 'Monteburns Grams at Midpoint'

close (14)
open (14,file=file4b,status='unknown')
write (14, '(/,a29,a13,i3) ' 1

& 'Monteburns Grams at Midpoint',
& ' for material',j
write (14,'(a40)') '1st row is actual, 2nd row was predicted'
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)), 'actinide'
close (14)
open (14,file='mb5',status='unknown')
write (14, I (/,a44) ')

<1MeV

I

118

& 'Monteburns Grams of Material at End of Steps'
close (14)
open (14,file='mbl2',status='unknown')

write (14, ' (/ ,a501 ')

close (14)
open (14,file=file5t,status='unknown')
write (14, (/,a44,a13,:3) I)

& 'Monteburns Grams of Material at Beginning of Steps'

& 'Monteburns Grams of Material at End of Steps',
& ' for material',j
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide'
close (14)
open (14,file=fill2t,status='unknown')
write (14, '(/,a47,a13,i3)')

& 'Monteburns Grams of Material at Begin. of Steps',
& ' for material',j
write (14,' (3x,a9,30(lx,a9))') (niso(i,j) ,i=l,nauto(j)) , 'actinide'
close (14)
open (14,file=file5x,status='unknown')
write (14, I (/,a44,a13,i3) ')

& 'Monteburns Grams of Material at End of Steps',
& ' for material',j
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide'
close (14)
open (14 , f i le=f i l l2a , s ta tus= 'unknown')

write (14,' (/,a47,a13,i3)')
& 'Monteburns Grams of Material at Begin-of Steps',
& ' for material',j
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide'
close (14)
open (14,file='mb7',status='unknown')
write (14,'(/,a35,a28,i3)') 'Fractional Importance of Radionuclid'

close (14)
open (14,file=file7t,status='unknown1)
write (14, ' (/,a60, /,a20, i3) ')

& ,'es Sent From ORIGEN2 to MCNP'

& 'Fractional Importance of Radionuclides Sent From ORIGEN2 to ' ,
& ' MCNP for material',j

& ' isotope grams mass fra atom fra capture fission'
write (14,'(/,a5,a62)') 'step#',

close (14)
open (14,file='mb8t,status=tunkno~1)
write (14,'(/,a35,a12,i3)') 'Monteburns Fission-to-Capture Ratio'
close (14)
open (14,file=file8t,status='unknown')
write (14,'(/,a35,a13,i3)')

& 'Monteburns Fission-to-Capture Ratio',
& ' for material',j
write (14,'(3x,a9,3O(lx,a9))') (niso(i,j),i=l,nauto(j))
close (14)

961 format (/'Total Power (MW) =',lpe10.2,' Days =',lpe10.2,/

119

& ' # outer steps =',i2,', # inner steps =',i3,
& I , # predictor steps =',i2,/
& 'Importance Fraction = ',Opf6.4/)

70 continue

return
end

C

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...WTALLY2 writes the tally cards to tal2.inp which is appended
c. ..to mcnp input file, and creates new mbmc file that does not
c...include tallied materials (run only once at beginning of monteburns)

C

C

subroutine wtal2
character ju6*6,tce11(999,49)*6,ncel1*6,file6t*12,file2*12
comon /mbinp/nmat,mt(49),voli(49),pow~~235,days,nouter,ni~er,

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,o~ib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
dimension vo1(49),ntc(49)

C

c...Determine cells to tally
C

40

C

50

55

C

read (5, ' (a6) ' 1 ju6
if (ju6.ne.'lce1lst) goto 40

read (5, I (/ / / I ')
read (5, (i6, a6, i5, lx, lp3e12.5 ') n, ncell, nmt , aden, gden, voll
do 55 j=l,nmat
if (nmt.eq.abs(mt(j))) then
ntc (j) =ntc (j) +l
tcell (ntc (j) , j) =ncell
vol (j) =vol (j +voll

end if
continue
if (n.ne.0) goto 50

c...Write tally2 file

do 100 j=l,nmat
if (j .lt.10) then

C

file2 = 'ta12-'//char(j+48)//'.inp8
file6t = 'mb6t-'//char(j+48)//'.out'

jl = j/lO
j2 = j - jl*10
file2 = 'ta12_'//char(j1+48)//char(j2+48)//'.inp1
file6t = 'mb6t-'//char(j1+48)//char(j2+48)//'.out1

elseif (j .ge.lO) then

endi f

120

if (voli (j) .ne. 0.) vol (j) =voli (j)
if (vol(j) .eq.O) then
write (6,") I * * * * * MB ERROR: No tally volume'
stop

end if
open (ll,file=file2,status='unknown')

C

c...Write energy tallies (tally numbers range from 14 to 494)
c... (1 to 49 represents material number)
C

write (11,911) (lo+ j)

do 80 i=l,ntc(j)
911 format ('ct/'f',i2,'4:n (I)

80 write (11,912) tcell(i,j)
912 format (7x,a6, I)

write (11,913)
913 format (14x,')')

write (11,915) (lO+j),(lO+j),vol(j),(lO+j)
915 format ('fc',i2,'4 MonteBurns Energy Spectrum Tallies'/

& 'sd',i2, '4 ',lpe12.5/
& 'e',i2,'4 1.0e-7 1.0e-6 1.0e-4 1.0e-1 1.0 20.0')

C

c...Write header for xs tallies
C

write (11,911) (5 0 + j)

do 90 i=l,ntc(j)
90 write (11,922) tcell(i,j)
922 format (7x,a6,' ')

write (11,923)
923 format (14x,')')

write (11,924) (5 0 + j) , (50+j),vol(j), (50+j)
924 format ('fc',i2,'4 MonteBurns Cross Section Tallies'/

& 'sd',i2,'4 ',lpe12.5/'fm',i2,'4 (1)')
C

C

open (14,file='mb6',status='unknown1)
write (14,'(/,a24)') 'Monteburns Flux Spectrum'
close (14)
open (14,file=file6t,status='unknown')
write (14,' (/,a25,a12,i3)') 'Monteburns Flux Spectrum I ,

write (14, ' (a63) I)

& 'for material',j

& '

close (14

close (11
100 continue

return
end

<lev

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12
C

121

c...WTALLY writes the tally cards to tall.inp and tal3.inp which
c...are appended to mcnp input file
C

subroutine wtally
common /mbinp/nmat, mt (49) , voli (49) ,pow, ~ 2 3 5 , days, nouter, ninner,

L npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr (999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character filel*12,file3*12

C

c...Write tally files 1 and 3
C

ii = 100
ij = 900
do 100 j=l,nmat
iflag = 0
if (j .lt.lO) then
filel = 'tall-'//char(j+48)//'.inpt
file3 = 'ta13-'//char(j+48)//'.inp'

jl = j/lO
j2 = j - jl*10
filel = 'tall-'//char(jl+48)//char(j2+48)//'.inp'
file3 = 'ta13-'//char(j1+48) //char(j2+48) //'.inp'

elseif (j.ge.10) then

endi f
open (ll,file=filel,status='unknown')
open (12,file=file3,status='unknown')
do 90 i=l,ntot(j)
ii=ii+l

write (11,901) ii,niso(i,j)
901 format ('mt,i3,4x,a10,' 1.0')

C

c Equate (n,t) reaction to (n,alpha) for Lithium-6
c All others are true (n,alpha) cross sections
C

if (nisn(i,j).eq.3006) then
ii
.It. 89000) then
ii
.ge.89000) then

write (12,920)
elseif (nisn(i, j
write (12,921)

elseif (nisn(i,j
iflag = 1
write (12,922)

endi f
90 continue

ij = ij + 1

ii

if (iflag.eq.1) write (12,923) ij
write (12,923) abs(mt(j))
close (11)

100 continue
C

122

C

-2 is the total capture cross section
16 is (n,2n) cross section
105 is (n,t) cross section
107 is (n,alpha) cross section
103 is (n,p) cross section (for activation products)
17 is (n,3n) cross section
-6 is the total fission cross section (for actinides)
452 is nu bar - only used for verification purposes

920 format (8x,'(1 ',i3,' (102) (16) (105) (103))')
921 format (8x, ' (1 ',i3, ' (102) (16) (107) (103)) ' 1
922 format (8x,'(1 ',i3,' (102) (16) (17) (-6))')

923 format (8x,'(1 ',i3,' (-2) (16) (452) (- 6)) ')

return
end

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...WORCOMP writes composition input file for origen fort.7, which is
c...read by origen as fort.4. Units are g-atoms (grams / atomic mass)
c...(one time execute at beginning of monteburns)

C

C

C

subroutine worcom

dimension nuc(99,49),f
dimension ij(491,nelem

& nisot(999,49,20),naix
& aix(999,49,20)
character ju6*6,ju10*10,met*1,ninat*lO,fname*l2,fnat*12,

common /mbinp/nmat,mt(49),voli(49~,pow,qu235,days,nouter,ninner,
& fmcnp*12, nmcnp*20

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l

C

10 read (5,'(32x,a10)') jul0
if (julO.ne.'mass fract') goto 10

C

c...Read mass fractions f o r material
C

ifd = 0

read (5 , *)

20 read (5 , '(i6,5~,4(6x,i5,2x,lpeIl.5))')
& mtn, (nc(i),fn(i),i=1,4)
ii = 0
im = 0

do 25 j=l,nmat
if (mtn.eq.abs(mt(j))) then
do 22 i=1,4

123

nuc(i,j) = nc(i)

nmt = j

im = 1
ifd = ifd + 1

22 f(i,j) = fn(i)

endi f
25 continue

if (im.eq.0) goto 20
C

30 ii=ii+4
read (5,'(a6)') ju6
if (ju6.eq. 'lcells') then

ii~ii-4

ij(nmt) = ii
goto 42

backspace (5)
else

endi f
read (5, ' (i6,5~,4(6x,i5,2x,lpell.5)) ')

if (mtn.gt.O.and.mtn.ne.abs(mt(nmt))) ii=ii-4
if (mtn.eq.O.and.nuc(4+ii,mt).ne.O) goto 3 0

ij(nmt) = ii
if (i fd. ne. nmat) then

& mtn, (nuc(i,nmt) ,f (i,nmt) ,i=l+ii,4+ii)

backspace(5)
goto 20
endi f

C

c...Determine gram density and volume of cells (for now just 1)
C

40

C

42
50

51

C

read (5, ' (/ / / I ')

read (5, (2i6, i5, lx, lp3e12.5) ') n, ncell, nmt, aden, gdenl, voll
do 51 j=l,nmat
if (nmt . eq. abs (mt (j)) then
vol (j =vo1(j +voll
gden (j) =gdenl

end if
continue
if (n.ne.0) goto 50

c...Make sure isos have been read correctly, erase spurios readings
C

do 80 j=l,nmat
do 52 i=l,4+ij(j)
nogo= 0
if (nuc(i,j).lt.1000) nogo=l
if (nogo.eq.1) nuc(i,j)=O

52 continue

124

C

c...Write grams of material to fort.7 (origen comp file) or mnat.tmp
c...if a natural is0 appears in mcnp input file
C

if (voli(j).ne.O.) vol(j)=voli(j)
voli(j) = vol(j)
call wmbinp

C

if (j.lt.10) then
fnat = 'mnat-'//char(j+48)//'.tmpr
fname = 'fort_'//char(j+48)//'.7'

jl = j/lO
j2 = j - jl*10
fnat = 'mnat-'//char(jl+48)//char(j2+48)//'.tmp'
fname = 'fort-'//char(jl+48)//char(j2+48)//'.7'

elseif (j .ge.lO) then

endi f
open (ll,file=fname,status='unknown')
open (12,file=fnat,status='unknown')
do 58 i=1,4+ij(j)
iflag(i,j) = 0

if (nuc(i,j)-1000*(nuc(i,j)/lOOO)~eq.O.and~nuc(i,j).gt.O) then

54

56
&

53

55

57
&

open (16,file='natelem',status='unknown')
read (16,*)
read (16,*)
read (16,*) nelem(i,j)
read (16,*) nisop(i,j)
do 56 n=l,nisop(i, j)
read (16,'(i5,3x,f10.5)',err=56,end=53)

nisot(i, j,n),atomfr(i, j,n)
if (nelem(i,j).eq.nuc(i,j)/lOOO) then
iflag(i,j) = 1
goto 53

goto 54

else

endi f
close (16)
open (13,file='mbxs.inp',status='unknown')
ifd=0
read (13, * , end=57) nixs
if (nixs.eq.nuc(i,j)) ifd=l
if (ifd.eq.0) goto 55
backspace (13)
read (13, (a10) ') ninat
write (12, (i2,4x,a10) ' 1 nelem(i, j) ,ninat
if (ifd.eq.0) write (6,*)
I * * * * * MB WARNING: Natural is0 xs not found ',nuc(i,j)
close (13)

elseif (nuc(i, j) .ne.O) then
if (j - It. 10) then
fmcnp = 'mcnp_'//char(j+48)//'.inpt

125

elseif (j.ge.10) then
jl = j/lO
j2 = j - jl*lO
fmcnp = 'mcnp-'//char(jl+48)//char(j2+48)//'.inp'

endi f
open (17,file=fmcnp,status='unknown')
open (l3,file='mbxs.inp',status='unknown1)
ifd=O

if (nixs.eq.nuc(i,j)) ifd=l
if (ifd.eq.0) goto 66
backspace (13)
read (13, ' (a10) ') nmcnp
write (17, ' (a5,2x,a10) ' 1 nmcnp(1:5) ,nmcnp

66 read (13,*,end=67) nixs

67 if (ifd.eq.0) write (6,*)
& I * * * * * MB WARNING: Is0 xs not found ',nuc(i,j)
close (13)
end if

58 continue
close (12)
close (17)

C

c...Write non-actinides to fort.7, sort numerically for xs file read
C

do 65 k=1,4+ij(j)
nmin=9 9 9 9 9
ni=O
do 60 i=l,4+ij(j)
a=float(nuc(i,j))-float(lOOO*(nuc(i,j) /1000))
if (nuc(i,j).lt.8300O.and.nuc(i,j).gt.l000) then
if (nuc(i, j) .lt.nmin) then
nmin=nuc (i , j)
if (iflag(i,j).ne.l) then

else
ai=a

do 59 n=l,nisop(i, j)
naix(i,j,n)=nisot(i,j,n) - 1000*(nisot(i,j,n)/lOOO)

59 aix(i,j,n) = float(nisot(i,j,n))
& - float(1000*(nisot(i,j,n)/lOOO))

endi f
ni=i

end if
end if

60 continue
if (ni. gt .O) then
kxs=l
met= ' 0
if (iflag(ni, j) .eq.l) then
do 62 n=l, nisop (ni , j 1
gmat(ni,j,n) = f(ni,j)*gden(j)*vol(j)/aix(ni,j,n)
gmat(ni, j,n) = gmat(ni, j,n)*atomfr(ni, j,n)

126

C

c..
C

if (naix(ni, j,n) .lt.10) then

elseif (naix(ni, j,n) .lt.100) then

else

endi f

write (11,912) kxs, nelem(ni, j) , naix (ni, j , n) ,met, gmat (ni, j , n)

write (11,913) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n)

write (11,914) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n)

62 continue
else
gma=f(ni,j)*gden(j)*vol(j)/ai
write (11,911) kxs,nuc(ni,j) ,met,gma

endi f
nuc (ni, j) = O

end if
65 continue

.Write actinides to fort.7, sort numerically for xs file read

do 75 k=1,4+ij (j)
nmin=99 99 9
ni=O
do 70 i=l,4+ij(j)
a=float(nuc(i,j))-float(lOOO*(nuc(i,j)/lOOO))
if (nuc(i , j) .ge .83000.and .a .g t .O-) then
if (nuc(i, j) .lt.nmin) then
nmin=nuc (i , j)
if (iflag(i,j).ne.l) then

else
ai=a

do 69 n=l , nisop (i, j 1

naix(i,j,n)=nisot(i,j,n) - 1000*(nisot(i,j,n)/lOOO)
69 aix(i,j,n) = float(nisot(i,j,n))

& - float (1000* (nisot (i, j ,n) /1000))
endi f
ni=i

end if
end if

70 continue
if (ni.gt.0) then
kxs=2
met= ' 0
if (nuc(ni,j).eq.95242) met='l'
if (iflag(ni,j).eq.l) then
do 72 n=l,nisop(ni,j)
gmat(ni,j,n) = f(ni,j)*gden(j)*vol(j)/aix(ni,j,n)
gmat(ni, j,n) = gmat(ni, j,n)*atomfr(ni, j,n)
if (naix(ni, j,n) .lt.lO) then

elseif (naix(ni,j,n).lt.lOO) then

else

write (11,912) kxs,nelem(ni,j) ,naix(ni,j,n) ,met,gmat(ni,j,n)

write (11,913) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n)

