LA-13514-T
Thesis

e REORy,

OSTI

Development of Monteburns: A Code
That Links MCNP and ORIGEN?2

in an Automated Fashion for

Burnup Calculations

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory is operated by the University of California
for the United States Depariment of Energy under contract W-7405-ENG-36. -

This thesis was accepted by the Department of Chemical and Nuclear
Engineering, the University of New Mexico, Albuquerque, New
Mexico, in partial fulfillment of the requirements for the degree of
Master of Science. The text and illustrations are the independent
work of the author and only the front matter has been edited by the
CIC-1 Writing and Editing Staff fo conform with Department of
Energy and Los Alamos National Laboratory publication policies.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither The Regents of the University of California, the United States
Gouvernment nor any agency thereof, nor any of their employees, makes any warranty, express
or irplied, or assumes any legal lability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that iis
use would not infringe privately owned rights. Reference herein fo any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by The Regenis
of the University of California, the United States Governiment, or any agercy thereof. The
views and opinions of authors expressed herein do not necessarily state or reflect those of

The Regents of the University of California, the United States Government, or any agency
thereof. Los Alamos National Laboraiory strongly supports academic freedom and a
researcher’s right fo publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee ifs technical correctness.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. lmages are
produced from the best available original

document.

Development of Monteburns: A Code
That Links MCNP and ORIGEN2
in an Automated Fashion for
Burnup Calculations

Holly R. Trellue

Los Alamos

NATIONAL LABORATORY

Los Alamos, New Mexico 87545

LA-13514-T
Thesis

UC-760 and UC-714
Issued: December 1998

ACKNOWLEDGMENTS

First, I sincerely thank everybody in tﬁe Nuclear Systems Design and Analysis
Group (TSA-10) at Los Alamos National Laboratory. [especially thank Dave Poston for
coming up with this idea and for all your enormous help and knowledge - you’ve taught
me so much! John Buksa and Stacey Eaton, thank you for sui)porting me and allowing
me the freedom to work on this research. Thanks also to Mike Houts and Paul Chodak
for your technical advice and support. Additionally, I send a “thank you™ to Deborah
Bennett and Al Neuls for taking the time to care about the students in your group!

Next, I acknowledge Larry Sanchez at Sandia National Laboratories for imntroducing
me to the world of FORTRAN77 programming, MCNP, and ORIGEN2, as well as for all
the knowledge you gave me. I also thank my comumittee members at UNM, Dr. Norm
Roderick, Dr. Robert Busch, and Dr. Gary Cooper, for taking the time to read this
document and for everything you taught me both as a undergraduate and a graduate
student.

Finally, I thank my parents, Judy Emmett and Ron and Patricia Trellue, and my
best friend, Rosa Canchucaja, for always being there for me, aﬁd my boyfriend Dave
Fuchne for all your encouragement and support. 1 also have to thank my dog girls,

Cleopatra and Penelope, for your comic relief and doggie kisses - don’t worry - now I'll

have more time to gi\?c you belly rubs and biscuits!

TABLE OF CONTENTS

LIST OF FIGURES Xi
LIST OF TABLES X
1.0 INTRODUCTION. 1
2.0 BACKGROUND 4
2.1 MO ONP ..ot se et rassse s e st s ss b e b anss et s e bt asanas s nsbasaeresanasnensensssearneraeasean 5
2.2 ORIGEN? ...ttt venvsee st saseestanstoteasesosanasantesbassasseseassensasmnssabassassssrenns 7
2.3 PREVIOUS WORK.............. R VOO 9
2.3.1 LINKQ@E COUES....vvvaveiiiiiiii et e evaer s esss e e s s s s e e s s asann i1
232 Discrete Ordinate Burtiup CO@EScocuveeioviveiieiireriieiiriiiiererisesssssaneins 12
3.0 DESCRIPTION OF CODE/THEORY 14
3.1 DESCRIPTION OF MONTEBURNS eerrreen et e s e st seeases 15
3.2 O G @ 1 T ————————————— oGSO 20
3.2.1 Recoverable Energy per FESSTOM oo eee e eeeseseseeesssereeeeeseessennessenees 20
3.2.2 Flux Tally NOrmaliZAtiON........coccccovioeeieeeeees e maevevstessserresssssasssesasa e e vasens 22
3.2.3 Reactor PhysicS CORSIATLSoocceieereieaoiairneaieesee et aesseesnasssssnssasesnsasseneessansenseas 25
3.2.4 Effective Multiplication FACIO«..............ooovivivioiieiricniis it 26
3.2.5 POWEF c.evieseeeir e eestesvessesssereesseseerecesane s e e sateeae s aarae s asete et naamgam st s eabas aaaem e e s ann en e rae e 26
3.2.6 Importance Fraction.......... reereeerreaeerbeats e an bt st e st s e s annaneanen s e hnas s eansneeenen e eensens 26
3.3 WUSER INPUT....couitrrreancrieereciraeessesmenrestenaane st esneseasnesaeseonsesemsnsssasenneaenere sucossasenonssace 29
3.3.1 MONP INPUL FTIE .ot e 30
3.3.2 Monteburns Input File......oo.o...oooereeeveee, e eeeee e eeeee e eeees s reee 30
333 FeA INPUE File......ooeoe it vt st a s e save s 37
3.3.4 Ldentifier Input File........ccooooinei oo veae ettt ne e 38

vii

34 TP U T e oottt aassssnamesmaarnnnnasnnan—ssnmnnieimmrensassmssbssssemsenamnnn e srasasanasasssasempmnnsns 40

4.0 BENCHMARKING/STATISTICS : 44
4.1 BENCHMARKING «.reveeernrieseasresostoossimansaesastassanssnstsssssinmssnssss 1ansssasssassasnsssasansssssas 44
4.1.1 Isot0pic CORCERIFAIIONco oo srsinssiesirnesesansneeeee s S
4.1 1.1 DeSCIIPtION. coer e ettt et n s 45
A.1.1.2 RESUIS...vuievieereceecerecesenscecsreeareneeseaconissarasnerseerees et se e arsens 45
4.1.1.3 Resonance SeH-Shieldingcoccoviiicrimneerniinemrrcreerreesstessenre e 46
4.1.1.4 CroSss SECIIONS .ovvvvirvevreerirnerrasrrersssersannresisntaasstassstessieessrassnnnrssassssssassssnssrnssnsas 49
4.1.1.5 TFISSION PIOQUCES.....ccviceeeereesrseareesrsrerssecmesansestetesnmsssseesansarseroscassassorersraneston 50
4.1.2 Pin-Cell BUPTUD........covoecceneciirciacaieniisiocinnseissssssseie s s e s assasssssansansn 3
A.1.2.1 DESCTIPLON. ccuecveeccceistirnicrsiierasssteice s sests s tessa s s s b s rnenesseneotesnresarnssarsnsntns 52
B.1.2.2 RESUIMS.c.uveieeieeeeiieerrnierie i stiss et s v s st ers e e s n e b b s 55
4.1.2.3 Differences int ENErgy SPECtral......c.cvviiviiiiimruimneirrimrsesenienisensesaicnenns s 57
4.1.2.4 Recoverable Energy Per FiSSION.......ccccoviiiimiiini et ntnes oo scrnnns 57
4.1.2.5 FISSION YIEKASovveiirerrermreeerensreesri s cesticsraesn s sss s vt s ass e ma s ine s vessanssasatons 58
4.1.2.6 Statistical VArlanCes.ccvcerreeerierrcerriniriresrressiimciniccceses sranrssssassssanssassmsessassens 59
4.1.2.7 AQditional BUIDUPcccvcoriiieiemiinionieniiieniecrensresrasssrssnssssnsssasssssnsassssssaass 59

4.1.3 ASSEMBIY BUFRUD........ocooeevevevesiiiriserserivarissniomsinnnsesnsasssnessnssssnssssscsssssssssnseascsn OO

4.1.3.] DESCIIPHON.vverorrirrcoserisrserisssisssesssrsssrasssssstsisshasesssesssrasassssasssssssessssssanssssons 60
A.1.3.2 RESUIS.ceeeeeei it eeeivesnie s te st cc s e s sive s st rers st s e s s e s an st as s s e s e e sse v aa e va s e sabans 61
A.1.3.3 ACHNIES c..oieiivre e ccvenecessnrce e s vvstastassiae s asssnae s e bta s v assasnbnrassssserasasasnrstons 63
4.1.3.4 Fission Products........cccoemeverrerivimennmiae e tiisirnnssrsssitesos svtassm e nses s eraascoransans 64
4.1.3.5 Comparison to SCALE ...t e 65
4.14 POWer DiISIFIDUIION.ccooveireriavrnessieeceneseaseraeessaeiesacnssannernessonsataceacssssnss s 0

4.1.4.1 Description
A 14,2 RESUIIS. e oeeeceeeeeeeesiteimressssmnressssesaemeesbanaeeransneaessntarsessorisntatntteneesornrannassrses

4.1.5 Activity Caletlation..............cooocovicciioiiiianie st
4.1.5.1 DeSCIIPION. ... ocr o eeeieereeerereereteerssesurestease s serresseaseesnessesaerasssnssssssnsseresssnnsessanen
4.1.5.2 RESUIS.ciiricrrrrsmceceeicmreencese s seersier e s cranee st eesbeesaaesameraaenssnt s nanasaseserssonernanes
4.1.5.3 ACHNIARScceiereieeiinerirreeereetee st e eesneessresersnsesrnessessenns eerteeaneseeereratarreaas
4.1.5.4 FisSI10N PIOAUCTS. ...cveeeicriieie i ceientee e rincernceereservsecsreesessaesaessasstroseessessnerseras

4.2 STATISTICAL ANALYSES ..vevseuieeicesinesiesiresiomassastvetssssonnsannestarinnssasassessessesmssersseons

4.2.1 Input Parameters................. e
4.2.1.1 Number of Outer and Internal Burn Steps. ..ot
4.2.1.2 Number of Predictor Steps....c.c.cocovevvieeereerererenn. ettt ettt anaaas
4.2.1.3 Imporfance Fractionc..cocoierivierieriictic e neerccrtecriees s e s e cssescenens
4.2.1.4 Recoverable Energy Per Fission ...ttt

422 System-Dependernt CHANGEScocoovoeeiiiiiiiiiiii ettt
4.2.2.1 Modeling @ SySTemL ..o eiiva it cee e cee et e e e e acaesrersaesraesrenessracmnenns
4.2.2.2 Temperature- and Material-Dependent Parameters......c.ooooooi e,

4.2.2.3 Axial Boundary Conditions.......c..ccuvmeereerierromeeriiseerneesionieesnesssonsscnsessacess

5.0 APPLICATIONS OF MONTEBURNS

87

51 ACCELERATOR TRANSMUTATION OF WASTE.....uviiiimiecrericenneensoncarierccareonenesannas
5.2 PLUTONIUM DESTRUCTIONcorvueriieiieriiereieicoiiier coriesasnsesstsontemsasssss st seessseessnnass
S 20 FUELFO Moot enee et ete et ete et e e am et 2pasnsaem e van e oae omeaas
5.2.2 IS010PIC COMPOSTHON. ..cuveeeeveeeeemrcere et cereastrasceresarnsconesseeeracemesoneesnossannen

5.2.3 Energy SPeCHiumwvvmvveemsmresinrincisis s ettt e a st et st et s r s

6.0 LIMITATIONS OF AND FUTURE WORK FOR MONTEBURNS....ccvvcssseens

7.0 CONCLUSIONS

87
92
92
93
94

98

APPENDICES 100

APPENDIX A, LISTING OF C-SHELL FILE MONTEBURNS 101
APPENDIX B. LISTING OF FORTRAN77 PROGRAM MONTEB.Fccciivurninas 110
APPENDIX C. SAMPLE MCNP INPUT FILE 183
APPENDIX D. SAMPLE MONTEBURNS INPUT FILE 184
APPENDIX E. SAMPLE FEED INPUT FILE 185

REFERENCES 186

LIST OF FIGURES

FIGURE 1. INTERACTION OF MONTEBURNS WITH MCNP AND ORIGEN2 .ooocvveeveeveeires 15
FIGURE 2. MONTEBURNS FLOW CHAR T ceiiriteeteiisscetissscosnsss sassssseassssssssssssenssssmssnnssonnnsasmssns 19

FiGurEe 3A. CALCULATED ISOTOPIC DISTRIBUTION AS A FUNCTION OF BURNUP AS

PREDICTED BY MONTEBURNS «.cvittviiimterriariantantrstesssssessasrinnsssssssintmnsantenersinsnesinssarmnes 45
FIGURE 3B. PUBLISHED! ISOTOPIC DISTRIBUTION AS A FUNCTION OF BURNUPooveo...... 46
FIGURE 3C. DIFFERENCES IN HIGHER ISOTOPES OF PLUTONIUMocovtvieeiimvierreevrnneesnnnannes 48
FIGURE 4. PiN-CELL DIAGRAM........... S e eveeessteeseeseesrneererasereeeesntesatnstrhna aeantntananieas 52
FiGURE 5. LAYQUT OF ASSEMBLY FOR TESTCASE#3 .eeeeeeeeerreee e ieee e aaneeaeea 61
FIGURE 6. 3X3 ASSEMBLY ...eeeeivrtiresnesesessessssmmsaesreessstomsssensnsonsessnssssnsessasssns smsmssesmsessamnsesams 66
FIGURE 7. SAMPLE OF CORE CONFIGURATION FOR ATW ccviieriiriiiriirieree v srrsrvassrmannssnrserieses 29
FIGURE 8. PLUTONIUM DESTRUCTION AS A FUNCTION OF BURNUP..eooveeeceemrervereeerresemeennes 93

LIST OF TABLES

TABLE 1, CONDITIONS OF Kgpp vorecreserarenremreeesassserteserraaerasssssassnsestesmmeesessomsessasssesssssssonrrssssssns 6
TABLE 2. COMPARISON OF LINKAGE AND/OR BURNUP CODES..ccecrvieirtierarreesrreneeeeneesenens 10
TABLE 3. FRACTION OF RECOVERABLE ENERGY PER FISSION FOR CERTAIN ACTINIDES
DiviDED 8Y THE RECOVERABLE ENERGY PER FISSION FOR U-235......coonrivaicnnnnns 22
TABLE 4a. COMPARISON OF THE CHANGE IN THE FI8810N-TO-CAPTURE RATIO IN
MonTEBURNS WiTH BURNUP TO THERMAL ONES USED IN REF. 7...covenrrrirecrinrerinens 49
TABLE 4B. COMPARISON OF THE CHANGE IN THE ABSORPTION CROSS SECTION IN
MOoNTEBURNS WiTH BURNUP TO THERMAL ONES USED IN REF. 7..corvrirrrecceriine 50 |
TABLE 5. PARAMETERS FOR TEST CASE #2..nniiiiiiereeeeeiitreeeceisvaesaessssiensaseesee s sssssssasersssons 33
TABLE 6A. RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO A55
TABLE 6B. RESULTS AND A COMPARISON OF EXPERIMENTAL IDATA FOR SCENARIOB _....... 56
TABLE 7A. RESULTS FOR BURNUPS OF 16.00 anD 23.84 GWD/MTHM (G/G UOs).......... 62
TABLE 7B. RESULTS FO’R BURNUPS OF 28.64 AND 31.86 GWD/MTHM (G/GUQOy).........62

TABLE 8. PIN POWER DISTRIBUTEDN ..cotiiiiiestiiieraiesrssmnsrassrmessssssmssnnnssssseressinssermsnnssssssssseses 67

TABLE 10C. RESULTS AS A FUNCTION OF INTERNAL BURN STEP FOR CONTINUOUS FEED...75
TABLE 10D. COMPARISON OF RESULTS AS A FUNCTION OF NUMBER OF PREDICTOR STEPS.76
TABLE 10E. COMPARISON OF RESULTS AS A FUNCTION OF IMPORTANCE FRACTION........... 78
TABLE 10F. RESULTS AS A FUNCTION OF RECOVERABLE ENERGY PER Fisston (G/G UQ,).81

TABLE 11. RESULTS AS A FUNCTION OF Kz AND CROSS SECTION (TEST CASE #2, SCENARIO

A = MG/G UD) etiitiieeetierrrinrieaiase s astes it tessscessssstassnasabsssbtarmbs monssasmsaserantesbnsesmmnsasen 83
TABLE 12. EFFECT OF TEMPERATURE ON POWER DISTRIBUTION eeeensnnreeseneenans e 4
TABLE 13. | RESULTS OF CHANGES iN AXIAL PARAMETERS (MG/G UQ))..cuciiiiiiiiiniicieeien. 86
TABLE 14. FEED MATERIAL FOR ATW (KG) covveiieiiiiiiiiiei i sesinnene s acmacacoaaczmaasezooas 90
TABLE 15. AMOUNT OF MATERIAL PRODUCED(+)/DESTROYED(-) BY ATW (KG}..vevuvenee 91
TAﬁLE 16. FissiON-TO-CAPTURE RATIOS OF ISOTOPES IN EACH SPECTRUM ..ccoccvenicnmnnne.ne 95

Development of Monteburns: A Code That Links MCNP and ORIGEN2
in an Automated Fashion for Burnup Calculations
. by

Holly R. Trellue

ABSTRACT

Monteburns is a fully automated tool that links the Monte Carlo transport code
MCNP with the radioactive decay and burnup code ORIGEN2Z. Monteburns produces
Ihany criticality and burnup computational parameters based on material feed/removal
specifications, power(s), and time intervals. This code processes mput from the user
indicating the system geometry, initial material compositions, feed/removal, and other
code-specific parameters. Rgsults from MCNP, ORIGEN2, and other calculations are
then output successively as the code runs. The principle function of monteburns.is to
first transfer one-group cross sections and fluxes from MCNP to ORIGEN2, and then
transfer the resulting material compositions (after wradiation and/or decay) from
ORIGEN2 back to MCNP in a repeated, cyclic fashion. The main requirement of the
code is that the usér have a working MCNP input file and other input parameters; all
interaction with ORIGEN2Z and other calculations are performed by monteburns.

- This report presents the resuits obtained from the benchmarking of monteburns to

measured and previously obtained data from traditional Light Water Reactor systems.

The majority of the differences seen between the two were less than five percent. These

were primarily a result of variances in cross sections between MCNP, cross section
libraries used by other codes, and observed values. With this understanding, this code can
now be used with confidence for burnup calculations in three-dimensional systems, It
was designed for use in the Accelerator Transmutation of Waste project at Los Alamos

National Laboratory but is also being applied to the analysis of isotopic

production/destruction of transuranic actinides in a reactor system. The code has now

been shown to sufficiently support these calculations.

1.0 INTRODUCTION

The past few decades have brought growth in a number of areas, two of which
mclude the nuclear industry and computer technology. As restrictions placed upon and
costs involved with experimental facilities increase (due to environmental and radiological
health concerns), the value of computer modeling aiso increases. It has become possible
to mode! various types of nuclear systems (including full reactor cores) and perform
complex decay and burnup calculations in a matter of seconds. With the increase in
computer technology, the number of computer codes available to perform nuclear-related
calculations has increased, and often the user wants to run two or more codes
concurrently. Thus, many linkage codes have been written to allow concurrent use of
these “mam” codes in an automated fashion. Two p.opular codes used in the design of
nuclear systems are MCNP™ and ORIGEN?Z, and the code presented in this report is a
linkage code for these two “main” codes.

MCNP (Monte Carlo N-Particle transport code) is widely used to perform
Monte Carlo calculations of neutron, photon, and/or electron transport.l!! MCNP is
primarily used for analyzing the exact geometry and material composition of a system to
determine the behavior of particles in that system (see Section 2.1 for a more detailed
description of MCNP). It cannot, however, determine the effect that irradiation (burnup)
has on the materials within the system (i.e., radicactive decay and burnup calculations}.
Instead, this 1s the function of the code ORIGEN2 (The Oak Ridge National Laboratory
(ORNL) Isotope Generation and Depletion Code), which analyzes the burnup and
concurrent decay of isotopes in a system over time.” The limitation of ORIGEN2 is
that it does not take into account the geometry of a system. The geometry, among other
things, influences cross sections and neutron fluxes at various positions m the

material/region(s) being analyzed. These geometry-dependent parameters of the system

' Radiation Safety Information Computational Center (RSICC) Code Packages CCC-660 and CCC-371.

can be determined by MCNP. Thus, it is desirable to link MCNP and ORIGEN2 to
allow accurate calculations of spatial isotope generation and depletion in a physical
system.

The basis for the work presented in this paper is the need for a fully automated
linkage code that transfers material compositions and cross sections for any three-
dimensional (3-D) system from MCNP to ORIGEN?2, transfers the materials remaining
after irradiation from ORIGEN2 to MCNP, obtains new cross sections, criticality
parameters, and flux/energy spectrums from MCNP, and then transfers materials back to
ORIGEN?2 in a cyclic fashion for as many time steps as needed. Additionally, three other
features related to overall performance were desired: 1) the option to hradiate more than
one material as separate ORIGEN2 analyses from a single MCNP output file and
combine them again after irradiation into a single MCNP input file, 2) the ability to
transfer material from one region in MCNP to another, and 3) the capability to add or
remove specified materials after each step in an automated fashion.

Initially, monteburns was specifically developed for use in the Accelerator
Transmutation of Waste (ATW) project®! because it could combine a detailed 3-D
system model with burnup calculations in an automated fashion. The goal of the ATW
project is to reduce the radiotoxicity of nuclear waste so that the radiotoxicity of ATW-
treated waste after 300 years is less than that of untreated waste after 100,000 years (see
Section 5.1 for more information). For this project, it is desired to have a linkage code
that aliows addition (referred to as “feed” in this document) and/or removal of material
either continuously or discretely (all at one time). In addition, the code must be capable
of buming more than one material region in ORIGEN2 and of combining isotopic
compositions for each material into one main MCNP input file for a series of burnup

steps. For ATW, all of these functions are performed and regions of spent fuel are

rotated from the outside to the inside of the system to allow different amounts of

irradiation to occur in each. The code was also designed so that it can be used for reactor
systems, as shown in Sections 4.1 and 5.2.

The name monteburns was chosen because it is a Monte Carlo burnup tool. The
purpose of this document is threefold: 1) to present information relevant to the
development of monteburns (i.e., background/previous work, theory and calculations used
in the code), 2) to display results of benchmark calculations used to verify the

performance of monteburns and of statistical analyses for several input parameters, and

3) to show current and future applications of monteburns.

2.0 BACKGROUND

Over the past few decades, the development of numerous computer codes has
increased the utilization of computer modeling in solving nuclear design problems. For
example, Los Alamos National Laboratory developed a Monte Carlo code, MCNP, which
1s used to model particle transport in a variety of nuclear systems. In addition, Oak Ridge
National Laboratory designed a number of codes, including ORIGEN2, the radicactive
decay and burnup code discussed in this document, and the SCALE package, which is a
“Modular Code System for Performing Standardized Computer Analyses for Licensing

Evaluation.” 2

The SCALE package encompasses a variety of codes, including several
(i.e., MORSE and KENO) that perform Monte Carlo transpoit | calculations, and
ORIGEN-S, which performs radioactive decay and bumup calculations (ORIGEN-S is a
“newer” version of ORIGEN2). Concurrently, many commercial nuclear companies
(both in the United States (US) and Europe), developed their own methods/codes for
analyzing the effects of burnup on a reactor core. Many of these methods have been used
and tested extensively, but many are not publicly available.

There have also been several codes written to link MCNP and ORIGEN2, some of
which are discussed in Section 2.3. However, each of these linkage codes appears to have
been developed for specific purposes and thus has certain limitations. Monteburns was
developed to be as versatile as possible so that it can be applied to a large number of
situations and give the user a variety of choices of operational parameters while
simplifying required user training,

Descriptions of the two codes linked by monteburns, MCNP and ORIGEN2, are

included below, followed by a discussion of previously developed bumup codes. One of

the main assumptions made by monteburns is that MCNP and ORIGEN2 perform

? Radiation Safety Information Computational Center (RSICC) Code Package CCC-545.

calculations well; benchmarking of them has already been performed, so no additional

benchmarking is necessary.

21 MCNP

MCNP is a transport code that uses the Monte Carlo technique. The Monte
Carlo technique is a statistical method in which estimations for particle characteristics are
obtained through multiple computer simulations of the behavior of individual particles in
a system. The probability that a particle behaves in a certain manner I(scatters, absorbs,
fissions) is obtained from the cross sections for the matenial(s) with which the particle
interacts. For example, if a material is a pure absorber, the probability that a particle
interacting with this material is absorbed is 100%. If the material is both an absorber and
a scatterer, then the probability of absorption 1s equal to the ratio of the absorption cross
section to the total cross section {absorption plus scatter). [t follows that the probability
of scatter 1s equal to the ratio of the scattering cross section to the total cross section.
After a particle has undergone a scatter, it remains in the system to undergo another
interaction. A Monte Carlo code keeps track of the position of each particle before and
after it scatters and/or is absorbed, as well as any neutrons | produced from fission
interactions. If a particle travels outside of the system, then it is considered to have
“leaked.” At the end of the “life” of the particle, it either leaks from the system or is
absorbed in a material. In the case of a neutron being absorbed in fissile material and
causing a fission, the location and number of new neutrons created 1s recorded.

A Monte Carlo code generates a statistical history for a particle based on random
samples from probability distributions used in calculations to determme 1) the type of
interaction the particle undergoes at each point in its life, 2) the resulting energy of the
particle if it scatters, and/or 3) the number of neutrons it produces if it causes a fission.

‘Thus, a Monte Carlo code models the series of events that occur in the lives of a large

number of particles to determine the flux of different types of particles in various

locations in the system. The particles of the most interest in criticality/burmup
calculations are neutrons because they are the ones that interact with fissile materials to
produce energy as well as more neutrons.

MCNP is used to model the events in the lives of neutrons, photons, and/or
electrons. The cross sections for the particles are obtfained from numerous material cross
section libraries containing a number of isotopes at various operating temperatures.
MCNP uses these libraries in a continuous-energy fashion, which means that it obtains
the specific cross section for a given energy rather than looking at grouped cross section
sets, in which the cross sections represent an average of a particular range of energies.

MOCNP can also calculate the effective multiplication factor (k.s) for a system,
which is the number of neutrons produced in one generation divided by the number of
neutrons that existed in the previous generation, indicating how close the system is to
being critical (k. of 1.0). Table 1 shows the condition of a system at various values of
k.- A reactor is typically operated at a kog around 1.0 as the system is self-sustaining at
that point {i.e., requires no new source of neutrons).

MCNP is a valuable tool in that it helps to design a system to operate at a certain
condition. MCNP was developed by personnel at Los Alamos National Laboratory
(LANL), serves a large number of government and institutional organizations, and has
been well maintained and updated. For more information about Monte Carlo codes or

MCNP in particular, see Ref. 1 or 5.

Table 1. Conditions of kg

Value of ks Condition !
kerp < 1.0 Subcritical
Ketr = 1.0 Critical
k> 1.0 Supercritical

2.2 ORIGEN2

ORIGEN?2 is a version of the ORIGEN computer code, which is an isotope
generation and depletion code used for performing radioactive decay and burnup analyses
for a material. ORIGEN calculates the concentration of nuclides at numerous points
throughout a decay or irradiation primarily using the matrix exponential method of
equation solving. ORIGEN treats the full isotopic matrix of materials generated through
irradiation by considering time-dependent formulation, destruction, and decay

concurrently. The main calculation performed by ORIGEN is shown in Equation 1.[6

% - Z er'r'O-f,fNj¢ + o'c,i—iNf—l‘p + ;iﬁN; - Gf,iNi¢ - o-c.iNi¢ o ;['iNf &
i

dNi . . e
where: —— = change in concentration of nuclide 1 with time =

Formation rate - Destruction rate - Decay rate
Formation terms:

z Y0 ;N¢ = fission yield rate of N; from fissionable nuclides N;
j

o, N_¢ =transmutation rate of N;; inio N, by neutron capture
AN, = radioactive decay rate of N; into N;

Destruction terms:

o, N¢ = fission rate of nuclide ;

i

o, N,¢ = capture rate of nuclide N; - (n,y).(n,o),(n,p),(n,2n), and (n,3n)

Decay term:
AN, =radioactive decay rate of nuclide N;
where: ¥, = fission yield of nuclide i from nuclide j (obtainéd from libraries})
o, ; = microscopic fission cross section of nuclide] (cm? - from libraries)
N, = concentration of nuclide j (gram-atoms - calculated)

¢ = neutron flux in system (n/cm?-s - input)
O, ,_,= microscopic capture cross section of nuclide i-1
(e’ - from libraries)
A, =decay constant of nuclide i (s - obtained from decay library)

i

The matrix exponential method used to solve this problem with a spectrum-averaged flux

and one-group cross sections is shown in Equations 2 and 3.

N = AN | - 0
N = Noe™ (3)
where: N = change of nuclide concentration with time
A = transition matrix with rate coefficients {decay, absorption, fission)
N = vector of nuclide concentrations at time t
N, =vector of initial nuclide concentrations

The equation is then solved by obtaining a series expansion for the term e*'.

A _ o (AL
et = 26 ~ (4)

Sometimes difficulties occur in generating accurate values using the matrix
exponential method, and either the Bateman equations!’! or the Gauss-Seidel iterative
technique!® is applied. The number of nuclides removed from the transition matrix and
processed using the Bateman nuclide chain equations are determined by how many have
half-lives (both absorption and fission) less than 10% of the time interval being

mnvestigated. Thus, having a shorter time interval m ORIGEN allows the Bateman

equations to be used in solving for the concentrations of a larger number of isotopes (as
discussed in Section 3.3). This can be advantageous in that it often allows more accurate
results to be obtained.

The input required for ORIGEN2 consists of three parts: cross section libraries,
information about each decay/irradiation step, and mitial material compositions. First,
ORIGEN?2 contains over 40 different data sets with oné-group cross sections for various
energy/system spectra. The user must decide which one to use, and transfer both the
ORIGEN2 decay library and that cross section library to a file that can be read by
ORIGEN? (typically called fort.9). He/she must then enter identifiers for these libtaries
in the main ORIGEN2 input file. Second, this main ORIGEN2 input file must also
contain detatied information required to run the code, inchuding the length(s) of each decay
and/or irradiation, the flux or power associated with each irradiation, and a description of
what output parameters (and units of these parameters) are desired. Finally, the initial
composition of the material being irradiated must be entered. This can either be part of
the main ORIGEN?2 input file, or it can be self-contained in its own file (usually called
Jort.4). The output for ORIGEN?2 includes cross sections and fission yields used by the

code as well as nuclide concentrations at each time step as specified by the user.

2.3 Previous Work

There are two_mﬁin classes of codes that can be used to perfonn criticality
calculations for nuclear systems: a Monte Carlo code, and a deterministic code. Monte
Carlo techniques typically produce a statistical approximation of the answer for the exact
geometry of the system, whereas deterministic codes numerically produce an exact
solution of the diffusion and/or fransport equ.ations for the problem as modeied.
Deterministic codes generally cannot solve such equations easily for complex geometries,

so approximations on the geometry must be made.’) Additionally, deterministic codes

generally utilize less accurate cross section data (i.e., grouped versus continuous). With a

Monte Cario code such as MCNP, a supplemental code, such as ORIGEN2, must be

used to perform burnup analyses, and another code (i.e., a linkage code) is needed to

interact between the two. Examples of such linkage codes include MOCUP,®

COUPLE,!'" and SCAMP,['"] which are further discussed in the following sections and

are compared in Table 2.

Table 2. Comparison of Linkage and/er Burnup Codes

Description/Comparison

{ Includes Monte Carlo, 3-D techniques and system-dependent parameters

Links MCNP and ORIGEN2 with existing input files for each
Modifies reaction rates, fluxes, and cross sections in ORIGEN2

Modifies nuclide compositions in MCNP after one burnup period

SCALE/
COUPLE

Allows Monte Carlo 3-D modeling and system-dependent parameters
Develops muiti-group cross sections and neutron fluxes for ORIGEN-S
Modifies cross sections and fluxes at each time step

Is a fully automated suite of programs and requires detailed training

Links MCNP and ORIGEN-S for burnup calculations of LWRs
Transfers material compositions after burnup to MCNP

Does not transfer cross sections or fluxes

Performs transport calculations for a two-dimensional (2-D) geometry

Couples subcomponents to perform fast, efficient calculations

Uses multi-group ENDF” cross section libraries

Does not include system-dependent axial effects

ANDROMEDA*

Performs one-dimensional diffusion calculations for fast reactors

DANTSYS®/
ORIGEN2

Calculates criticality parameters using transport theory
Multi-group cross sections must be collapsed to one-group for ORIGEN2
Can perform detailed 3-D geometry caiculations, but only with difficuity

The United States Evaluated Nuclear Data Files, particularly ENDF/B-V or ENDF/B-VI versions

™ Light Water Reactors

* Radiation Safety Information Computational Center (RSICC) Code Package PSR-363.
* http://www.nea.fr/abs/htmi/nea-0321. htm)
’ Radiation Safety Information Computational Center (RSICC) Code Package CCC-547.

10

http://www.nea.fr/abs/html/nea-032

In contrast, many deterministic codes used by the commercial nuclear industry
- (for example, HELIOS[12] and ANDROMEDAG4) actually incorporate burnup as well as
criticality calculations, These codes are designed for one- or two-dimensional lattice
geometries and are often large, complex programs to execute. The other way to use a
deterministic code that does not perform burnup caiculations (for example, the Diffusion
Accelerated Neutral Particle Transport System (DANTSYS) suite of codes)[13] is to link
it with a burnup code such as ORIGEN2. Although deterministic codes can perform
burnup calculations, they do not have the physical accuracy associated with a Monte
Carlo code that models a detailed, 3-D geometry. These. two categories of codes are
discussed in the following sections with examples of each, but these only represent a
small sample of the codes that have been written for burnup analyses; there are most

likely other types of codes not presented here.

2.3.1 Linkage Codes

MOCUP (MCNP-ORIGEN2 Coupled Utihty Program) is a MCNP/ORIGEN
linkage code designed to transfer fluxes, reaction rates, nuchides, and cross sections from
MCNP to ORIGEN2 using a number of user-supplied skeleton ORIGEN2 files, which
are then modified with MCNP results. Then it extracts nuclide compositions from the
ORIGEN2 output files and converts them into number densities, which are placed back
into MCNP. However, it requires a certain structure for the initial MCNP input file
(with comments indicating different locations in the file) and requires the user to create
skeleton ORIGEN2 input files. It does not mteract m an automated fashion with MCNP
and ORIGEN2 for more than one time step; instead, the user must run each time step
manually, adding feed materials, removing waste, and/or rotating regions. Although the
MOCUP utility can be very useful for simple analyses involving MCNP and ORIGEN2,
it does not work well with repeated structures, multi-materials, or the other limitations

discussed previously.

11

COUPLE is one of the many modules that exist in the SCALE (Standardized
Computer Analyses for Licensing Evaluation) suite of programs. The purpose of
COUPLE is to produce multi-group cross section libraries from the ENDF data base and
multi-group neutron fluxes, which are required as input for ORIGEN-S, from a detailed
model of the system (typically developed using the SCALE module KENO). This
program, along with other modules in SCALE (such as NITAWL, BONAMI, and/or
XSDRNPM), allows system-dependent design charactenistics (such as operating
parameters and material compositions) to influence multi-group cross sections. This
system is fully automated with the feature that a large suite of programs are used to
represent a system as accurately as possible. Unfortunately, although these modules
offer a mumber of options for performing calculations, they also require extensive, detailed
trainmg to execute properly.

SCAMP (SCALE-to-MCNP Post Processor} was a code written to link
ORIGEN-S and MCNP for Pressurized-Water-Reactor (PWR) fuel assembly
configurations. It transfers actinide and fission product compositions from the SCALE
module ORIGEN-S to MCNP. However, it does not perform automated calculations for
numerous steps or generate spectrum-averaged cross sections from MCNP to ORIGEN-
S. The advantage of this program is that ORIGEN-S uses cross sections representative of

typical PWR systems, whereas the data base for ORIGEN2 may not be as representative.

2.3.2 Discrete Ordinate Burnup Codes

There are a number of discrete ordinate burnup codes used in the commercial
nuclear industry for analyzing the components of a nuclear reactor during operation. Two
such examples are HELIOS and ANDROMEDA.

HELIOS performs neutron and gamma transport and bumup calculations for two-
dimensional lattice geometries. It consists of three different processors: the main

program, a pre-processor, and a post-processor. It was developed by Scandpower A/S

12

as a two-dimensional collision probability-based transport code. The associated HELIOS
libraries are 34-energy group libraries based upon ENDF/B-VI data for a variety of
temperatures. HELIOS is useful for performing quick calculations for various reactor
physics constants but needs to be coupled with another code to obtain temperature
coefficients or to model 3-D system effects. HELIOS 1s also fairly expensive to obtain.
Additionally, CASMO, another widely used burnup code in the US commercial nuclear
industry, performs calculations fairly similar to HELIQS H4

ANDROMEDA is a one-dimensional mulfi-group diffusion-burnup code
developed in the Netherlands for use with fast reactor systems. The code is designed
primarily for fuel-cycle analysis of fast breeder reactors by calculating regular and adjoint
fluxes, material bucklings, kinetics parameters, material (fuel or poison) concentrations,
and region dimensions at various steps throughout irradiation. ANDROMEDA collapses
multi-group cross sections to several groups and analyzes cylindrical, spherical, and/or
slab geometries. A variety of muiti-group cross section libraries for ANDROMEDA are

available.

13

3.0 DESCRIPTION OF CODE/THEORY

Although the linkage and burnup codes discussed in the previous section perform
adequate calculations for the irradiation of materials In a system, they do not provide the
entire range of parameters and functions useful in advanced nuclear burmup problems. For
ATW and certain reactor systems (see Section 5), it is desired to have a code that
performs automated burnup calculations for a 3-D system for more than one time step. It
is also desirable to calculate spectrum-averaged cross sections and fluxes for each of these
burnup steps. The Monte Carlo code MCNP was chosen to model the system because it
is widely known and is capable of modeling in three dimensions as well as calculating
spectrum-averaged cross sections and fluxes in different regions of the system. The code
ORIGEN2 was chosen to perform calculations involving the change of nuclide
concentrations because it is a stand-alone radicactive decay and bumup code with the
characteristic that cross sections and material compositions can each be contained within.
separate input files, making them easy to modify for numerous burn steps.

In addition, it is preferred to have a linkage code involving little interaction with
ORIGEN2 and with the ability to work with any MCNP input file (i.e., no format
requirements for an ORIGEN2 or MCNP input file) without requiring detailed training.
Other desired features include the ability to add and/or remove certain materials In a
system at different burn steps, burn more than one material from the initial MCNP input
file, and rotate materials from one region in the system to another. None of the linkage
codes presented in Section 2.3.1 exhibit all of these options, and the determmistic codes in
Section 2.3.2 do not analyze detailed, 3-D systems easily. Thus, the linkage code
monteburns was designed to model the system accurately, incorporate all desired features,
and make the input and training requirements as simple as possible. This section includes
a brief description of the code, presents the calculations it performs, and describes the

mput required by and the output produced by monteburns.

14

31 Description of Monteburns

Monteburns 1s a UNIX c-shell command file (see Appendix A) that frequently
interacts with a FORTRAN77!°! program, monteb f, (see Appendix B) to produce
criticality and burnup results based on material feed/removal specifications, power(s), and

time intervals. Figure 1 shows how monteburns mteracts with MCNP and ORIGEN2.

MCNP input file

r:_ ORIGEN2

monteburns

initial material compositions

material compositions
(halfway through step)

MCNP

| predicior step cross sections and fluxes
(halfway through step)
ORIGEN2
next sten material compositions
T at end of step

Figure 1. Intcraction of Monteburns with MCNP and ORIGEN2

The primary way in which MCNP and ORIGEN?2 interact through monteburns is
that MCNP provides spectrum-averaged one-group microscopic cross sections and fluxes
required for ORiGEN2, and ORIGEN2 provides material compositions halfway through
and at the end of each irradiation step. These calculations may occur more than once
throughout an irradiation period to obtain the best representation for a particular bum

step (see Section 3.3.2 for more information about predictor steps).

15

Monteburns acts as a post—prolcessor for MCNP and a pre- and post-processor
for ORIGEN2. For each irradiation step, MCNP i1s run with material composttions
halfway through the step (obtained from ORIGEN2), and relevant parameters are
extracted by monteburns and input into ORIGEN2. A m.ajority of information desired by
the user is contained in the monteburns output (see Section 3.4), and additional
information can be obtained in the future if desired (see Section 6). Nonectheless,
monteburns was designed to eliminate the user’s need to search through MCNP output
files for résults.

In addition, input files for ORIGEN2 are complex to write, and output files
generated by ORIGEN2 are bulky and complicated to read. Thus, monteburns eliminates
the user’s need to create his’her own ORIGEN2 input files and to extract information
from ORIGEN2 output files. Monteburns provides a file with cross section and decay
libraries (fort.9), a material composition input file (fort.4), and a main ORIGEN2 input
file {(mbori), which contains commands as well as some feed and removal information
{optional). All three of these files are created by monteburns for each material, and they
provide all the information needed to execute ORIGENZ.

The FORTRANT77 program, monteb.f, which inieracts with the c-shell file
monteburns, consists of fifteen different parts, each of which performs a different
function. These functions are displayed in the detailed flow chart of the c-shell file
monteburns 1 Figure 2, where the numbers correspond to the list below.

1. read input parameters,

2. create basic ORIGEN2 input files for each main bum step based on continuous
feed/removal information,

3. put the user’s MCNP mput file into monteburns format,

4. create tally requests for MCNP,

5. write ORIGEN2 composition input file, separating natural elements into mdividual

isotopes,

16

10.

11.

12.
I13.
14.
15.

update the monteburns input file to indicate the current step number and to update
the list of isotopes being tracked,

determine which material is located in each region,

add discrete feed to ORIGEN2 composition input file (if requested by the user),
modify the previous MCN? input file with new material compositions,

modify ORIGEN2 input files for predictor steps to calculate compositions halfway
through each burn step,

modify ORIGEN? libraries with cross sections calculated by MCNP and ORIGEN2
input files with fluxes from MCNP, |

calculate the recoverable energy per fission based on the actinide distribution,

perform discrete removal in the ORIGEN2 composition input file,

output results of ORIGENZ, and

calculate the amount of material burned and produced based on feed and inventory
information.

The full range of calculations performed by monteburns is presented in Section

3.2, detailed input requirements are described in Section 3.3, and the results currently

output by monteburns are displayed in Section 3.4.

17

1. Read input parameters to determine:
Number of MCNP Materials Being Analyzed (nmat),

Number of Outer Burn Steps {nout),
Number of Predictor Steps {npre},

Current Bum Step (nrst), and
If Intermediate k. Calculations Cecur {nkeff; O=no, i =yes)

L |

]
{ 2. Create basic ORIGEN? input files]

RO
(3. Put MCNP input file into monrebamsformat]
Run MCNP to obtain initial
of materials to put into ORIGEN2 / Obtain files from previous run57

Y

LAL Create limited tally requests for MCNP]

(5. Write ORIGEN2 composition input ﬁ!eJ

i1 =0or{nrst+1)

yes noe
[npre2 =1 ‘
6. Update input Reduce resulting number
including value of nrst of output files to two

7. Determine which materiat is locatedin .
each region; Organize files @

no

yes —j
i

' npre2 = npre+l ' npre2 = npre

18

8. Add discrete feed 1 ORIGEN2 composition input filé

discrete

eed exist for
i?

no

9. Modify previous MCNP input file with new material compositions

Y

Run MCNP 1o delermine effect(s) of discrete feed

-

= Run ORIGEN?2 for enire step

Y

] 13. Perform discrete removal

#no

[0. Modify ORIGEN2 input
files for predictor step

noe

Run ORIGEN?2 for predicior step

Y

9. Modify previous MCNP input file
with new material compositions

9. Modify previous MCNP input fite
with new material compositions

7 | I

4. Create tally requests; Form full MCNP input file Run MCNP for entire step
Run MCNP to calculate cross sections and fluxes j
14. Output results of ORIGEN2

L

11. Modify ORIGEN2 input files *
with cross sections and fluxes 15, Calculate the amount of material burmed/produced

12. Calculaie recoverable energy per fission Z Save information for a restart case /
L} i=i+l i=i+1 -

Figure 2. Monteburns Flow Chart

19

3.2 Calculations

The calculations performed by monteburns are divided into six different
categories: recoverable energy per fission, flux normalization, reactor physics constants,

effective multiplication factor, power, and importance fraction.

3.2.1 Recoverable Energy per Fission

The user has two options for calculating the recoverable energy produced per
fission in a system. Either he/she can enter the desired Q-value (the average energy
released by the entire system) into the monteburns input file, or the user can enter the Q-
value for UU-235 that he/she thinks is most representative for the nuclear system being
evaluated (preceded by a negative sign in the input file), and the code calculates the
average Q. In this case, the following equations are used by monteburns to calculate the
recoverable energy produced per fission in each material (see Equation 8 for the Q—\}alue

of the entire system) according to the distribution of actinides in that material.

Qs = | Q| * Qe
where: (J;, = total amount of recoverable energy produced per fission
Qy.235— recoverable energy per fission for U-235 (input by user -
recommended value is 200 MeV{'®])
O... = weighting factor to include recoverable fission energy for all

actinides present (calculated by Equation 6}

Qrar = 3 qruei) * fru(i) (6)

where: 1 number of actinides in material (calculated by ORIGEN2)
q,x(i)= ratio of recoverable energy per fission for isotope i divided by the

recoverable energy per fission for U-235 (see Table 3)

frui) = ratio of fissions resulting from isotope i to total number of

fissions (calculated by Equation 7)

or(i) * n(i) @)

Frar(i) = —
Y (o) * n(i))
i=1
where: ofi} = spectrum-averaged one-group microscopic fission cross section of
isotope i {calculated by MCNP)
n(i) = number density of isotope 1

(calculated by ORIGEN?2 in units of gram-atoms)

Next, the average energy produced per fission for the system as a whole is calculated.

E(Qﬂsj *40,‘: *Efj # Vj)
j=1

Qave = i

ﬁ (fP ;i *3pd xS)
j=1
where: ,,. = average recoverable energy per fission for entire system (MeV)

_Qﬁsj = average recoverable energy per fission in material j (MeV)

(calculated by Equation 5)

@) = neutron flux (n/em’-s) in region containing material j

(calculated by MCNP)
%/ = macroscopic fission cross section of material (em™)
(= Y (i) * n(i) - obtained from ORIGEN2 files)
=i .
¥/ = volume of all cells containing material j (cm?)
(calculated by MCNP or input by user)
m = number of materials being analyzed (input by user)

21

Table 3. Fraction of Recoverable Energy Per Fission for Certain Actinides Divided
by the Recoverable Energy Per Fission for U-235

Isotope Fraction!'"1” Isotope Fraction
Th-227 0.90 Pu-240 1.04 "
Th-229 0.92 Pu-241 1.05
Th-232 0.96 Pu-242 1.06
| Pa231 0.95 Am-241 1.05
Pa-233 0.98 Am-242m 1.06
U-232 0.96 Am-243 1.07
U-233 0.99 Cm-242 1.06 ,
U-234 0.98 Cm-243 107 B
U-235 1.00 Cm-244 108 |
1 U236 1.00 Cm-245 109 |
U-237 1.01 Cm-246 1.10
U-238 1.02 Cm-248 112
Np-237 1.01 Cm-249 1.13
Np-238 1.02 Cf-251 1.15
Pu-238 1.02 Es-254 1.18
Pu-239 1.04

" The fractions displayed here are an average of the fractions calculated for thermal and fast spectrums

3.2.2 Flux Tally Normalization

For each material j, the flux used n ORIGEN2 (see Equation 1) is calculated from
the flux taliied by MCNP and is either normalized per MCNP fission neutron for a
“kcode” source definition or per MCNP source neutron for “nps” source definition, both

according to Equation 9.

9=¢,*C ©)

where: ¢ true value of the flux (normalized to system power)

¢, = flux tally normalized per fission or source neutron (from MCNP)

22

C = the neutron source term (calculated by Equation 10 or 11)

When an MCNP input file with a “kcode” {criticality) source definition is used, the flux is
- normalized per fission neutron, and the value of k¢ and its associated error are found in

the MCNP output file. In this case, the value of C is given by Equation 10.

_ V*PFI0°W/ MW
(1.602* 1072 71 MeV) * kep ¥ Qave

(10)

where: v = average number of neutrons produced per fission
(calculated by Equation 12)
P = total power (MW) of system (input by user)

ko = effective multiplication factor (calculated by MCNP)

When the MCNP input file has a “nps” source definition, the flux is normalized per

source neutron, and the value of C is instead:

C= src* P*10°W/ MW
floss *(1.602* 1072 T/ MeV)* Quve

(11

i

where: src weight of source neutrons (approximately equal to one}
(calculated by MCNP)

floss = weight of neutrons lost to fission (calculated by MCNP)

The reason that the equation for the neutron source term has the variable k. (or
ﬂosé/src, which represents the fraction of neutrons lost in fission in a “nps™ source
definition) in the denominator is that it modifies the value of the ﬁeutron flux of systems
not modeled at critical. For a “kcode” problem, the flux calculated by MCNP is

normalized per fission neutron, which assumes that the number of neutrons that fission in

23

the system modeled are representative of how many fission to produce the given steady-
state power level (steady-state power is only produced at critical). However, if the
system is subcritical, then the flux normalized per fission neutron is only a fraction (kee)
of the flux produced at steady-state becanse only that fraction (k) of neutrons in a
steady-state system are represented. Dividing by k. increases the value of this flux
appropriately. Similarly, the relative number of fission neutrons produced in a
supercritical system are greater than those in a reactor at steady-state, so the flux must be
reduced to accurately reflect power production. Additionally, a system designed to be
subcritical (such as ATW) must rely upon source neutrons to remain at steady-state, and
these neutrons are not included in the flux calculated by MCNP. Again, in both cases,
dividing by kes produces the desired result.

The condition of a systerm not only influences the neutron flux in each region but
also the energy spectrum, If the system modeled is suberitical but the actual system is
critical, then the spectrum of the modeled system may not be representative of the actual
one, cross sections may be inaccurate, and incorrect ratios of fission, capture, and leakage
may be obtained. These three are competing processes that produce different nuclides (or
none in the case of leakage) such that the resulting isotopic compositions of the system
are affected by any misrepresentation of the spectrum. However, monteburns is not
designed to account for such a spectrum shift in either direction. Instead, it only accounts
for a linear change in the true flux as a function of 1/k.¢ For a system designed to be
subcritical (such as ATW), this effect is not as dominant because it does not have to be
modeled exactly at critical throughout life to be representative of the actual system. In
either case, it is recommended that user model a system such that k¢ at all time steps is

as close to true values as possible so that the correct spectrum and results are obtained.

24

3.2.3 Reactor Physics Constants

For both types of source definitions, the value of v (number of neutrons produced

per fission) is calculated from results in the MCNP output file. For a “kcode” source

definition, it is calculated using Equation 12.

v = koy * src/floss {12)
where: s¥c = weight of source neutrons (approximately equal to one)
(calculated by MCNP})

Joss = weight of neutrons lost to fission {calculated by MCNP)

For a “nps™ source definition, the value of v 1s:

v = fsrc/floss (13)

where: fsre = weight of source neutrons gained in fission {calculated by MCNP)

For either type of MCNP input file, the number of neutrons produced per neutron

destroyed (1)) in a material is:

_ (UO}‘ +2.0 i GHZ.’I)

(14)
(Cr + 07 + G2n)
where: 0y = fission cross section of material (calculated by MCNP)
o, = {n,y) cross section of material (calculated by MCNP)

G.;. = (n,2n) cross section of material® (calculated by MCNP)

* Additional cross sections for neutron interactions producing neutrons (i.e., (m3n), (n4n), etc.) are
assumed to be negligible.