127

72

write (11,914) kxs,nelem(ni,j),naix(ni,j,n),met,gmat(ni,j,n)

endi f

continue

gma=f (ni, j) *gden(j) *vo1 (j) /ai
write (11,911) kxs,nuc(ni,j),met,gma

else

endi f
nuc (ni, j) = O

end if
75 continue

write (ll,'(a12)') '0 0 0 0'

close (11)
911 format (i4,i6,al,lpe12.4,

912 format (i4,i3, '00',il,al,lpe12.4,

913 format (i4,i3,'0',i2,al,lpe12.4,

914 format (i4,i3,i3,al,lpe12.4,

& ' 0 0.0000E+00 0 O.OOOOE+OO

& ' 0 0.0000E+00 0 0.0000E+00

& ' 0 0.0000E+OO 0 O.OOOOE+OO

& ' 0 0.0000E+00 0 0.0000E+OO
80 continue

return
end

C

0 O.OOOOE+OO')

0 O.OOOOE+OO')

0 O.OOOOE+OO')

0 O.OOOOE+OO')

C

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...WORINP writes the origen input files.
c...put GTO 9 card 1/2 way for predictor step.
c. ..Do not write over restart files

C

C

subroutine worinp
C

C

common /mbinp/nmat,mt(49),voli(49),p0~,~235,days,nouter,ni~er,
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*~
character libnam*80,xslib*6,lib(99)*lO,decayl*80
character ju3*3,fname*22,flname*22,file9t*12,dec80*80
integer end,olibn
dimension day(99),nfeed(99,49),gfl(99,49),gf2(99,49),mfeed(lO),

& kfeed(10),kfeed1(10,3O~,kfeed2(10,30),tmst~99~,
& ifeed(10,30),ffeed(lO,3O),tfeed(999,49),ttfeed(999,49),
& nf1(99,49),rf(99,49),pfra(99),lb(99,4),nt(49)

itwo=2
if (olib(2:2).eq.' ') olibn=ichar(olib(l:l))-48
if (olib(2:2).ne.' ') olibn=(ichar(olib(l:1))-48)*10+

& ichar(olib(2:2))-48
C

128

c...Add cross section values to existing fort.9 file, which previously
only
c...contained the origen2 decay library.
C

open (15,file='fort.9.0',status='unknown')

xsl ib (1 : 4) = orig '
xslib(5:6) = olib(l:2)
do 2 i=72,1,-1
if (locale(i:i).eq.' ') end=i-1

decay1 = locale(l:end)//'/orig21'
open (12,file=decayl,status='old')

write (15,'(a80)') dec80
goto 3

open (18,file=libnam,status='old')

write (15,'(a80)') dec80
goto 5

6 close(l2)
close (15)
close (16)

2 continue

3 read (12, ' (a80) ' , end=4) dec80

4 libnam=locale(l:end)//'/'//xslib

5 read (18, ' (a80) ' ,end=6) dec80

C

c...Create data file from scratch ; First read feed rate data file
C

if(days.eq.0.0) then
nfd = 1
open (ll,file='feed',status='old')

c...First read the two lines of headings
C

C

read (ll,*)
read (ll,*)
do 8 i=l,nouter
do 7 j=l,nmat
if (j.eq-1) then
read (ll,*) tmst(i) ,day(i),

& pfra(i),nmt(l),nfeed~i,l~,gfl~i,l~,gf2~i,l~,nfl~i,l~,rf~i,l~
elseif (j.ge.2) then

read (ll,*) nmt(j),
& nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j)

endi f
ndisc = 0

if (gfl(i,j).eq.-2.) ndisc = 1

if (j.lt.10) then
if (i.lt.10) then

elseif (i.ge.10) then
flname = './tmpfile/param-'//char(j+48)//'.'//char(i+48)

il = i/10
i2 = i - il*10

129

flname = './tmpfile/param-'//char(j+48)//'.'

& //char(i1+48) //char(i2+48)
endi f

jl = j/lO
j2 = j - jl*10
if (i.lt.10) then

elseif (j . ge. 10) then

flname = './tmpfile/param_'//char(jl+48)//char(j2+48)//'.'
& //char (i+48)
elseif (i.ge.10) then
il = i/10
i2 = i - il*10
flname = './tmpfile/param_'//char(jl+48)//char(j2+48)//'.'

& / / c h a r (i l + 4 8) / / c h a r (i 2 + 4 8)

endi f
endi f
open (16,file=flname,status='unknown')
write (16,910) ndisc

910 format (i4,' ndisc')
close (16)

7 if (i.gt.l.and.gfl(i,j)-eq.-l.) gfl(i,j)=gf2(i-l,j)
8 days=days+day(i)
read (11, (i4) ') nfs
do 9 n=l,nfs
read (11, ' (i4) ') mfeed(n)
do 9 m=l,mfeed(n)

read (11, ' (i4) ' 1 nrs
do 10 n=l,nrs
read (ll,'(i4)') kfeed(n)
do 10 k=l, kfeed(n)

9 read (11, (i5, f9.7) ') ifeed(n,m), ffeed(n,m)

10 read (11, (i4,i4) I) kfeedl(n,k),kfeed2(n,k)
C

c...Rewrite mb.inp with new days (later add feed data to output)
C

call wmbinp
else
do 42 i=l,nouter

42 day(i) = days/float (nouter)
endi f

45 continue
close (11)

C

c...Write flag to file that indicates whether a feed file
c...exists or not
C

open (17,file='./tmpfile/params2',status='unknomi)
write (17,950) nfd

950 format (i4,' nfd')
close (17)

C

I30

c...Write origen input file for each step and write feed data to mb9.out
C

do 100 j=l,nmat
if (j.lt.10) then

elseif (j .ge. 10) then
file9t = 'mb9t_'//char(j+48)//'.outJ

jl = j/lO
j2 = j - jl*10
file9t = 'mb9t-'//char(jl+48)//char(j2+48)//'.out'

endi f
open (14,file='mb9',status='unknown')
write (14,'(/,a21)') 'Monteburns Inventory '

close (14)
open (14,file=file9t,status='unknown')
write (14, ' (/,a33,a13,i3) ' 1

& 'Monteburns Grams of Feed per Step',
& ' for material',j

& 'mat #','days', (niso(i,j),i=l,nauto(j)), 'actinide'
write (14, ' (a5,2x, a4,5x, a9,30 (lx, a91) ')

do 48 i=l,nouter
zero= 0.0

&

&

c...If restart read flux from o ld mbori and put in new mbori
C

if (i.eq.nrst+l.and.nrst.gt.O) then
if (j.lt-10) then
if (i.lt.10) then

elseif (i.ge.10) then
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)

il = i/10
i2 = i - il*lO
fname='./tmpfile/mbori-'//char(j+48)//'.'

& //char(il+48)//char(i2+48)
end if

jl = j/lO
j2 = j - jl*10
if (i. It. 10) then

elseif (j - ge. 10) then

fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'~'
//char(i+48)

elseif (i.ge.10) then
il = i/10
i2 = i - il*10
fname='./tmpfile/mbori-'//char(jl+48)//char(j2+48)//'.'

//char(il+48)//char(i2+48)
endi f
endi f
open (ll,file=fname,status='unknown')

if (ju3.ne.'1RF1) goto 12
backspace (11)

12 read (11, ' (a3) I , end=14) ju3

I 3 1

read (11,900) zero
14 close (11)
900 format (19x,lpe13.5)

end if
C

13 n=nfeed(i, j)
dstep=day(i)/float(ninner)
do 15 m=l,nauto(j)+l

15 tfeed(m,j)=O.
C

if (3 .lt.10) then
if (i-lt.10) then

elseif (i.ge.10) then
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)

il = i/10
i2 = i - il*lO
fname='./tmpfile/rnbori-'//char(j+48)//'.'

& //char(il+48)//char(i2+48)
end if

jl = j/lO
j2 = j - jl*10
if (i . It - 10) then

& //char(i+48)

elseif (j .ge.lO) then

fname='./trnpfile/mbori-'//char(jl+48) //char(j2+48)//'.'

elseif (i .ge -10) then
il = i/10
i2 = i - il*lO
fname='./tmpfile/mbori_'//char(jl+48)//~har(j2+48)//~.'

& //char(il+48)//char(i2+48)
endi f
endi f
open (13,file=fname,status='unknown')

C

c...Write group info to new file, then write initial commands.
C

data (lb(22,ii) ,ii=l,3) ,lib(22) /204,205,206, 'PWRU'/
data
data
data
data
data
data
data
data

lb(23,ii),ii=1,3),lib(23)
lb(24,ii) ,ii=l,3) ,lib(24)
lb(25, ii) , ii=l, 3),lib(25)
lb(26, ii) , ii=l, 3), lib(26)
lb(27,ii),ii=1,3),lib(27)
lb(28, ii) , ii=l, 3),lib(28)
lb(29,ii) ,ii=l,3) ,lib(29)
lb(30,ii),ii=1,3),lib(30)

data (lb(31,ii),ii=1,3),1ib(31) /254,255,256,'BWRPUUf/
data (lb(32,ii) ,ii=l,3) ,lib(32) /257,258,259, 'BWRPUPU'/
data (lb(33,ii),ii=1,3),1ib(33) /201,202,203,'THERMAL1/
data (lb(34,ii),ii=1,3),1ib(34) /401,402,403,'CANDUNAU'/
data (lb(35,ii) ,ii=l,3) ,lib(35) /404,405,406, 'CANDUSEU'/
data (lb(36,ii),ii=1,3),1ib(36) /311,312,313,'AMOPUUUC'/

132

data (lb(37,ii),ii=1,3),1ib(37)
data (lb(38,ii) ,ii=l,3) ,lib(38)
data (lb(39,ii),ii=1,3),1ib(39)
data (lb(40, ii) , ii=l, 3) , lib(40)
data (lb(4l,ii),ii=1,3),lib(41)
data (lb(42,ii) ,ii=l,3) ,lib(42)
data (lb(43,ii),ii=1,3),1ib(43)
data (lb(44, ii) , ii=l, 3),lib(44)
data (lb(45,ii),ii=1,3),1ib(45)
data (lb(46,ii),ii=1,3),1ib(46)
data (lb(47,ii),ii=1,3),1ib(47)
data (lb(48,ii),ii=1,3),1ib(48)
data (lb(49,ii) ,ii=l,3) ,lib(49)
data (lb(5O,ii),ii=l,3) ,lib(50)
data (lb(51,ii) ,ii=l,3) ,lib(51)
data (lb(52, ii), ii=l, 3), lib(52)
data (lb(53,ii),ii=1,3),1ib(53)
data (lb(54,ii),ii=1,3),1ib(54)
data (lb(55, ii) , ii=l, 3) , lib(55)
data (lb(56,ii),ii=1,3),1ib(56)
data (lb(57,ii),ii=1,3),1ib(57)
data (lb(58,ii),ii=1,3),1ib(58)
data (lb(59, ii) , ii=l, 3), lib(59)
data (lb(60,ii) ,ii=l,3) ,lib(60)
data (lb(65,ii),ii=1,3),1ib(65)
data (lb(66,ii),ii=l,3),1ib(66)

/ 3 1 4 , 3 1 5 , 3 1 6 , ' A M O P U U U A ' /

/317,318,319,'AMOPUUR'/
/301,302,303,'EMOPUUUC'/
/304,305,3O6,'EMOPWUA'/
/307,308,309,'EMOPUUUR'/
/321,322,323,'AMORUUUC'/
/324,325,326,'AMORUUUA1/
/327,328,329,'AMORUUR1/
/331,332,333,'AMOPUUTC1/
/334,335,336,'AMOPUUTA'/
/337,338,339,'AM0PUUTR1/
/341,342,343,'AMOPTTTC'/
/344,345,346,'AMOPTTTA1/
/347,348,349,'AMOPTTTR1/
/361,362,363, 'AMOITTTC'/
/364,365,366, 'AMOITTTA'/
/367,368,369,'AMOITTTR1/
/371,372,373,'AM02TTTCt/
/374,375,376,'AM02TTTA'/
/377,378,379,'AM02TTTR1/
/351,352,353,'AMOXTTTCt/
/354,355,356,'AMOXTTTA1/
/357,358,359,'AMOXTTTR'/
/381,382.383,'FFTFC1/
/381,382.383,'ADV3'/
/204,205,206,'PWRSPEC'/

C

write (13,921)
nn = abs(nfl(i,j))
if(nfl(i,j).le.O) then

write (13,921)
got0 19

endi f
do 16 m=1,9

16 write (13,918) m
do 17 m=10,14

17 write (13,922) m
write (13,920) (1.0 - rf(i,j))
write (13,921)
if(nn.gt.nrs) then
write (6,919) i

919 format (I * * * * * MB: Invalid removal group I ,

& 'entered for outer step number',i4)
stop

endi f
do 18 k=l,kfeed(nn)
do 18 m=abs(kfeedl(nn,k)),abs(kfeed2(nn,k))

18 write (13,923) m
19 write (13,921)

write (13,924)
write (13,925)

133

write (13,926) lb(olibn,l),lb(olibn,2),lb(olibn,3),lib(olibn)
write (13,927) lb(olibn,l),lb(olibn,2),lb(olibn,3)
write (13,928)
write (13,929)
write (13,930)
write (13,931)
write (13,932)
write (13,933)
write (13,934)
write (13,935)
write (13,905)
kk=2
icont=O
if (n.gt.O.and.gfl(i,j).ne.-2) icont=l
if (icont.eq.1) kk=lO

C

c... Write various loops into origen input file
C

do 22 k=l, kk
write (13,901)
if (icont.eq.1) then
write (13,911)
write (13,902) ninner/lO
dburn=dstep*float(ninner/lO)

write (13,902) ninner/2
dburn=dstep*float(ninner/2)

else

end if
write (13,903) dstep, zero
write (13,904)
write (13,905)

C

if (n.gt.0) then
do 21 m=l,mfeed(n)
nm=2
if (ifeed(n,m) .lt.89000) nm=l
ifd6=ifeed(n,m)*lO
if (ifd6.eq.952420) ifd6=ifd6+1
if (gfl(i, j) .ne.-2) then

g f s = (f l o a t (k) - . 5) / f l o a t (k k l " (g f 2 (i , j) - g f l (i , j)) + g f l (i , j)

gfeed=ffeed(n,m)*gfs*dburn

if (k.eq.1) then

else

endi f

else

gf eed= f f eed (n, m) *gf 2 (i , j) *day (i)

gfeed = 0.0

endi f
if (ifeed(n,m).ge.89000) then

endi f
tfeed(nauto(j)+l,j)=tfeed(nauto(j)+l,j)+gfeed

134

do 29 mm=l,nauto(j)
if (ifd6.eq.nisnr(mm,j)) then

endi f
tfeed(mm,j)=tfeed(mm,j)+gfeed

29 continue
C

if (icont.eq.1) write (13,913) nm,ifd6,ffeed(n,m)*gfs

if (icont.eq.1) write (13,914)
21 continue

end if
C

c... Write end of run 1/2 way through for predictor step
C

ihalf = 0
if (k.eq.5) ihalf = 1
if (k.eq.l.and.icont.eq.0) ihalf=l
if (ihalf .eq.l) then
write (13,938)
if (nfl(i,j).gt.O) write (13,936)
write (13,937)
write (13,939)
end if

C

22 continue
C

C complete end of origen input file
C

if(nfl(i,j).gt.O) write (13,936)
write (13,937)

C

25 close (13)
write (14,'(i2,lx,f8.2,3x,lpe9.2,30e10.2)')

do 46 m=l,nauto(j)+l
& i, day (i) , (tfeed (m, j) , m=l, nauto (j) +1)

46 ttfeed(m,j)=ttfeed(m,j)+tfeed(m,j)
48 continue

write (14,'(a3,f8.2,3x,lpe9.2,30e10.2)')

write (14,'(/,a41,a13,i3)'1
& 'tot',days,(ttfeed(m,j),m=l,nauto(j)+l)

& 'Monteburns Grams Produced (or Destroyed) per Step',
& ' for materia1I.j

& (niso(i,j),i=l,nauto(j)),'actinide'
write (14, '(3x,a9,30(lx,a9)) ' I

close (14)

901 format (' B U P ')

902 format ('DOL 1 ',i4)

904 format ('MOV 3 2 0 l.O'/'CON l'/'BUP')
905 format (' S T P 2')

C

903 format ('IRF ',lp2e13.5, ' 2 3 4 1')

911 format ('INP 1 0 1 -1 4 4')

135

913 format (il,i8,lpel2-4,' 0 0 . 0 ')

914 format (' 0 ')

918 format (il,t4, '1 1.0')
920 format ('15',t4,'1 ' , f 7 . 3)

921 format ('-1')
922 format (i2,t4,'1 1.0')
923 format (i2,' 15')
924 format ('TIT ORIGEN2 input file for monteburns')
925 format (' L I P 0 1 0 ')