25

3.2.4 Effective Multiplication Factor
The value of the effective muitiplication factor for a “nps™ source definition must

be calculated from the value of the net multiplication obtained from MCNP output:

k= (fmult- 1} (15)
(fmult - 1/}

where: finult = net multiplication in the system (calculated by MCNP)

The relative error (G) associated with kg 1s then:

o= { (fmult*(I+terr) - 1} - kpttky (16)
(fmudt *(1+err)- 170)

where: err = relative error associated with net multiplication in system

{calculated by MCNP)

3.2.5 Power

Finally, the power produced by each material is:

Qave™ @/ * 37 * VI %1.60219 10‘13J/Mev)

17
10°W/ MW (17

|

where: P = power produced by material j (MW)
¢

neutron flux (n/cm?-s) in region containing material j

(calculated by Equation 9)

3.2.6 Importance Fraction

A key factor in balancing accuracy with execution time mn monteburns is
determinmg the number of isotopes for which spectrum-averaged one-group cross

sections are calculated m MCNP. It is important for isotopes to be included m MCNP

26

for two primary reasons: they may significantly affect the system flux spectrum and
reactivity, and/or an MCNP modified spectrum-averaged one-group cross section
produces more accurate transmutatton and fission rates in ORIGEN2. For some isotopes
it may be important to modify this cross section, while for others, the default ORIGEN2
value may be used with little effect on the accuracy of the solution. Thus, it is inefficient
to calculate a spectrum-averaged one-group cross section for every isotope included in the
associated MCNP libraries becaunse it increases execution time, although this can be done
if desired. Isotopes are deemed “important” in two ways. The first way is to explicitly
list an isotope In thé monteburns input file (i.e., designate it as an “automatic” isotope);
this insures that spectrum-averaged one-group cross sections are calculated for this
1sotope during each burn step (and that this isotope 1s ir_icluded in the primary
monteburns output). The other way in which an isotope is deemed “important” 1s based
on a user input variable called the importance fraction.

If an isotope contributes a fraction to the system neutron absorption, fission,
mass, or atom density higher than the importance fraction, then this isotope is deemed
“important,” and a spectrum-averaged one-group cross section 1s calculated in MCNP and
modified in ORIGEN2, If any of the values calculated by Equations 18-21 (fraction of
absorption, fraction of fission, weight fraction, and atom fraction respectively) are greater
than the value of thé importance fraction assigned by the user, then the isotope is
considered “important” and is included in all transfers between ORIGEN2 and MCNP for

the remainder of the run.

f(oa) = M (18}
Z(gads * Ou)
i=1

flori= T-?.‘i‘f‘f& : (19)
Y (gadi* o)
i=1

27

gad:* Ai

wi = — (20)
Y (gadi* A)
i=1
oy = B @1)
z gadi
i=1
where: n = total number of isotopes in system (input by user)

flo);= fraction of absorption that isotope i contributes to system
gad; = amount of isotope in system (gram-atoms)
(calculated by ORIGEN2)
O, — microscopic absorption cross section of isotope i
{obtained from ORIGEN?2 library or calculated by MCNP)
f{aj; = fraction of fission that isotope 1 contributes to system
O; = microscopic fission cross section of isotope 1

(obtained from ORIGEN2Z library or calculated by MCNP}

wy; = weight fraction of isotope i in system
A; = atomic weight (grams) of isotope i1 (calculated by monteburns)
ap = atom fraction of isotope i in system

In this document {and within monteburns), the word “absorption” solely refers to
capture interactions (primarily {(n,¥)) and excludes the probability of fission.
Nonetheless, both types of interactions influence the value of k g and what occurs to the
neutrons in a system (i.e., if a neutron 1s absorbed 1n a material, its “life” ends, whereas if
that absorption leads to fission, it produces even more neutrons as a result). If an isotope
significantly contributes to either one or both of these areas, it is included in further

MCNP calculations,

28

Not all isotopes produced from irradiation interactions are included in the initial
ORIGEN2 cross section libraries and are thus not deemed “‘important™ by their
absorption or fission contribution because their cross sections are effectively zero. If
such an isotope comprises a significant portion of the material (either by weight or atom
density), then it should also be included m MCNP because it could significantly
contribute to interactions in the system. Thus, if the weight and/or atom fraction of an
isotope in ORIGEN?2 is greater than the importance fraction, then the isotope is also
passed back to MCNP. Additionally, even if an isotope does not have an absorption or
fission fraction greater than the importance fraction but still exists in a material in
significant amounts, it may still contribute to scafter interactions in the system. By
allowing the atom and weight fractions to be included in “importance” checks for an

isotope, such a potential scatterer can be included.

33 User Input

The user must generate two to four different input files before executing
monteburns. The two required input files are the MCNP input file (designated here by
mbfile but can be any name up to 8 characters), and a general monteburns input file (this
must have the same prefix “mbfile’” with an extension of “.inp” for a name of mbfile.inp).
For many complex burnup scenarios, the user must also generate a feed input file (with a
name of mbfile.feed), which contains detailed instructions for monteburns at each time
step (i.e., time interval, power, material feed/removal). The only case in which a feed
input file is not required is for a constant power burn with no material feed or removal.
Finally, monteburns uses one other input file, mbxs.inp, which contains a list of default
MCNP cross section identifiers for isotopes that may be produced in the irradiation

process and are not initially specified by the user.

29

3.3.1 MCNP Input File

The MCNP input file represents the system being analyzed, including the
geometry and compositions of materials. There is no required format of this input file in
monteburns, except that material numbers must not be greater than 100 and user taliy
cards cannot have numbers greater than 100 (this is to keep monteburns tallies from
interfering with user input). This file must run in MCNP (for example, complete enough
active cycles to produce a “final result” for k.5 in a “kcode” problem) before it can work

in monteburns.

3.3.2 Monteburns Input File

The following pages Hst Input parameters required for monteburns that must be
provided by the user in the monteburns input file. These input parameters are read in
free format, but they must be in the order listed below {for more information, see the
Monteburns User’s Manualt'®l). In addition, sensitivity analyses were performed for
several input parameters 1o see how their values affected results. The outcome of these
analyses is located in Section 4.2.1.

e Number of MCNP Materials - this indicates the number of materials the user wants
to irradiate from the MCNP input file (i.e., transfer back and forth between MCNP
and ORIGEN2).

¢ MCNP Material Number(s) - the identification number of the material(s) in the
MCNP input file for which a burnup analysis is desired (the average flux for all cells
and parts of a repeated structure or lattice with this material are obtained). Note: the
number of entries here must equal the number of MCNP materials entered above.

e Material Volume(s) - the sum of the volume (cmi’) of all cells in the MCNP input
file for each material number(s) listed above (again, the number of entries must equal
the number of MCNP materials). If the user enters a value of 0.0 for one or more of

these, then the volume calculated by MCNP is used (if it exists). However, often the

30

geometry is too complex for MCNP to calculate the volume, in which case, unless the
user has input a non-zero volume for that material number, an error message appears,
monteburns terminates, and it must be rerun with non-zero values. Additionally, in
most cases of repeated structures, MCNP calculates the volume of cells containing a
given material incorrectly. For each of these cases (and for any other instances the
user desires), the user must enter the sum of the volumes of cells containing each
material being analyzed.

Total Power of System - the power (MW) generated by the entire system
represented in the MCNP model (note: this is not necessarily the same as the power
generated solely by the materials burned in mbnteburns). This value, along with the
recoverable energy per fission, is used to normalize the flux from MCNP in each
burned region for ORIGEN2. This flux is then converted to fission power and
output. Additionally, the user can enter the fraction of this power to be used during
¢ach outer bumn step (if power 18 not constant over the entire burn) in the feed input
file. By entering a power fraction of zero for a step, then it effectively becomes a
decay-only step, which is useful for analyzing cooling periods of systems. Note: the
value of fission power output is subject to statistical errors and may not be exactly
the same as the power input. Increased statistics in MCNP may minimize this
problem, but nonetheless, the user should check the value of power output to ensure
that it is close to the amount of power desired.

Recoverable energy per fission - this value represents the average recoverable
energy per fission (Q) in MeV in the aforementioned MCNP model. If the user does
not know the exact amount of energy generated by a.combination of several 1sotopes,
then he/she can enter the recoverable energy per fission for U-235 in that system (see
Equations 5-8). WARNING: the fissile isotopics used for the calculation of Q are
based only on the materials burned by monteburns. If the fissile isotopics of the

‘entire system are significantly different from the fissile isotopics of the materials

31

burned, then the average value of Q may be m error, thus the flux normalization may
be incorrect (although In most cases this should be a relatively small effect).

Total number of days burned - this number represents the length of time for which
a material is irradiated in ORIGEN2 (or the decay time if power equals zero). If the
user provides a feed input file, then the irradiation lengths (in days) for each outer
burn step (described below) must be provided in this file. Otherwise, the total
irradiation time (in.days) is entered in the monteburns input file.

Number of outer burn steps - this number indicates how many outer bum steps are
desired. If a feed input file exists, then this must equal the number of steps described
in the feed input file. If a feed input file does not exist, then the length of the
irradiation period for each outer burn step equais the total days bumed divided by the
number of outer burn steps. Each of these steps represents a time period for which a
burnup calculation is performed and representative cross sections are obtained (the
burn siep then uses spectrum-averaged one-group cross seclions calculated at a
predictor step halfway through that step). Each outer step can also indicate the
addition and/or removal of a material.

Number of internal burn steps - this is the number of additional times into which
the irradiation period is divided for ORIGEN2 calculations. As mentioned in Section
2.2, the results obtained from ORIGEN2 (and as a result, monteburns) may be more
accurate rif long uradiation periods are broken up into smaller lengths of time,
especially at the beginning of a system’s life. This is because the Bateman equations
and/or the Gauss-Seidel iterative technique are used to solve for compositions of
materials when the half-life of an isotope is less than 10% of the irradiation interval.l®!
Additionally, the physics and composition of materials in the system may change
significantly with time. Thus, the user can specify that the outer burn steps be

divided into even smaller time segments for use in ORIGEN2. In addition, there is

32

virtually no penalty on execution time by using smaller time steps in ORIGEN2
because most of the execution time lies with MCNP.

Number of predictor steps - this is another variable affecting the accuracy of the
results. As the isotopic composition of a material changes during an irradiation step
(both due to burnup and potential variances in continuous feed from beginning to
end), the cross sections may change as well. To obtain the most accurate results,
spectrum-averaged one-group cross sections for a bum siep should represent an
average over the time interval. In a monteburns calculation, ORIGEN? is run halfway
through each outer bum.step, and the resulting isotopics are used in MCNP to
calculate spectrum-averaged one-group cross sections and fluxes for that sfep. Then
a complete ORIGEN2 run is performed with the new values to determine final
compositions. This assumes that the isotopics of the system at the midpoint are a
reaéonable approximation of the isotopics over the enfire bum step and that cross
sections are representative of the step (actually it is only important that the neutron
flux energy spectrum is representative of the entire burn step). The user must be
aware of this assumption, and consequently, ensure that burn intervals are not too
long.

If the initial cross sections for a step are not accurate, then the ORIGEN2
compositions halfway through the step may not be a good representation of the burn
step. Thus, it is often beneficial to perform a “predictor” step (derived from a basic
form of the predictor-corrector method™) to calculate cross sections more than once
at the midpoint of a burn step and to compare the neutron energy spectrum and
isotopic compositions halfway through the step (these values are printed in the
output files) to make sure that the final cross sections are representative of the
system .at that step. The number of times for which cross sections are calculated
halﬁvay through each step is the number of predictor steps. Executing multiple

predictor steps increases the accuracy of the burnup calculation because the

33

spectrum-averaged one-group cross sections used to perform the predictor step
approach the ones calculated by the predictor step (i.e., they converge). In addition,
monteburns automatically adds a predictor step for the imtial bumn step because the
actual spectrum-averaged one-group cross sections for a system may be different than
those supplied in the chosen default ORIGEN2 library. For ail subsequent burn
steps, monfeburns uses the modified spectrum-averaged one-group cross section
library from the previous burn step, thus an extra predictor step is not required.

Step to restart after - a user can us¢ this parameter to restart a run that ended
unexpectedly, or to branch off from a previous monteburns run with different input
variables (for example, if k.¢ drops too low during the n™ burn step, the user can
change the feed rate for the n step and restart from the previous step). The “restart
step” indicates the outer burn step after which monteburns should start, using all
previcusly created input files and results for the outer burn steps up to that point.
To use this variable effectively, all input files that were created by monteburns during
the previous run must remain in the directory in which monreburns is running (most
of these appear in the tmpfile subdirectory of the main directory). 1f a restart run is
not being performed, then the “restart step” value should be zero. This value gets
modified during each step to reflect the value of the current step.

Number of ORIGEN?2 library - this number represents the number of the ORIGEN2
library from which initial one-group cross sections are obtained (these values arc then
modified to be system-dependent as calculated by MCNP talites after the first step
for “important” isotopes). The ORIGEN2 manual® contains a list of over forty
different cross section librartes {with two-digit identifiers) from which the user can
choose for different types of systems. The value of this two-digit identifier must be
éntered by the user.

ORIGEN? library location - this line of input must contain the location of the

ORIGEN?2 libraries {both decay and cross section ones) in the user’s file space or in

34

the directory of another user on the system that has the library files. This way, only
one user on a UNIX operating system needs to have a copy of the libraries.
Importance Fraction - this value represents the lower limit (tolerance) for the
importance of one isotope relative to the rest of the system based on results obtained
from ORIGEN2 and MCNP. If an isotope contributes a large enough fraction (i.e.,
greater than the importance fraction) to absorption or fission interactions, mass, or
atom density (see Section 3.2.6 for more information), then the isotope is considered
“important.” Flux and one-group spectrum-averaged cross sections tallies are then
performed in MCNP for this isotope. If the impertance fraction is zero, then all
activation, fission products, and actinides generated in ORIGEN2 are tallied (excepf
those for which no MCNP cross section exists - see Section 3.3.4 for more
information). If the importance fraction is one, then no isotopes are deemed
“important” except those specified as “automatic” in the input. Additionally, it is
advised that the initial ORIGEN2 library be somewhat representative of the system,
or “important” isotopes may not be properly identified. The only way to absolutely
~avoid this problem is to track every isotope or to generate a problem specific library
with a previous run of monteburns that replaces the original default ORIGEN2
library.

The user must also decide how to deal with fission products. If the user enters
the importance fraction as a positive value, then only those fission products deemed
“important” are included in MCNP. However, since MCNP: cross sections for many
fission products do not exist, monteburns contains the option to lump all fission
products together as one sum (except for those fission products, if any, designated as
“automatic” in the momnteburns input file) by using a negative value here. These
lumped fission products are then given one of two general fission product cross
sections in MCNP - the average fission product from Uranium-235 and the average

fission product from Phitonium-239 (these have the identifiers 45117.90c and

35

46119.90c respectively!'l). The fraction of the total fission product mass separated
into each category is determined by comparing the number of fissions that result from
isotopes with an atomic number less than or equal to that of uranium (92) to those
that occur in other transuranic actinides with an atomic number greater than 92.
Intermediate flag - this flag indicates whether intermediate k. g calculations are
performed. Normally, MCNP is only run once per predictor step, and these runs
occur halfway through each outer burn step (i.e., halfway through each iradiation
period). However, it is often desired to obtain a value of k. at the beginning and/or
end of each burn step. When the value of this parameter is one, these additional
MCNP calculations are performed. Neither cross sections nor fluxes are recalculated
by MCNP for these rims, so ORIGEN2 results are not influenced. The only purpose
“mtermediate” MCNP calculations have is to provide the value of k. at more than
one point during each outer burn step to see how the system changes. When a
discrete feed addition (see Section 3.3.3) occurs, three MCNP runs are performed for
the step (at the beginning, middle, and end); otherwise two MCNP runs are performed
- (at the maddle and end)} because the beginning value of ke equals the ending value of
k. from the previous step. If the value of this parameter is zero, then only one
MCNP run is performed for each outer burn step (in the middie) regardless if discrete
feed occours.
Number and list of automatic tally isotopes for each material - this integer
represents the number of isotopes/elements for which the user wants tallies to be
performed in MCNP and results written to monteburns output files (i.e., automatic
“important” isotopes). The user must then enter the MCNP identification number
for each of | these isotopes/elements (these can indicate library preference and/or
temperature dependence). It also allows the user to use a cross section not specified
in the default cross section file discussed in Section 3.3.4, mbxs.inp (i.e., the cross

section 1dentifier listed here has precedence over the one in mbxs. inp).

36

3.3.3 Feed Input File

The purpose of a feed input file in monteburns is to list the lengths of each time
step, to vary the fraction of power generated by the system during each time steps, to
shuffie maferials from one region to another, and/or to specify amounts of materials to
add to or remove from the system during each outer burn step. The user can also specify
continuous or discrete (all at one time) feed (addition of isotopes) and/or removal (of
specified elements) for each material at each time step in this file. First, for each outer
burn step and (excluding the first two items) material, the user enters the following
parameters: -

o length of the irradiation (in days),
» fraction of power produced relative to the total power entered in the monteburns
input file,
* region In which each material is located,
e feed group (defined below),
e feed rate(s) (both beginning and ending rates for continuous and a flag and a rate for
discrete},
» removal group (positive for continuous feed, negative for discrete), and
-» removal fraction (the fraction of each element removed (for example, a fractional

removal of 0.9 means that 90% of the removal group is removed and 10% remains)).

The next part of the feed input file allows the user to enter information about the
feed group(s). This includes: |

e the number of feed groups,

then, for each feed group,

o the number of isotopes in that group, and

37

e a list of those isotopes (atomic number followed by atomic mass number (for
example, 92235 for U-233)).

Continuous feed occurs at several points throughout the irradiation process, the amount

of feed being interpolated from the beginning and ending rates, and discrete feed occurs all

at the begmning.

The final part of the feed input file consists of information about the removal
group(s), including:

e the number of removal groups,

then, for each removal group,

¢ the number of ranges of elements to be removed,

o the range(s) of .elements (for example, 28 to 68 means that all elements between nickel
and erbium are removed (which represents a majority of fission products), the two
ranges 28 to 42 and 44 to 68 mean that all fission products in this same range except
iechnetium (Z=43) are removed, and the range 43 to 43 indicates that only the element
technetium is bemg removed).

For continuous removal (a removal group number greater than (@), the appropriate

elements are removed both after the halfway predictor step and at the end of the burn

(simulating continuous removal), whereas for discrete removal (a removal group number

less than 0), the elements are removed only at the end of the burn step.

3.3.4 Identifier Input File

The identifiers used to recognize isotopes in MCNP are different than those in
ORIGEN2. Thus, monteburns is designed to determine which identifiers to use for each
code. In ORIGEN2, the identifier is stmply the atornic number followed by the atomic
mass number and a “0” for most isotopes (metastable isotopes are followed by a “17).

MCNP not only requires the atomic number and atomic mass number but also a cross

38

section identifier. A file containing a list of default MCNP identifiers for a]l isotopes
used or potentially created by decay or irradiation processes must be present in the
directory in which the user is running (Note: cross section libraries for many fission
products may not exist and obviously cannot be listed here). This file is named mbxs.inp
and can either be provided by the user or obtained with the source code and modified by
the user as necessary. For any 1sotopes deemed “important™ by monteburns but do not
have a cross section identifier in this file, monreburns gives a waming that the cross
section is not found, continues to use the default ORIGEN2 cross section, and does not
transfer the material to MCNP. The identifiers in this file can either b.e cross section
libraries provided by MCNP, or they can be ones generated by the user with ENDF
libraries and/or the code NJOY,’ or ones from other sources. In fact, the user is
encouraged to use a code such as NJOY to generate temperature-dependent cross section
hbraries, which can then be used by MCNP/monteburns to process temperature-
depend'ent data. In addition, mbxs.inp must include the general fission product identifiers
45117.90¢ and 46119.90¢ for MCNP if the lump sum of fission products option is used
(as discussed in Section 3.2.6 and 3.3.3).

There are a number of elements in MCNP for which “natural” cross sections exist.
However, ORIGEN2 does not recognize natural elements, so monteburns contains data to
separate natural elements into individual isotopes. If a natural cross section exists in the
MCNP input file, monteburns separates this element into its isotopic components, and
then ORIGEN2 bums these isotopes individually (with the default ORIGEN2 library
cross sections). After the ORIGEN2 burn, monteburns then lumps them back into the
element’s natural isotopics for use in MCNP. Although this may not be completely

accurate because the initial ORIGEN2 cross sections are not modified by MCNP (ie.,

" Versions of NJOY are avatlable at the Radiation Safety Information Computationat Center (RSICC) as
.codes PSR-171 and PSR-355.

39

they are not fully representative of the material in the system), it 1s dictated by the lack

of MCNP cross sections for many individual isotopes.

34 Output

Two large, primary output files are produced by monteburns. These output files
constst of the name of the MCNP input file created by the user followed either by the
extension “.mbout” or “.mbchk.” For each of the output groups histed below (except the
first two, which contain system, not material dependent parameters), results appear for
cach monteburns material/region being analyzed. Note: this is not necessarily the same as
the inittal MCNP material number assigned to each region due to shuffling between
regions. The user must keep track of each MCNP material individually through the
various regions when shuffling occurs.

The first output file, mbfile.mbout, contains the results displayed below for each
outer burn step:

o Monteburns MCNP Kk Versus Time - a list of the cumulative time {in days) over
which irradiation has occurred as well as the effective multiplication factor (K.g),
associated relative error, v (see Equations 12 or 13), average recoverable energy per
fission calculated by monteburns (see Equations 5-8), and 1 for the system (see
Equations 8 and 14 respectively).

o Monteburns MCNP K. at Beginning of Step - a list of the cumulative time of
irradiation (in days) that has occurred before each step begins as well as the effective
multiplication factor, relative error, and v at the beginning of each outer burn step

(after discrete feed occurs). This data is only included in the output if discrete feed is

used and intermediate k. calculations are requested.

40

For each material and outer burn step, the following parameters are output:

s Monteburns Transport History - the recoverable energy per fission (see Equation 5},
neutron flux (see Equation 9), macroscoﬁic fission cross section (Xf), power
generation, burnup '(in gigawatt-days per metric ton heavy metal (i.e., actinides)
(GWd/MTHM)), capture - {n,y), fission - (n,f), and (n,2n) cross sections, fission-to-
capture ratio, and 1 (see Equation 14} for both the material as a whole and the
actinides only.

o Monteburns Flux Spectrum - the pei’cent of neutrons with energies in each of the
following ranges: 0t00.1eV,0.1to 1 eV, 1 to 100 eV, 100 ¢V to 100 keV, 100 keV
to 1 MeV, and 1 MeV to 20 MeV. To obtain a more detailed spectrum, the user must
enter his’'her own tallies iﬁto the MCNP input file or modify monteburns to provide

the values desired.

The following results are provided for each “auntomatic” isotope in each material for each

outer burn step:

e Monteburns One-Group (n,y) Cross Sections - the value 6f the microscopic capture
cross section (¢,). This capture cross section is assumed to be equal to the (n,y) cross
section for the isotope, which is its primary constituent. Other reactions, such as
(n,p), {n,d), (n,t}), etc. may contribute to the total capture cross section, b.ut not in
significant amounts.

e Monteburns One-Group Fission Cross Sections - the value of the microscopic
fission cross section (Gg).

o Maﬁtebams Fission-to-Capture Ratio - the ratio of the microscopic fission cross
section to the microscopic capture (n,y) cross section (G5 /G,).

o Monteburns Grams of Material at Beginning of Steps - this represents the amount

of material (in grams) that exists in the system at the beginning of each step.

41

Monteburns Grams of Material at End of Steps - the amount of material (in grams)
at the end of each step.

Monteburns Grams of Feed - the amount of material (in grams) added to the system.
Monteburns Grams Produced (or Destroyed) - the amount of material (in grams)
produced {(or destroyed if the output is negative) during uradiation. The
interpretation of this data may depend on feed, removal, and/or material shuffling.
Summary of Inventory/Feed/Production - the total amount of material in the
system at the beginning and end of monteburns (not of each step), the amount added
through feed, and the net change. The interpretation of this data may also depend on
feed, removal, and/or material shuffling.

Feed Rate - the average continuous feed rate (in grams per day).
Production/Destruction Rate - the rate of change (in grams per day) of material
produced to that destroyed during irradiation. The interpretation of this data may
depend on feed, removal, or material shuffiing.

Feed Input File - if it exists, this file is included at the end of this output file so that
the user can determine what feed parameters he/she used to produce the resuits

presented in this output file.

In the second output file, mbfile. mbchk, many intermediate results from the

execution of monteburns are listed. In this output file, the following results are reported

for cach monteburns material analyzed for each predictor step:

Monteburns Spectrum for Each Predictor - the percent of neutrons with energies in
each of the following ranges: 0 to 0.1 eV, 0.1 to 1 ¢V, 1 to 100 eV, 100 eV to 100
keV, 100 keV to 1 MeV, and 1 MeV to 20 MeV. This can be used to determine if

smaller time intervals or more predictor steps need to be run.

42

Monteburns Grams at Midpoint - the amount of each isotope (in grams) present
halfway through the irradiation for both the predictor and the actual steps. The grams
of each automatic “important” isotope present halfway through each predictor step
are listed first for each outer burn step followed by the -composition of these isotopes
halfway through the actual step. This way the user can determine if the predictor
step(s) provided enough accuracy or if more predictor steps (or smaller time intervals)
are needed. If the two values for any isotope are significantly different, then
monteburns should be rerun using more predictor steps or outer burn steps to obtain
more representative cross sections.

Importance Fraction of Isotopes Sent From ORIGEN2 to MCNP - ihe isotopes
deemed “important,” both automatically and through the importance fraction. This
list contains the total mass of the isotope in the specified region and the contribution
of each isotope in the following four categories: absorption, fission, mass fraction, and
atom fraction. For example, if the fission column for an isotope reads 0.1, then 10%
of the fissions resulted from this isotope. This file also includes a warning message if
an isotope deemed “important” by monteburns or “automatic” by the user is not

found in the MCNP cross section library used by monteburns.

43

4.0 BENCHMARKING/STATISTICS

One of the most important aspects of developing a new computer code is
benchmarking it against existing experimental data and/or published calculations from
other codes. The linkage code monteburns is no exception. To show that it is capable of
performing burnup calculations well, a variety of test cases were run. Statistical analyses
were also performed for selected input parameters and various system models to
determine how they affect the outcome. Results from the benchmarking and the

statistical analyses are presented in this section.

4.1 Benchmarking

The benchmarking process for monteburns used five different test cases,
representing a variety of bumup scenarios. These test cases show the versatility of
monteburns in performing all types of burnup calculations. First, changes in the
concentrations of uranium and plutonium isotopes were calculated as a function of
burnup, and then both a pin in a simple cell geometry énd a full reactor assembly were
- analyzed. The first three test cases examined a PWR sysiem and low-enriched uranium
(LEU) fuel, the fourth involved a Boiling Water Reactor (BWR) system, and the fifth
used mixed-oxide (MOX) fuel. The broad range of these cases is useful in showing the
validity of monteburns in handling a variety of parameters. All cases were modeled using
temperature-dependent cross sections derived from the ENDF/B-V data set and
processed by NIOY " Brief descriptions of these five test cases are:

1. Uranium and Plutonium Isotopic Concentrations as a Function of Burnup
Composttion of Isotopes in a Fuel Pin at Fixed Burnups
Concentrations of Isotopes in a PWR Lattice at Fixed Burnups

Power Distribution of Pins Within a Small BWR Lattice

nooR W N

Activity of MOX-Based Spent Fuel After Removal from a Reactor

44

4.1.1 Isotopic Concentration

The first test case involved tracking the weight percents of several uranium (U)
and plutonium (Pu) isotopes as well as fission producfs {FPs) m a typical PWR system

as a function of burnup.

4.1.1.1 Description

A number of textbooks and o.ther sources have published this information, and one
representative figure!”! was compared to the resulis obtained by monteburns for a
standard Westinghouse PWR assembly.l'¥ The monteburns output is shown in Figure
3a, and the isotopic concentrations calculated by basic bumup equations in Ref. 7 appear

in Figure 3b.

4.1.1.2 Results

10
®e IV S
S e
o .
0%l w N
- | o % | ®U-235
c 1 %
o + mU-236
E ki APu-239
- & ‘ \,g%y;,&& ‘.‘ j:PU'240
s = ¥Pu-241
o |
® %mmxxmfﬁl ®Pu-242
e
o
. »
o
-
0.01 - ek ': .
0 10 20 30 40 50

Burnup (GWdAd/MTU)

Figure 3a. Calculated Isotopic Distribution as a Function of Burnup as Predicted
by Monteburns

45

10

—e—U-235
----- A Pu-239
% Pu-240
~%-—-Pu-241
—8— Pu-242
~—4~ FPs

Weight Percent

0.01 EN — e :
0 10 20 30 40
Burnup (GWdJd/MTHM)

Figure 3b. Published!” Isotopic Distribution as a Function of Burnup

The differences seen for actinides are discussed in ierms of two categories:
resonance self-shielding, and cross sections. Then variances in fission product

concentrations are discussed.

4.1.1.3 Resonance Self-Shielding

Figures 3a and 3b display fairly similar results, with the exception of the isotopes
Pu-240, Pu-241, and Pu-242. This variance was expected because, as the text in Ref. 7
states, the burnup equations that generated Figure 3b used one-group effective thermal
cross sections for a PWR and. did not account for resonance absorption, self-shielding, or
the change in cross scctions with burnup as monteburns does. When a system is initially
started, it has a thermal spectrum, which means that a majority of neutrons in the system
arc at relatively low energies and are more likely to be absorbed than if they were at higher

energies (the absorption cross section is higher at thermal energies because of 1/v

46

effects"® (i.c., cross sections are indirectly proportional to neutron energy)). As burnup
ina systerﬂ increases, the number of isotopes built into the system also increases. The
creation by fission and absorption of additional isotopes adds new resonance energies to
the system in the resonance region (approximately 0.1 eV to 3 keV).['}] Neutrons created
by fission typically have energies greater than 50 keV, and as they slow down (assuming
enough moderator €xists), they can be absorbed in resonances. If many of these neutrons
are absorbed in the first (highest energy) resonance, then the neutron flux that would
otherwise go to resonances at lower énergies (and consequently, the total amount of
resonance absorption} would decrease. The flux around this resonance is also depressed
because many neutrons at that energy are absorbed, decreasing the flux seen by the fuel.”]
Thus, resonance self-shiclding (as this process is called) can significantly decrease the
neutron flux in regions of multiple, closely-spaced resonances. '

The one-group cross section for an isotope 1s calculated by weighting the
absorption cross section at each energy by the neutron flux at that energy, and having low
fluxes at energy(ies) with large absorption cross sections (L.e. resonances) decreases the
overall one-group absorption cross section of many actinides. The energy spectrum then
either becomes more soft or more hard, depending on the ratio of neutrons that exist in the
thermal energy region (below the resonances) to those in the fast region (above the
TESONances).

| Additionally, as plutonium is butlt into the system during uradiation, the energy
spectrum of neutrons somewhat hardens because the absorption cross sections of several
plutonium isotopes are larger than those of uranium ones, and a large thermal resonance
existé for Pu-239 and Pu-241 at an energy lower than that of the resonances of U-235 and
U-238 (about 0.1 ¢V compared to around 5 eV). Thus, the neutron flux in both the
thermal and the resonance regions decreases with burnup because as additional plutonium
is built into the system, more absorption occurs (due to a larger absorption cross section),

and the spectrum slightly shifis to higher energies.

47

The effects of resonance seli-shielding are especially significant for Pu-240, which
has a large absorption cross sectton at resonance energies, but as burnup increases, the
cross section of this isotope sigmficantly decreases (363 to 92 bams) due to resonance
self-shiclding. Figure 3¢ shows the variance m the compositions of Pu-240, Pu-241, and
Pu-242 between the concentrations calculated by the equations m the refcrence (eq) and
those calculated by monteburns (mb). The amount of Pu-240 calculated by monteburns
was greater than that calculated by the equations in Ref. 7 because less of it was depleted
through absorption interactions (i.., 6, was lower). It follows that the concentrations of
Pu-241 and Pu-242 were smaller in monteburns than the referenced equations because less
of them were built up from neutron absorption in Pu-240. However, all concentrations

seen in Figure 3a do match those oblained using another code, CELL.["]

1

e
ek
@ -1 x
= X
o A 2 _g_f; ey KK xx Xxm X
o v P
0.1 o o o®®
E /'dfaﬁf" % P ..
= PR $.S & o8°
= 4 x
. -
/‘-/ e ¢ Pu-240 eq
e i . o _
/ o® | B Pu-241 eq
.)/ ‘ ._.__‘ PU'242 eq
o | - Pu-240 mb
" e } X Pu-241 mb
0.0 ’ ? | e Pu-242 mb

Burnup (GWd/MTHM)

Figure 3c. Differences in Higher Isotopes of Plutonium
cq means the equations in the reference and mb stands for monteburns

48

4.1.1.4 Cross Sections

Another parameter compared in this analysis was the fission-to-capture ratios of
the uranium and plutonitum isotopes analyzed (see Table 4a). The fission-to-capture ratio
in Ref. 7 for U-235 was smaller than the ratio calculated by monteburns at the various
burn steps. This means that more fissions occurred per U-235 atom in monteburns than
in the reference, causing more to be burned (as can be secen by comparing Figures 3a and
3b). The fission-to-capture ratio of U-238, however, decreased slightly with burnup,
which means that the rate of capture slightly increased relative to the rate of fission,
producing a few more plutonium atoms in monteburns. In addition, the fission-to-capture
ratios of plutonium isotopes increased slightly as a function of burnup in response to the
decrease of the absorption cross sections due to resonance self-shielding. For Pu-240,
even though its fission-to-capture ratio increased, its probability of fission was so small
that it was still not depleted as rapidly as when constant cross sections that did not

account for resonance self-shielding were used and more transmutation occurred.”?

Table 4a. Comparison of the Change in the Fission-to-Capture Ratio in
Monteburns with Burnup to Thermal Ones Used in Ref. 7

Isotope Monteburns Published
Change in 0; /0, or /ot

I _U-235 4.54 10 4.60 417 I
U-236 0.035 to 0.043 -
U-238 0.149 to 0.108 -
Pu-239 1.74 to 1.81 1.84
Pu-240 0.0025 to 0.006 -
Pu-241 2.68 to 2.73 2.66

i Pu-242 0.012 t0 0.014 -

" 07 /0. is the fission-to-capture ratio of the isotope.

49

Another difference seen in this analysis was that the absorption cross sections
used by monteburns were not as large as those given in the reference (see Table 4b). This
was because the reference used constant, thermal cross sections for PWRs most likely at
room temperature (i.e.,, an energy of 0.0253 V), whereas monteburns calculated
spectrum-dependent cross sections at actual temperatures. This higher temperature
affected the cross section in two ways. First, higher temperatures cause resonances to
broaden, increasing resonance absorption in the system. Second, as the temperature of
the moderator increases, its density decreases, causing less of it to be present, and
absorption cross sections decrease because neutrons are not slowed down as effectively.
The result of these two effects is that a one-group cross section can either increase or

decrease with temperature (in this case they decreased).

Table 4b. Comparison of the Change in the Absorption Cross Section in
Monteburns with Burnup to Thermal Ones Used in Ref. 7

Isotope Monteburns Publisheﬂ-l

“ Change in G, Al

"» U-235 58 to 66 556
U-236 910 6 124

| ©-238 ~1 +/-0.05 2.23

[Pu-239 ~ 190 +/- 15 1620

{ Pu-240 363 to 92 260

| Pu-241 166 to 192 1570

| Pu242 35 to 26 381 "

" 6, is considered here to be the total effective microscopic absorption cross section {i.e., capture + fission)
in barns (b), but in the remainder of the document, absorption solely vefers to capture interactions

4.1.1.5 Fission Products

The change in relative concentrations of fission products calculated by
monteburns matched almost identically to those produced using thermal cross sections
and the equations in the reference. To meodel the amount of buildup of all fission

products (and not just those with cross sections in MCNP), the lump sum fission

50

product option in MCNP was used (see Section 3.3.2 for a description). This test case
showed that this -oﬁtion in monteburns did calculate fission product compositions
correctly. Unfortunately, it adversely affected uwramium and plutonivm isotopic
compositions. Either the absorption cross sections of these general fission products were
too large relative to the rest of the system, or the atom densities of fission products
calculated by MCNP were too large (see Section 4.2.1.3 for more information). In either
case, the addition of these lump summed fission products caused the k.¢ of the system to
decrease significantly as a function of burhup. A subcrtical system significantly alters
the neutron energy spectrum, influencing the value of the spectrum-averaged one-group
cross sections as well as the relative ratios of fission, capture, and leakage. Because this
system was modeled as an infinite lattice with no leakage, simply the ratio of fission to
capture was altered, causing too little U-235 to be depleted and too many plutonium
isotopes to be built up. Thus, the results presented in this test case were obtained from
two different runs; one to obtain actinide concentrations as a function of burnup for a
near-critical system, and one to calculate the change 1n the total fission product

concentrations with burnup.

4.1.2 Pin-Cell Burnup

The next test case compared results from monreburns to experimental data and
results from previous calculations using other codes for a simple fuel pin within a square-
pitched cell (pin-cell geometry). The Organization for Economic Cooperation and
Development/Nuclear Energy Agency (OECD/NEA) Bui‘nup Credit Calculational
Criticality Benchmarks are a compendium of calculations performed by 1.6 different

(291 The purpose of these

organizations (21 sets of results) and measured burnup data.
benchmarks was to determine if various computer codes/models could accurately calculate
the composition of spent fuel assemblies for the Burnup Credit program. Results from

Bumup Credit Benchmark Phase I-B were used in the belichmarking process for

51

monteburns to determine if similar nuclide concentrations were calculated as a function of
burnup for a simple pin-cell geometry. The percent errors in this case were calculated
relative to the measured data, and the results obtained by monteburns were compared to

the data published by other organizations and codes.

4.1.2.1 Description

The pin-cell geometry used for this benchmark case consisted of a fuel pin
(initially comprised of UQ,} with a thin layer of cladding (Zircaloy-2) surrounded by
water in a squarc-pitched cell (see Figure 4). Reflective boundary conditions were used
on all four edges to simulate that the pin was infinitely surrounded by similar pins. The
parameters used for this test case are given In Table 5, and the input files used to run
monteburns for this test case appear in Appendices C-E (which is why detailed geometry

information is provided for this test case and not the others).

Cladding

Figure 4, Pin-Cell Diagram

52

Table 5. Parameters for Test Case #2

Parameter'>” Value | Parameter Value
Fuel Density 10.045 g/ce || Length of Irradiation - Cycle 1 | 306 days
Water Density 0.7569 g/ce [t Time Between Cycles and 2 | 71.0 days
Rod Pitch 1.5586 cm || Length of Irradiation - Cycle 2 | 382 days
Rod Quiside Radius 0.559 cm Time Between Cycles 2 and 3 | 83.1 days
Rod Inside Radius 0493 cm || Length of Irradiation - Cycle 3 | 466 days .
Fuel Pellet Radius 0.4782 cm || Time Between Cycles 3and 4 | 85.0 days
Active Fuel Length 347.2 cm Length of Irradiation - Cycle 4 | 461 days
Effective Fuel Temp. 841 K Length of Final Cool-Down 1870 days
Cladding Temperature 620 K Boron Concentration - Cycle 1 | 331 ppm ~
Water Temperature 558 K Boron Concentration - Cycle 2 | 470 ppm
Ending Fuel Bumup for} 27.35 Boron Concentration - Cycle 3 {1 504 ppm
Scenario A (GWd/MTHM)

Ending Fuel Burnup for|37.12 Boron Concentration - Cycle 4 | 493 ppm
Scenario B (GWd/MTHM)

" ppm {or parts per million) means the grams of boron particles per million grams of water in the system

The soluble boron concentration in the water was fixed for each burn step and was
not burned (the ability to change the composition of material in a region during burn steps
without buming the material is one of the unique features of monteburns). If the boron
were burned, the ratio of Boron-10 to Boron-11 throughout the burn step would have
been affected becausé Boron-10 burns faster than Boron-11, and the results would not
have reflected a representative neutron spectrum due to an inaccurate boron composition.
In a reactor system, the coolant flows in and out of the reactor vertically and does not
stay in one location for too long to be irradiated (it only takes the coolant about 0.7
seconds to flow through the reactor (see Equation 22)). Thus, it was assumed for this
test case that the boron concentration going in was fixed as natural boron (about 20% B-

10 and 80% B-11} and that it came out at the same concentration.

53

p=t = = (22)

=
:
|

= time coolant spends in core (s} = 0.7 s

H

density of coolant = 0.7569 g/cm® 2%

cross sectional area of coolant flow = 50,500 cm? for a PWRY

1"

length of fuel rod = 347.2 cm 2

Qhkﬁ
I

coolant flow = 19*10° g/s 2%

The isotopic compositions (in mg/g initial UO,) resulting from burnup calculations
i monteburns for two different scenarios appear in Tables 6a and 6b. The values
calculated by monfeburns, the measured data from Ref. 20, the percent error between the
two (calculated using Equation 23), and the range of values calculated by other

organizations are all listed in these tables.

% Error = (Calculated/Measured - 1) * 100% (23)

The geometry used in this test case, an infinite lattice of fuel pins, was not
completely representative of the actmal system in which the measured fuel pin was
burned. Thus, the main purpose of this test case was not necessarily to analyze how well
it represented an actual fuel pin, but to show that monteburns calculated results of
burnup calculations within the range of values calculated by other codes using the same
geometry. The only difference between the system modeled in monfeburns and that
described in the reference is that it was difficult to obtain the exact amount of burnup in
monteburns that was specified in the problem. This is because monteburns requires the
user to input the total system power, irradiation time, and fraction of power produced in
each step, and it then calculates how much power is generated by each region (see

Equations 9-17). The resulting flux is subject to statistical errors and may not correspond

54

to the exact flux and power specified in the put, but this problem can be corrected by
running MCNP with better statistics. The actual burnups calculated by monteburns for
Scenarios A and B in this test case were 27.34 and 37.38 GWd/MTHM respectively,
which were fairly close to the specified inputs of 27.35 and 37.12 GWd/MTHM

respectively.

4.1.2.2 Results
Table 6a. Results and a Comparison of Experimental Data for Scenarie A

Isotope Monteburns Published Value | % Ermor | Range of Values from
Value (mg/g UOy) [(mg/g UO,) P Other Codes?” l
U-234 0.156 0.160 245 0.1330 to 0.1750
U-235 8.10 8.47 -4.32 7.445 to 8.661
U-236 3.21 3.14 2.09 3.128 to 3.540
U-238 838 843 -0.50 836.7 to 841.5
Np-237 0.286 0.268 6.65 0.2527 to 0.3396
Pu-238 0.095 0.101 6.12 | 0.05721 t0 0.1083
Pu-239 3.94 4.26 -7.50 3.660 to 4.690
Pu-240 1.68 1.72 -2.00 1.573 to 1.860
'rPu-241 0.663 0.681 2.72 0.5310 t0 0.7335
Pu-242 0.308 0.289 6.65 0.2000 to 0.3192
Am-24] 0.232 N/A N/A 0.2269 to 0.2598 1|
Am-243 0.0411 N/A N/A | 0.03480 10 6.04672
Mo-95 | 0.563 N/A N/A 0.5590 to 0.5795
Tc-99 0.595 N/A N/A 0.5648 to 0.6904
Cs-133 0.866 0.850 1.91 0.6820 to 0.8640
b Cs-135 0.376 0.360 446 0.3728 to 0.3959
i Nd-143 0.611 0.613 -0.36 0.6040 to 0.6792
Nd-145 0.511 0.510 0.19 0.4984 to 0.5151
Sm-147 0.160 N/A N/A 0.1564 10 0.1932 ||
Sm-149 0.00157 0.00290 -45.76 | 0.001626 to 0.002900
Sm-150 0.180 0.207 21322 | 0.1713 to0 0.2146
Sm-151 0.00890 N/A N/A | 0.006376 t0 0.01413
Sm-152 0.0858 0.0870 -1.35 | 0.07947 t0 0.1073
EEE 0.0830 0.0790 511 | 0.06730 to 0.08921
| Ga-155 0.00394 N/A N/A [0.001507 t0 0.005762

55

Table 6b. Results and a Comparison of Experimental Data for Scenario B

Isotope Monteburns Published Value | % Error | Range of Values from
Value (mg/g UQ,) | (mg/g UQ,) Other Codes™
" U-234 0.133 0.140 -5.05 0.1080 to 0.1570
U-235 4.67 517 -9.66 4.022 10 5.510
U-236 3,62 3.53 2.68 3.526 to 3.930
U-238 830 833 -0.28 829.2 1o 836.0
Np-237 0.407 0.356 14.38 0.3560 to 0.4919
Pu-238 0.182 0.189 -3.84 0.1144 to 0.2069
Pu-239 4.03 4.36 -7.46 3.710 to 4.877
Pu-240 2.18 2.24 -2.47 1.996 t02.347 |
Pu-241 0.866 0.903 4.05 0.7510 to 0.9846
Pu-242 0.619 0.576 7.41 0.4200 to 0.6347
Am-241 0.294 N/A N/A 0.2880 to 0.3418
Am-243 0.108 N/A N/A 0.09637 to 0.1391
Mo-95 0.735 N/A N/A 0.7214 to 0.7545
Tc-99 0.782 N/A N/A 0.7327 to 0.8372
| Cs-133 1.12 1.09 2.55 0.8784 t0 1.117
Cs-135 0.419 0.400 4.79 0.3967 to 0.4317
Nd-143 0.711 0.716 -0.76 0.7013 to 0.8254
Nd-145 0.655 0.653 0.26 0.6326 to 0.6600
Sm-147 0.170 N/A N/A 0.1659 to 0.2201
Sm-149 0.00164 0.00300 -45.18 1 0.001736 to 0.003092
Sm-150 0.247 0.271 -8.96 0.2.297 to 0.3152
Sm-151 0.00958 N/A N/A | 0.008614 to 0.01571
Sm-152 0.104 0.104 -0.20 0.09761 to 0.1416
Eu-153 0.123 0.109 13.17 0.09960 to 0.1309
Gd-155 0.00703 N/A N/A | 0.002538 t0 0.01028

The results calculated by monteburns fell within the range of values calculated by

other codes for both scenarios with the exception of the fission products Cesium (Cs)-

133 and Samarium (Sm}-149. However, neither of these two isotopes’ compositions

were too far out of range, which means that monteburns represented the system just as

well as or better than the other burnup codes. It is difficult to calculate fission product

56

concentrations accurately (as discussed in Section 4.1.2.5), so this benchmark was indeed
considered to be successful.

The results of calculations performed in monteburns for Scenario A matched the
measured results from this test case to within a 5% eiror for most isotopes with the
exception of Neptunium (Np)}-237, Pu-238, Pu-239, Pu-242, Europium (Eu)-153,
Samarium (Sm)-149, and Sm-150. The errors seen in these caleulations could be a result
of four different effects: 1) the system, as modeled, was supercritical and produced a
different spectrum than was seen experimentally, 2) the recoverable energy per fission
may not have been represented correctly, 3} incorrect fission yields in ORIGEN2, and 4)

statistical errors.

4.1.2.3 Dlifferences in Energy Spectra

First, the simple system modeled in this test case was an infinite pin—céli
geometry and did not represent the exact spectrum that would have been seen with a pin
taken from an experimental reactor operating at steady-state. A pin in an actual reactor
would be subject to the influences of other poisons (besides soluble boron) in the system,
and the effects of leakage would decrease the relative reaction rates of fission and capture
because it 1 a competing process. However, in this infinite Jattice of fuel pins, no leakage
occurred, so the fraction of neutrons that would bave previously left the system
contributed to fission and capture interactions instead. This could explain why more U-

235 was depleted in monteburns than experimentally.

4.1.2.4 Recoverable Energy Per Fission

The second source of error could have been that the value input in monteburns for
the recoverable energy per fission may have been too low. In montebum;s, the user has
the option to input the recoverable energy per fission for U-235, and the actual

recoverable energy per fission (Qg) in the system is scaled relative to the presence of

57

other actinides in the system and the ratio of their recoverable energies to that of U-235
(see Equations 5-7). For this case, an estimated value of 200 MeV was used.'! Thus,
because only 200 MeV was generated per fission, a larger number of fissions were
required for a given power level than if a larger value, such as 202 MeV, were entered.
For example, results from using 202 MeV showed that U-235 was not bumed as quickly
because fewer total fissions occurred. However, the fission-to-capture ratio of each
actinide remained the same even though the recoverable energy per fission changed, so the
phutonium isotopes still did not build up as much as in the measured data. In either case,
it was difficult to justify using a higher recoverable energy per fission in this test case
without experimentally showing that a PWR system provides that much more energy per

fission.

4,1.2.5 Fission Yields

Third, for both scenarios the compositions of Sm-149, Sm-150, and Eu-153
~ calculated by monteburns at the end of the irradiation were smaller than measured results
(by almost a factor of 2 for Sm-149 although much better for the other two). This is
probably a result of estimations of the fission yields made by ORIGEN2 for these
isotopes. For example, the total fission yield from Pu-239 for Sm is around 0.2% in the
ORIGEN? libraries while it is 0.7% experimentally,?!) causing fewer Sm atoms to be
produced in montebwms than experimentally. However, this is a facet of the code
ORIGEN2 and cannot currently be modified by monteburns, so these errors must be
accepted. Additionally, the ratio of fissions due to Pu-239 versus Pu-241 may also have
affected the results. The fission yields of both Sm-149 and Sm-150 are slightly greater
from Pu-239 than Pu-241 according to the relevant ORIGEN? library. Because excess
Pu-242 was produced, it was assumed that a great deal of Pu-241 was also produced
(although 1t was depleted rather quickly). Thus, more fissions probably occurred from

Pu-241 than Pu-239 in the modeled system than the measured one, and fewer Sm-149 and

58

Sm-150 atoms were produced. The errors associated with Fu-153 and other fission
products were probably a result of similar reasons. Fortunately, ORIGEN2 contains
more representative fission yields for a majority of the fission products, overall producing

acceptable results (i.e. < 5% error).

4.1.2.6 Statistical Variances

The last possible source of ermror could have been a result of the statistical
variances mvolved with obtaining spectrum-averaged, one-group cross sections in MCNP,
which were produced using tally cards. The accuracy of these depend on the statistics
with which MCNP was run and the accuracy with which it calculates fluxes in each
region. For example, Pu-238 displayed a 6.12% ecrror in Scenario A but only a 3.84%
error in Scenario B. The accuracy to which the ENDF/B-V cross section set(s)
represented resonances may also have affected the outcome. Either way, variances in
cross sections may have altered the amount of resonance absorption versus self-shielding

and imfluenced results,

4.1.2.7 Additional Burnup

For Scenario B, a number of additional actinides had errors greater than 5%. This
case involved higher burnups than Scenario A as well as a larger variance between the final
burnup in monteburns and measured data, so greater percent errors were expected. This
was because variances m cross sections and fission yields became more prominent as
power times time increased because each burn step became relatively longer (in terms of
GWd) to make differences more prominent. In this scenario of the test case, it was
particularly obvious that U-235 was burned faster using monteburns than experimentally,
creating almost a 10% error. This was agam due to the reasons discussed previously.

However, all actinides still fell within the range of computational values produced by

59

other codes for both scenarios, showing the validity of monteburns in modeling the

system described by the reference.

Overall, the ability of monfeburns to calculate the change in composition of a
system with bumup has been shown to be fairly good and within the range of values
calculated by other codes. More accurate answers may be obtained using better statistics
(as further discussed in Section 4.2) or by modeling the entire system rather than just one

fuel pin to represent a more accurate spectrurn and to include the effects of leakage.

4.1.3 Assembly Burnup

The purpose of the third test case was to compare the burnup results calculated

by monteburns to experimental values for a full PWR assembly.

4.1.3.1 Description

The assembly modeled in this example was H.B. Robinson’s Unit 2, which uses a
Westinghouse 15x15 fuel lattice, and the assembly layout is shown in Figure 5 (for
detailed information, see Ref. 19). This test case studied four different scenarios, each
with a different final burnup. To simulate an assernbly located in the middie of a reactor
with 1dentical assemblies surrounding it, reflective boundary conditions were placed on all
four sides of the assembly.