926 format ('FDA * * * Libs ,i3, I , ',i3, I , ' ,i3, ' = ',a10)
927 format ('LIB 0 1 2 3 ',3(i3,1x),'9 3 0 3 0 ')

92 8 format (' RDA 1 Bundle of fuel',/,
& 'FDA Read initial comps into vector 1 from fort.4 in I ,

& ' gram-atoms ')
929 format (' INP 1 -2 0 -1 4 4 ')

930 format ('MOV 1 2 0 l.O',/,
& ' MOV 1 3 0 O . O ' , / ,

& ' MOV 1 4 0 0 . 0 ')

931 format ('FDA * * * I , / ,

932 format ('HED 1 INITIAL')

934 format ('OPTA 4*8 7 19*8',/,
& 'OPTL 4*8 7 19*8',/,
& ' OPTF 4*8 7 19*8')

& 'RDA Begin burn, add cards after STP 2, remove FP at',

& end of burn')
936 format ('PRO 2 3 4 -1')
937 format ('MOV 3 2 0 l.O',/,

& ' OUT 4 1 1 0 I , / ,

& ' PCH 2 2 2 ' , I ,

& ' RDA " 1 ,

& ' END ' 1

& 'RDA * * * Set output options (print in grams) ')

933 format ('CUT 5 1.0-10 -1')

935 format ('RDA * * * I I / ,

938 format ('RDA First of 1/2 way predictor cards')
939 format ('FDA Last of 1/2 way predictor cards')

100 continue
return
end

C

C

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12
C

c...Wo~Xs calculates new xs from mcnp and modifies the cross
c...sections in fort.9. Also calculates flux and modifies mbori
c...for 1/2 step
C

subroutine worxs

character ju10*10,ju80*80,ju3*3,fort7*12,ju6*6,blanks*4,mtuf*20
C

136

common /mbinp/nmat,mt~49~,voli(49~,~ow,~235,days,nouter,ni~er,
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr (999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,t~tle*72,olib*2,locale*72,posit*l
character tal*3,nm*2,file8*12,file6*12,fname*21,fname2*25
character fort9*12,f9tmp*l5,filel*l2,file2*l2,file3*l2,filelt*l2
dimension xs(999,4,49),eflx(7,49),day(99),nfeed(99,49),flx(49),

& gf1(99,49),gf2(99,49),nfl(99,49),rf(99,49),~fra(99),
& nmt(49),nisq(49),gad(49),fismac(49),tmst(99),
& qfis(~~),flux(49),flux2(49),fiscap(999),~01(49),~wr(49),
& ava1(4,49),absmac(49),frfast(49),frth(49),n2~ac(49),
& burnup(0:99,49), fluxy(49), fluxy2 (49)
real keff,nu,macfis,macabs,macn2n,kinfin(49),kinf,mtu(49)

C

c...First obtain data from feed input file
C

open (17,file='./tmpfile/params2',status='old')
read (17, ' (i4) ') nfd
if (nfd.eq.1) then
open (ll,file='feed',status='old')
read (ll,*)
read (11,*)
daynum = 0.0

do 10 i=l,nouter
do 5 j=l,nmat
if (j.eq.1) then
read (ll,*) tmst(i),day(i),pfra(il,

& nmt(l),nfeed(i,l),gfl(i,l),gf2(i,l),nfl(i,l),rf(i,l)
elseif (j .ge.2) then
read (ll,*)

& nmt(j),nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j)
endi f

5 continue
if (i.eq.nrst+l) goto 15

10 daynum = daynum + day (i)
else

do 12 i=l,nouter
day(i) = days/float(nouter)
pfra(i) = 1.0
if (i.eq.nrst+l) goto 15

12 daynum = daynum + day(i)
endi f

C

c...Read mass fraction section to get volume of each material
C

do 13 j=l,nmat
13 vol(j) = 0.0

15 close (11)
open (ll,file='mbmco',status='old')

280 read (ll,'(a6)') ju6

137

read (11, ' (/ / /) ')

do 295 j=l,nmat
if (nt .eq.abs (mt (j) then

end if

if (n.ne.0) goto 290

290 read (11,'(i6,a6,i5,1x,lp3e12.5)') n,ncell,nt,aden,gden,voll

vol (j) =vol (j) +voll

295 continue

C

c...Read keff and calculate nu

20 read (ll,'(alO)') jul0
C

if (julO.ne.' neutron c') goto 20
C

C

read (11, ' (/) I)

read (11, (31x,lpe10.4) ') src
read (11, ' (/ / / / / / / / / / / I ')
read (11,'(31x,lpe10.4,54x,lpelO.4)') fsrc,floss
read (11, ' (/ / / / /) I)

read (11, (35x, lpe10.4, Op, f7.4)) fmult,err

if (fsrc.ne.0.) then
nu=fsrc/floss
keff = (fmult-l.)/(fmult-l./nu)
relerr = (fmult*(l.+err)-l.)/(fmult*(l.+err)-l./nu)
relerr = (relerr - keff)/keff

else
30 read (ll,l(alO)') jul0

if (julo-ne. 1 _ _ _ _ _ - _ _ _ I) goto 30
read (11, I (/72x,f7.5,41x,f7.5)') keff,relerr
nu=keff*src/floss

endi f
C

c...Read energy spectrum tallies (if tallies don't exist in mbmco,
c...then tal='yes' (used in later commands)
C

if (posit .eq. 'm' then
do 68 j=l,nmat

if (julO(l:6).ne.'ltally') goto 55
tal = ' yes '

mat = 0
do 6 0 m=l,nmat
if (m.ge.10) then
ml = m/10
m2 = m - ml*lO
ml = ml + 1
nm = char(ml+48)//char(m2+48)

55 read (ll,'(alO) ',end=67) jul0

elseif (m.lt.10) then

I

138

nm = 'l'//char(m+48)
endi f

if (nm.eq.jul0(8:9)) then
mat = m
goto 61
endi f

60 continue
if (mat.eq.0) goto 55

C

61 read (11, ' (a10) I) jul0
if (jul0.ne. ener') goto 61

do 65 i=1,7

frfast(mat) = 0.

frth(mat) = (eflx(l,mat)+eflx(2,mat))/eflx(7,mat)
do 66 i=3,6

C

65 read (11, '(17x,lpe11.5) ') eflx(i,mat)

66 frfast(mat1 = frfast(mat) + eflx(i,mat)/eflx(7,mat)
C

if (mat.lt.10) then

elseif (mat.ge.10) then
file6 = 'mb6-'//char(mat+48)//'.out'

jl = mat/l0
j2 = mat - j1*10
file6 = 'mb6_'//char(j1+48)//char(j2+48)//'.out'

endi f
open (14,file=file6,status='unknom1)
write (14,'(i2,1x,6f10.2)') nrst,

& (100.*eflx(~,mat)/eflx~7,mat),i=l,6)
close (14)
goto 68

67 write (6,*) I * * * * * MB ERROR:
& ' materials were
stop

68 continue
C

c...Read tallies and calculate new

Not all user-specified MCNP',
found in MCNP output file'

cross sections
C

7 0

do 88 j=l,nmat
iflag = 0

read (11, ' (a10) ' 1 jul0
if (ju10(1:6) .ne. 'Itally') goto 70
mat = 0
do 72 m=l,nmat
if (m.ge.10) then
ml = m/10
m2 = m - ml*10
ml = ml + 5
nm = char(m1+48) //char(m2+48)

nm = '5'//char(m+48)
elseif (m.lt.10) then

139

endi f
if (nm.eq.jul0(8:9)) then
mat = m

goto 74
endi f

72 continue
if (mat.eq.0) goto 70

C

74 read (ll,'(alO)') jul0
if (ju1O.ne.l multiplie') goto 74

C

82

read (ll,'(l7x,lpell.5)') flx(mat)
if (flx(mat).eq.O) write (6,") I * * * * * MB: Tally read error'
do 80 i=l,ntot(j)
do 80 m=1,4

if (ju1O.ne.l multiplie') goto 76
read (11,'(17x,lpe11.5)') xs(i,m,j)
xs (i , m, j) =xs (i , m, j) / f lx (j
if (nisn(i,j).ge.89000) iflag = 1

if (iflag.eq.1) then

76 read (ll,'(alO)') jul0

80 continue

do 85 m=1,4
read (ll,'(alO)') jul0
if (jul0.ne. ' multiplie') goto 82
read (11, (17x,lpe11.5) ') xs(ntot(j)+l,m,j)
xs(ntot(j)+l,m,j)=xs(ntot(j)+l,m,j)/flx(j)

85 continue
endi f
do 87 m=1,4

86 read (11, ' (a101 ' 1 jul0
if (ju1O.ne.l multiplie') goto 86
read (11,'(17x,lpe11.5)') xs(ntot(j)+2,m,j)
xs(ntot(j)+2,m,j)=xs(ntot(j)+2,m,j)/flx(j~

87 continue
if (xs(ntot(j)+2,l,j) + xs(ntot(j)+2,4,j).ne.O.O) then
kinfin(j) = (nu*xs(ntot(j)+2,4,j) + 2.0*xs(ntot(j)+2,2,j))/

& (xs(ntot (j)+2,1, j) + xs(ntot (j 1 +2,4, j 1)
else

endi f
88 continue

close (11)
endi f

write (6 , *) I * * * * * MB ERROR: Cross Section Tallies Not Correct'

C

c...Modify library

totpwr = 0.0
totfis = 0.0
if (posit.eq.'m') then
do 260 j=l,nmat

C

140

mtu(j) = 0.0
write (6,*) ' . .. MB: Modifying Library for material ',j
if (j -1t.10) then
fort7 = 'fort_'//char(j+48)//'.7'
fort9 = 'fort_'//char(j+48)//'.9'
f9tmp = 'fort-'//char(j+48)//'-9.tmp'
mtuf = './tmpfile/mtu_'//char(j+48)//'.tmp'

jl = j/lO
j2 = j - jl*10
fort7 = 'fort-'//char(jl+48)//char(j2+48)//'.7'
fort9 = 'fort-'//char(jl+48)//char(j2+48)//'.9'
f9tmp = 'fort-'//char(jl+48)//char(j2+48)//'.9.tmp'
mtuf = './tmpfile/mtu_'//char(jl+48)//char(j2+48)//'.tmp'

elseif (j .ge.lO) then

endi f
open (12,file=fort9,status='old')
open (13,file=f9tmp,status='unknownt)
if (nrst.eq.0) open (17,file=mtuf,status='unknowni)

C

90 ixs=O
read (l2,913,err=97,end=99) nflag,blanks
if (nflag.gt.3.and.blanks.ne.' ') then
backspace(l2)

nxs, nnuc, xsl , xs2, xs3, xs4, xs5, xs6, xf lag
do 95 i=l,ntot(j)
if (nisnr(i,j).eq.nnuc) then

92 read (12,921, err=92)
&

ixs=l
write (13,921) nxs,nnuc,(xs(i,m,j),m=l,4),xs5,xs6,xflag
end if

95 continue

97 if (ixs.eq.0) then
end if

backspace (12)
read (12,'(a80)') ju80
write (13,'(a80)') ju80

end if
got0 90

913 format (i4,a4)
921 format (i4,i8,lp6el0.3,f7.1)

C

99 continue
close (12)
close (13)

C

c...Calculate energy per fission qfis and flux norm factor
c...need to determine contribution of each is0 to fission
C

100 qrat=l.O
if (qu235.lt.O.) call calcq(qrat,fort7,fort9)
qf is (j) =abs (~ 2 3 5) *qrat

141

C

c...Calculate the macroscopic fission cross section of the
c...isotopes from the number densities multiplied by the
c...microscopic fission cross section

c...Read fort.7 and fort.9 to get density and fis xs
C

C

open (16,file=fort7,status='old')
open (13,file=f9tmp,status='old1)
nact = 27

C

c...Calc relative fission per nuclide
C

fismac(j) = 0.
n2nmac(j) = 0.

absmac(j) = 0.
n = O

do 240 m=1,4
220 read (16,91l,err=220,end=250) kxs, (nisq(m),gad(m),m=1,4)

230

232
&

235
C

ixs=O
read (l3,913,err=235,end=239) nflag,blanks
if (nflag.gt.3.and.blanks.ne.' ') then
backspace(l3)
read (13,92l,err=232)
nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag

goto 230
else

endi f
if (nnuc.eq.nisq(rn)) ixs=l
if (ixs.eq.0) goto 230

if (voli(j).eq.O.O) voli(j) = vol(j)
aval (m, j) = gad (m) * 0.6022 /voli (j)
absmac (j = absmac (j) + aval (m, j) *xs1
n2nmac (j) = n2nmac (j) + aval (m, j) *xs2
if (kxs.eq.2) fismac(j) = fismac(j) + aval(m,j)*xs4
nisql=nisq(m)/lO
nz=nisq1/1000
a=float(nisql)-float(lOOO*(nisql/lOOO))
if (nrst.eq.0) then
if (nz.ge.90) then

endi f
endi f
n = n + l

mtu(j) = mtu(j) + gad(m)*a

C

239 if (ixs.eq.0) rewind(l3)
240 continue

goto 220
C

c...Two different fluxes must be calculated: one for the end

1 42

c...of step nrst, and one for the beginning of step (nrst+l)
c...The reason these two values are different is that the

c...power fraction for each outer loop step is different
c
250 totpwr = totpwr + (qfis(j)*flx(j)*fismac(j)*voli(j))

totfis = totfis + (flx(j)*fismac(j)*voli(j))
qave = totpwr/totfis
if (nrst.eq.0) write (17,'(1pe10.3)') mtu(j)

260 continue
C

if (nrst.eq.0) then
pfracl = pfra(1)
pfrac2 = pfra(1)

pfracl = pfra(nrst)
pfrac2 = pfra(nrst)

pfracl = pfra(nrst)
pfrac2 = pfra(nrst+l)

elseif (nrst.eq.nouter) then

else

endi f
C

c. .. Normalize the flux obtained from MCNP by using the factors "nu"
c.. . power, energy per fission, and k-eff
C

if (fsrc.eq.0.) then
fnorm = nu*l.0e+6*pow*pfracl/1.602e-l3/qave/keff
f2norm = nu*l.0e+6*pow*pfrac2/1.602e-l3/qave/keff

fnorm = src*l.0e+6*pow*pfracl/l.6O2e-l3/qave/floss
f2norm = src*l.0e+6*pow*pfrac2/1~602e-l3/qave/floss

else

endi f
C

c... Write xs data to various mb files
C

do 160 j=l,nmat
if (tal.ne.'yes') goto 120
fsabs=xs(ntot(j)+l,l,j)
fsfis=xs(ntot(j)+l,4,j)
fsn2n=xs(ntot(j)+l,2,j)
falabs=xs(ntot(j)+2,l,j)
falfis=xs(ntot(j)+2,4,j)
faln2n=xs(ntot(j)+2,2,j)

C

if (j-lt.10) then
file1 = 'mbl_'//char(j+48)//'.out'
filelt= ' m b l t - ' / / c h a r (j + 4 8) / / ' . o u t '

file2 = 'mb2_'//char(j+48)//'.out'
file3 = 'mb3-'//char(j+48)//'.out'
file8 = 'mb8_'//char(j+48)//'.out1
mtuf = *./tmpfile/mtu-'//char(j+48)//'.tmp1

elseif (j .ge.lO) then

143

jl = j/lO
j2 = j - j1*10
file1 = 'mbl-'//char(jl+48)//char(j2+48)//'.out'
filelt= 'mblt_'//char(jl+48)//char(j2+48)//'.out'
file2 = 'mb2_'//char(j1+48)//char(j2+48)//'.out1
file3 = 'mb3_'//char(j1+48)//char(j2+48) //'.out'
file8 = 'mb8-'//char(j1+48)//char(j2+48)//'.out'
mtuf = './tmpfile/mtu_'//char(j1+48)//char(j2+48)//'.tmp'

endi f
open (14,file=file2,status='unknown')
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(xs(i,l,j),i=l,nauto(j))
close (14)
open (14,file=file3,status='unknown')
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(xs(i,4,j),i=l,nauto(j))
close (14)
do 119 i=l,nauto(j)
if (xs(i,l,j).ne.O.O.and.nisn(i,j).ge.89000) then

else

endi f
119 continue

open (14,file=file8,status='unknown1)
write (14,'(i2,1x,Opf9.4,3Ofl0.4)')

close (14)

fiscap(i) = (xs(i,4, j)/xs(i,l, j))

fiscap(i) = 0.0

& nrst, (f iscap (i) , i=l, nauto (j))

C

c... Write mcnp output to mblt-out
C

120 flux(j)=fnorm*flx(j)
flux2 (j) =f2norm*flx(j)
pwr(j)=qave*flux(j)*fismac(j) *voli(j)*1.602e-13/1.Oe+6

C

c.. Calculate total accumulated burnup
C

open (14,file=filelt,status='unknown')
read (14,*)
read (14,*)
read (14,*)
do 121 i=O,nrst-1

close (14)
if (nrst.ge.1) then

121 read (14,'(43x,Opf10.3)') burnup(i,j)

open (17,file=mtuf,status='unknown')
read (17,'(1pe10.3)') mtu(j)

endi f
if (mtu(j) .ne.O.O.and.nrst.ne.O) then
burnup(nrst,j) = burnup(nrst-1,j)

E€ + pwr(j)*lOOO.O*day(nrst)/mtu(j)
else
burnup (nrst, j) = 0.0

144

endi f
write (6,900) j,flux(j),fismac(j),pwr(j),burnup(nrst,j)

C

C

if (fsfis.ne.O.O.and.fsabs.ne.O.0) then

else

endi f
if ((nu*fsfis+2.*fsn2n).ne.O.O.and.(fsabs+fsfis).ne.O.O)then

else

endi f
if (falfis.ne.O.O.and.falabs.ne.O.0) then

else

endi f
if ((nu*falfis+2.*faln2n).ne.O.O.and.(fala~sifalfis).~e.O.O)the~

fisabs = fsfis/fsabs

fisabs = 0.0

eta = (nu*fsfis+2.*fsn2n)/(fsabs+fsfis)

eta = 0.0

fisall = falfis/falabs

fisall = 0.0

aeta = (nu*falfis+2.*faln2n)/(falabs+falfis)

aeta = 0.0
else

endi f
open (14,file=filel,status='unknown')
write (14,9 02) nrs t , qf is (j) I flux (j) I f iSmaC (j) , Pwr

& burnup(nrst,j),
& falabs,falfis,fisall,faln2n,aeta,fsabs,fsfis,fis
close (14)

C

c...Modify flux in origen files
C

do 150 ii=1,2
if (ii.eq.1) then
if (j . It. 10) then
fname='mbori-'//char(j+48)
fname2='mbori_'//char(j+48)//'.tmp'

jl = j/lO
j2 = j - jl*10
fname='mbori-'//char(jl+48)//char(j2+48)

elseif (j . ge -10) then

j),

bs, fsn2n,eta

-

fname2='mbori_'//char(jl~48)//char(j2+48)//'.tmp1
endi f

i=nr s t + 1
if (j -It. 10) then

else

if (i-lt.10) then
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)
fname2='./tmpfile/~ori_'//char(ji48)//'.'//char(i+48~//'.t~~'

il = i/10
else

145

i2 = i - il*10
fname='./tmpfile/mbori_'//char(j+48)//'.'