This model was considered to be more accurate than the simple pin-cell one in
Test Case #2 because burnable poisons as well as guide and instrumentation tubes were
represented, thus, the spectrum of the system should have been more accurate. However,
the same number of outer burn steps were used for each scenario with increasing amounts
of power times time, so representative cross sections were calculated over a shorter time
frame in the first scenario and over a longer one in the last one. The same average boron

concentration was also used for each but probably represented the middle two cases best.

60

Rod
L | t——T""" Analyzed
.
O
O O
O 2y O
O O
O
|
[PueiRod O Guide Tube

D Bumabk Poison Rod @ Instrumen tation Tube

Figure 5. Layout of Assembly for Test Case #3

The systc.rn tumed out to be slightly supercritical for the first scenario and
shightly subcritical for the last onc, so the results for the middle two cases were expected
to be better than for the first and last. Again, there were ditficulties achieving the exact
amount of burnup specified in the input, but the values were fairly close nonetheless |
(16.00, 23.84, 28.64, and 31.86 GWJd/MTHM compared to 16.02, 23.81, 28.47, and
31.66 GWd/MTHM for Scenarios 1-4 respectively).

4.1.3.2 Results

One rod within this assembly was mecasured for isotopic content, and the

measured results for this rod were compared to those calculated by monteburns in Tables

61

7a and 7b (in g/g UG,) for the four burnup scenartos. The percent errors displayed in

these tables were calculated using Equation 23.

Table 7a. Results for Burnups of 16.00 and 23.84 GWd/MTHM (g/g UO,)

Il Burnup 16.00 GWd/MTHM 23.84 GWd/MTHM

l Isotope | monteburns | published"” monteburns | published!' § % error
1J-235 0.0110 0.0107 0.00751 0.00721 4.11
U-236 0.00212 0.00219 0.00266 0.00274 -3.09
U-238 0.848 0.847 0.842 0.847 -0.53
Pu-238 2.89E-05 2.83E-05 7.01E-05 6.95E-05 0.83
Pu-239 0.00371 (.00364 0.00407 (.00402 1.31

Pu-240 0.00114 0.00109 0.00170 0.00167 1.61
Pu-241] 3.25E-04 3.04E-04) 5.29E-04 5.04E-04 4.97
Np-237 | 1.51E-04 1.55E-04 2.46E-04 2.60E-04 -3.55
Tc-99" 6.06E-06 5.44E-06 8.76E-06 8.09E-06 8.34
Cs-137" 0.0353 0.0359 0.0527 0.0539 -2.22

Table 7b. Results for Burnups of 28.64 and 31.86 GWd/MTHM (g/g UO,)

Burnup 28.64 GWd/MTHM 31.86 GWd/MTHM
Isotope | monteburns | published!'®! | % error || monteburns | published!”! | % error
U-235 0.00603 0.00618 -2.44 0.00515 0.00486 5.98
U-236 0.00285 (¢.00282 1.24 0.00295 (.00300 -1.51
U-238 0.838 0.834 0.54 (.835 0.842 -0.89
Pu-238 1.06E-04 1.14E-04 -7.01 1.33E-04 1.30E-04 1.97
Pu-239 0.00431 0.00439 -1.77 0.00445 0.00420 6.00
Pu-240 0.00199 0.00197 1.14 0.00218 0.00212 2.65
Pu-241 6.49E-04 6.81E-04 -4,72 7.11E-04 6.92E-04 2.71
Np-237 | 3.11E-04 3.04E-04 2.45 3.59E-04 3.33E-04 7.91
Tc-99° 1.03E-05 8.95E-06 14.94 1.13E-05 1.01E-05
Cs-137 0.0631 0.0627 0.70 0.0703 0.0713

“The units for these are given in Curies/gram UO: (Ci/g) instead of g/g UQ; like the other isotopes.

As can be seen from these tables, the percent error associated with a majority of
the isotopes in these cases was below 5% with the exception of several actinides and the

fission product Technetium (Tc)-99.

4.1.3.3 Actinides

In each burnup case, at least one actinide concentration resulted in a percent error
greater than 5%, but none consistently produced poor results. These errors were
probably a result of any or all of the reasons presented in Test Cases 1 and 2 (ie,
resonance self-shielding, cross sections, inaccurate system modeling, variances in
recoverable energy per fission, statistics, etc.). Because the first scenario was slightly
supercritical and the last subcritical, the spectrums were probably not representative of a
steady-state system, and cross sections may have suffered accuracy as a result. This is
- probably a result of differences in the locations of resonances and the amount of
resonance absorption versus self-shielding that occurred. For example, in Scenarios 1, 2,
and 4, too much U-238 was depleted, producing excess Pu-239, and in Scenario 3, too
little U-238 was depleted, not producing enough Pu-239 or higher plutonium isotopes. In
contrast, too much U-235 was depleted m Scenario 3 because Pu-239 did not contribute
to as many fissions as it should have, and excess U-236 was produced. In turn, not
enough U-235 was depleted in Scenarios 1, 2, and 4 because too much Pu-239 and Pu-241
fissioned, resulting in too little production of U-236. This probably means that in
Scenario 3, the absorption cross section of U-235 was too large compared to that of U-
238, whereas in the other test cases, it was toc small. Thus, the number of U-235
captures appeared to be indirectly proportional to the number of U-238 captures in this

test case, and in all scenarios were slightly different than the actual system.

63

4.1.3.4 Fission Products

The percent errors associated with the concentration of Tc-99 were around 10-15
percent for each burnup case. There are three potential sources of error for this
calculation. First, the fission yields for Tc-99 used by ORIGEN2 may not have been
truly representative of the probability that it was produced by fission (as discussed in
Section 4.1.2.5). Second, the absorption cross section calculated by monteburns for Tc-
99 may have been too small because not enough of it was transmuted to Tc-100. Finally
{but least likely), the concentration of Tc-99 was given in Ci/g UQ, instead of g/g UO; as
the actinides were, and the conversion may have been performed incorrectly. Monteburns
outputs the concentrations of isotopes in grams, so it was converted from grams to Curies

by multiplying by the specific activity of Tc-99 (see Equation 24 (221,

_ 4.17%107
MT

where: S4 = specific activity (Bq/g) (where 1 Ci = 3.7%10'° Bq %}

SA ~ 1.7e-2 Ci/g for Tc-99 24)

M = atomic weight of isotope = atomic mass number = 99 for Tc-99

T = half-life of isotope in seconds = 2.13*10° years [*!)

However, the errors associated with the fission product Cs-137 were less than
2.5% using the same ORIGEN2 library and specific activity equation. Therefore, the
errors associated with Tc-99 were more likely a result of the differences in the fission
yields or cross sections. Even a 10-15% error for a fission product was not considered to
be too unreasonable in this analysis considering all the uncertaintics and potential

statistical errors involved.

4.1.3.5 Comparison to SCALE

The percent errors seen using the code SCALE were similar to those obtained
from monteburns. For Tc-99 the average percent error was 11.7% in SCALE and
between 8-15% in monteburns. Similarly, the errors assoctated with the other fission
product, Cs-137, were only on average, 1.2% m SCALE and between 0.7 and 2.5% in
monteburns. This means that the two codes produced similar results, which is probably
because the same (or similar) fission yields and/or cross sections were used in each (this is
becanse ORIGEN-S, the code used by SCALE containing fission yields, is simply a
newer version of ORIGEN2, which is used in monteburns) as well as the same model.
The largest percent errors seen in SCALE for actinides were associated with Pu-239, Pu-
241, and Np-237 (8.2%, 5.4%, and 11.1% respectively) for this test case, and comparing
these to Tables 7a and 7b, monteburns performed as well as SCALE for burnup
calculations. A more accurate system model would be needed to match measured results

more closely.

Overall, modeling a full reactor assembly proved to be more accurate than just
modeling an infinite lattice of identical fuel pins, and it was shown that monteburns

performs calculations for a given system model just as well as a code such as SCALE.

4.1.4 Power Distribution

One of the many capabilities of monteburns is that it can calculate the amount of
power produced in each region/material of a system given the total system power. Power
distribution is important because it determines how much energy is released from each
region, thereby indicating which one(s) is depleted the fastest. It does this by obtaining
the flux and macroscopic fission cross section tallies for the region(s) of interest from
MCNP, “normalizing” these values, and then calculating the power in each region from

these results {see Equations 9-17 for more information).

65

4.1.4.1 Description

The test case used to validate this calculation modeled a sample 3x3 BWR
assembly with eight fuel pins on the outside and a rod capable of containing bumable
poison in the middle. ™ The layout of the 3x3 assembly is shown in Figure 6, and the
pins arc numbered according to three different regions. The average power produced per
pin 1n the assembly was calculated, and then the power produced by a pin i each region

was divided by this average.

Fuel Rod Centerpin With
or Without Gd

Figure 6. 3x3 Assembly

4.1.4.2 Results

Table 8 displays the differences between the results calcutated by monreburns and
the range of values obtained using other codes given in Ref, 23 for both a scenario with

gadolintum {Gd) in the center pin and one without. This table shows that the power

distributions for both cases fell within the range of published values, indicating that not

only does monteburns perform power distribution calculations correctly, but it also

analyzes a BWR fuel assembly well.

'Fable 8. Pi'n Power Distribution

[Fuel Pin Analyzed Montebuins Value” Published Range of Values
Pin 1 with 3% Gd 1.055 1.053 to 1.062
Pin 2 with 3% Gd 0.437 0.413 to 0.460
Pin 3 with 3% Gd 1.086 1.082 to 1.087 |
Pin 1 with 0% Gd 1.031 1.029 to 1.032 |
Pin 2 with 0% Gd 0.766 0.766 t0 0.779 I
Pin 3 with 0% Gd 1.028 1.026 to 1.027 i

“This is the average power produced per pin in each region divided by the average power produced per pin
in the 3x3 assembly.

Additionally, it shows that the continuous pointwise cross sections output as one-group
in MCNP produce compatible results to the group-wise ones used by the other codes in

this reference.[?*]

4.1.5 Activity Calculation

One of the proposed future uses of monteburns is to provide activation and/or
decay powers of materials {(see Section 6.0). To do this, the activities of various isotopes
in a material must be calculated. This test case compares the activity of a spent fuel
assembly containing MOX fuel after irradiation in monfeburns to published results from
SCALE. The purpose of using MOX fuel in this test case was to show the versatility of

monteburns in calculating the burnup of plutonium- as well as uranium-based fuels.

4.1.5.1 Description

First, the composition of the material after irradiation was calculated using
monteburns, and then it was converted and output as activity as a function of decay time
using ORIGEN?2 (although only the activity immediately after removal is compared here).
This information can be used to generate dose rates as a function of cooling time for a
spent fuel assembly, which could be useful in both repository analyses and proliferation

1ssues.

67

4.1.5.2 Resulis

The differences between monteburns and published values using SCALE are
shown in Table 9 for a Combustion Engineermg System 80+ PWR System containing
mixed-oxide (MOX) fuel.? The percent difference between the values calculated by
monteburns and those given in Ref. 24 for SCALE were calculated by Equation 23, where

the measured value was replaced by the SCALE value.

Table 9. Results from Activity Calculation

68

Activity (Ci) Monteburns SCALE® % difference
H-3 3.48E+02 2.76E+02 26.09
Kr-85 2.85E+03 2.69E+03 5.99
Kr-85m 5.25E+04 5.07E+04 347
Rb-86 4.91EH2 3.72E+(2 31.88
Kr-88 1 27E+05 1.30E+05 -2.08
Sr-89 1.66E+05 1.69E+05 -1.66
i $r-90 1.94E+04 2.00E+04 2.95
Y-90 2.00E+04 2.03E+04 -1.38
5r-91 2.35E+05 2.45E+05 424
Y-91 2.39E+05 2 46E+05 -3.05
Y-9Im 1.36E+05 1.42E+05 4.01
Sr-92 2.80E+05 2.90E+05 -3.59
| Y-92 2.82E+05 2.91E+05 -3.13
Y-93 3.60E+05 2 45E+05 46.86
Nb-95 4.54E+05 4.56E+05 -0.44
Nb-95m 3.21E+03 5.21E+03 -38.35
7r-95 4.52E+05 4.58E+05 -1.35
Zr-97 4.93E+05 4.86E+05 1.42 i
Mo-99 5.65E+05 5.89E+05 -4.13 |
Tc-99m 4.99E-+05 5.22E+05 -4.35 |
Rh-105 4 41E+05 4.99E+05 -11.64 i
Rh-105m 1.39E-+05 1.45E+05 -4.21 “
Ru-105 4.96E+05 5.10E+05 271
Ru-106 3.76E+05 3.74E+05 0.61 |
Sb-127 4.52E+04 3.86E+04 17.10 i

Table 9 (cont.)

Activity (Ci) Monteburns SCALE? % difference
Te-127 4.61E+04 3.84F+04 20.03
Te-127m 6.40E+03 6.69E+03 433
Sb-129 1.24E+05 1.22E+05 1.97
Te-129 1.23E+05 1.17E+05 4.87 ﬂ|
Te-129m 1.86E+04 2 41E+04 22.86
1-131 3.39E+03 3 43E+05 -1.28
Xe-131m 3.80E+03 4.47E+03 -14.92
1-132 4.78E+05 4.90E+05 245
Te-132 4.65E+05 4,76E+05 2.29
1-133 6.31E+05 6.52E+05 322
Xe-133 6.02E+05 6.55E-+05 -$.05 |
Xe-133m 1.89E+04 2.16E+04 _12.50
Cs-134 8.41E+04 7.03E+04 19.59
Cs-134m 2.13E+04 1.31E+04 62.75
I-135 5 90E+05 6.24F+05 -5.40
Xe-135 5.12E+05 4.80E+05 6.56
Xe-135m 1.38E+05 1.52E+05 9.01
Cs-136 4.70E+04 4.17E+04 12.71
Cs-137 5.53E+04 5.70E+04 2.8
Ba-140 5 13E+05 5.44E+05 5.64
La-140 5 32E+05 5.55E+05 _4.14 I
Ce-141 4.90E+05 5.00E+05 -2.08
La-141 4.86E+03 4.96E+05 22,08
Ce-143 4.19E+05 4.20E+03 228
Pr-143 4.19F+05 4.21E+05 0.40
Ce-144 3.51E+05 3 51F+05 0.11
Nd-147 1.99E+05 2.05E+05 312
Np-238 2 23E+04 3 48E+04 -35.98 4|
Pu-238 1.20E+03 1 24E+03 - 427
Pu-239 9.15E+02 8.93E+02 2.41
Pu-240 1.11E+03 1.10E+03 0.55
Am-241 6.07E+02 6.96E-+02 -12.83
Pu-241 2.74E+05 2.76E+05 091
Cm-242 8.37E+04 8.05E+04 3.93
Cm-244 4.68E+03 2 87E+03 62.96

69

Table 9 shows that the percent differences associated with most of the actinides
(with the exception of Np-238, Am-241 and Cm-244) were less than 5%, but they were

larger for some of the fission products.

4.1.5.3 Actinides

The percent differences seen for all plutonium isotopes and most other actinides
were less than 5% (excluding Np-238, Am-241, and Cm-244), showing the validity of
both codes in performing bumup calculations involving major system isotopes in the
given geometry. Because this test case was not compared to experimental data, the causes
of errdr discussed in Test Cases [-3 were mirnimal here. Instead, errors associated with
Np-238, Am-241, and Cm-244 were most likely due to variances in cross sections and the
ways the codes model an assembly with reflective boundary conditions. SCALE uses
multi-group cross section sets, whereas monteburns uses one-group spectrum-averaged
ones obtained from continuous-energy data in MCNP. SCALE also typically uses the
Monte Carlo code KENQ, whereas monteburns uses MCNP. Additionally, even though
results from the two codes were comparable, they may not complement measured data as
well without a better system model.

The Am-241 concentration in monteburns was probably smaller than that in
SCALE because not enough Pu-241 was present to decay by beta emission to Am-241,
which was probably a result of fewer neutron absorptions in Pu-240. Another
explanation could be that the Am-241 absorption cross section was larger in monteburns
than in SCALE, producing higher actinide concentrations while depleting Am-241. This
explanation 1s probably more likely because the monteburns concentrations for Cm-242
and Cm-244 were targer than those in SCALE. By the absorption of a neufron, Am-241
1s transmuted to Am-242, which beta decays to Cm-242; Cm-242 then absorbs neutrons
to create Cm-244. The small concentration of Am-241 i monteburns relative to SCALE

also contributed to the relatively small concentration of Np-238 (Am-241 decays by

70

alpha eémission into Np-237, which absorbs a neutron to become Np-238). As the Am-
241 concentration was relatively low in monteburns, the resulting decay process

produced less Np-237, and in turn, fewer Np-238 atoms.

4.1.5.4 Fission Products

Fission préducts with a deviation greater than 5% between SCALE and
monteburns include: Ba-140, Cs-134, Cs-134m, Cs-136, H-3, I-135, Kr-85, Nb-95m, Rb-
86, Rh-105, Sb-127, Te-127, Te-129m, Xe-131m, Xe-133, Xe-133m, Xe-135, Xe-135m,
and Y-93. From a list of 53 different fission products, having only 19 with a percent
difference over 5% and only 13 gfeater than 10% is pretty good. This means that
monteburns calculated almost 75% of all fission product concentrations fairly well (less
than 10% difference) in comparison to SCALE and about two-thirds of them to a less
than 5% difference. The deviations seen with these fission products were probably due
to fission yield and/or cross section variances between the two codes. Thus, having

relatively good results for 75% of the fission products was considered to be acceptable.

Overall, the results obtained using monteburns were fairly close to those expected
for each test case, and a majority of them were within a relative error/difference of 5% of
measured results. Almost all were within the range(s) of published caiculations from
other codes. First, the change in relative concentrations of uranium and plutonium
isotopes were comparable to those referenced.” Next, a full assembly model was shown
to produce better results than a pin-cell geometry due to a more accurate spectrum
representation. Finally, more similarities were fﬁund when comparing results from
monteburns to calculations performed with another code (such as SCALE) using the same
geometry/model than comparing to measured results from a rod irradiated in a full reactor

system influenced by leakage, interfacing between assemblies, and other features.

71

Both PWR and BWR cases were tested in monteburns, along with both uranium-
and plutonium-based fuels. The technique used in monteburns for generating cross
sections differed from what other codes such as SCALE use (i.c., one-group spectrum-
averaged ones obtained from continuous energy data versus multi-group ones), but the
differences between the two did not appear to be significant. Thus, monteburns was
considered adequate for the problems presented here. Unfortunately, there is not
currently any readily available experimental data for a fast system, such as that used in
ATW, so no benchmarks were performed for one. However, it is assumed that since the
code has been shown to work well for a thermal system, it can calculate decent results for

a fast system as well.

4.2 Statistical Analyses

Another important aspect of developing and/or rumning a computer code is to
determine how statistics affect the results. The term statistics, when used in reference to
monteburns, refers 1o how results vary using different input parameters or modeling a
system in different ways. To test this variance, several of the test cases discussed in the
previous section were further examined. No MCNP statistical runs are presented here;
many of these have already been performed by others in the industry (for example, Ref.

11).

4.2.1 Input Parameters

The input parameters analyzed for their effect(s) on statistics were: the number
of outer burn steps, the number of internal burn steps, the number of predictor steps, the
importance fraction, and the recoverable energy per fission. The majority of tables in this
section show both the measured and calculated values for Scenario 1 of Test Case #3 at a
burnup of ~ 16 GWd/MTHM for four different isotopes: U-235, U-236, Pu-239, and

Pu-240. Unless otherwise stated, the number of internal bum steps was 80, the number

72

of outer burn steps was 8 (4 irradiation, 4 decay), the number of predictor steps was one,
the importance fraction was 0.01, the U-235 recoverable energy per fission was 200
MeV, the number of neutrons per cycle was 1000, the number of active cycles was 100,

and the number of skipped cycles in MCNP was 15.

4.2.1.1 Number of Outer and Internal Burn Steps

The first parameter a user typically wants to determine in monteburns is the
length of the time intervals over which irradiation occurs. There are two input parameters
that can affect this length of time: the number of outer burn steps, and the number of
internal burn steps. First, using more outer burn steps not only decreases the length of
each time interval but also increases the accuracy of the system because the spectrum-
averaged one-group cross sections for the system are updated more frequently
(consequently increasing the run time). Second, the way to use shorter time steps in
ORIGEN2 without having to perform additional MCNP runs is through the use of
internal burn steps. The more internal burn steps used, the shorter the time intervals for
each ORIGEN?2 irradiation. As discussed in Section 2.2, this is important because
ORIGEN2 performs different calculations (i.e., the Bateman equations versus the matrix
exponential method) for isotopes with balf-lives less than 10% of the time interval.l®
Thus, using shorter time intervals may provide more accurate resuits for the problem.
The optimum number of internal burn steps should also depend upon-whether continuous
or discrete (all at one time) feed 1s used. By using continuous feed with different
beginning and ending feed rates, it was assumed when designing monteburns that it would
be necessary to break the time steps in ORIGEN2 into even shorter periods. This is
because the amount of feed added during each intemal bum step is interpolated from the
beginning and ending feed rates for that outer burn step and averaged over each internal

burn step.

73

For the first scenario of test case #3 (a discrete feed case), the effects of the

number of outer and internal burn steps on the results are shown in Tables 10a and 10b

{these were performed with forty internal burn steps and eight outer bum steps

respectively). Results for a continuous feed case (representing ATW, which will be

discussed in Section 5.1) are then displayed in Table 10c.

Table 16a. Cemparison of Results as a Function of Number of Quter Burn Steps

Experimental (grams/ 5360 1097 1823 546
Results assembly)
of Outer Length of U-235 U-236 Pu-239 Pu-240
Burn Steps ORIGEN2
steps {days)
8 6.09 5500 1060 1860 569
16 3.04 5530 1060 1880 571
24 2.03 5500 1060 574 H

1870

Table 10b. Comparison of Results as a Function of Number of Internal Burn Steps

|7Experimental (grams/ 5360 1097 1823 546

Results assembly)
H # of Internal Length of U-235 U-236 Pu-239 Pu-240

Bum Steps ORIGEN2
steps {days)

2 121.75 5510 1060 1860 559

4 60.88 5510 1060 1860 561

6 40.58 5510 1070 1860 569

8 30.44 5500 1070 1860 562

10 24.35 5540 1060 1850 565

20 12.18 5530 1060 1860 568

30 8.12 5520 1070 1880 575

40 6.09 5560 1060 1890 581

4.87

Tabie 10¢. Results as a Function of Internal Burn Step for Continuous Feed
(grams)

of Internal Length of U-238 Pu-239 Pu-240 Am-241
Bum Steps ORIGEN2
steps (days)

10 122 | 7978+2 | 1.70E+5 | 2.08E+5 | 1.79E+4

20 6.00 793E+2 | 168E+5 | 2.07E+5 | 1.76E+4
30 4.06 797642 | 171E+5 | 207655 | L.79E+ |
I 40 3.04 7.95E+2 1.70E+5 2.08E+S 1.79E+4_|

Surprisingly, all three of these tables show little increase in accuracy with more
than the minimum required number of outer or internal burn steps (i.e. two for discrete
feed and ten for continuous feed!"™) for these sample test cases. The number of outer
burn steps is thus recommended to be the fowest needed to represent all system changes.
For example, in this case, eight were required because there were four irradiation cycles
with different amounts of power and soluble boron as well as a cooling period foliowing
each. It also appeared that using only two internal burn steps for the discrete feed case
with a thermal spectrum (with an irradiation period of about 120 days) and using ten for
the continuous case with a fast spectrum (corresponding to a length of approximately 12
days each) produced as good of results as using more. Thus, for similar cases to those
presented here, it is recommended to use the minimum number of internal burn steps even
though using additional internal burn steps does not significantly affect the run time.

Additionally, this test case at least showed that the results obtained from
monteburns for both a fast and thermal spectrumi were consistent if not influenced by
changes in the number of bum steps. Nonetheless, the user should verify that the number
of bum steps used prdvides enough accuracy for his/her specific system and associated
irradiation periods. This is becanse ORIGEN2 may still produce poor results for
irradiation periods greater than 125 days (the maximum studied here was 121.75 days) or

for other types of systems or problems (such as decay-only over thousands of years).

73

4.2.1.2 Number of Predictor Steps

The next parameter analyzed was the number of predictor steps. For each
predictor step during each outer burn step (with the exception of the first step, in which
case an extra predictor step is run - see Section 3.3.2), MCNP 1s run to obtain one-group
spectrum-averaged cross sections. Thus, increasing the number of predictor steps
increases the degree to which the cross sections calculated by MCNP represent the
average system spectrum for the step, but it also increases the run time of the problem.

The results from this analysis appear in Table 10d.

Table 10d. Comparison of Results as a Function of Number of Predictor Steps
(grams/assembly})

Experimental 5360 1097 1823 546
I Results .
Predictor U-235 U-236 Pu-239 Pu-240
Steps
0 5540 1050 1870 450

1 5500 1060 1860 569

2 5500 1060 1870 380

With eight outer burn steps and eighty intemal burn steps, a large difference was
seen between using zero and one predictor step because cross sections were calculated
only once in the former case (i.¢., only for the first step) and nine times in the latter. This
indicates that it is indeed important to calculate cross sections several times throughout an
irradiation. However, the difference between using one and two predictor steps was
minimal, meaning that the one-group spectrum-averaged cross sections calculated with
one predictor step were fairly good representations of the system at each step. Because

the run time significantly increases with each predictor step, it was found that for this

system and others studied thus far, there is no advantage in using more than one predictor

step per outer burn step. Again, the differences may have become more definitive if a

case with a longer time interval and/or fewer required outer burn steps had been studied
(however, one was not used because experimental data for such a system was not readily
available). Either way, the user is advised to make sure that one predictor step is
adequate enough for his/her system by comparing the flux spectrum and isotopic
compositions (in mass) halfiway through each predictor and actual step to obtain the best

results.