& //char(i1+48) //char(i2+48)
fname2='./tmpfile/mbori_'//char(j+48)//'.'

& //char(il+48)//char(i2+48)//'.tmp'
end if

jl = j/lO
j2 = j - jl*10
if (i.lt-10) then

& //char(i+48)

& //char(i+48)//' .tmp'

elseif (j .ge.lO) then

fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.'

fname2='./tmpfile/mbori_'//char(jl+48)//~har(j2+48)//'~~

elseif (i.ge.10) then
il = i/10
i2 = i - i1*10
fname='./tmpfile/mbori-'//char(jl+48) //char(j2+48)//':

fname2='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.'
& //char(i1+48) //char(i2+48)

& //char (i1+48) //char (i2+48) / / ' - tmp'
end if
endi f
end if

C

open (12,file=fname,status=",err=140)
open (13,file=fname2,status='unknown')
if (mt(j) .lt.O) then
flux(j) = 0.0
flux2(j) = 0.0

endi f
C

130 read (12,'(a3)',end=140) ju3
if (j u 3 .eq. 'IRF' then
backspace(l2)
read (12,'(a6,lpe13.5)',end=140) ju6,dstep
if (ii-eq-1) then

else

endi f

backspace(l2)
read (12,'(a80)',end=140) ju80
write (13,'(a80)') ju80

write (13,992) dstep,flux(j)

write (13,992) dstep, flux2 (j)

else

end if
goto 130

140 continue
close (12)
close (13)

150 continue

146

&

&

160 continue
C

c . . . Obtain power fraction for ALL steps for flux calculations
C

if (npre.eq.0) then
if (nfd.eq.1) then
open (15,file='feed',status='old')
read (15,*)
read (15,*)
do 111 i=l,nouter
do 111 j=l,nmat
if (j .eq.l) then
read (15,*) tmst(i) ,day(i) ,pfra(i),
nmt(l),nfeed(i,l),gfl(i,lI ,gf2(i,l),nfl(itl) ,rf(i,l)

elseif (j.ge.2) then
read (15,*)
nmt(j),nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j)

endi f
c on t i nue
close (15)

do 112 i=l,nouter

111

else

112 pfra(i) = 1.0
endi f

C

c...Modify flux in origen files. For zero predictor steps, modify all
fluxes
C

do 170 j=l,nmat
do 168 i=2,nouter
if (j .It. 10) then
if (i. It. 10) then
fname='./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)
fname2='./tmpfile/mboxi-'//char(j+48)//'.'//char(i+48)//'.tmp'

il = i/10
i2 = i - il*10
fname='./tmpfile/mbori_'//char(j+48)//'.'

& //char(il+48)//char(i2+48)
fname2='./tmpfile/mbori_'//char(j+48) / / ' . I

& //char(il+48)//char(i2+48)//'.tmpt

else

end if

jl = j/lO
j2 = j - jl*lO
if (i.lt.10) then

& //char(i+48)

& //char(i+48)//'.tmp'

elseif (j.ge.10) then

fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.'

fname2='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.'

elseif (i.ge.10) then

147

il = i/10
i2 = i - il*10
fname='./tmpfile/mbori_'//char(jl+48)//char(j2+48)//'.'

fname2='./tmpfile/mbori_'//char(jl+48)//char~j2+48~//'.'
& //char(il+48)//char(i2+48)

& //char(il+48)//char(i2+48)//'.trnp1
end if
endi f

C

C

c... Normalize the flux obtained from MCNP by using the factors "nu"
c... power, energy per fission, and k-eff
C

i f (f src . eq . 0 .) then
fnrm = nu*l.0e+6*pow*pfra(i)/1.602e-l3/qave/keff
f2nrm = nu*l.Oe+6*pow*pfra(i)/1.602e-13/qave/keff

fnrm = src*l.0e+6*pow*pfra(i)/1.602e-l3/qave/€loss
f2nrm = src*l.0e+6*pow*pfra(i)/1.602e-l3/qave/floss

else

endi f
fluxy(j)=fnrm*flx(j)
fluxy2 (j) =f2nrm*flx (j)
if (mt (j) .It. 0) then
fluxy(j) = 0.0
fluxyZ(j) = 0.0

endi f
open (12,file=fname,status='old',err=l66)
open (13,fi1e=fname2,status='unknownr)

C

164 read (12,'(a3)',end=166) ju3

if (ju3.eq. ' I R F ') then
backspace(l2)
read (12,'(a6,1pe13.5)',end=166) ju6,dstep
if (ii-eq.1) then

else

endi f

backspace (12)
read (12,'(a80)',end=166) ju80
write (13,'(a80)') ju80

write (13,992) dstep,fluxy(j)

write (13,992) dstep,fluxy2(j)

else

end if
goto 164

166 continue
close (12)
close (13)

168 continue
170 continue

endi f

148

endi f

open (15,file='mbll.out',status='unknown')
if (nrst.eq.0) then

else

C

time = 0.0

if (posit.eq.'b') then

elseif (posit-eq. 'm') then

else

endi f

time = daynum - day(nrst) + 0.01

time = daynum - day(nrst)/2.0

time = daynum

endi f
C

c...Calculate k infinity and output results
C

if (posit.eq.'m') then
macfis = 0.0

macabs = 0.0
macn2n = 0.0

do 167 j=l,nmat
macn2n = macn2n + n2nmac(j)
macabs = macabs + absmac(j)

167 macfis = macfis + fismac(j)
kinf = (nu*macfis + 2.0*macn2n)/(macfis + macabs)
write (15,903) nrs t , posit , time , kef f , relerr , nu, qave , kinf

write (15,904) nrst,posit,time,keff,relerr,nu
else

endi f
close (15)
write (6,9 01) kef f , nu

900 format (' ... MB: mcnp flux for material ',i3,' = ',lpe9.2,
& ' SigmaF = ',lpe9.2,' power = ',Opf10.3
& 'MW Burnup = ',Opf10.3,' GWd/MTHM')

901 format (' ... MB: mcnp keff = ',f7.5,' nu = ',f5.3)
902 format (i2,1x,0pf10.3,lp3el0.2,0pf10.3,lp4e10.2,0pf8.3,2x,

903 format (i2,al, lx, f8.2, lx, 2f10.4, f10.3, lx, 2f10.3)
904 format (i2,al,lx,f8.2,1x,2f10-4,2f10.3)
911 format (i4,4 (lx, i6,2x, lpe10.4)

& lp4e10.2,Opf8.3)

992 format ('IRF ',lp2e13.5,' 2 3 4 1')
return
end

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12
C

c...CALCQ calculates the MeV per fission based on fission distribution
c...and qu235 (recov. MeV per U235 fission)
C

subroutine calcq(qrat,fort7,fort9)

149

C

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ni~er,
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character fort7*12,fort9*12,blanks*4
dimension nisq(4),gad(4)
dimension nisact(0:50),qract(0:50),fis(0:50)

data (nisact(i),qract(i),i=0,31) /
C

& 0,1.0,
& 90227,0.9043, 90229,0.9247,
& 90232,0.9573, 91231,0.9471,
& 91233,0.9850, 92232,0.9553,
& 92233,0.9881, 92234,0.9774,
& 92235,1.0000, 92236,0.9973,
& 92237,1.0074, 92238,1.0175,

& 94238,1.0175, 94239,1.0435,
& 94240,1.0379, 94241,1.0536,
& 94242,1.0583, 95241,1.0513,
& 95242,1.0609, 95243,1.0685,
& 96242,1.0583, 96243,1.0685,
& 96244,1.0787, 96245,1.0889,
& 96246,1.0991, 96248,1.1195,

& 99254,1.1807 /

& 93237,1.0073, 93238,1.0175,

& 96249,1.1296, 98251,1.1501,

qrat=O.
nac t = 3 1

C

c...Read fort.7 and fort.9 to get density and fis xs
C

open (12,file=fort7,status='old')
open (13,file=fort9,status='old')

C

c...Calc relative fission per nuclide
C

10

20

30

32
&

do 10 k=O,nact
fis (k) = O -
f istot=O -
read (12,91l,err=20,end=50) kxs,(nisq(j),gad(j),j=l,4)
if (kxs.eq.2) then
do 40 j=1,4
ixs=O
read (l3,913,err=35,end=39) nflag,blanks
if (nflag.gt.3.and.blanks.ne.I ') then

backspace(l3)
read (13,92l,err=32)
nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag

endi f

150

if (nnuc.eq.nisq(j)) ixs=l
35 if (ixs.eq.0) goto 30

C

nisql=nisq(j)/lO
kk= 0
do 37 k=l,nact
if (nisact(k).eq.nisql) kk=k

fis(kk)=fis(kk)+gad(j)*xs4
fistot=fistot+gad(j)*xs4

37 continue

C

39 if (ixs.eq.0) rewind(l3)
40 continue

end if
goto 20

C

50 continue
C

c...Calculate Q based on fission percentage
C

if (fistot.eq.0.) then

else
qrat = 0.

do 60 k=O,nact
qrat = qrat + fis(k)/fistot*qract(k)

60 continue
end if

C

911 format (i4,4(lx,i6,2x,lpel0.4))
913 format (i4, a4)
92 1 format (i4, i8,lp6e10 - 3, f 7.1)

return
end

C

C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...WMCINP modifies the mcnp input file with new compositions, materials
c...are added if they are deemed "important players". Data is
c...read from fort.7 in gram-atoms, and put into mass fractions.

C

C

subroutine wmcinp

common /mbinp/nmat,mt(49),voli(49),p0~,~235,days,nouter,ninner,
C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr (999,49)
common /mbinp2/niso(999,49),nisor(999,49) ,title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
dimension nisq(4),gad(4),nele(4),nisop(4),gmnat(999),~cnp(999),

integer o,b(lO),e(10)
& gden (49)

151

double precision gm(999,49)
character ninat*l0,f7name*12,f9name*l2,file7*l2,file4*l2,

& fnat*12,finp*12,fmcnp*l2,nmcnp*lO,blanks*4,
& nPufp*lO,nUfp*1O,f9err*8,line80*8O,char5*5,
& line*80

C

c...Read fort.7, and fort.9. sum total gamma and fission, and
c...then step back through and determine contributors, sum mass
c...of each contibutor.
C

do 180 j=l,nmat
gfp = 0.
iflag = 0

iflg = 0
if (j.lt.10) then
f7name = 'fort_'//char(j+48)//'.7'
f9name = 'fort-'//char(j+48)//'.9'
f9err = 'fgerr-'//char(j+48)
file4 = 'mb4-'//char(j+48)//'.out'
file7 = 'mb7-'//char(j+48)//'.out'
fnat = 'mnat_'//char(j+48)//'.tmp'
fmcnp = 'mcnp_'//char(j+48)//'.inp'
finp = 'mat_'//char(j+48)//'.inp'

jl = j/lO
j2 = j - jl*lO
f7name = 'fort-'//char(jl+48)//char(j2+48)//'.7'
f9name = 'fort-'//char(jl+48)//char(j2+48)//'.9'
f9err = 'f9err-'//char(jl+48)//char(j2+48)
file4 = 'mb4-'//char(j1+48)//char(j2+48)//'.out'
file7 = 'mb7-'//char(j1+48)//char(j2+48)//'.out'
fnat = 'mnat-'//char(j1+48)//char(j2+48)//'.tmp1
fmcnp = 'mcnp-'//char(jl+48)//char(j2+48)//'.inp'
finp = 'mat-'//char(jl+48)//char(j2+48)//'.inp'

elseif (j . ge -10) then

endi f
open (12, file=f7name,status='old')
open (13,file=f9name,status='old')
open (15,file=f9err,status='unknown')

C

c...Sum total density, gamma and fission
C

t den= 0 .
tmas=O -
tabs=O.
tfis=O.
do 15 n=1,999
gmcnp(n) = 0.

15 gmnat(n) = 0.
20 read (12,91l,err=20,end=50) kxs,(nisq(k),gad(k),k=l,4)

do 40 k=1,4
if (nisq(k).gt.O) then

152

ixs=O

if (nflag.gt.3.and.blanks.ne.' I) then
30 read (l3,913,err=35,end=39) nflag,blanks

backspace(l3)
32 read (13,92l,err=32)

& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag
else

endi f
if (nnuc.eq.nisq(k)) ixs=l

goto 30

35 if (ixs.eq.0) goto 30
39 if (ixs.eq.0) then

rewind (13)
xsl = 0.0

xs4 = 0.0
endi f

nisql=nisq(k)/lO
a=float(nisql)-float(lOOO*(nisql/lOOO))
tmas=tmas+gad(k) *a
tden=tden+gad(k)
tabs=tabs+gad(k)*xsl
if (kxs.eq.2) then

C

iflg = 1
tfis=tfis+gad(k) *xs4

endi f
C

c... Obtain composition (in grams) of all isotopes in MCNP input file
c.. . to transfer them in case they are not found "important"
C

if (kxs.eq.l.or.kxs.eq.2) then
open (17,file=fmcnp,status='unknown')
id = 0
m = O

m = m + l
36 read (17,'(i5)',err=37,end=38) numcnp

if (numcnp.eq.nisq1) then
id = 1

gmcnp(m)= a*gad(k)
endi f

37 if (id.eq.0) goto 36
38 close (17)

elseif (kxs.eq.3) then
gfp = gfp + a*gad(k)

endi f
end if

40 continue
C

c... Add up gram totals for natural isotopes
C

backspace (12)

153

46

48
47

49

50
C

911
912
913
92 1

C

read (12,912, end=49) kxs , (nele (k) , nisop (k) , gad (k) , k=l , 4)

if (kxs.eq.l.or.kxs.eq.2) then
do 47 k=l, 4
n = O
open (ll,file=fnat,status='unknown')
read (ll,'(i2,4x,alO)',err=46,end=48) nelem,ninat
n = n + l
if (nele(k).eq.nelem) then
nisql=nisq(k)/lO
a=float(nisql)-float(lOOO*(nisql/lOOO))

gmnat (n) = m a t (n) +a*gad(k)
endi f
goto 46
close (11)
continue
endi f
goto 20

continue
close (11)
close (17)
format (i4,4 (lx, i6,2x, 1pelO. 4))
format (i 4 , 4 (1 x , i 2 , i 4 , 2 x , l p e 1 0 . 4) 1
format (i4, a4)
format (i4,i8,lp6e10.3,f7.1)

c...Begin list of mcnp input isos with automatic tallies list
C

ntot (j) =nauto (j)
C

c...Now determine which iso's contribute based on frimp or are
c..already selected (auto due to input or may occur twice in table)
C

60

C

7 0

72

rewind(l2)
rewind(l3)
gmtot=o.
U235f=0.
Pu239f=0 -
open (16,file=file7,status='unknown')
write (16,*)
read (12,9ll,err=60,end=90) kxs,(nisq(k),gad(k),k=l,4)
backspace (12)
read (12,912) kxs, (nele(k),nisop(k),gad(k),k=l,4)

do 80 k=1,4
if (nisq(k) .gt.O) then
ixs=O
read (l3,913,err=75,end=79) nflag,blanks
if (nflag.gt.3.and.blanks.ne.' I) then
backspace(l3)
read (13,92l,err=72)

154

& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xflag
else

endi f
if (nnuc.eq.nisq(k)) ixs=l

goto 70

75 if (ixs.eq.0) goto 70
79 if (ixs.eq.0) then

rewind (13)
if (kxs.ne.3) then
write (15,'(a27,i6,a20)') I * * * * * MB WARNING: Isotope

& nisq(k),' not found in fort.9'

endi f
xsl = 0.0
xs4 = 0.0

endi f
C

c...Determine which isos qualify, or are automatic or repeat.
C

C

icon=O
nisql=nisq(k)/lO
a=float(nisql)-float(lOOO*(nisql/lOOO))
gmtot=gmtot+a*gad(k)
gpct=gad(k)*a/tmas
dpct=gad(k)/tden
apct=gad(k)*xsl/tabs
fpct=O.
nz = nisq1/1000
if (kxs.eq.2.and.tfis.ne.O.) then
fpct=gad(k)*xs4/tfis
if (nz. le. 92)

if (nz.gt.92)
endi f

if (gpct.gt.abs
if (dpct . gt . abs

U235f = U235f + fpct
Pu239f = Pu239f + fpct

frimp)) icon=l
frimp)) icon=l

1

if (apct.gt.abs(frimp)) icon=l
if (fpct.gt.abs(frimp)) icon=l
kk= 0
do 77 m=l,ntot(j)
if (nisnr(m,j) .eq.nisq(k)) then

kk=m
C

c... If a fission product is flagged "automatic", then don't include it
in
c.. . lump sum of FPs. Otherwise, do. (kk=O indicates it was not
"automatic")
C

if (kxs.eq.3) gfp = gfp - a*gad(k)
endi f

77 continue
C

155

c. .. Make sure natural isotopes are not deemed "important" since they
are

c... included later
C

open (ll,file=fnat,status='unknown')

if (nele(k) .eq.nelem) then

endi f
goto 78

92 close (11)

78 read (ll,'(i2,4x,alO)',err=78,end=92) nelem,ninat

icon = 0

C

c...If repeat or automatic isotope
C

if (kk.gt.0) then

gm(kk, j)=gm(kk, j 1 +a*gad(k)
if (gm(kk,j).gt.a*gad(k)) then
write (6,953) nrst , kk, nisnr (kk, j , gm (kk, j , gpct , dpct , apct , fpct
write (16,953) nrst , kk, nisnr (kk, j) , gm (kk, j) , gpct , dpct , apct , fpct
else
if (icon.eq.1) write(6,951) nrst,kk,nisnr(kk,j),gm(kk,j),gpct,

if (icon.eq.0) write(6,952) nrst,kk,nisnr(kk,j),gm(kk,j),gpct,

if (icon.eq.1) write(16,951) nrst,kk,nisnr(kk,j),gm(kk,j),gpct,

if (icon.eq.0) write(16,952) nrst,kk,nisnr(kk,j),gm(kk,j),gpct,

end if

& dpct, apct, fpct

& dpct, apct, fpct

& dpct, apct, fpct

& dpct,apct, fpct

end if
C

c... Fission products that were not previously deemed "important" will
c... be treated as a lump sum
C

if (kxs.eq.3.and.kk.eq.O.and.frimp.lt.O.O) then
else

C

c.. - If new qualifying isotope, first check if xs exists then add to
ntot
C

if (icon.eq.l.and.kk.eq.0) then

95

open (15,file='mbxs.inp',status='unknownt)
ifd=0
read (15,*,end=105) nixs
nixsl0 = nixs*lO
if (nixs.eq.95242) nixslO = nixslO + 1
if (nisq(k).eq.nixslO) ifd=l
if (ifd.eq.0) goto 95
backspace (15)
read (15,'(alO)') niso(ntot(j)+l,j)

156

C

c... Print error message if no cross section exists in MCNP for isotope
C

105 if (ifd.eq.0) then
write (6,*) I * * * * * MB WARNING: mcnp xs not found I , nisq(k)
write (16,*) I * * * * * MB WARNING: mcnp xs not found I , nisq(k)
end if
close (15)

C

c... Print isotope-specific information if xs does exist
C

if (ifd.eq.1) then
ntot (j)=ntot (j) +1
nisnr (ntot (j 1, j) =nisq(k)
nisn(ntot(j),j)=nisnr(ntot(j),j)/lO
gm(ntot(j),j)=a*gad(k)
write (6,951) nrst,ntot(j),nisnr(ntot(j),j),gm(ntot(j),j),

write (16,951) nrst,ntot(j),nisnr(ntot(j),j),gm(ntot(j),j),
& gpct, dpct, apct, fpct

& gpct, dpct, apct, fpct
end if
end if
endi f
end if

80 continue
goto 60

C

90 continue
951 format (i4,i4,ilO,lp5e10.2)
952 format (i4,i4,ilO,lp5e10.2.'automatic')
953 format (i4,i4,ilO,lp5elO.2,'repeat')

close (16)
C

c...Write grams of material
C

if (posit.eq.'m') then
open (14,file=file4,status='unknown')
write (14,' (i2,1x,lpe9.2,30e10.2) ' 1 nrst, (9m(i,j),i=l,nauto(j))
close (14)
endi f

C

close (12)
close (13)

C

c...Rewrite mb-inp
C

call wmbinp
C

c...Check if mass of

gmtot2=0.
C

isos sent back to mcnp is same as came in.

157

do 140 i=l,ntot(j)
140 gmtot2=gmtot2+gm(i,j)

C

c...Read natural is0 file and add to total mass
C

n = O
open (ll,file=fnat,status='unknown')

n = n + l
gmtot2=gmtot2+gmnat (n)
goto 142

144 continue

142 read (11, (6x,a10) ,end=144) ninat

C

c... Add isotopes in original MCNP input file
C

m = O
open (17,file=fmcnp,status='unknown')

145 read (17, ' (i5,2x,a10) ',end=148) nmc,nmcnp
m = m + l
ifg = 0
do 147 i=l,ntot(j)
if (nisn(i,j).eq.nmc) ifg = 1

147 continue
if (ifg.ne.1) then

endi f
goto 145

148 continue

gmtot2=gmtot2+gmcnp(m)

C

c... Add fission products to gram total, then separate into U-235 & Pu-
239 ones
C

if (gfp.gt.O.O.and.frimp.lt.O.0) then
gmtot2=gmtot2 + gfp

gUff = U235f*gfp
gPuff = Pu239f*gfp
endi f

C

c... Compare total of isotopes to total included in MCNP input file
c... Calculate gram density of material
C

write (6,*) 'mass not accounted for and % ',gmtot-gmtot2,

gden(j) = -gmtot2/voli(j)
& (gmtot-gmtot2) /gmtot

C

c...Modify mt card with input file mat.inp

160 open (12 , f i le=f inp ,s ta tus= 'unknown')

C

if (abs(mt(j)).lt.lO) write (12,931) abs(mt(j))
if (abs(mt(j)).ge.lO.and.abs(mt(j)).lt.lOO)

& write (12,932) abs(mt(j))

158

if (abs(rnt(j)).ge.100.and.abs(mt(j)).lt.l000)

if (abs(mt(j)).ge.1000.and.abs(mt(j)).lt~lOOOO)
& write (12,933) abs(mt(j))

& write (12,934) abs(mt(j))
931 format ('c'/'m',il)
932 format ('c'/'m1,i2)
933 format ('c'/'m',i3)
934 format ('c'/'m',i4)

C

c... Add isotopes in original MCNP input file
C

m = O
rewind (17)

m = m + l
ifg = 0
do 157 i=l,ntot(j)

155 read (17, (i5,2x,alO)',end=168) nmc,nmcnp

if (nisn(i,j).eq.nmc) ifg = 1
157 continue

if (ifg.ne.1) then
if (gmcnp(m) .eq.O.) gmcnp(m)=l.Oe-20*gmtot2
write (12,'(6x,alO,lpe13.4)') nmcnp,-gmcnp(m)/gmtot2

endi f
goto 155

c...Add natural isos
C

C

168 n = 1

152 read (ll,'(i2,4x,alO)',end=l54) nelem,ninat
rewind (11)

do 153 i=l,ntot(j)
aa=(nisn(i,j)-1000*(nisn(i,j)/lOOO))
if (aa.eq.0) then

nz=nisn(i, j) /lo00
if (nz.eq.nelem) then
ifg = 1

gm(i,j) = gm(i,j) + smnat(n)
endi f

endi f
153 continue

if (ifg.ne.1) then
if (gmnat(n).eq.O.) gmnat(n)=l.Oe-20*gmtot2
write (12,' (6x,alO,lpe13.4) ') ninat,-gmnat(n)/gmtot2
n = n + l

endi f
goto 152

1 5 4 n = n - 1
C

c. - . Add "important" isotopes

do 150 i=l,ntot(j)
C

159

158

159

if (gm(i,j).eq.O.) gm(i,j)=l.Oe-20*gmtot2
if (nisn(i,j).ne.45117.and.nisn(i,j).ne.46119) then

endi f
150 continue

write (12,'(6x,alO,lpe13.4)') niso(i,j),-gm(i,j)/gmtot2

C

c... Add fission products to mat.inp files
C

if (gfp.gt.O.O.and.frimp.lt.O.0) then
open (18,file='mbxs.inp',status='unknown')
if (gUff.ne.0) then
ifd=0
read (18,*,end=159) nixs
if (nixs.eq.45117) ifd = 1
if (ifd.eq.0) goto 158
backspace (18)
read (18,'(a10) ' 1 nUfp
if (ifd.eq.0) then
write (6 , *) I * * * * * MB WARNING: No Uranium Fission Product I ,

& 'library was provided in mbxs.inp'
else

endi f
rewind (18)

write (12,'(6x,alO,lpel3.4)') nUfp,-gUff/gmtot2

endi f
C

161

if (gPuff.ne.0) then
ifd=O
read (18,*,end=162) nixs
if (nixs.eq.46119) ifd = 1
if (ifd.eq.0) goto 161
backspace (18)
read (18, ' (a10) ') nPufp

162 if (ifd.eq.0) then
write (6,*) I * * * * * MB WARNING: No Plutonium Fission Product ' ,

& 'library was provided in mbxs.inp'
else

endi f
close (18)

write (12,'(6x,alO,lpe13.4)') nPufp,-gPuff/gmtot2

endi f
endi f

C

c... End main material input section
C

write (12,'(al)') 'c'

C

c...Write actinide tally material
C

ii = 900 + j

160

do 165 i=l,ntot(j)
165 if (nisn(i,j).ge.89000) iflag = 1

if (iflag.eq.1) then
write (12, (al,i3) I) 'm',ii
do 170 i=l,ntot(j)
if (nisn(i,j).ge.89000) then
if (gm(i,j).eq.O.) gm(i,j)=l.Oe-lO*gmtot2
write (12,'(6x,alO,lpe13.4)') niso(i,j),-gm(i,j)/4tot2
end if

write (12, I (al) ') 'c'
170 continue

endi f

close (11)

close (12)
close (15)
close (17)

C

180 continue
C

C

c... Rewrite density(s) in MCNP input file
C

nflag = 0
open (15,file='mbrnc.skl',status='unknown1)
open (17,file='mbmc.tmp',status='unknown')

if (char5(1:l).eq.'C'.or.~har5(1:l).eq-'c'.or-
181 read (15,'(a5)',end=190) char5

& char5.eq.I '.or.nflag.eq.l) then
backspace (15)
read (15, (a80) ') line80
if (line80(1:42).eq.'

& .and.line80(43:76).eq.'
nflag = 1
write (17, I (a80) ') line80

write (17, (a80) I) line80
else

endi f
else
backspace (15)
read (15,*,err=185,end=190) ncel1,nmater
ident = 0
do 187 j=l,nmat
if (mater. eq. abs (mt (j))) then
ident = 1
backspace (15)
read (15,'(a80)') line80
o = l
n = l
ncount = 1

C

I

') then

161

c... First find the first number (ncount allows it to always start in
same position)
C

183 if (line80(n:n).ne.' ') goto 182
n = n + l
ncount = ncount + 1
goto 183

C

c... Then identify the location of the next two numbers relative to
blanks

182
C

184

191

192

if (line80(n:n).eq.' ' 1 then
b(o) = n
if (o.eq.3) goto 185
m = n
if (line80(m+l:m+l).eq.' ' 1 then
m = m + l
goto 184

e(o) = m
else

endi f
o = o + l
n = m + l
goto 182

n = n + l
goto 182

else

endi f

goto 187
else

endi f
187 continue
185 if (ident.eq.1) then

C

c... Replace values before density, density, and then those after
density
C

nident = 0
do 188 i=b(3),80
line(i:i) = line80(i:i)

if (ncount.ge.2) then
do 191 i=l,ncount-1
line80(i:i) = ' '

endi f
if (e(2) -1e.24) then
do 192 i=e(2)+1,25
line80(i:i) = ' '

endi f
if (nident . eq . 1) then

188 if (line80(i:i).ne.' ') nident = 1

write (17, I (a25,f10.5) ') line80(1:25) ,gden(j)

162

do 189 i=l, (b(3)-1)

write (17,'(a80)') line

write (17,'(a25,f10.5)') line80(1:25),gden(j)

189 line(i:i) = ' '

else

endi f

backspace (15)
read (15,'(a80)') line80
write (17,'(a80)') line80

else

endi f
endi f
goto 181

190 return
end

C

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...GRAMS reads fort.7 and prints out grams of tracked material to mb5
C

C

subroutine grams

comon /mbinp/nmat,mt(49),voli(49),pow,qu235,das,nouter,ninner,
C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999.49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character f7name*12,file5*12,file5x*l2,filel2*l2,fill2x*l2
dimension nisq(4),gad(4),gm(999,49)

C

C

10
C

do 40 j=l,nmat
if (j .It. 10) then
f7name = 'fort-'//char(j+48)//'.7'
file5 = 'mb5_'//char(j+48)//'.out'
file12 = 'mb12_'//char(j+48)//'.out'
fill2x = 'mb12x- ' / / char (j+48) / / ' .ou t '

file5x = 'mb5x_'//char(j+48)//'.out1

jl = j/lO
j2 = j - jl*lO
f7name = 'fort-'//char(jl+48)//char(j2+48)//'.7'
file5 = 'mb5-'//char(j1+48)//char(j2+48)//'.out1

file12 = 'mb12-'//char(j1+48)//char(j2+48)//'.out1
fillax = 'mb12x-'//char(j1+48) //char(j2+48) / / I .out'
file5x = 'mb5x-'//char(j1+48)//char(j2+48)//'.out1

elseif (j .ge.lO) then

endi f
open (12 , f i l e= f7name , s t a tus= 'o ld ')

read (12,91l,err=lO,end=30) kxs,(nisq(m),gad(m),m=l,4)

do 20 m=1,4

163

kk= 0
do 15 k=l, nauto (j)
if (nisnr(k,j).eq.nisq(m)) kk=k

15 continue
C

if (kk.gt.O.or.nisq(m) .ge.890000) then
nisql=nisq(m)/lO
a=float(nisql)-float(lOOO*(nisql/lOOO)
if (kk.gt.0) gm(kk,j)=gm(kk,j)+a*gad(m)
if (nisq(m).ge.890000) gm(nauto(j)+l,j)=

& gm (nauto (j) +1, j) +a*gad (m)
end if

20 continue
C

got0 10
C

30 continue
C

911 format (i4,4 (lx, i6,2x, 1pelO. 4))

C

if (posit.eq.'e') then
open (14,file=file5,status='unknown')
open (15,file=file5x,status='unknom')
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(gm(i,j),i=l,nauto(j)+l)
write (15,'(i2,1x,lpe13.7,30el4.7)') nrst,(gm(i,j),i=l,nauto(j)+l)
close (14)
close (15)
elseif (posit.eq.'b') then
open (14,file=filel2,status='unknown')
open (15,file=fill2x,status='unknown')
write (14,'(i2,1x,lpe9.2,30e10.2)') nrst,(gm(i,j),i=l,nauto(j)+l)
write (15,'(i2,1x,lpe13.7,30el4.7)') nrst,(gm(i,j),i=l,nauto(j)+l)
close (14)
close (15)
endi f

close (12)
C

40 continue

return
end

C

C

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...RMHALF removes 1/2 way predictor cards in mbori
C