4.2.1.3 Importance Fraction

Another input parameter varied in this statistical analysis was the importance
fraction. This effectively selects which fission products are passed back to MCNP from
ORIGEN2. If this value is positive, then individual fission products are passed back to
MCNP (assuming their cross scctions exist), allowing temperature- and system-
dependent parameters to influence these individual fission product cross sections. If this
value is negative, fission products produced in ORIGEN2 are added together as a total
mass and sent back to MCNP as one of two general fission product representations
(those from U-235 and those from Pu-239) at room temperature (see Se(_:tion 332) In
this case individual fission product cross sections in ORIGEN2 are not updated because |
only general lumped sum ones are used in MCNP and cannot effectively replace
individual ones in ORIGEN2. Results from this statistical analysis appear in Table 10e.

The lower the value of the importance fraction, if positive, the smaller a
contribution an isotope has to make to the system in either absorption or fission
interactions, mass, or atom density (see Equations 18-21) to be included in MCNP.
Surprisingly, the most accurate results for this analysis occurred when the importance
fraction was relatively large (0.1 or 1.0). This 1s because a steady-state spectrum was
best represented in these cases. The system[19] was initially modeled near critical, and as
the number of fission products added to the system increased (i.e., a lbwer importance

fraction), keff decreased because the fission products absorbed many neutrons that would

77

Table 10e. Comparison of Results as a Function of Importance Fraction

(grams/assembly)
| Experimental 5360 1097 1823 546
Results _
| Importance | U-235 U-236 Pu-239 Pu-240
fraction
1 5480 1060 1820 560
0.1 5470 1060 1810 565
0.001 5550 1060 1900 565
‘ 0.00001 5520 1070 1910 573
-0.1 6690 1050 4340 539
-0.01 6690 1050 4340 554

have otherwise contributed to fission. Thus, the spectrum and/or cross sections were no
longer representative of the system at steady-state. If this case could have been modeled
more accurately (i.e., inchude leakage and interaction with the sides of the reactor core),
then as more fission products were added to the system, then the spectrum would have
been more accurate and better results would have been obtained (to represent what
actually occurs in a reactor).

In this analysis the lump sum option for fission products (i.e. a negative fractional
tmportance) produced poor results. This lump sum optton in monteburns means that all
fission products are combined into two general representations, homogenizing an
otherwise heterogeneous combination of fission products. It produced poor resuits
because the general fission product cross sections in MCNP appear to have etther
relatively large absorption cross sections or large atom densities compared to the case(s)
where fission products are assessed individually in MCNP. As the mass of summed
fission products increased with burnup, the absorption and fission interactions that
occurred in U-235 and Pu-239 in MCNP decreased because too many neutrons were
absorbed by the lump fission products instead. Additionally, more U-238 was

transmuted to Pu-239 than should have been. This may have been because absorption

78

resonances exist at slightly larger energies for U-238 than U-235 and Pu-239 (above 107
MeVP?ly and many neutrons were absorbed there instead of in resonances at lower
energies (this could be due to resonance self-shielding, less available moderation to slow
neutrons down, and/or a shift in the energy. spectrum of the system). Fewer neutrons
existed in the resonance regions of U-235 and Pu-239 compared to U-238, so their one-
group absorption cross sections decreased and less U-236 and Pu-240 was formed. In
contrast, Pu-240, which also has absorption resonances in this higher energy range, was
transmuted more quickly than in the case of individual fission products (ie., a positive
importance fraction).

The addition of fission products in the actual steady-state system also induces the
effects discussed above, but the general fission product representations in MCNP seemed
to exaggerate it. There are potentiaily two main explanations for this poor representation:
the effective absorption cross sections of these two general fission products were too
large relative to others in the system being studied, or the atomic weights used by MCNP
to convert the weight percents obtained by monteburns into atom densities for Monte
Carlo calculations were too small. The latter would occur if the average weights of fission
products produced by ORIGEN2 were larger than the representative ones in MCNP,
causing the atom density of fission products to be too large and too much absorption to
occur (atom density 1S inverse}y proportional to atomic weight). Upon examination, the
total weight of fission products with an atomic mass above 117 (the weight of Pu-239
general fission products) was about 1.5 times that of fission products with atomic masses
below 115 (the weight of U-235 general fission prdducts), whereas more than half of the
fissions occurred from U-235. This probably resulted from the fact that many higher
actinides (such as Pu-241, americium, etc.) fissioned along with U-235 and Pu-239,
producing fission products with larger atomic weights than those representative of Pu-
239 (which is what they lumped together as). The ending result was that the atomic

weight of the representative fission product for Pu-239 was too small and the atom

79

density of this fission product was too large, adversely affecting the spectrum of the

system. In addition, using the lump sum option does not allow individual fission product

cross sections to be modified in ORIGEN2, also decfeasing the accuracy of the

calculations. Overall, the user is not recommended to use the lump sum option for a
reactor system unless he/she completely understands the implications.

Additionally, the only effect of a negative importance fraction is in determining
the contribution that actinides must make to the system to be passed back to MCNP (i.e.,
individual fission products are no longer included in the MCNP input file because a lump
sum is used instead). The results for U-233, U-236, and Pu-239 were not affected when
the importance fraction went from negative 0.1 to negative (.01, but those for Pu-240
were affected, most likely becanse additional actinides were included in MCNP. Such an
increase was also seen for Pu-240 as more actinides were added to the system with a
positive fraction importance (at least from 1 to 0.1 and 0.001 to 0.0001). This increase

was not seen between 0.1 and 0.001, probably due fo statistics.

4.2.1.4 Recoverable Energy Per Fission

The last input parameter varied in this statistical analysis was the valie of the
recoverable energy per fission {Qg,) input by the user for the actinide U-235. The input
value of Qg was varied between 190 and 210 MeV, and the value of Qg calculated by
monteburns at the end of the irradiation period was about 4 MeV greater than the input
value (see Table 10f for results) due to the contribution of other actinides in the system.
The number of fissions that occur in a system are determined by the required power level
of the system and the value of Qg,. The more energy released by each fission (i.e., the
larger Qg, 18), the fewer fissions that must occur to meet the overall power requirement.
This means that the amount of material burned is lower, causing the final concentration of
fissile material initially in the system {i.e., U-235} to increase proportionally with the

value of Qg

Table 10f. Results as a Function of Recoverable Energy Per Fission (g/g UO,)

(grams/assembly)
Experimental 5360 1097 1823 546 - |
i Results '
Input Qg UJ-235 U-236 Pu-239 Pu-240 Ending Qs
(MeV) (MeV) k
190 5310 1090 1890 603 194
195 5370 1090 1870 591 199
198 5490 1060 1870 571 202
200 5500 1060 1860 569 204
202 5530 1060 1840 552 206 |
205 5590 1050 1840 548 209 |
210 5730 1030 1830 532 214 |

Additionally, the fission-to-capture ratios in the system analyzed here were only
a little smaller for the higher values of Qg than the lower ones, so the number of captures
that take place are also proportional to the number of fissions. When fewer fisstons were
required (1.e., higher value of Qy), fewer absorptions occurred in U-235, and less U-236
was produced. Similarly, less Pu-239 and Pu-240 was produced because the number of
absorptions m U-238 was also proportional. Thus, the concentrations of U-236, Pu-239,
and Pu-240 decreased as the value of Qg increased (meeting measured results for Pu-239
and Pu-240). However, lower values of Qg produced more comparable results for U-235
and U-236. Thus, the user should probably use the accepted value of 200 MeV although

he/she can enter higher or lower values to tailor the results for specific isotopes.

4.2.2 System-Dependent Changes

One of the largest factors that contributes to errors mn monfeburns is the geometry
and material compositions modeled in the system. Although it is primarily up to the user
to model the system correctly, a few suggestions are presented here. In particular, the

factors discussed in the section are: modeling a system as accurately as possible, using

81

temperature- and material-dependent factors, and applying appropriate axial boundary

conditions.

4.2.2.1 Modeling a System

First, in modeling most reactor systems, it is difficult to include all the details that
keep the system at steady-state throughout its life (ie., keeping track of each rod
individually, adding fresh fuel, rotating fuel from one region to another, adjusting the
position of the conirol rods as a function of burnup, changing the soluble boron
concentration, etc.). To avoid such complications, computer models commonly combine
rods/assemblies into lumped regions, make control rods stationary, and use an average
boron concentration in the moderator throughout each burn step. Modeling a larger
representative system (ie., an infinite lattice of assemblies) produces better results than
modeling a smaller system (i.e., an infinite number of fuel pins together) because it can
take more system-dependent effects into account (i.e., burnable poison fuel rods, control
rods, instrumentation tubes, eic.) and more easily keep the model at steady-state. This
difference was seen in Test Cases #2 and 3, where both a pin and an assembly case were
presented. Because the compositions of surrounding fuel pins in Test Case #2 were not
known, it was not possible to model the case as accurately as an assembly to get betfer
results (although neither model would account for leakage or other system-dependent
effects). However, it was possible to adjust the amount of soluble boron in the water
surrounding the pins to produce a representative spectrum of a critical system {excluding
leakage considerations). As can be seen from Table 11, answers were closer to measured
values in this system than with the referenced input parameters {(although these were used
in the test case for a better comparison to the other codes). This is because with a K¢
around 1.0, a more realistic spectrum and more representative cross sections were

obtained.

82

Table 11. Results as a Function of K. and Cross Section (Test Case #2, Scenario

A-mg/g UO,)
Parameters - U-235 U-236 Pu-239 Pu-240
measured value -~ 8.470 3.140 4.264 1.719
Kesr from 1.3 fo 1.0 8.104 3.206 3.944 1.685
kesr around 1.0 (ENDF/B-V) 8.623 3.178 4.112 1.701
| Ke around 1.0 (ENDF/B-VI) 8.463 3.178 4.072 1.681

However, the best spectrum would have been obtained by using a detailed reactor core
model, including water surrounding the assembly, the pressure vessel, efc., to account for
leakage and other total system effects.

In addition, a comparison of ENDF/B-V and ENDF/B-VI cross sections was
performed (see Table 11). The ENDF/B-V libraries produced better results for U-235,
but the ENDF/B-VI libraries produced better results for Pu-239 and Pu-240. This is
because it has been shown that the neﬁtron flux associated with U-235 in ENDF/B-VI is
greater than that in ENDF/B-V in some energy ranges (for example 10 to 107 and 0.1 to
1 MeV), while the neutron flux associated with U-238 in those energy ranges is about the
same in both ENDF/B-VI and ENDF/B-V.?% Thus, more U-235 is burned in ENDF/B-
VI than ENDF/B-V and less Pu-239 and Pu-240 is created. This reduction in plutonium
i1sotopes could also be a result of the fact that their neutron fluxes in this same energy
range in ENDF/B-VI were also higher than those in ENDF/B-V, possibly causing more
plutonium atoms to be depleted and matching measured results better. Nonetheless, it is
up to the user to determine which data set to use.

In the future it is advisable to model an entire system with as realistic a spectrum
as possible to produce the best results in monteburns. However, modeling 2 complex
system in MCNP can also significantly increase the run time required, so the user must

weigh the benefits of each model against the consequences.

83

4.2.2.2 Temperature- and Material-Dependent Parameters

Next, the effect of using temperature- and material-dependent parameters in
modeling a system is also important. Along with using temperature-dependent cross
sections in MCNP {typically processed by NJOY), the temperature of each cell (in MeV)
should be included in the MCNP input file using the TMP card.!'! To show this, Test
Case #4 with gadolinimﬁ in the center pin was run with both temperature-dependent
cross sections (xs} and the TMP card in MCNP, temperature-dependent cross sections
without this card, and neither. In addition, effect of using S(o,B) treatment for the light
water in the system was studied. S(q,f) treatment accounts for the binding effects of
hydrogen and oxygen nuclei in light water at thermal energies.’! This binding affects
interactions between thermal neutrons and the matenial and can be important for LWR
systems. The three analyses discussed above used S(o,f3) treatment, and the case with
temperature-dependent cross sections and the TMP card was rerun without S(a,f)

treatment to complete the comparison. The results from these analyses are in Table 12.

Table 12. Effect of Temperature on Power Distribution

——

’r Power With Temp. | With Temp. | No Temp. | No S(o,f) Published
Fraction | Dep. xsand | Dep. xs; no Dep. Treatment Range of
TMP card TMP card . Values
Region 1 1.055 1.048 1.063 1.054 1.053 to 1.062
Region 2 0.437 0.485 0.402 0.477 0.413 to 0.460
Region 3 1.086 1.081 1.087 1.077 1.082 to 1.087

As expected, the greatest accuracy was achieved when temperature-dependent
cross sections, the TMP card, and S(a,f) treatment were used. In fact, monteburns did

not even calculate a power distribution in the correct range when temperature-dependent

cross sections were included without the TMP card. When neither were included, the

84

results were close to the published range but were not within it. S(c.,B) treatment slightly

décreased the accuracy of the results, but not as much as using all temperature parameters
for this particular case. Other cases and/or increased/decreased statistics may produce
better results or may not make the outcome as exaggerated as it appears here.
Nonetheless, it is recommended to include temperature-dependent cross sections, the

TMP card, and S{a,f) treatment in the MCNP input files analyzed by monteburns to

obtain the correct power distribution and other results.

4.2.2.3 Axial Boundary Conditions

Another parameter that can contribute to the accuracy of the results is the axial
boundary conditions used in the model. For the models used m all the test cases
discussed in Section 4.1, reflective boundary conditions were placed on all six sides of the
system being analyzed to simulate that it (i.e., either a pin or an assembly) was one
within an infinite lattice of similar opes. These models were consistent with those
described in the referenced input in the radial direction, but how the other codes modeled
the system in the axial direction was unknown. Because the composition of the material
at the ends of the fuel rods in the experimental system was also not specified in the
referenced input, it was assumed that all neutrons were reflected back into the rod once
they reached the eﬁds (i.., no leakage occurred). This assumption may not have been
fully representative of the experimental reactor Because some amount of leakage probably
did occur. To quantify this effect, Scenario B of Test Case #2 was rerun with reflective
boundary conditions in the axial direction, 10 cm of water on the ends of the each fuel rod,
and a vacuum at both ends of each fuel rod (to simulate the maximum amount 6f leakage).

The results of this analysis compared to measured data appear in Table 13.

&5

Table 13. Results of Changes in Axial Parameters (mg/g UQ,)

[sotope Reflected Water Vacuum Measured “
U-235 11.70 11.50 11.60 12.95{
U-236 9,08 9.06 9.06 8.84]

Np-237 1.02 1.04 1.03 0.89]
Pu-238 0.46 0.46 0.46 0.47]
Pu-239 10.10 9.99 10.10 10.91)
Pu-240 5.47 5.48 5.53 5611
Pu-241 217 2.12 2.14 226}

This table shows that the differences in the axial representation of the system
actually had little effect on the resulis, although the case with reflective boundary
conditions did come the closest to the measured results. This either means that the
material at the ends of the fuel rods in the measured systemn was probably a large scatterer
and effectively sent a majority of the neutrons back into the pin, or the pins were long
enough that axial edge effects were not important. The amount of leakage that actually
occurred was probably slightly larger than that portrayed by reflective boundary
conditions and smaller than that with water. Thus, the use of reflective boundary

conditions in the axial direction is justified for the test cases in Section 4.1.

Overall, using the best statistics possiblc. without compromising the run time is
the key to obtaining the most efficient results. Both by determining optimum input
parameters and by modeling the system most effectively, good statistics can be obtained.
However, using good statistics often means increasing the required ron time of the
problem. It is thus up to the user to determine required statistical accuracy and balance

this against the run time.

86

5.0 APPLICATIONS OF MONTEBURNS

Monteburns was written to be applicable for a wide variety of systems, including
both reactor and accelerator-driven problems. One of the limitations of other linkage
codes between MCNP and ORIGEN?2 (discussed in Section 2.3.1) is that they can only
be used for relatively simple geometries and may not be applicable for more than one
burnup step in an automated fashion (i.e., decay periods following multiple irradiation
periods, etc.). Monteburns was written to be flexible and accommodating to any type of |
MCNP input file and irradiation information to minimize limitations, and it is still being
modiﬁéd to incorporate additional options. Two examples of applications for which
monteburns is currently bemng used in the Nuclear Design and Analysis Group (TSA-10)
at Los Alamos National Laboratory are presented in this section. These are the
Accelerator Transmutation of Waste {(ATW) project and non-fertile (i.e., non-uranium)
fuel applications. Although representative, they are not inclusive of the full spectrum of
problems to which monteburns can be applied in other groups, laboratories, and

industries.

5.1 Accelerator Transmutation of Waste

One of the largest issues currently being addressed m the nuclear industry is what
should be done with radioactive waste. Included in this category is spent fuel, which 1s
contained m fuel assemblies removed from nuclear reactor cores afier irradiation. This
fuel contains significant amounts of plutonium, numerous actinides, and fission products,
some of which have relatively long half-lives. The purpose of the ATW project 1s to
design a system to enhance repository performance by reducing long-term radiotoxicitj.f of
spent fuel and other high-level wastes by three orders of magnitude (i.e., after pmcessing
in ATW, this waste after 300 years should have a lower toxicity than untreated waste

after 100,000 years). P

87

For this purpose, the following goals were set for the project:

e Destroy over 99.9% of residual actinides

e Destroy over 99.9% of technetium and iodine (long-lived fission products)

o Scparate strontium and cesium (short-lived fission products that significantly
contribute to the heat loading of the repository)

e Separate the uranium from the other spent fuel so that it can be stored or re-used and
to reduce the amount of plutonium produced during transmutation

e Produce electricity (destruction of actinides could potentially produce energy, which

could both power the accelerator and be sold)

The ATW system would be powered by a high-power prbton linear accelerator
similar to the one being considered for the Accelerator Production of Tritium (APT)
project. A pyrochemical spent fuel treatment/waste cleanup system would be used to
process the materials remaming after irradiation. The waste itself would be contained in
solid waste pins with a configuration similar to the one in Figure 7. The waste
transmutation region is designed as three separate zones, where pins in Zone 2 have been
irradiated for a cycle in Zone 3, and pins m Zone 1 have been irradiated for one cycle in
Zone 3 and one cycle in Zone 2. Once these pins are bumed in Zone 1, the material is
processed so that the actinides are concentrated to obtain the desired reactivity, and the
waste is refabricated into pins and inserted as “fresh” waste into Zone 3. The spallation
target would be a heavy metal target made of liquid lead-bismuth eutectic (LBE), which
helps produce a high intensity neuntron source for the outer zones. The system would
operate in a subcritical regime and with a fast neutron spectrum, which allows for more
efficient destruction of actinides because the fission-to-capture ratio of many plutonium

isotopes and higher actinides is larger at fast energies.

g8

Spallation

Target

Reflector

Figure 7. Sample of core configuration for ATW

Monteburns can incorporate all aspects of this design; it moves material from one
region to another in MCNP and analyzes the burnup in as many materials as desired for
each irradiation step before transferring the resulting material compositions back to
MCNP for further analysis. According to preliminary calculations, the foliowing results
were both desired and achieved:

e A2 GW,ATW can bum almost any combination of higher actinides at a rate of more
than 500 kg/yr. with a minimum cycle length of 100 days; |

e Technetium can be used as a burnable poison and to harden the spectrum; Tc-99 can
be transmuted at a rate greater than 40 kg/yr.; and

e The harder the neutron spectrum, the more efficiently ATW destroys higher actinides

because the fission-to-capture ratios of the actinides increase.

Using four-month (121 day) cycles and the feed specified in Table 14, the amount

of transmutation/destruction experienced by various actinides in ATW are shown in Table

89

15. Positive values in this table correspond fo production and negative ones to
destruction.

Table 14. Feed Material for ATW (kg)

Cycle | U-238 | Np-237 | Pu-238 | Pu-239 | Pu-240 | Pu-241 | Pu-242) Am-241 | Tc-99 actinid_e__"
1 0 0 0 0 0 0 0 0 0 0
2 100 18 6 207 96 32 19 21 22 502
3 88 16 5 182 84 28 17 18 19 441
! 8 15 5 166 77 25 16 17 18 403
B 76 14 4 157 73 24 15 16 17 382
6 73 13 4 149 69 23 14 15 16 363
7 70 13 4 144 67 22 14 14 15 351
8 68 12 4 141 65 272 i3 14 15 342
9 67 12 4 138 64 21 13 14 15 336
I 10 66 12 4 136 63 21 13 14 15 331 |
i 66 12 4 135 62 21 13 i4 14 328
12 65 12 4 134 62 21 13 13 14 325
13 65 12 4 133 62 20 12 13 14 324
14 64 12 A 132 61 20 12 13 14 322
15 64 12 4 132 61 20 12 13 14 321
16 64 12 4 131 61 20 12 13 14 319
17 64 11 4 131 61 20 12 13 14 318
18 64 11 4 131 60 20 12 13 14 317
19 63 11 4 130 60 20 12 13 14 316
20 63 11 4 130 60 20 12 13 14 316 ||
21 63 11 4 129 60 20 12 13 14 315
22 63 11 4 125 60 20 12 13 14 314
23 63 11 4 129 60 20 12 13 14 313
|24 63 11 3 129 59 20 12 13 14 312
25 62 11 3 128 56 | 20 12 13 14 312 1
26 62 11 3 128 59 20 12 13 14 311
27 62 11 3 128 59 20 12 i3 14 310
28 62 11 3 127 59 20 12 13 14 310
29 62 11 3 127 59 20 12 13 14 3091
Itso 62 11 3 127 59 19 12 13 14 309
31 62 11 3 127 59 19 12 13 14 308
32 62 11 3 126 58 19 12 i3 14 307
33 61 il 3 126 58 19 12 13 14 307
34 61 1 3 126 58 19 12 13 14 306
[l 35 61 11 3 126 58 19 12 13 i4 306
36 61 11 3 126 58 19 12 13 13 BOLI
37 61 11 3 125 58 19 12 13 13 305
38 61 1 3 125 58 19 12 13 13 304
39 61 11 3 125 58 19 12 13 13 304
40 61 il 3 125 58 19 12 13 13 303
total | 2570 | 461 J44_| 5280 | 2440 { 308 493 528 565 | 12800 |

90

Table 15. Ameunt of Material Produced(+)/Destroyed(-) by ATW (kg)

Cycle | U-238 | Np-237{ Pu-238 { Pu-239 | Pu-240 | Pu-241] Pu-242 | Am-241 } Tc-99 { actinide “
1 -149 -17 10 214 7 -19 3 21 21 -380
2 -156 -16 1 -201 4 | -1g 2 -20 -20 -388 1
3 -159 -16 10 -193 -12 -17] -19 -19 -396 ||
4 -100 -16 8 -190 -20 -16 0 -18 -19 -344 |t
5 -88 -13 6 -182 -26 -16 -1 -17 -19 -333 b
6 -31 -15 4 -173 -32 -16 -1 -16 -18 -323 ||
7 -76 -14 2 -163 -36 -16) -16 -17 -315
8 -73 -14 0 -160 -4} -16 -2 -15 -18 -316 i’
9 -70 -13 1 -155 -43 -17 -3 -15 -18 314
10 -68 -13 -2 -152 47 -17 4 -15 -18 313 4
11 -67 -13 -3 -149 -50 -18 4 -14 -18 -312
12 -66 -13 -3 -145 -51 -18 -5 -14 -17 -310 |t
13 -G6 -12 -3 -141 -52 -18 -5 -14 -17 -307
14 -65 -12 -4 -137 -52 -18 -5 -13 -17 -304
15 -64 -12 -4 -138 -54 418 -6 -14 -17 -307
16 -64 -12 -4 -137 -55 -19 -6 -13 -17 -308
17 -64 -12 -4 -134 -56 -18 -7 -13 -16 -305
18 -64 -12 4 -133 -55 -19 -7 -13 -16 -303 ||
19 -64 -12 -4 -132 -57 -19 -7 -13 -16 303 ||
20 -63 -12 4 -137 -58 -20 -8 -14 -17 313]
21 -63 -11 4 -130 -57 -19 £ | -13 -16 -304 H
22 -63 -12 -4 -13] -38 -19 -8 -13 -16 -306
23 -63 -11 -4 -130 -57 -19 -8 -13 -16 -304
24 -63 -11 -4 -129 -58 -20 -8 -13 -16 -305

25 -62 -11 -4 -130 -57 -20 -9 -13 -15 305

26 -63 -12 4 132 -59 -19 9 -13 -16 -307

| 27 -62 -1 4 -128 58 -19 9 -13 -15 -303
28 -62 -11 4 -129 -58 -19 9 -13 -16 -305 J|
29 -62 -11 -4 -127 -58 -19 9 -12 -15 -302 H
30 -62 -1} 4 -129 -59 -20 9 -13 -15 -306
31 -62 11 4 128 -58 -19 -10 -13 -15 -304

32 62 | -1t -4 -129 -59 -20 -10 -13 -15 -308
33 -62 -11 4t -130 -60 -19 -10 -13 -15 -308
34 -61 -H 4 -127 -59 20 -11 -13 -15 -305 ﬁ
35 -61 -11 -4 -126 -59 -20 -10 -13 -15 -303
36 -61 -1} -4 -129 -59 -19 -11 -13 -15 307 1
37 61 -11 -3 -124 ~58 -19 -11 -12 -14 -301
38 61 -11 -3 -126 -58 -19 -11 -13 -14 -301
39 -61 -11 4 -127 -60 -19 -1 13 -15 -305
40 -61 -11 4 -127 -60 -19 -1 -13 -15 -306
total | -2906 | -495 64 | 5731 | -1962 | -738 | -257 -564 658 | -12587 &

With an initial system input of about 2300 kg of actinides and 700 kg T¢-99 and a
steady-state feed rate of approximately 320 kg of actinides and 14 kg Tc-99 per four-

91

month cycle, over 900 kg of actimides and around 45 kg of T¢-99 are destroyed per year.

This successfully exceeded the goals of 500 kg and 40 kg per year, respectively.