C

subroutine rmhalf(nmat)
character ju8*8,ju80*80,fname*12,f2name*12

do 140 j=l,nmat
if (j.lt.10) then

C

164

fname = 'mbori-'//char(j+48)
faname = 'mbori-'//char(j+48)//'.tmp'

j l = j / l O
j2 = j - jl*10
fname = 'mbori-'//char(jl+48)//char(j2+48)
f2name = 'mbori-'//char(jl+48)//char(j2+48)//'-tmp'

elseif (j .ge.lO) then

endi f
open (12,file=fname,status='old')
open (13,file=f2name,status='unknom')

ino = 0
C

120 read (12,'(a8)',end=125) ju8
C

if (ju8.eq.IRDA Firs') ino=l
if (ino.eq.0) then
backspace(l2)
read (12,'(a80)',end=125) ju80
write (13,'(a80)') ju80
end if
if (ju8.eq.IRDA Last') ino=O
got0 120

125 continue
close (12)
close (13)

140 continue
C

return
end

C

c23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...BURNCALC calculates material burned/produced based on feed and inven
C

C

subroutine burnca

common / m b i n p / n m a t , m t (4 9) , v o l i (4 9) , p o w , q u 2 3 5 , d a e r ,

C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr (999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l
character file10*12,file9t*12,file5t*l2,fi.1e5~*12,f~1e9*12
character file5*12,fi112a*12
dimension tfeed(999),g1(999),g2(999),bb(999),bb2(999),day(99)
dimension dfeed(999)

C

c...Read feed data
C

do 100 j=l,nmat
if (j .It. 10) then

file9t='mb9t-'//char(j+48)//'.out'

165

10

file5 ='mb5t-'//char(j+48)//'.out'
file5x='mb5tx-'//char(j+48)//'.out'
fill2a='mbl2a-'//char(j+48)//'.out'
file9 ='mb9-'//char(j+48)//'.outt
file10='mb10t~'//char(j+48)//'.out'

jl = j/lO
j2 = j - jl*lO
file9t='mb9t-'//char(jl+48)//char(j2+48)//'.out'
file5t='mb5t-'//char(jl+48)//char(j2+48)//'.out'
file5x='mb5tx-'//char(jl+48) //char(j2+48) //'.out'
fill2a='mbl2a-'//char(jl+48)//char(j2+48)//'.out'
file9 ='mb9-'//char(j1+48)//char(j2+48)//'.out1
file10='mb10t~'//char(jl+48)//char(j2+48)//'.out'

elseif (j.ge.10) then

endi f
open (ll,file=file9t,status='unknown')

read (11, ' (/ / I ' 1
do 10 i=l,nrst
read (11, ' (3x, f8.2,3x, lpe9.2,30e10.2) ' 1

& day(i), (tfeed(m) ,m=l,nauto(j)+l)
close (11)

C

c...Read inventory data
C

open (ll,file=file5x,status='unknown')
read (11, ' (/ /) ' 1
do 20 i=O,nrst

close (11)
open (ll,file=fill2a,status='unknown')
read (ll,'(//)')
do 22 i=O,nrst

close (11)

20 read (11, ' (3x,lpe13.7,30e14.7) ' 1 (g2(m),m=l,nauto(j)+l)

22 read (11,'(3x,lpe13.7,30el4.7)') (gl(m),m=l,nauto(j)+l)

C

c...Write burn data
C

do 30 m=l,nauto(j)+l
30 bb (m) =g2 (m) -gl (m) -tfeed (m)

open (14,file=file9,status='unknown')
write (14, ' (i2,1x,lpe9.2,30e10.2) ')

& nrst,(bb(m),m=l,nauto(j)+l)
C

c...Write final burn data if last step
C

if (nrst.eq.nouter) then

open (ll,file=file9t,status='unknown')
read (ll,'(//)')
do 40 i=l,nrst

C

40 read (ll,*)

166

read (11,'(3x,f8.2,3x,lpe9.2,3OelO.2)')

close (11)
& day(nrst), (tfeed(m) ,m=l,nauto(j)+l)

C

open (ll,file=file5x,status='unknown')
read (11, a (/ /) ' 1
read (11,' (3x,lpe13.7,30e14.7) ') (gl(rn),m=l,nauto(j)+l)
close (11)

C

C

C

C

do 50 m=l,nauto(j)+l
50 bb2 (m)=g2 (m) -gl (m) -tfeed(m)

write (14,'(a3,lpe9.2,30elO-2)') 'tot',(bb2(m),m=l,nauto(j)+l)
write (14, ' (/ , a36, a13, i3, a22, i3, al) ')

& 'Summary of Inventory/Feed/Production',
& ' for material',j,' (MCNP Material Number',abs(mt(j)),')'
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide'

write (14,'(a3,lpe9.2,30e10.2)') 'fin',
write (14,'(a3,lpe9.2,30e10.2)') 'fed',
write (14,'(a3,lpe9.2,30el0-2)') 'net',

write (14,'(a3,lpe9.2,30e10.2)') 'ini',(gl(m),m=l,nauto(j)+l)
92 (m) , m=l , nauto (j) +1)
tfeed(m) ,m=l,nauto(j)+l)
bb2 (m) , m=l , nauto (j) +1)

end if

close (14)
C

c...Write mblO.out containing feed/burn rates
C

if (nrst.eq.nouter) then
open (14,file='mblO',status='unknown')
write (14,'(/,a28)') 'Monteburns Inventory (cont.)'
close (14)
open (14,file=fi1el0,status='unknown1)

C

c...Read data and divide by time interval
C

open (ll,file=file9t,status='unknown')
read (11, ' (/ /) ')
write (14,'(/,a17,a13,i3,a22,i3,al)') 'Feed Rate (g/day)',

& ' for material',j,' (MCNP Material Number',abs(mt(j)),')'
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide'

do 80 i=l,nouter
read (11,'(3x,f8.2,3x,lpe9.2,3OelO.2)')

open (17,file='./tmpfile/params2',status='oldt)
read (17,'(i4)') nfd
close (17)
if (nfd.eq.1) then

& day(i), (tfeed(m) ,m=l,nauto(j)+l)

write (14,'(i2,1x,lpe9.2,30e10.2)') i,
& (tfeed(m)/day(i),m=l,nauto(j)+l)
else

167

do 77 m=l, nauto (j) +1

write (14,'(i2,1x,lpe9.2,3Oe10.2)') i,
77 dfeed(m) = 0.0

& (dfeed(m),m=l,nauto(j)+l)
endi f

80 continue
read (11, ' (/ / /) ')

write (14,'(/,a35,a13,i3,a22,i3,al)')
& 'Production/Destruction Rate (g/day)',
& for material',j,' (MCNP Material Number',abs(mt(j)),')'
write (14,'(3x,a9,30(lx,a9))') (niso(i,j),i=l,nauto(j)),'actinide'
do 90 i=l,nouter-1
read (11,'(3x,lpe9.2,30e10.2)') (bb2(m),rn=l,nauto(j)+l)

90 write (14,'(i2,1x,lpe9.2,3Oe10.2)') i,
& (bb2 (m) /day (i) , m=l , nauto (j) +1)

& (bb(m)/day(nouter),m=l,nauto(j)+l)
write (14,'(i2,1x,lpe9.2,3Oe10.2)') nouter,

close (11)
write (14,*)
close (14)
end if

100 continue
C

return
end

C

c...DISCRETE makes additions in fort.7 and mat-inp for discrete feed
C

subroutine discr

common /mbinp/nmat,mt(49),voli(49),pow,qu235,days,nouter,ninner,
C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),

& nisnr(999,49)
character line*80,fort7*12,f7tmp*l5,met*l
dimension nisq(4),gad(4),gmafed(99,49),ifd6(99,49),a(99)
dimension day(99),nfeed(99,49),gfl(99,49),gf2(99,49),mfeed(99),

& kfeed(99),kfeedl(99,99),kfeed2(99,99),ifeed(99,99),ncount(99,49),
& nf1(99,49),rf(99,49),pfra(99),nmt(49),ffeed(99,99),
& nelem(99,49),tmst(99)

& iflag(99,49),imfeed(99,99),fmfeed(99,99),~feed(99),gfeed(99,49)
dimension nisoto(99,49,99),nisop(99,49),atomfr(99,49,99),

C

c... Determine if feed file exists
C

open (17,file='./tmpfile/params2',status='old')
read (17, (i4) ') nfd
close (17)
if (nfd.eq.1) then
open (Il,file='feed',status='old')
read (ll,*)
read (ll,*)

168

&

12

do 10 i=l,nouter
do 10 j=l,nmat
if (j .eq. 1) then

read (11, *) tmst (i) ,day(i) ,
pfra(i),nmt(l),nfeed(i,l),gfl(i,l),gf2(i,l),nfl(i,l),rf(i,l)

read (ll,*) nmt(j),
elseif (j.ge.2) then

& nfeed(i,j),gfl(i,j),gf2(i,j),nfl(i,j),rf(i,j)
endi f

10 continue
read (11, (i4) ') nfs
do 12 n=l,nfs

do 12 m=l,mfeed(n)
read (11, (i4) ') mfeed(n)

read (11, I (i5,f9.7) ') ifeed(n,m) ,ffeed(n,m)
read (11, (i4) ' 1 nrs

read (ll,'(i4) ') kfeed(n)
do 15 n=l,nrs

do 15 k=l, kfeed(n)
15 read (11, ' (i4,i4) ') kfeedl(n,k),kfeedZ(n,k)

endi f

c...Rewrite fort.7
C

C

do 100 j=l,nmat
i = nrst
n = nfeed(i,j)
if (j .It. 10) then
fort7 = 'fort-'//char(j+48)//'.7'
f7tmp = 'fort-'//char(j+48)//'.7.tmp'

jl = j/lO
j 2 = j - jl*lO
fort7 = 'fort-'//char(jl+48)//char(j2+48)//'.7'
f7tmp = 'fort_'//char(jl+48)//char(j2+48)//'.7.tmp1

elseif (j .ge.lO) then

endi f
open (12,file=fort7,status='unknown')
if (n.eq.0) then

endi f
open (13,file='fort.tmp',status='unknown')

got0 90

C

c... Check to see if any feed materials are natural elements
C

mmfeed(n) = mfeed(n)
do 2 5 m=l,mfeed(n)
iflag(m,j) = 0
nai = ifeed(n,m)-1000*(ifeed(n,m)/lOOO)
if (nai.eq.O.and.ifeed(n,m).gt-0) then
open (16,file='natelem',status='unknown')
read (16,*)

169

read (16,*)
18 read (16,*) nelem(m,j)

read (16,*) nisop(m, j)

do 20 mm=l,nisop(m, j)

20 read (16,'(i5,3x,f10.5)',err=2O,end=23)

if (nelem(m,j).eq.ifeed(n,m)/lOOO) then
EL nisoto(m,j,mm),atomfr(m,j,m)

iflag(m,j) = 1
imfeed(n,m) = nisoto(m,j,l)
fmfeed(n,m) = ffeed(n,m)*atomfr(m,j,l)

do 22 m=1, (nisop(m, j 1-11
imfeed(n,mmfeed(n)+m) = nisoto(m,j,l+mn)

22 fmfeed(n,mmfeed(n)+m) = ffeed(n,m)*atomfr(m,j,l+mn)
mmfeed(n) = mmfeed(n) + (nisop(m,j)-1)
goto 23

goto 18
else

endi f
23 close (16)

else
imfeed(n,m) = ifeed(n,m)
fmfeed(n,m) = ffeed(n,m)

endi f
25 continue

C

c...Convert grams of feed to gram-atoms of feed
C

do 28 m=l,mmfeed(n)
ifd6(n,m) = imfeed(n,m)*lO
if (ifd6(n,m).eq.952420) ifd6(n,m)=ifd6(n,m)+l
gfeed(m,j)=fmfeed(n,m)*gf2(i,j)*day(i)
ai = float(imfeed(n,m))-float(lOOO*(imfeed(n,m~/lOOO~)
gmafed(m,j) = gfeed(m,j)/ai
ncount (m, j) = 0

28 continue
30 read (12,90l,err=45,end=50) kxs, (nisq(k),gad(k),k=1,4)
901 format (i4,4(lx,i6,2x,lpel0.4))

if (kxs.eq.0) goto 45
do 40 k=1,4
do 40 m=l,mfeed(n)
if (nisq(k).eq.ifd6(n,m).and.kxs.le.2) then

if (ncount(m, j) .eq.O) gad(k) = gad(k) + gmafed(m, j)
ncount (m, j) = 1

endi f
40 continue

write (13,901) kxs,(nisq(k),gad(k),k=l,4)
goto 30

read (12, ' (a80) ') line
write (13,'(a80)') line
goto 30

45 backspace (12)

170

50 close (12)
close (13)

C

c...Write non-actinides to fort.7 that are part of discrete feed but did
not
c... previously exist
C

open (13,file='fort.tmpr,status='unknom')
open (14,file=f7tmp,status='unknomt)
kxsold = 1
nadd = 0

if (kxs.eq.kxsold) then
63 read (13,'(i4)',err=80,end=99) kxs

backspace (13)
read (13,'(a80)') line
write (14, (a80) I) line
kxsold = kxs

else
kxsold = kxs
if (nadd.eq.0) then
do 65 k=l,nunfeed(n)
nmin=99999
ni=O
do 60 m=l,mmfeed(n)
a(m)=float(imfeed(n,m))-float(1000*(imfeed(n,m)/lOOO))
if (imfeed(n,m).lt.8300O.and.imfeed(n,m).gt.lOOO) then
if (a(m).gt.O) then

nmin=imfeed(n,m)
ni=m
end if

if (imfeed(n,m).lt.nmin) then

endi f
end if

60 continue
if (ni.gt.0) then
kxs=l
met= ' 0 '
if (ncount(ni,j).eq.O) then
ncount(ni,j) = 1
write (14,912) kxs,ifd6(n,ni),gmafed(ni,j)

endi f
imfeed(n,ni) = O

end if
6 5 continue

C

c...Write actinides to fort.7, sort numerically for xs file read
C

do 7 5 k=l,mmfeed(n)
nmin=999 99
ni=O
do 7 0 m=l,mmfeed(n)

171

7 0

75

80

90
95

99

100

911

a(m)=float(imfeed(n,m))-float(lOOO*(imfeed(n,m)/lOOO))
if (imfeed(n,m).ge.8300O.and.a(m).gt.O.) then
if (imfeed(n,m).lt.nmin) then
nmin=imfeed(n,m)
ni =m
end if
end if
continue
if (ni.gt.0) then
kxs=2
met='O'
if (ncount(ni,j).eq.O) then
ncount(ni,j) = 1
write (14,912) kxs,ifd6(n,ni),gmafed(ni,j)

endi f
imfeed(n,ni)=O

end if
continue
nadd = 1
endi f
if (kxsold.eq.0) goto 80
backspace (13)
read (13,'(a80)') line
write (14,'(a80)') line
endi f
goto 63
backspace (13)
read (13,'(a80)') line
write (14, ' (a80) ') line
goto 63
open (14,file=f7tmp,status='unknownt)
read (12,'(a80)',end=99) line
write (14, I (a80) I) line
goto 95
close (13)
close (14)
continue
format (i4,i6,al,lpe12.4,

& ' 0 O.OOOOE+OO 0 0.0000E+00

912 format (i4,lx,i6,lpe12.4,
& ' 0 O.OOOOE+OO 0 O.OOOOE+OO
end

0 O.OOOOE+OO')

0 O.OOOOE+OO')

C

subroutine dremo

common / m b i n p / n m a t , m t (4 9) , v o l i (4 9) , p o w , q u 2 3 5 , d a e r ,

C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
character line*72,fort7*12,f7tmp*l5,nisq2(4)*4
dimension nisql(4),gad(4),nisq3 (4)
dimension day(99),nfeed(99,49),gfl(99,49),gf2(99,49),mfeed(99),

172

& kfeed(99),kfeedl(99,99),kfeed2(99,99),ifeed(99,99),tmst(99),
& nf1(99,49),rf(99,49),pfra(99),nmt(49),ffeed(99,99)

C

c... Determine if feed file exists
C

12

open (17,file='./tmpfile/params2',status='old')
read (17, (i4) ') nfd
close (17)
if (nfd.eq.1) then
open (ll,file='feed',status='old')
read (ll,*)
read (ll,*)
do 10 i=l,nouter
do 10 j=l,nmat
if (j .eq.l) then
read (ll,*) tmst(i) ,day(i) ,pfra(i),

& nmt(l),nfeed(i,l) ,gfl(i,l),gf2(i,l),nfl(i,l) ,rf(i,l)
elseif (j.ge.2) then
read (ll,*)

& nmt(j) ,nfeed(i, j) ,gfl(i, j) ,gf2(i, j) ,nfl(i, j) ,rf (i, j)
endi f

10 continue
read (ll,'(i4)') nfs
do 12 n=l,nfs

do 12 m=l,mfeed(n)
read (11, (i4) I) mfeed(n)

read (11, (i5, f9.7) ') ifeed(n,m), ffeed(n,m)
read (11, ' (i4) ') nrs

read (ll,'(i4)') kfeed(n)
do 15 n=l,nrs

do 15 k=l, kfeed(n)
15 read (ll,'(i4,i4)') kfeedl(n,k),kfeed2(n,k)

endi f

c...Rewrite fort.7
C

C

do 60 j=l,nmat
if (nfl(nrst,j).ge.O) goto 6 0

if (j .It - 10) then
fort7 = 'fort-'//char(j+48) / / I -7'
f7tmp = 'fort-'//char(j+48)//'.7.tem'

j l = j / l O

j2 = j - jl*10
fort7 = 'fort-'//char(j1+48)//char(j2+48)//'.7'
f7tmp = 'fort-'//char(jl+48)//char(j2+48)//'.7.temi

elseif (j .ge.lO) then

endi f
open (12,file=fort7,status='unknown')
open (13,file=f7tmp,status='unknown1)

c... Remove elements in removal group from fort.7

C

173

C

30 read (12,90l,err=45,end=50) kxs,(nisql(k),nisq2(k),gad(k),k=l,4)
backspace (12
read (l2,903,err=45,end=50) kxs,(nisq3(k),nisq2(k),gad(k),k=l,4)

901 format (i4,4(lx,i2,a4,2x,lpe10.4))
903 format (i4,4 (lx , a2, a4, ZX, 1pelO. 4))

nrem = abs(nfl(nrst,j))
do 40 k=1,4
do 40 n=1, kfeed(nrem)
do 40 m=abs(kfeedl(nrem,n)),abs(kfeed2(nrem,n))
if (nisql(k).eq.m) then
if ((kfeedl(nrem,n).lt.O.and.kxs.eq.3)

gad(k) = gad(k) - gad(k)*rf(nrst,j)
& .or.kfeedl(nrem,n).ge.O) then

endi f

40 continue
endi f

if (kxs.eq.0) then
write (13,902) kxs, (nisq2(k),gad(k) ,k=1,4)

902 format (i4,4(1x,2x,a4,2x,lpe10.4))
else

endi f
goto 30

read (12, ' (a72) ') line
write (13,'(a72)') line
goto 30

SO close (12)
close (13)

60 continue
end

write (13,903) kxs, (nisq3(k) ,nisq2(k) ,gad(k),k=1,4)

45 backspace (12)

C

c...REGION makes indicates what materials are substituted in various
c... regions
C

subroutine region

common / m b i n p / n m a t , m t (4 9) , v o l i (4 9) , p o w , q u 2 3 5 , d a e r ,

'3

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
character fname*25
dimension day(99),pfra(99),nmt(49),nfeed(99,49),gfl(99,49),

& gf2(99,49) ,nf1(99,49),rf(99,49) ,tmst(99)
C

c...First discover if feed input file exists
C

open (17,file='./tmpfile/params2',status='oldB)
read (17,'(i4)') nfd
if (nfd.eq.1) then

174

C

c...First read the two lines of headings
C

open (ll,file='feed',status='unknown')
read (ll,*)
read (ll,*)
do 8 i=l,nrst
do 8 j=l,nmat

if (j .eq.l) then
read (ll,*) tmst (i) ,day(i),

& pfra(i),nmt(l),nfeed(i,l),gfl(i,l),gf2(i,l),nfl(i,i),rf(i,i)
elseif (j-ge.2) then
read (11, *) nmt (j),

& nfeed(i,jl,gfl(i, j),gf2(i,j),nfl(i,j),rf(i, j)
endi f

8 continue
close (11)

do 10 j=l,nmat
else

10 nmt(j) = 0

endi f
C

do 20 j=l,nmat
if (j -1t.10) then

elseif (j .ge.lO) then
fname = './tmpfile/param3-'//char(j+48)

jl = j / l O

j2 = j - jl*10
fname = './tmpfile/param3-'//char(jl+48)//char(j2+48)

endi f
open (12,file=fname,status='unknown')
write (12,905) nmt(j)

905 format (i4,' nval')
20 continue

end
C

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c...WMBINP rewrites mb.inp
C

C

subroutine wmbinp

common /mbinp/nmat,mt(49),voli(49),pow,qu235,das,nouter,ninner,
C

& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49),nisor(999,49),title,olib,locale,posit
character niso*l0,nisor*6,title*72,olib*2,locale*72,posit*l

C

c...Rewrite mb.inp
C

open (Il,file='mb.inp',status='unknown')

175

write (11, ' (a72) ') title
write (ll,*) mat
do 20 j=l,nmat

20 write (ll,*) mt(j)
do 30 j=l,nmat

30 write (ll,*) voli(j)
write (ll,*) pow
write (ll,*) qu235
write (ll,*) days
write (ll,*) nouter
write (ll,*) ninner
write (ll,*) npre
write (ll,*) nrst
write (ll,'(a2)') olib
write (11, ' (a72) ') locale
write (ll,*) frimp
write (11, *) nkeff
do 60 j=l,mat
write (ll,*) nauto(j)
write (ll,*) ntot(j)

do 60 i=l,ntot(j)

close (11)
60 write (ll,'(alO)') niso(i,j)

C

return
end

~23456789*123456789*123456789*123456789*123456789*123456789*123456789*12

c This subroutine creates a file containig isotopic breakdowns
c for natural elements

C

C

subroutine natele
dimension nelern(40),nisot(40,40),atomfr(40,4O),nisop(40)

C

c Isotopic compositions of natural elements
c Ref: Nuclides and Isotopes, Fifteenth Edition
C

open (16,file='natelem',status='unknown')
data (nelem(i),i=1,33) /

& 6 , 12, 14, 16, 17, 18, 19, 20, 22,
& 2 3 , 24, 25, 26, 28, 29, 30, 31, 40,
& 42, 47, 48, 49, 50, 51, 54, 63, 64,
& 72, 74, 77, 7 8 , 80, a2 /

write (16,*)
write (16,*)
do 80 i=1,33
nz = nelem(i)
if (nz.eq.6) then ! Carbon
niso = 2 ! Number of isotopes in natural carbon
data (nisot(l,n),atomfr(l,n),n=l,2) /

& 6012, 0 - 98900,

176

/

& 6013, 0.01100 /
endi f

if (nz.eq.12) then ! Magnesium
niso = 3 ! Number of isotopes in natural carbon
data (nisot(2,n),atomfr(2,n) ,n=1,3) /

& 12024, 0.78990,
& 12025, 0.10000,
& 12026, 0.11010 /
endi f
if (nz.eq.14) then ! Silicon
niso = 3 ! Number of isotopes in natural carbon
data (nisot(3,n) ,atomfr(3,n) ,n=1,3) /

& 14028, 0.92230,
& 14029, 0.04670,
& 14030, 0.03100 /

endi f
if (nz.eq.16) then ! Sulfur
niso = 4 ! Number of isotopes in natural carbon
data (nisot(4,n),atomfr(4,n),n=l,4) /

& 16032, 0.95020,
& 16033, 0.00750,
& 16034, 0.04210,
& 16036, 0.00020 /

endi f
if (nz.eq.17) then ! Chlorine
niso = 2 ! Number of isotopes in natural carbon
data (nisot(5,n),atomfr(5,n),n=l,2) /

& 17035, 0.75770,
& 17037, 0.24230 /
endi f
if (nz.eq.18) then ! Argon
niso = 3 ! Number of isotopes in natural carbon
data (nisot(6,n),atomfr(6,n),n=1,3) /

& 18036, 0.00337,
& 18038, 0.00063,
& 18040, 0.99600 /

endi f
if (nz.eq.19) then ! Potassium
niso = 3 ! Number of isotopes in natural carbon
data (nisot(7,n),atomfr(7,n),n=l,3) /

& 19039, 0.93258,
& 19040, 0.00012,
& 19041, 0 - 06730
endi f
if (nz.eq.20) then ! Calcium
niso = 6 ! Number of isotopes in natural carbon
data (nisot(8,n),atomfr(8,n) ,n=1,6) /

& 20040, 0.96941,
& 20042, 0.00647,
& 20043, 0.00135,
& 20044, 0.02086,

177

/

/

& 20046, 0.00004,

& 20048, 0.00187
endi f
if (nz.eq.22) then ! Titanium
riiso = 5 ! Number of isotopes in natural carbon

data (nisot(9,n) ,atomfr(9,n) ,n=1,5) /
& 22046, 0.08250,
& 22047, 0.07440,
& 22048, 0.73720,
& 22049, 0.05410,
& 22050, 0.05180
endi f
if (nz.eq.23) then ! Vanadium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(lO,n),atomfr(lO,n),n=l,2) /

& 23050, 0.00250,
& 23051, 0.99750 /

endi f
if (nz.eq.24) then ! Chromium
niso = 4 ! Number of isotopes in natural carbon
data (nisot(ll,n),atomfr(ll,n),n=l,4) /

& 24050, 0.04350,
& 24052, 0.83790,
& 24053, 0.09500,
& 24054, 0.02360 /
endi f
if (nz.eq.25) then ! Manganese
niso = 1 ! Number of isotopes in natural carbon
data (nisot(l2,n),atomfr(12,n),n=l,l) /

& 25055, 0.10000 /

endi f
if (nz.eq.26) then ! Iron
niso = 4 ! Number of isotopes in natural carbon
data (nisot(l3,n),atomfr(13,n),n=l,4) /

& 26054, 0.05850,
& 26056, 0.91750,
& 26057, 0.02120,
& 26058, 0.00280 /
endi f
if (nz.eq.28) then ! Nickel
niso = 5 ! Number of isotopes in natural carbon
data (nisot(l4,n),atomfr(l4,n),n=l,5) /

& 28058, 0 - 68080,
& 28060, 0.26220,
& 28061, 0.01140,
& 28062, 0.03630,
& 28064, 0.00930 /

endi f
if (nz.eq.29) then ! Copper
niso = 2 ! Number of isotopes in natural carbon
data (nisot(l5,n) ,atomfr(l5,n) ,n=1,2) /

178

& 29063, 0.69170,
& 29065, 0.30830 /

endi f
if (nz.eq.30) then ! Zinc
niso = 4 ! Number of isotopes in natural carbon

data (nisot(l6,n) ,atomfr(l6,n) ,n=1,4) /
& 30064, 0.48600,
& 30066, 0.27900,
& 30067, 0.04100,
& 30068, 0.18800 /

endi f
if (nz.eq.31) then ! Gallium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(l7,n),atornfr(l7,n),n=l,2) /

& 31069, 0 - 60110,
& 31071, 0.39890 /

endi f
if (nz.eq.40) then ! Zirconium
niso = 5 ! Number of isotopes in natural carbon
data (nisot(l8,n),atomfr(18,n),n=l,5) /

& 40090, 0.51450,
& 40091, 0.11220,
& 40092, 0 - 17150,
& 40094, 0.17380,
& 40096, 0.02800 /
endi f
if (nz.eq.42) then ! Molybdenum
niso = 7 ! Number of isotopes in natural carbon
data (nisot(l9,n),atomfr(l9,n),n=l,7) /

& 42092, 0.14840,
& 42094, 0.09250,
& 42095, 0.15920,
& 42096, 0.16680,
& 42097, 0.09550,
& 42098, 0.24130,
& 42100, 0.09630 /
endi f
if (nz.eq.47) then ! Silver
niso = 2 ! Number of isotopes in natural carbon
data (nisot(20,n),atomfr(2O,n),n=l,2) /

& 47107, 0.51839,
& 47109, 0.48161 /
endi f
if (nz.eq.48) then ! Cadmium
niso = 8 ! Number of isotopes in natural carbon
data (nisot(21,n) ,atomfr(2l,n) ,n=1,8) /

& 48106, 0.01250,
& 48108, 0.00890,
& 48110, 0.12490,
& 48111, 0.12800,
& 48112, 0.24130,

179

& 48113, 0.12220,
& 48114, 0.28730,
& 48116, 0.07490 /

endi f
if (nz.eq.49) then ! Indium

niso = 2 ! Number of isotop

data (nisot(22,n),atomfr(22,n),n=l,2) /
& 49113, 0.04290,
& 49115, 0.95710 /

endi f
if (nz.eq.50) then ! Tin

s in n tur 1 r k

niso = 10 ! Number of isotopes in natural

data (nisot(23,n) ,atomfr(23,n) ,n=1,10) /
carbon

& 50112, 0.00970,
& 50114, 0.00650,
& 50115, 0.00340,
& 50116, 0.14540,
& 50117, 0.07680,
& 50118, 0.24220,
& 50119, 0 - 08590,
& 50120, 0.32590,
& 50122, 0.04630,
& 50124, 0.05790
endi f
if (nz.eq.51) then
niso = 2
data (nisot (24, n) , at

& 51121, 0.57300,
& 51123, 0.42700
endi f
if (nz.eq.54) then
niso = 9

/

! Antimony
! Number of isotopes in natural carbon

rnfr(24,n) ,n=1,2) /

/

! Xenon
! Number of isotopes in natural carbon

data (nisot(25,n) ,atomfr(25,n) ,n=1,9) /
& 54124, 0.00100,
& 54126, 0.00090,
& 54128, 0.01910,
& 54129, 0.26400,
& 54130, 0 - 04100,
& 54131, 0.21200,
& 54132, 0.26900,
& 54134, 0.10400,
& 54136, 0.08900 1

endi f
if (nz.eq.63) then ! Europium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(26,n) ,atomfr(26,n) ,n=1,2) /

& 63151, 0.47800,
& 63153, 0.52200 /

endi f
if (nz.eq.64) then ! Gadolinium

180

/

/

niso = 7 ! Number of isotopes in natural carbon
data (nisot(27,n) ,atomfr(27,n) ,n=1,7) /

& 64152, 0.00200,
& 64154, 0 - 02180,
& 64155, 0.14800,
& 64156, 0.20470,
& 64157, 0.15650,
& 64158, 0.24840,
& 64160, 0.21860
endi f
if (nz.eq.72) then ! Hafnium
niso = 6 ! Number of isotopes in natural carbon
data (nisot(28,n),atomfr(28,n) ,n=1,6) /

& 72174, 0.00162,
& 72176, 0.05206,
& 72177, 0.18606,
& 72178, 0 - 27297,
& 72179, 0.13629,
& 72180, 0.35100 /

endi f
if (nz.eq.74) then ! Tungsten
niso = 5 ! Number of isotopes in natural carbon
data (nisot(29,n) ,atomfr(29,n) ,n=1,5) /

& 74180, 0.00120,
& 74182, 0.26498,
& 74183, 0.14314,
& 74184, 0.30642,
& 74186, 0 -28426 /

endi f
if (nz.eq.77) then ! Iridium
niso = 2 ! Number of isotopes in natural carbon
data (nisot(30,n) ,atomfr(30,n) ,n=1,2) /

& 77191, 0.37300,
& 77193, 0.62700 /
endi f
if (nz.eq.78) then ! Platinum
niso = 6 ! Number of isotopes in natural carbon
data (nisot(31,n) ,atomfr(3l,n) ,n=1,6) /

& 78190, 0.00010,
& 78192, 0 - 00790,
& 78194, 0.32900,
& 78195, 0.33800,
& 78196, 0.25300,
& 78198, 0 - 07200
endi f
if (nz.eq.80) then
niso = 7

data (nisot(32,n) ,atomfr(32,n) ,n=1,7) /
carbon

& 80196, 0.00150,
& 80198, 0.09970,

! Mercury
! Number of isotopes in natural

181

& 80199, 0.16870,
& 80200, 0.23100,
& 80201, 0.13180,
& 80202, 0.29860,
& 80204, 0.06870 /
endi f
if (nz.eq.82) then ! Lead
niso = 4 ! Number of isotopes in natural carbon
data (nisot(33,n),atomfr(33,n),n=l,4) /

& 82204, 0.01400,
& 82206, 0.24100,
& 82207, 0.22100,
& 82208, 0.52400 /
endi f

C

nisop(i) = niso
write (16, *) nelem(i)
write (16, *) nisop(i)
do 60 n=l,nisop(i)

60 write (16, ' (i5,3x,f10.5) ' 1

80 continue
& nisot (i, n) , atomfr (i, n)

close (16)
C

return
end

182

APPENDIX C. SAMPLE MCNP INPUT FILE

MCNP Input File for Test Case #2
C Cell Cards
C Irradiation of a Single Pin
C Fuel Pin
1 1 -10.045 -1 -2 3