5.2 Plutonium Destruction

Although monteburns was initially designed for the ATW project, it has been
expanded {and tested as shown in Section 4.1) for reactor uses. One of the current uses of
monteburns in a reactor-based system is to study various parameters and fuel cycle
concepts for their effectiveness in the destruction of plutonium. There is a great deal of
reactor-grade plutonium currently contained in spent fuel that may become a proliferation
risk in the next century if it is not destroyed. In addition, there are about 50 metric tons
of surplus weapons-grade plutonium in the US being proposed for disposition, possibly
in a reactor.*”)

Studies are currently being performed to determine the best way of destroying this
plutonium, including examining different fuel forms, plutontum isotopic compositions,
and neutron energy spectra. Figure 8 shows the percentage of plutonium destroyed in
each system as a function of burnup. Unless stated otherwise, the parameters used in
this figure were: non-fertile fuel (described below), reactor-grade (RG) plutonium, and a

light-water reactor system.

5.2.1 Fuel Form

First, the two fuel forms being investigated are: MOX fuel (monteburns
calculations for this fue! were demonstrated m Test Case #5), and non-fertile (NF) fuel
{plutonium dioxide (PuQ,) in a calcia {CaO)-stabilized zirconium dioxide (ZrQO;) matrix
with an erbia (ErQ,) poison).l'?l The MOX fuel modeled in this analysis consisted of
93w% depleted uranium oxide and 7w% RG PuQ,, and the non-fertile fuel was comprised
of 7w% RG PuQ,, 1w% ErQ,, 85.6w% ZrO,, and 6.4w% Ca0. The purpose of using

~non-fertile fuel for the destruction of plutonium is to transmute plutonium actinides

92

without building them. The absence of uranium in the NF fucl leads to a lack of
production of plutonium due to transmutation of the uranium isotopes, and hence to
higher destruction rates. Thus, from Figure 8, it can be seen that the non-uranium-based

NF fuel allows beiter net plutonium destruction than MOX fuel and should be further

considered for this purpose.

100 '
. //'
90 4 S S/

~——— GANDU -
god |- LWR NF - RG Pu “
— - ~-LWR NF - WG Pu
70 | LWR MOX ‘
60+ N

.....

50 ¢

+
i

40 +

%Pu Burned

30 -

20

10

0 200 400 600 800 1000
Burnup (GWd/MTPu)

Figurc 8. Plutonium Destruction as a Function of Burnup

5.2.2 Isotopic Composition
Second, the initial plutonium isotopes in the fuel also influence how effectively
plutonium is destroyed. This is because the fission-to-capture ratio of every plutonium

isotope 1s different, and the higher this value 1s, the more fissions occur relative to

transmutations, and the more plutontuin is destroyed (instead of higher actinides built

up). The two plutonium isotopes with the largest fission-to-capture ratios are Pu-239
and Pu-241 (see Table 4a for sample values) because they are fissile isotopes. Thus, the
more Pu-239 and Pu-241 that exist in the plutonium relative to other plutonium isotopes
{such as Pu-238 and Pu-240), the faster the plutonium fissions and is destroyed. Some
plutoninm can also be destroyed through decay of Pu-241 to americium, but not as fast as
that which fissions. However, specifying the composition of the plutonium isotopes in
the material is not an option, so although this is not an input parameter, it is shown here
solely for comparison purposes. The two types of plutonium compared in this example
were reactor-grade plutonium (with a. representative composition of 1.57w% Pu-238,

57.54w% Pu-239, 26.65w% Pu-240, 885w% Pu-241, and 5.39%w% Pu-242), and

weapons-grade plutomum (with an average composition of 93w% Pu-239 and 7w% Pu-

240).

As expectéd, the weapons-grade plutonium was destroyed faster than the reactor-
grade because it initially contained more fissile Pu-239 atoms than non-fissile Pu-240
ones. Pu-240 is more likely to transmute than fission, so a material starting with motre
Pu-240 has only one mam chance to fission (when it is Pu-241) before it transmutes to
higher actinides whereas Pu-239 atoms have two main chances (Pu-239 and Pu-241). The
number of fissions that take place in the system must be the same in both cases, so higher
actinides are probably contributing to relatively more fission interactions in the former

case than in the latter case, which is why less net destruction of plutonium occurs.

5.2.3 Energy Spectrum

Finally, the energy spectrum of neutrons in the system in which the fuel is being
irradiated also contributes to the results. The three different spectra analyzed in this
example were a representative light-water, heavy-water, and fast system. The first two
of these systems were modeled in monteburns as one assembly of NF fuel surrounded by

a matrix of system-representative fuel assemblies (i.e., LEU fuel in a PWR™ for the

LWR case and depleted-uranium CANDU assemblies™! for the heavy water case) to
keep the k;E of the system around 1.0. The third, a fast system, was difficult to model in
MCNP without a detailed system design for this purpose, so an ORIGEN2 run using
cross sections representative of the Fast Flux Test Facﬂity (FFTF) was performed
instead.

By comparing the LWR RG Pu case to the CANDU and Fast cases run with RG
Pu, Figure 8 indicates that the heavy-water (CANDU) system was the most effective in
destroying plutonium, which is probably a result of the fact that ﬁssioh-to-capture ratios
were greater for it than for the light-water system (sec Table 16). This is because a
heavy-water system has a more thermal spectrum than a LWR, and neutrons probably
avoid many of the absorption resonances. In addition, neutrons can be absorbed in
hydrogen at thermal energies in a LWR system, whereas they are absorbed and/or fission

in plutonium isotopes instead in the heavy-water system.

Table 16. Fission-to-Capturc Ratios of Isotopes in Each Spectrum

Isotope Light-Water | Heavy-Water Fast
U-235 3.4105.3 4.46 to 5.64 3.8
Pu-239 1.78 to 1.88 ~1.98 4.59
Pu-241 2.77t02.75 2.51 to 2.78 6.02 i

Table 16 also indicates that the fission-to-capture ratios for the plutonium
isotopes n the fast system were also relatively large, which means that the neutron
energies were large enough that they avoided resonances altogether and primarily fissioned
instead. Thus, plutonium should have been destroyed more quickly with this fast system
than the thermal ones, but Figure 8 shows that this is not the case at high burnups. This
is probably because the fast system was modeled in ORIGEN2 instead of monteburns,

and system-dependent effects were not taken into account as a function of burnup. The'

95

results from this example shows the importance of using monieburns nstead of just
ORIGEN2. Nonetheless, 2 LWR is the most probable system that would be used for the
destruction of plutonium because some are already operating in the US Even though a
heavy water system may produce slightly better results, there are a number of political
hurdles that must be addressed before a heavy-water reactor is built in the US or the
Canadian CANDU reactors can be used.

In conclusion, the reason that monteburns is ideal for this type of analysis is that
it models any type of system accurately and provides spectrum-dependent fluxes and
cross sections for a system at each irradiation step. As such, the effect of each parameter
varied in this example influences the results m the most realistic computer model possible.
In particular, for a system with plutonium in the form of NF fuel, the power produced in
the fuel decreases significantly over time (thus other types of material besides NF fuel
must be present in a reactor to keep it critical), and the fuel reaches fairly large burnups.
The flux distribution as well as the cross sections change significantly with this power

loss. It is important to use a code such as monfeburns that can account for such changes.

96

6.0 LIMITATIONS OF AND FUTURE WORK FOR MONTEBURNS

One limitation of monteburns is that it is currently designed to run only on a
UNIX system. Not all users may have this type of system, and monteburns is not yet
capable of running on VMS or PC systems. Significant changes must be made to the
command file (currently a c-shell file), and minor modifications must be made to the
FORTRANT77 file so that the code can operate on any type of machine and/or system.

Monteburns currently only extracts a few reactor physics constants (13, v, etc.)
from MCNP output files. It can, however, be modified in the future to extract more
values, depending on what uses the program may eventually have. It may also be
modified to calculate activation and decay powers, and the input may be simplified
further to make it even more uéer-friendly. Any of these suggestions should enhance the
capability and versatility of the code.

| Another modification that could be made to monteburns 1s to allow it to interface
with another burnup code besides ORIGENZ. Examples of such codes include ORIGEN-
S (part of the SCALE package) and CINDERS0 (primarily used for calculations involving
accelerator-driven systems).!'”! Whether the benefit of this addition is great enough to
offset the additional requirement of more complex input has yet to be determined. All of
these limitations can be resolved by modifying the FORTRANT7 program and/or the c-
shell executable. -

Throughout this document, references to resonance self-shielding and the variable
mgcrease or decrease of cross sections with burnup are mentioned. However, no detailed
analyses were performed to determine how resonances affect the value of the fiux or the
effective cross sections. A detailed analysis could be performed in the future to study
these affects and determine exactly why the results presented in this document were
obtained. This, along with the activities discussed above, constitutes the proposed future

work activities for monteburns.

97

7.0 CONCLUSIONS

This document provided a thorough description and benchmarking results of the
automated burnup code monteburns, which links the transport code MCNP and the
radioactive decay and burnup code ORIGEN2. This limkage code was designed to limit
the amount of information the user is required to input and still perform detailed,
automated burnup calculations for any type of system and number of irradiation periods.
The advantages it has over other burnup codes are: 1) it allows the user to model a
detailed, 3-D system, 2) it modifies material cross sections as a function of burnup and
flux distributions within a system, 3) it offers a variety of options and allows system
changes to be made frequently throughout a burn interval, and 4} it is fully automated and
refatively easy to learn. The purpose of this document is not only to serve as a thesis but
1s also to assist those who plan to use monteburns by providing a validation of the code
and discussions of “tricks” found useful when running the code.

Monteburns is comprised of a combination of a c-shell UNIX executable file and a
FORTRAN?77 program and primarily acts as a pre- and post-processor for QRIGEN2
and a post-processor for MCNP. The main calculations that it performs are: 1) the
recoVerabl.e energy per fission according to the distribution of actinides in the system, and
2} the conversion of the flux calculated by MCNP for a region(s) to the actual flux seen
by that region as well as the power produced by the region. Only two main input files
are required for monteburns (others are optional): 1) a working MCNP input file, and 2)
a monteburns input file containing a list of parameters relevant to the system being
analyzed. A number of variables are currently output, including reactor physics
constants, cross sections, and compositions of materials in the system before and after
each step. The code is frequently being updated and modified to suit user’s needs and
desires.

The most important portion of this document is the benchmarking section, which

showed that monteburns performs bumup calculations just as well as or better than those

98

| performed using other codes. Different geometries, fuel types, and reactor systems were
modeled and compared to measured and/or published calculations from other codes, and
the errors/differences obtained by these comparisons were all considered to be acceptable.
In addition, a number of statistical. analyses were performed for monteburns, both to
analyze the effect(s) of several input parameters on the results and to describe the
importance of modeling the system as accurately a fashion as possible. Some examples of
problems for which monfeburns is currently being used were presented as well, along
with suggestions of future work that may be performed for monteburns.

In conclusion, the code monteburns has now been described and benchmarked for
the burnup scenarios in Section 4.1. It produces comparable results to other well-known
burnup codes, such as those in the SCALE suite of programs. AMonteburns is a
straightforward yet versatile solution requiring little training other than that required for
MCNP and will soon be publicly available through the Radiation Safety Information
Computational Center (RSICC) at Oak Ridge National Laboratory.

99

APPENDICES

APPENDIX A. LISTING OF C-SHELL FILE MONTEBURNS.....rvvvcvviuennens 101
APPENDIX B. LISTING OF FORTRAN’;'.';7 PROGRAM MONTEB.F........ 110
APPENDIX C. SAMPLE MCNP INPUT FILE........ccooiiiiiiiiciniiine 183
APPENDIX D. SAMPLE MONTEBURNS INPUT FILE.......cccovoveinnneen 184
APPENDIX E. SAMPLE FEED INPUT FILE........ccoviiiiineereranene 185

100

APPENDIX A. LISTING OF C-SHELL FILE MONTEBURNS

#!/bin/csh

¥ Version 4 September 1598

date

cp $1l.inp mb.ing

#

File management -----——-——————————=————m o

if (~e $1.feed) cp $1.feed feed
if (-e tmpfile) then

else

mkdir tmpfile

endif

#

Get shell variables ———---———--— =

monteb a

@ nout = “awk ‘%2 == *pout" {print int{$1)}' ./tmpfile/params’

@ npre = ‘awk '$2 == "npre* {print int($1)}¢ ./tmpfile/params’

@ nrst = “awk '$2 == "nrst® {print int($1)}' ./tompfile/params’

@ nkeff = “awk '$2 == "nkeff" {print int{$l)}' ./tmpiile/params’
@ nmat = ‘awk '$2 == "nmat® {print int(&1}}' ./tmpfile/parans’
echo $nout Snpre S$nrst $nkeff Snmat

4 .

echo ...MonteBurns: Write natural element and origen input files
monteb e '

monteb 5

¥

if (Snrst == 0) then

Set up initial run —---—---— = ——
..Backup fort.9

¥

@ i3 =1

while (513 <= S$nmat)

if (-e fort.%.0) then

cp fort.9.0 fort_$i3.9

else

cp fort $i3.9 fort.9.0

endif

@ i3 ++

end

echo ...MonteBurns: Delete 01d MCNP Files
if (-e mbmem) rm mbmcm

if {-e& mbmco } rm mbmco

if (-e mbmer) rm mbmcr

i1f (e mbmcs) rm mbmcs

echo ...MonteBurns: Check Print Card and create skeleton mcnp input
monteb 1 <$1 :

echo .. .MonteBurns: Run MCNP Input Module to get initial comps
menp ik n=mboc

echo ...MonteBurnsz: Write tally file talZ.inp

Get number of predictors from status

101

monteb 2 <mbmco

echo ...MonteBurns: Write initial origen comp file fort.7 and nat isos
monteb 4 <mbmco

@ i1 = O

else

#

Set up restart run

@ il = Snrst + 1

@ i3 = 1

while {$i3 <= Snmat)

cp ./tmpfile/fort9 _%i3.Snrst fort_$i3.8

cp ./tmpfile/fort7_$i3.Snrst fort_$i3.7

if (-e ./tmpfile/mbori_Si3.5il.tmp) then

else

cp ./impfile/mbori_$i3.5il1 . /tmpfile/mbori _3$i3.5il.tmp
endif

@ i3 ++

end

cp ./tmpfile/mbmc.snrgt mbme

cp ./tmpfile/mbinp.S$nrst mb.inp

endif

#

Beginning of outer loop

while {($il <= Snout}

#

echo ...MonteBurns: Begin outer loop $il

#

tally nrst in mbh.inp so monteb knows what step

#

if (311 > Q) monteb 9

; .

determine material in each MCNP region

#

if ($1i1 > Q) monteb ¢

@ i3 =1

while {$i3 <= Snmat)

if ($il1 > 0) then

mv ./tmpfile/mbori $13.5il.tmp ./tmpfile/mbori $i3.$il
cp ./tmpfile/mbori _$i3.$il mbori_S$i3

@ nval = "awk '$Z2 == "nval" {print int{s$l}}' ./tmpfile/param3_3%i3"
#

see if the game material is present in each region and 1f not,
copy new material to current $i3 value fort.7 file
¥

if (Snval == 0} then

cp fort_$i3.7 fort_S$i3.7.tmp

cp mnat_Si3.tmp mnat S$i3d.t.tmp

else .

if ($nval 1= $i3} then

cp fort_snval.7 fort_$i3.7.tmp

cp mnat_Snval . tmp mnat_5i3.t.tmp

else

cp fort_$i3.7 fort_$1i3.7.tmp
cp mnat_$i3 . ftmp mnat $i3.%L.tmp
endif

endif

endif

@ i3 ++

end

g i3 =1

while (%i3 <= S$nmat)

if ($il > 0) then

my fort_ $i3.7.tmp fort_$i3.7
my mnat_$i3.t.tmp mnat_$i3d.tmp
endif

cp fort_$i3.7 fort _$i3.4

g i3 ++

end

#

if (%il1 == 1) then

@€ npre2 = $npre + 1

else

€ npre2 = Snpre

endif

if (6il == 0) @ npre2 =1

#

R 12 =
@ ndsc
@ 13 =1

while {($i3 <= Snmat}

if {-e ./tmpfile/param_$1i3.8il} then

@ ndisc = ‘awk '$2 == "ndisc" {print int($1)}' ./tmpfile/param_ $i3.$il"
if (sndisc == 1) then

€ ndsc = 1

endif

endif

@ 13 ++

end

if {%ndsc == 1} then

echo ...Monteburns: Add discrete feed to fort.7

monteb b

@ i3 = 1

while {$i3 <= $Snmat)

mv fort_$i3.7.tmp fort_ $i3.7

cp fort_$i3.7 fort_S$i3.4

[T

0

@ i3 ++

end

if ($nkeff == 1) then

echo ...Monteburns: Add discrete feed to mcnp input file
monteb 7b

cp mbme . tmp mbmc. skl
cp mbme.skl mbme. temp

103

2 i3 = 1

while ($i3 <= Snmat)

cat mb7t_3%$i3.out mb7_5i3.out > mh7t_S$i3.tmp

mv mb7t_$3i3.tmp mb7L_$i3.out

cat mbmc.temp mat_$i3.inp > mbm. tmp

mv mbm. tmp mbnc . temp

@ i3 ++

end

mv mbmc. temp mbmc

eche .. .MonteBurns: Run MCNP for discrete feed
if {~e mbmcm) rm mbmem

if {(-e mbmco) rm mbmco

if {-e mbmcr) rm mbmcr

il (~e mbmcs) rm mbmcs

menp n=mbme

montelb 6b

cat mbillt.out mbll.out > mbilt.tmp

mv mbllt,tmp mbllt.out

cat mbl3t.out mbll.out > mbl3t.tmp

mv mbl3t.tmp mbl3c.out

endif

endif

¥

¥ Determine grams of feed at the beginning of sach step
monteb 8b

€ i3 = 1

while {$i3 <= Snmat)

cat mbl2t_$i3_out mbl2_S$i3.out > mkl2t_S$i3.tmp
cat mblZa_5i3.ocut mbl2x $i3.out > mblZ2a_5%i3.tmp
mv mbl2t_$i3.tmp mbl2t_%i3.out

mv mblZa_ $i3.tmp mbl2a_5i3.out

@ i3 ++

end

#

Begninning of inner loop -——————-————————
while ($i2 <= $npreZ)

if {%1il1 > 0) then

echo ...MonteBurns: Run origen predicter 5i2 for outer $il
@ i3 = 1

while (5i3 <= $nmat)

cp mbori_$i3 mbori

cp fort_$i3.9 fort.H

cp fort_$i3.4 fort.4

origen? <mbori >mboro

my fort.9 fort_$i3.9

mv fort.7 fort_%i3.7

g i3 ++

end

endif

echo ...Monteburns: Determine important playvers / make new mcnp mat
monteb 7m

104

cp mbme. tmp mbme. skl

echo ...MonteBurng: Write new menp tallies and cat new mcnp input
menteb 3

echo ...MonteBurns: Create complete MCNP input file

¢p mbme.skl mbme

2 i3 =1

while ($i3 <= Snmat}
cat mb7t_$i3.out mb7_5i3.ocut > mb7t_$i3._ tmp
mv mb7t_5i3.tmp mb7t_%i3.out
cat mbmc mat_5$i3.inp tall $i3.inp tal2 $i3.inp tal3_$i3.inp > mbmc.temp
mv mbme . temp mbmc
rm tall_$i3d.i;op tal3_s$i3.inp
@ i3 ++
end
echo ...MonteBurns: Run MCNP
if {-e mbmcm] rm mbmcm
if {-& mbmco)} rm mbmco
if {-e mbmcr)} rm mbmcr
)

if {-e mbmcs ¥r mbmes

menp n=mbod

echo ...MonteBurns: Modify orig us file fert.9 and mbori with new flux
monteb ém

2 13 =1

while ($i3 <= S$nmat)

if ($i1 > 0) mv mbori_$i3.tmp mbori_$i3

mv fort $i3.9%.tmp fort_$i3.9

cat mbia_ S$i3.out mbé_35i3.out > mbda_$i3.tmp

mv mbda_%$i3.tmp mbda $i3 _out

g i3 ++ 2

end

a i2 ++

end

cat mbilt.out mbll.ocut > mbllt.tmp

mv mbllt.tmp mbllt.out

if ($i1l == 0) then

1f ($nkeff == 1) then

cat mbi3t.out mbll . out > mbli3t.tmp

mv mbl3t.tmp mbl3t.out

endif

endif

End of immer loop -—--------—-—m v
.
if {$il > 0) then

echo ...MonteBurns: Run origen to compare 1/2 way comps
g 13 =1

while {$i3 <= $nmat)

c¢p fort_$i3.9 fort.9

cp fort_$i3.4 fort.4

cp mbori_$id mbori

origenZ <mbori >mbore

mv fort.7 fort_$i3.7

105

mv fort.9 fort_<$i3.9

@ i3 ++

end

#

monteb Be

a i3 =1

while {%i3 <= sSnmat)

cat mbdb_S$i3.ocut mb5_%i3.out > mbdb_S$i3._tmp
mv mbdb_ $i3.tmp mbdb_%i3.out

@ 13 ++

end

#

Remove 1/2 way predictor stuff in mbori
montel 0

a i3 = 1

while {513 <= Snmat)

mv mbori_$i3d.tmp mbori_5i3

echo ...MonteBurnsg: Run origen for complete cuter step $1il
cp fort_$i3.9 fort.9

cp fort_$i3.4 fort.4d

cp mbori_5%i3 mbori

origenZz <mbori »>mboro

mv fort.7 fort_5i3.7

mv fort.9 fort_$i3.9

cp fort $i3.9 ./tmpfile/fort9 _$i3.5i1

& i3 ++

aend

#

Save stuff for restart
#

cp mbme . /tmpfile/mbmc.$il

cp mb.inp ./tmpfile/mbinp.5il

#

Calculate k-eff at end of burn step

4 .

if ($nkeff == 1) then

echo ...MonteBurns: Determine important playvers / make new mcnp mat
monteb e

cp mbmc. tmp mbmec. skl

cp mbmc.skl mbmc. temp

@ i3 = 1

while (5$i3 <= S$nmat}

cat mb7t_%i3.out mb7_%i3.out > mb7t_5i3.tmp
my mb7t_$i3.tmp mb7t_$13.out

cat mbmc.temp mat_5%i3.inp > mbm.tmp

mv mbm. tmp mbnrc . temp

@ i3 ++

end

mv mbmec. temp mbmc

echo ...MonteBurns: Run MCNF for complete ocuter step $il
1f {-e mbmecm) rm mbmcem

if (-e mbmco } rm mbmco

if (-e mbmcr) rm mbmcr

if (-e mbmcs) rm mbmcs

mcnp n=mbmnc

monteb 6ée

cat mhllt.out mbll.ocut > mbllt.tmp
mv mbllt.tmp mbllt.out

endif

#

Remove discrete removal group elements
#

monteb 4

@ i3 = 1

while ($i3 <= $nmat) .
if {-e fort_si3.7.tem) mv fort_$i3.7.tem fort_$i3.7
cp fort_$i3.7 ./tmpfile/fort7_%i3.5i1

@ i3 ++

end

endif

#

monteb 8e

g 13 = 1

while {$13 <= Snmat}

cat mb5t_S$i3.out mb5_$i3.out > mbSt_Si3.tmp
cat mb5tx $i3.out mbSx_ $i3._out > mbbtx $i3.tmp
mv mb5t _$i3.tmp mb5t_$i3.out

mv mbbtx_$i3.tmp mbitx_S$i3.out

@ i3 ++ :

end

if (%i1 > 0) then

monteb z

@ i3 = 1

while (%13 <= $nmat)

cat mbSt_$i3.cut mbS_S$i3.out > mb9%t_$i3.tmp
mv mb9t_$i3.tmp mb9%t_%i3.out

g i3 ++

end

endif

#

Copy to output files —----———--—————o——
g i3 =1

while ($i3 <= Snmat)

cat mbilt_%$i3.out mbl_$i3.out > mblt.tmp

mv mblt.tmp mblt_S$i3.out

cat mbét_5i3.out mbé_35i3.out > mbét.imp

nv mbbL.tmp mbét_$i3.out

cat mb2i Si3.out mb2_$i3.out » mb2t.tmp

mv mb2t.tmp mb2t_5%i3.out

cat mb3t_5i3_.out mb3_$i3.out > mb3t._tmp

mv mb3t.tmp mb3t_$i3.out

cat mb8t_$i3.out mb8_5%i3.out > mbSt.tmp

107

mv mb8t.tmp mbB8t_S$i3.out

cat mbdb $il3.out mbd4_S$i3.out > mbdb.tmp
mv mb4db.tmp mbdb $i3.out

g i3 ++

end

#

@ 311 ++

echo $nout S$il
~end

End of cuter loop

g i3 =1

while ($i3 <= Snmat)

cat mbl mblt_$i3.out > mbl.tmp
mv mbl.tmp mbl

cat mb2 mb2t_%$i3.ocut > mb2.tmp
mv mb2.tmp mb2

cat mb3 mb3t_S$i3.out > mb3.tmp
mv mb3.tmp mb3

cat mbdda mbda_ $i3.out > mbda.tmp
mv mbda.tmp mbda

cat mbdb mbdb $i3.out > mbib.tmp
mv mbdb.tmp mbdb

cat mb5 mbh5t_$i3.out > mbb.tmp
mv mbb.tmp mbb

cat mbht mb6t_5%i3.out . tmp
mv mbé. tmp mbb

cat mb7 mb7t_8$i3.o0ut . tmp
mv mb7.tmp mb7

cat mb8 mbBt_%$i3.out . tmp
myv mbE ., tmp mbi

cat mb9 mb9t_$i3.out L tmp
mv mb2.tmp mbY

cat mblQ mblOt_$i3d.out > mbl0.tmp
mv mbl0.tmp mbl0

cat mbl2 mbl2t_S$i3d.out > mbl2.tmp
mv mbl2.tmp mbl2

@ i3 ++

end

if (Snkeff == 1) then

cat mbllt.out mbl3t.out > crit
else

cp mblit.out crit

endif

cat crit mbl mbé mb2 mb3 mb8 mblZ mbS5 mb9 mbld > $1.mbtmp
cat mbda mbib mb7 > $1.mbchk

if (-e feed) then

cat $l.mbtmp feed > $1.mbout
elze

mv $1.mbtmp $1.mbout

endif

#

txt2ps-sw $1.mbout
Ext2ps-sw $1.mbchk
txtZps-xs $1.mbout
txt2ps-xs 51.mbchk
#

echo .. .Monteburns:

date

> Sl.ps
> 8lc.ps
> $1.pss
> Slc.pss

Completed

109

APPENDIX B. LISTING OF FORTRAN77 PROGRAM MONTEBF

Cc23456789*123456789*1234567893*123456789*%123456789%123456789*%123456789*12

c Version 4 September 1998

c For info please contact Dave Poston (505)-667-4336 - postonflanl.gov
or Holly Trellue ({505)-665-9539 - trellue@lanl.gov

c
@
c...MONTER call a variety of subroutines based on call line ARG
&

common /mbinp/nmat,mb(49),voli(4%),pow,qu23b, days, nouter, nimmer,
& npre,nryst, frimp,nauto(49) ,ntot (49) ,nkeff, ni=n(999,49),
& nisnr(999,49)
common /mbinp2/niso(999,49) ,niscr(99%,49),title,clib, locale,posit
character niso*10,nisor*6,title*72,01ib*2, locale*72,posit*l
c
c...Read in command line argument getarg for sun, igetarg for HP
B
character arg*8
call getarg(l, arqg)
o call igetarglil,arg, i)}
c
c...Read in input file into commen block data from standard input
{initial

... read (with arg = a) is different than preceding ones b/c nauto
c... has not yet been defined.
c

if (arg.eq.'a'.or.arg.ed. 'wparams') then
call read

else
call readco
endif
C
c...execute based on arg
c
if (arg.eq.'l'.or.arg.eq. 'pcard?) call peard
if {arg.eg.'2’.or.arg.eq. 'wtally2'} call wtall

if {arg.eqg.'3'.or.arg.eqg. ‘wtally'} call wtally
if {arg.eqg.'4' .or.arg.eq.'worcomp') call worcom

if {arg.eg.'5'.or.arg.eq. ‘worinp') call worinp
if (arg.eq.'6b'.or.arg.eq. 'worxsbh') then
posit = 'bT

call worxs

elseif (arg.eg.’'6m'.or.arg.eq.’'worxsm’'} then
posit = 'm!
call worxs

elseif {arg.eq.'fe'.or.arg.eq. 'worxse'} then

posit = 'er’
call worxs

endif

if {arg.eq.'7b'.or.arg.eqg. 'wncinpb') then
posit = 'k’

110

mailto:poston@lanl.gov
mailto:trellue@lanl.gov

call wmcinp

elseif (arg.eq.'7m'.or.arg.eq.'wmcinpm') then
posit = 'm’
call wmcinp

elseif (arg.eqg.'7e’.or.arg.ed.'wnmcinpe’} then

posit = 'e!
call wmcinp

endif

if {arg.eq.'8b'.or.arg.eq. ‘gramsbh'} then
posit = ‘b’

call grams
elseif (arg.eq.'8e'.or.arg.eq.’'gramse') then

posit = 'e’
call grams
endif

if {arg.eq.'9'.or.arg.eg. 'wmbinp') then
nrst=nrst+1l
call wmbinp

end if

if (arg.eq.'0'.or.arg.eq.'rmhalf'} call rmhalf {nueat)

if (arg.eq.'b’'.or.arg.eq.'discrete’} call discr

if (arg.eqg.'c’.or.arg.eq. 'region'} call region

if f{arg.eq.*d'.or.arg.eq.'discremnc') call dremo

if (arg.eq.'e'.or.arg.eg. 'natelem’) call natele

it {arg.eq.'z'.or.arg.eq.'burncalc’) call burnca
C
C...Write variables ‘params’ to be read by shell and make more detailed
C... user's input file
C

if {arg.eq.'a'.or.arg.eq. 'wparams') then

call wparam
call wmbinp

endif
c

end
C
Cc23456789+*123456789%123456789*%123456789%123456789*123456789*123456789*%12
o .