8 8 -0.781e-3 1 -4 -2 3
6 6 -6.44 4 -6 -2 3

7 7 -0.7569 6
C Pin Cell
20 0 -9 10 -11 12 -7 8
99 0 #2 0

C Fuel Rod
1 cz 0.47815

C Axial Distribution
2 pz 347.4
3 pz 0.0

C Gap
4 cz 0.493
C Fuel Cladding
6 cz 0.559
C Unit Cell (Pitch)
7 pz 347.3
8 pz 0.1
*9 px 0.7793
"10 px -0.7793
*11 py 0.7793
*12 py -0.7793

u=2
u=2
u=2
u=2

fill=2

imp:n=l $fuel
imp:n=l $gap
imp:n=l $clad
imp:n=l Swat

imp:n=l
imp : n= 0

C Control Cards
kcode 1000 1.0 15 115
ksrc 0 0 173.6
tmp 7.25e-8 6.5e-8 5.34e-8 4.81e-8 6.0e-8 6.0e-8
C Material Cards
C Fuel
ml 92234.88~ 6.15165e-6 92235.88~ 6.89220e-4 92236.88~ 3.16265e-6

92238.88~ 2.17104e-2
6000.88~ 9.13357e-6 7014.88~ 1.04072e-5 8016.88~

4.48178e-2
C Cladding
m6 26000.85~ -0.005 40000.65~ -0.9791
C Coolant
m7 1001 5.06153e-2 8016.85~ 2.53076e-2

mt7 lwtr.04t
C Gap
m8 2004.85~ -1.0

5010.85~ 2.75612e-6 5011.85~ 1.11890e-5

50000 -0.0159

183

APPENDIX D. SAMPLE MONTEBURNS INPUT FILE

Monteburns Input File for Test Case #2
2 ! Number of MCNP materials

1 ! MCNP Material #1 (must be less than 100)
-7 ! MCNP Material #2
249.378 ! Material volume #1
502 - 44 ! Material volume #2
0,001 ! Total Power of System (in M W t)

-200. ! Recov. energy/fission (MeV); 0. uses default value
0. ! Total number of days burned (used if no feed)
8 ! Number of outer burn steps
40 ! Number of internal burn steps (multiple of 10)
1 ! Number of predictor steps (+1 on first step)
0 ! Step number to restart after (O=beginning)
22 ! Number of origen2 library

/export/iol/dip/origen/libraries ! location of ORIGEN2 library
1.0 ! Importance Fraction
0 ! Intermediate keff calc. 0) N o 1) Yes
28 ! Automatic Isotopes for Region 1
92234.88~
92235.88~
92236.88~
92238.88~
93237.88~
94238.88~
94239.88~
94240.88~
94241 - 88c
94242.88~
95241.88~
95243.88~
42095.88~
43099.88~
44101.88~
45103.88~
47109.88~
55133.88~
55135.88~
60143.88~
60145.88~
62147.88~
62149.88~
62150.88~
62151.88~
62152 - 88c
63153.88~
64155.88~
2 ! Automatic Isotopes for Region 2
5010.85~
5011.85~

184

APPENDIX E. SAMPLE FEED INPUT FILE

Step
int

Time PowFr.mat# Feed
real real int int

1 306.0

2 71.0

3 381.7

4 83.1

5 466.0

6 85.0

7 461.1

8 1870.0

1
2

5010 .20
5011 .80
1
1
5 5

38.066 1
2

0.000 1
2

42.9015 1
2

0.000 1
2

37.624 1
2

0.000 1
2

32.171 1
2

0.000 1
2

0

0

0

0
0
1
0
0

0
1
0

0

0

1

0

0

Beg-Rate End Rem# Fract-Rem.
real real int real

0.0 0.0 0 0.000

0.0 0.0 0 0.000

0.0 0.0 0 0.000 !

0.0 0.0 -1 1.000
0.0 0.0 0 0.000 !

-2.0 4.684e-4 0 0.000
0.0 0.0 0 0.000 !

0.0 0.0 -1 1.000
0.0 0.0 0 0.000 !

-2.0 4.118e-4 0 0.000
0.0 0.0 0 0.000 !

0.0 0.0 -1 1.000
0.0 0.0 0 0.000 !

-2.0 4.066e-4 0 0.000

0.0 0 . 0 0 0.000 !

0.0 0.0 0 0.000

! # of feed specs
! # i s o s in Feed #1
! B-10
! B-11
! # of removal groups
! # of ranges in removal group
! 1st range for Feed #1 (B)

185

REFi’EmNCES

1. J.F. BRIESMEISTER, “MCNPTM - A General Monte Carlo N-Particle Transport

Code,” LA-l2625-M, Version 4B, Los Alamos National Laboratory (March 1997).

2. A. G. CROFF, “A User’s Manual for ORIGEN2 Computer Code,” ORNL/TM-7175,

Oak Ridge National Laboratory (July 1980).

3. F. VENNERI, N. LI, M. A. WILLIAMSON, M. G. HOUTS, and G. P. LAWRENCE,

“Disposition of Nuclear Waste Using Subcritical Accelerator-Driven Systems:

Technology Choices and One Implementation Scenario,” LA-UR-98-985, Los Alamos

National Laboratory (March 1998).

4. J. J. DUDERSTADT and L. J. HAMILTON, NucZear Reactor Analysis, pp. 76, 338,

634-635, John Wiley & Sons, New York (1976).

5. C. D. HARMON 11, R. D. BUSCH, J.F. BRIESMEISTER, and R. A. FORSTER,

“Criticality Calculations with MCNPTM: A Primer,” LA- 12827-M, Los Alamos National

Laboratory (1 994).

6. 0. W. HERMAN and R. M. WESTFALL, “ORIGEN-S: Scale System Module to

Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay,

and Associated Radiation Source Terms,” Oak Ridge National Laboratory, NUREG/CR-

0200, Rev. 5, Vol. 2, Sect. F7 (September 1995).

7. M. BENEDICT, T. H. PIGFORD, and H. W. LEVI, Nuclear ChemicaZ Engineering,

2nd ed., pp. 76-78, 135-142, McGraw-Hill Inc., New York (1981).

186

8.

Addison-Wesley Publishing Co., Reading, Massachusetts (1 994).

C.F. GERALD, and P. 0. WHEATLEY, Applied Numerical Analysis, 5th ed.,

9. R. L. MOORE, B. G. SCHNITZLER, C. A. WEMPLE, R. S. BABCOCK, and D. E.

WESSOL, “MOCUP: MCNP/ORIGEN Coupling Utility Programs,” Idaho National

Engineering and Environmental Laboratory, INEL-95/0523 RSICC Code PSR-365.

10. 0. W. HERMANN, “COUPLE: Scale System Module to Process Problem-

Dependent Cross Sections and Neutron Spectral Data for ORIGEN-S Analyses,” Oak

Ridge National Laboratory, NUREG/CR-0200, Rev. 5, Vol. 2, Sect. F6 (September 1995).

11. D. BOWEN and R. D. BUSCH, “Using ORIGEN and MCNP to Calculate Reactor

Criticals and Burnup Effects,” Trans. Am. Nucl. Soc., 77,223 (1997).

12. S. L. EATON, C. A. BEARD, K. B. RAMSEY, J. J. BUKSA, and K. CHIDESTER,

“Development of Nonfertile and Evolutionary Mixed Oxide Nuclear Fuels for Use in

Existing Water Reactors,” LA-UR-97- 1359, Los Alamos National Laboratory (April

1997).

13. R. D. BUSCH, “A Primer for Criticality Calculations with DANTSYS,” LA-13265,

Los Alamos National Laboratory (1 997).

14. R. E. MACFARLANE and D. W. MUIR, “The NJOY Nuclear Data Processing

System, Version 9 1 ,” LA-l2740-M, Los Alamos National Laboratory (Oct 1994).

187

15. D. M. ETTER, FORTRAN77 With Numerical Methods for Engineers and Scientists,

The Benjamin/Cummings Publishing Company, Inc., Redwood City, California (1 992).

16.

Addison-Wesley Publishing Co., Reading, Massachusetts (1 983).

J. R. LAMARSH, Introduction to Nuclear Engineering, 2nd ed., pp. 65, 77,

17. W. B. WILSON, T. R. ENGLAND, D. C. GEORGE, D. W. MUIR, and P. G.

YOUNG, “Recent Development of the CINDER’90 Transmutation Code and Data

Library for Actinide Transmutation Studies,” Proc. GLOBAL’95 Int. Con$ on Evaluation

of Emerging Nuclear FueZ Cycle Systems, Versailles, France, September 1 1 - 14, 1995, p .

848 (1995).

18. D. I. POSTON, and H. R. TRELLUE, “User’s Manual, Version 1.00, for

Monteburns, Version 3.01 ,” LA-UR-98-27 18, Los Alamos National Laboratory (June

1998).

19. 0. W. HERMANN, S . M. BOWMAN, M. C. B W Y , and C. V. PARKS,

“Validation of the Scale System for PWR Spent Fuel Isotopic Composition Analyses,”

ORNL/TM-12667, Oak Ridge National Laboratory (March 1995).

20. M. D. DEHART, M. C. BRADY, and C. V. PARKS, “OECDNEA Burnup Credit

Calculational Criticality Benchmark Phase I-B Results,” NEA/NSC/DOC(96)-06 and

ORNL-6901, Oak Ridge National Laboratory (June 1996).

21. Chart of the Nuclides, 15th ed., General Electric Company, San Jose, California

(1 996).

188

22. J. E. TURNER, Atoms, Radiation, and Radiation Protection, pp. 60, 64, McGraw-

Hill, Inc., New York (1992).

23. H. GRUPPELAAR, H. TH. KLIPPEL, J. L. KLOOSTERMAN, J. E. HOOGEN-

BOOM, P. F. A. DE LEEGE, F. C. M. VERHAGEN, and J. C. BRUGGINK,

“Evaluation of PWR and BWR Assembly Benchmark Calculations,” ECN-C--93-088,

Netherlands Energy Research Foundation and Energieonderzoek Centrum Nederland

(November 1993).

24. B. D. MURPHY, “Characteristics of Spent Fuel from Plutonium Disposition

Reactors, Vol. 1 : The Combustion Engineering System SO+ Pressurized-Water-Reactor

Design,” ORNLRM-13 170N1, Oak Ridge National Laboratory (June 1996).

25. H. M. FISHER, “A Nuclear Cross Section Data Handbook,” LA-ll7ll-M, Los

Alamos National Laboratory (December 1989).

26. J. D. COURT, J.S. HENDRICKS, and S.C. FRANKLE, “MCNPTM ENDFB-VI

Validation: Infinite Media Comparisons of ENDF/B-VI and ENDFB-V,” LA- 12887, Los

Alamos National Laboratory (December 1994).

27. Management and Disposition of Excess Weapons Plutonium, Committee on

International Security and Arms Control, p. 1, National Academy of Sciences, National

Academy Press, Washington D.C. (1 994).

189

28. B. D. MURPHY, “Characteristics of Spent Fuel from Plutonium Disposition

Reactors, Vol. 3: A Westinghouse Pressurized-Water Reactor Design,” ORNL/TM-

13 170/V3, Oak Ridge National Laboratory (July 1997).

29. M. M. EL-WAKIL, Powerplant Technology, p. 448, McGraw-Hill, Inc., New York

(1 984).

190

	LIST OF TABLES
	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 MCNP
	2.2 ORIGEN2
	2.3 PREVIOUS WORK
	2.3.1 Linkage Codes
	Discrete Ordinate Burnup Codes

	DESCRIPTION OF CODE/THEORY
	DESCRIPTION OF MONTEBURNS
	3.2 CALCULATIONS

	3.2.1 Recoverable Energy per Fission
	3.2.2 Flux TalIy Normalization
	3.2.3 Reactor Physics Constants
	3.2.4 Effective Multiplication Factor
	3.2.5 Power
	3.2.6 Importance Fraction
	3.3 USER INPUT
	MCNP Input File
	Monteburns Input File
	Feed Input File
	Identijer Input File

	3.4 OUTPUT

	4.0 BENCHMARKING/STATISTICS
	4.1 BENCHMARKING
	4.1.1 Isotopic Concentration
	4 1 1 I Description
	4.1.1.2 Results
	4.1.1.3 Resonance Self-shielding
	4.1.1.4 Cross Sections
	4.1.1.5 Fission Products
	4.1.2 Pin-Cell Burnup
	4.1.2.1 Description
	4.1 2.2 Results
	4.1.2.3 Differences in Energy Spectra
	4.1.2.4 Recoverable Energy Per Fission
	4.1.2.5 Fission Yields
	4.1.2.6 Statistical Variances
	4.1.2.7 Additional Burnup

	4.1.3 Assembly Burnup
	4.1.3.1 Description
	4.1.3.2 Results
	4.1.3.3 Actinides
	4.1.3.4 Fission Products
	4.1.3.5 Comparison to SCALE
	4.1.4 Power Distribution
	4.1.4.1 Description
	4.1.4.2 Results
	4.1.5 Activity Calculation
	4.1.5.1 Description

	4.1 S.2 Results
	4.1.5.3 Actinides
	4.1.5.4 Fission Products

	4.2 STATISTICAL ANALYSES
	4.2.1 Input Parameters
	4.2.1.1 Number of Outer and Internal Bum Steps
	4.2.1.2 Number of Predictor Steps
	4.2.1.3 Importance Fraction
	4.2.1.4 Recoverable Energy Per Fission
	4.2.2 System-Dependent Changes

	4.2.2.1 Modeling a System
	4.2.2.2 Temperature- and Material-Dependent Parameters
	4.2.2.3 Axial Boundary Conditions

	APPLICATIONS OF MONTEBURNS
	ACCELERATOR TRANSMUTATION OF WASTE
	5.2 PLUTONIUM DESTRUCTION

	5.2.1 Fuel Form
	5.2.2 Isotopic Composition
	5.2.3 Energy Spectrum
	LIMITATIONS OF AND FUTURE WORK FOR MONTEBURNS
	7.0 CONCLUSIONS

	APPENDIX A LISTING OF C-SHELL FILE MONTEBURNS
	APPENDIX B LISTING OF FORTRAN77 PROGRAM M0NTEB.F
	APPENDIX C SAMPLE MCNP INPUT FILE
	APPENDIX D SAMPLE MONTEBURNS INPUT FILE
	APPENDIX E SAMPLE FEED INPUT FILE
	REFERENCES
	INTERACTION OF MONTEBURNS WITH MCNP AND ORIGEN2
	MONTEBURNS FLOW CHART
	PREDICTED BY MONTEBURNS

	FIGURE 3B PUBLISHED[71 ISOTOPIC DISTRIBUTION AS A FUNCTION OF BURNUP
	DIFFERENCES IN HIGHER ISOTOPES OF PLUTONIUM
	LAYOUT OF ASSEMBLY FOR TEST CASE #3
	3x3 ASSEMBLY
	SAMPLE OF CORE CONFIGURATION FOR ATW
	PLUTONIUM DESTRUCTION AS A FUNCTION OF BURNUP
	TABLE 1 CONDITIONS OF K
	COMPARISON OF LINKAGE AND/OR BURNUP CODES
	DIVIDED BY THE RECOVERABLE ENERGY PER FISSION FORU-235
	kfONTEBURNS WITH BURNUP TO THERMAL ONES USED IN REF
	MONTEBURNS WITH BURNUP TO THERMAL ONES USED IN REF

	PARAMETERS FOR TEST CASE #2
	RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO A
	RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO B
	TABLE 7A RESULTS FOR BURNUPS OF 16.00 AND 23.84 GWD/MTHM (G/G u02)
	TABLE 7B RESULTS FOR BURNUPS OF 28.64 AND 3 1.86 GWD/MTHM (G/G u02)
	PIN POWER DISTRIBUTION
	RESULTS FROM ACTIVITY CALCULATION
	STEPS

	COMPARISON OF RESULTS AS A FUNCTION OF NUMBER OF PREDICTOR STEPS
	TABLE 1oF RESULTS AS A FUNCTION OF RECOVERABLE ENERGY PER FISSION (G/G u02)
	A - MG/G UOz)

	TABLE 12 EFFECT OF TEMPERATURE ON POWER DISTRIBUTION
	TABLE 13 RESULTS OF CHANGES IN AXIAL PARAMETERS (MG/G U02)
	TABLE 14 FEED MATERIAL FOR ATW (KG)
	TABLE 15 AMOUNT OF MATERIAL PRODUCED(+)/DESTROYED(-) BY ATW (KG)
	FISSION-TO-CAPTURE RATIOS OF ISOTOPES IN EACH SPECTRUM
	APPENDIX A LISTING OF C-SHELL FILE MONTEBURNS
	APPENDIX B LISTING OF FORTRAN77 PROGRAM M0NTEB.F
	APPENDIX C SAMPLE MCNP INPUT FILE
	APPENDIX D SAMPLE MONTEBURNS INPUT FILE
	APPENDIX E SAMPLE FEED INPUT FILE