¢...WPARMS writes scratch file containing variables to be read hy
c...shell with the AWK command
[

subroutine wparam

common. /mbinp/nmat, mt{4%),voli{49),pow,qu235, days, nouter, ninner,
& npre,nrst, frimp,nauto{49),ntot (49) ,nkeff,nisn{999, 49},
& nisnr(999,49)

open (11,file='./tmpfile/params’', status="unkncwn*)
write (11,902) nouter

write {(11,903) npre

write (11,904} nrst

111

write (11,3%05) nkeftf
write (11,9068) nmat
close (11)

format (i4,° nout'}
format (i4,' npre'}
format {(i4,' nrst'}
format (id,' nkeff')
format (i4,' mnmat')
return
end
C
c23456789*%123458789%123456789%123456789*%123456789%123456789*%123456789*12
c
C...READCOM reads in common block data from input file
&
subroutine read
common /mbinp/nmat,mt (49),voli{48), pow,qu23s,days, nouter, ninner,
& npre,nrst, frimp, nanto{49),ntot {49} ,nkeff nisn(999,49},
& nisnr{92992, 49}
common /mbinpZ/niso(989,49) , nisor{%9%,49),title,0lib, locale,posit
character nigo*10,nisor*6,title*72,01ikb*2, locale*72,posit*]
character nisorS*5,met*1
c
c...Read mburn input file, read twice to get nigso & nisn, have to
c...read a3 real variable first and then convert to integer so that it
c...works both on Sun and HP.
C
cpen {(ll,file='wh.inp',status='old’}
read {11, *({a72}') title
read (1l1,*) nmat
do 20 j=1,nmat
read {11,*) mt{3}
do 30 j=1,nmat
read (11,*} wvoli(j)
read (l1l,*) pow
read (11,*} qu2z3is
read (11,*} days
read (11, *) nouter
read (11,*} ninner
read (11,*} npre
read (11,*) nrst
read (11,'(a2)') clib
read (11, '(a72)') locale
read (11,*) frimp
read (11,%*) nkeff
do 60 j=1,nmat
read (11,%*) nauto(j)
ntot{j) = nauto(j)
do 60 i=1,ntot(j}
read (11,'(a10)*) nisoli,]j)

backspace {11)
read (11,'{f6:1)') x
60 nisn{i,jl=x
close (11)
¢
C...Assign origin iso names
(&
do 10 j=1,nmat
do 10 i=1.,ntot{]j}
nisorS=nisc({i,j}
met="0"
if (nisor5.eq.'95242") met='1l"
10 nisor{i,j}=nisor5//met

do 15 3=1,nmat

do 15 i=1l,ntot(j)

nisnr{i,dj)=nisn{i,j)*10

if (nisnr{i,j).eq.952420) nisnr(i,j)=nisnr{i,j)+1
15 continue

return
end
c
c23456785*123456789%123456789*123456789*123456789%123456789*123456789*12
c
C...READCOM reads in common block data from input file
c
gubroutine readco
COMIMOT: /mbinp/hmat,mt(49},volit49},pow,qu235,days,nouter,ninner,
& npre,nrst, frimp,nauto{49) ntot(49) ,nkeff nisn(999,49),
& nisnr{999,49)
commen /mbinp2/niso{99%,49) ,nisor{999,49%),title,olib, locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*l
character nisor5*5.met*1l

.. .Read mburn input file, read twice to get niszsc & nisn, have to
...read as real variable first and then convert to integer so that it
.. .works both on Sun and HP.

o000

open (11, file='mb.inp',status='0ld’)
read (11, '(a?72)') title
read {(11,*) nmat
do 20 ji=1,nmat
20 read (11,%*) mt(3)
do 30 i=1,nmat
30 read (11,*) wvolil(d)
read (11,*) pow
read (11,*) qu235
read {(11,*) days
read (11,*) nouter
read (11,*) ninner

113

read {(11,*) npre
read (11,%) nrst
read {11,'{a2)'}) olib
read (11,'(a72}') locale
read {11,%*) frimp
read {11,*) nkeff
do 60 3j=1,nmat
read (11,*) nauvto{j}
read {11,*) ntot{j)
do 60 i=1,ntot{j)
read (11,'(al®) ') nisoli, j}
backspace (11}
read (11,'{(f6.1}') x
60 nisn{i,j)=x
close {11)
L
¢...Assign origin iso names
<
do 10 j=1,nmat
do 10 i=1,ntot({j}
nizorS=niso(i,j)
mat="'0"
if (nisorS.eq.'95242") met=°1"
10 nisori(i,j)=niscr5//met

do 1% j=1,nmat

do 15 i=1,ntot (i}

nisnr(i,j)=nisn(i,j}*10

if {(nisnr{i,3j).eq.552420) nisnr{i,j)=nisnr{i,j)+1
15 continue

return
end
Lo
c23456789*123456789*%123456789*123456789*123456789%123456789%123456789%12
c
C...PCARD checks menp input file for print card, and alters or adds one
c...{only run once at beginning of monteburns)
c
subroutine pcard
common /mbinp/nmat,mt (49),voli{42},pow, gu235,days, nouter, nimaer,
& npre,nrst, frimp,nauto{42%2) ,ntot (49) ,nkeff,nisn(9989, 49},
& nisnr (999, 49)
common /mbinp2/niso(952,49) nisor(999,49),title,olib, locale,posit
character nisc*10,nisor*6,title*72,0lib*2,locale*72,positc*l
character jub5*5, juB80*80,m(20)*1,filelt*12, file2t*12
character f£ile3t*12,fileda*l2,filedb*12,filebt*12, £i1e5x*12
character file7t#12,file8t*12, fname*12,fill2t*12, fill2a%12

open (12,file="mbmc',status="'unknown®)

114

10 k=k+1
read (5, '(a5)',end=15}) jub
if (jub.eq.'print') ni=k
goto 10
15 rewind (5)
20 do 30 n=1,k-1
read (5, '{a80)') juBOD
if (n.ne.ni) then
write {12,'{a80})') 3ju80
else
write (12,'(a8)') ‘print 40°
end if
30 continue
if {(ni.eg.0) write (12,'(a8)') 'print 40'

@
close (12}
o
c...Remove mt card and write mbmc.skl
c
cpen (11, file='mbmc',status="old")
open {12,file="mbmc.skl’, K status="unknown')
c
iflag=0
n =20
40 read {11, '{20al}',end=50) (m(i),i=1,20)
1fd = 0
nogo=0
do 45 i=1,20
45 if (m({i).ne.' '} negeo=1
[
¢...Determine numerical value of material
c
if (nogo.eq.0.and.iflag.eg.1) goto 40
if {m(l).eqg.'m') then
iflag = 1 _
do 47 i=6,2,-1
if (m(i).eqg.' ') dii=i
47 continue
matr=0
do 48 i=2,31-1
48 matr=matr+{ichar{(m{i))-48)*10**(ii~1-1}
L
c... Identify if MCNP material is one of the user requested materials
Loy

do 49 j=1,mmat
49 if (matr.eqg.abs(mb{3i}))) ifd=1

end it
o
€... Print lines excluding user-specified material identifiers to
skeleton '
c

115

if (ifd.eq.0) then
backspace(ll)
read (11, '{a80)') ju80
write (12,'{aB0)'} jusQ
goto 40
else
C
c... TIf MCNP material is egual to user specified one, then print
material
¢... identification cards to appropriate cutput file. Remove blank
lines
¢... Erom end of MCNP input file
C
do 52 j=1,nmat
if (matr.eg.abs{mt{j)}} then
if {j.1t.10) then
fname = 'mat_*//char{j+48})// .inp'
elseif (j.ge.l0} then
il = j/10
j2 j - 31*10
fname = 'mat_'//char{jl+48}//char{j2+48)//'.inp"'
endif
open (13, file=fname, status="unknown'}
n=n+1
endif
52 cont inue
endif
backspaca {11}
read {(11,'{a80)') jusd
write (13, '{a80)') ju80
51 read (11, {20al}') (m(i},i=1,20)
nomat=0 '
nonatl2=0
do 53 1=1.5
53 if (m{i).ne.' ') nomat=l
do b4 i=1,20
54 if {mf{i}.ne.' ') nomatz=1
if (nomat.eq.l.or.nomatZ.eqg.l) then
backspace (1)
goto 40
elge
backspace {1i1)
read {(11,'{aB0)') jus0
write (13,'{a80)") ju80
goto 51
endif
50 close{lZ}
close {11)

C

¢... Create output files and label them. "mbllt.out" does not depend on
the

116

c¢... material, the others do. mbl3t.out containg only beginning of step

C
if (Erimp.lt.0.) frimp = abs(frimp}
open (14, file='mbllt.out',status="unknown')
write (14, (a72)') title
write (14,961) pow,days,nouter,ninner,npre, frimp
write (14, '({a33):) 'Monteburns MCNP k-eff Versus Time’
write (14, '{a34,a28)'} ° days k~erff rel err’,
& ' nu avQfis eta'
close (14)
[
open {14,file='mbil3t.out', status="unknown')
write (14,'{/,a42)') ‘'Monteburns MCNP k-eff at Beginming of Step'
write (14,'(a3d,aé)') ' days k-eff rel err’',
& ! nu'’
close (14)
G : _
c... QCreate file names
c
do 70 j=1,nmat
if (3.1t.10) then
fileit = 'mblt_*//char(j+48)//' .out’
£file2t = 'mb2t_*//char(3j+48}//'.out’
file3t = "mb3t_'//char{j+48}//' .out'
fileda = 'mbda_'//char(j+48)//' . cut’
filedb = ‘mbib_'//char(j+48)//' .out’
fileSt = 'mb5t_'//char(i+48}//'.out’
filebSx = 'mbbtx_'//char{j+48)//' .out’
file7t = 'wh7t_'//char(j+48)//'.out’
file8t = 'mb8t_'//char({j+48)//' .out"
fi1112¢ = 'mblZt_'//char(j+48)//" .out’
£fill2a = 'mbl2a_'//char{j+48)// .out"’
elseif {(j.ge.l10) then
jl = §/10
j2 = j - Jj1*1ip
filelt = 'mblt_‘'//char(j1+48}//char{j2+48)//' .cut"
file2t = 'mb2t_‘*//char(jl+48}//char{j2+48)//' .cut"
file3t = 'mb3t_'//char(3j1+48}//char(j2+48)//'.cut"
fileda = 'mbda '//char{jl+48}//char{i2+48)//' .out’
filed4b = 'mbdb_ //char{jl+48)//char{j2+48)//'.out"*
fileSt = 'mb5t_*//char (31+48}//char{j2+48)//'.out’
filebSx = 'mb5tx_'//char(jl1+48)//char{(j2+48)//'.out"
fije7t = ‘mb7t_'//char{ji+48}//char{j2+48)//' .out"
file8t = 'mb8t_r//char{jl+48}//char{j2+48)//"'.out"
£fili2t = 'mbl2t_'//char({jl+48)//char(j2+48}//" .out"
£ill2a = 'mbl2a_'//char(j1+48)//char{32+48)//' .out"’
endif
c

open (14, file='mbl', status="'unknown'}
write (14,'(/,a29)') "Monteburns Transport History '
close (14)

117

open (14,file=filelt,status="unknown'}

write (14,'{(/,a29,al12,i3,11x,a14,32x,a20}")

& 'Monteburns Transport History ',

& 'for material', 3, 'total material’','for actinide !

write (14, '{a3l,abl,ab0,al7?)'} - Qfis Flux SigmalF',
& : Power Burnup i, gamma n, fission fis/cap',

& 0 nan eta n, gamma n,fission fis/cap',
& ! nzn ata’'

close (14}

open (14,file='mb2', status="unknown')

write {(14,'(/,a4i)') 'Monteburns l-group n,gamma Cross Sections'
close (14)

open (l4,file=file2t,status="unknown')

write (14,'{/.,a33,a21,i3)")

& 'Monteburns l-group n,gamma Cross *,
& 'Sections for material', j

write (14,'(3x,a9,30(1lx,a9)}') {(nisc(i,j},i=1,nauto(j})

close (14)

open (14,file='"mb3',status="unknown'}

write {14,'{/,adl}'} 'Monteburns l-group Fission Crosz Sections'
close (14)

open {l14,file=file3t, status="'unknown')
write {14,'(/,a33,a21,1i3}"}
& 'Monteburns l-group Fission Cross ‘',
& 'Sections for material',]

write {14, (3x,a9,30(1x.a%9))') {(niscfl{i,j).,i=1,nauto(j})

close (14}

cpen {14,file="mbda',status="unknown')}

write (14,'{/,a72}'} title

write {14,961) pow,days,nouter,ninner,npre, frimp

write {14,'{ad43}'} 'Monteburns Spectrum for Each Predictor Step'
close (14)

openn (14, file=£fileda, status="unknown')

write {(14,°(/,a30,a27,13)"}

& 'Monteburns Spectrum for Each ',

& 'Predictor Step for material',j

write {(14,'{a63)'}

& <.leV <leV <100eV <100keV <IMeV <20MaV!
closa {(14)

open {14, file="mbdb’, status="unknown')

write (14,'{/,a29}') 'Monteburns Grams at Midpoint’

close {14}

open (14,file=filedb, status="unknown'})

write (14,r'{/,a29,al13,1i3)")

& 'Monteburns Grams at Midpoint’,

& ' for material‘,’

write (14,°'{ad40)') 'lst row is actual, 2nd row was predicted’
write (14, '{3x,a%9,30{1x,a%2))’) (niso{i,j).i=1,nauto{j}), ‘actinide’
close (14)

open {(l4,file='mbbh', status="unknown')}

write (14,'(/,ad44d)")

118

‘& 'Monteburns Grams of Material at End of Steps'
close (14) '
open (14, file="mbl2‘*,status="unknown?)
write {14, " {/,a50}")

& 'Monteburns Grams of Material at Beginning of Steps'
close (14}
open (14, file=filebt, status="'unknown'}
write (14,°(/,ad44,a13,i3)")

& 'Monteburns Grams of Material at End of Steps',

& ' for material"', ;
write (14, '(3x,a%,30(1x,a%))"'}) (nisoc(i,j},i=1,naute(j}), 'actinide’
close (14)
cpen (14,file=fillZt,status="unknown"’)
write (14,'{/,a47,al13,i3}"}

& 'Monteburns Grams of Material at Begin. of Steps',

& ' for material’,3
write (14,'(3x,a9,30(1x,a9})'} (niso(i,j),i=1,nauto{j}), 'actinide’
close {(14)
open {14,file=file5x,status='unknown’!
write (14,'(/,ad4,al3,i3)"')

& ‘'‘Monteburns Grams of Material at End of Steps’,

& ' for material’,d
write {14, "{3x,a9,30(1x,a9))') (niso(i,j).i=1,nauto(j}), actinide’
close (14}
cpen (14,file=fill2a,status="unknown')
write (14,'{/,a47,al3,1i3)"')

& 'Monteburns Grams of Material at Begin.of Steps',

& ' for material',j
write (14, '(3x,a9,30(1x,a9))"} {niscl(i,j},i=1,nautoci{j}), 'actinide’
close (14)
open {14, file='mb7', status="unknown')
write (14,'(/,a35,a28,13)'} 'Fractional Importance of Radionuclidr

& ,'es Sent From ORIGENZ to MCNP!
close (14) '
open (14,file=file7t,status="‘unknown"')
write (14,°(/,a60,/,a20,13)")

& 'Fractional Importance of Radionuclides Sent From ORIGEN2 to ',

& ' MCHNP for material’,j

write (14,'(/,a5.,a62)') 'step#’,

& ° . isotope grams mass fra atom fra capture fission®
close {14)

open (14,file="mbB', status="unknown'}

write {14,'(/,a3%5,a12,1i3}') ‘'Monteburns Fission-to-Capture Ratio-’
close {14)

open (14,file=fileft,status='unknown')

write {14,'(/,a35,al13,i3)")

& ‘Monteburns Fission-to-Capture Ratio®,
& ' for material',j

write (14, {3x,a9,30{1x,a9})") (niso(i,j).i=1,nauto(j))

close {(14)

961 format (/'Total Power (MW} =',61lpel0.2,’ Days =',lpel0.2,/

119

& '# ocuter steps =',i2,', # inner steps =’,4i3,

& ', # predictor steps =',12,/
& 'Importance Fraction = ',0pf6.4/)
70 continue

o)

return

end

o
Cc23456789%123456789%123456789*%123456789*%123456789+%123456789*123456789%12
c

C...WTALLY2 writes the tally cards to talZ.inp which i1s appended
c...to menp input file, and creates new mbmc file that does net
c...include tallied materials (run only once at beginning of monteburns)
C

subroutine wtal?

character ju6*6,tcell(99%9,49%)*6,ncell*6, filebt*12, file2*12

commeon /mbinp/nmat,mt (49} ,veoli{49),pow,qud35,days, nouter, ninner,

& npre,nrst, Irimp,nauto (49} ,ntot (49} ,nkeff, nis=n(999,49},

& nisnr(999,49)

common /mbinpZ/niso{999,49) ,nis0r{999,49),title,olib,locale,posit

character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*1

dimension wvol{49},ntc(49)

..Determine cells to tally

e}

40 read (5, (ab)') jué
if {jub.ne.'lcells'} goto 40

read (5,'{///)")
50 read (5,'{if,a6,15,1lx,1p3el2.5)') n,ncell,nmt,aden, gden, voll
do 55 j=1,nmat
if (nmt.eqg.abs{mt{j))) then
ntc{jl=ntc(jr+l
tecell(ntc{d}, ji=ncell
vol{i)=vel(j)+voll
end if
55 continue
if (n.ne.l) goto 50
c
c...Write tally2 file
c
do 100 j=1,nmat
if {3.1t.10} then
file2 = "tal2_'//char(j+48)//'.inp’
file6t = 'mbét_'//char{j+48)//'.out’
elseif (j.ge.l10) then

il = j/10

j2 = 3 - 41*10

file2 = 'talz_'//char{jl+48)//char{i2+48)//"'.inp’'

filebt = 'mbét_'//char(il+48}//char(i2+48)//' _.out’
endif

120

if {voli(j).ne.0.) wvol{j}=voli{]j}

i1f {(vol(j).eq.0) then
write {6,*}) '***%* MB ERROR: No tally volume-
stop’

end if

ocpen (11,file=file?, status="'unknown')

...Write energy tallies (tally numbers range from 14 to 494)
{1 to 49 represents material number)

0 a 00

write (11,611} (10+3}
211 format {(‘*c'/'f',1i2,'4:n ('}
do 80 i=1,ntc(j)
80 write {11,912) tecell(i,j}
912 format (7x,a6,' ')
write (11,913)
913 format {l14x,')')
write (11,915) {10+3), (10+]),vol(3) ., (10+3)
915 format ('fc',i2,'4d MonteBurns Energy Spectrum Tallies'/
& ‘'sd',i2,'4 ', ,lpel2.5/
& 'e',i2,+4 1.0e-7 1.0e-6 1.0e-4 1.0e~-1 1.0 20.0'}
-
c...Write header for xs tallies
Lo
write (11,911) ({(50+3)
do 90 i=1,ntc(j)
90 write (11,%22) tcell{i,])
922 format (7x,a6,' ')
write (11,923}
923 format (i4dx,'}'}
write (11,924} (5043}, (50+3),vol {3}, (50+37)
924 format {'fc',i2,'4d MonteBurns Cross Section Tallies'/
& 'sd',i2,"'4 ',lpelZ.5/'fm',i2,'4 (1)")

c
open {14, file='mbb6',status="unknown"}
write (14,'(/,a24}') 'Monteburns Flux Spectrum’
close (14}
open (1l4,file=fileét,status="unknown')
write (14,'{/,a25,al12,i3)') 'Monteburns Flux Spectrum ',
& 'for material',j
write (14,'{a63))
& ' <. lev <leV <100aV <100keV <1MaV <20MeV!
close (14)
100 continue
close (11)
o .
return
end
c
c23456789*123456789*123456789%123456789*123456789*123456789%123456789*12
C

121

C...WTALLY writes the tally cards te tall.inp and tal3.inp which
.are appended to mcnp input file

3]

subroutine wtally

common /mbinp/nmat,mt (49) ,voli(49), pow, qu235, days, nouter, ninner,
& npre,nrst, frimp,nauto{49),ntot{49) ,nkeff, nisn(999,49),

& nisnr{999,49)

common /mbinp2/nisc(999%,49),nicor (999,49}, title,0lib, locale, posit
character niso*l0,niscr*6,title*?2,0lib*2,locale*72,posit*l
character filel*l2,file3*12

c...Write tally files 1 and 3

ii = 100
if = 90¢
do 100 j=1,nmat
iflag = 0
if (9.1t.10) then .
filel = 'tall_'//char(j+48)//' . inp°’
file3d = 'talld_'//char{j+48)//'.inp*
elseif (j.ge.10}) then
il = j/10
j2 = 3 - ji*1¢
filel 'tall_ '//char{jl+48)//char(j2+48)//".inp"
file3 'tald_*//char{jl+48)//char(j2+48)//'.inp"
endif
open (11,file=filel, status="'unknown'}
open (12, file=file3, status="unknown’)
do 90 i=1,ntot(j}
li=1i+1
write (11,901) ii,niscii,j)
501 format {('m',i3,4x,al1C,"’ 1.0}

"

Equate {n,t) reaction to {n,alpha} for Lithium-6
All others are true (n,alpha} cross sections

a0 nan

if {(nisn(i,j).eq.3006}) then
write {12,920) ii
elseif (nisn{(i,Jj).lt.89000) then
write (12,921) ii
elseif (nisn{i,j).ge.88000) then
iflag = 1
write {12,922) ii
endif
90 econtinue
ij = i + 1
if (iflag.eq.l) write {(12,523) ij
write {12,823) abs{mt{j)}
clese (11)
100 continue

122

-2 is the total capture cross section

C
© 16 is {n,2n) cross section
c 105 is {n,t} cross section
c 107 is (n,alpha) cross section
C 103 is (n,p) cross section (for activation products)
C 17 is {n,3n) cross section
c -6 is the total fission cross section (for actinides)
c 452 is nu bar - only used for verification purposes
-
920 format {8x,'{(1 ',i3,' (102) {16} (105 (103)3 ')
921 format (8x,'(1 ’,13,' (102) (16) ({107} (1031} '}
922 format (8=, ' (1 ',13,' {(102) (16} (17) (-6))")
923 format (8x, (1 ",13,' (-2} (16) (452} (-6})")
<
return
end
(&

C23456789%123456789*123456789%123456789*123456789*%123456789*123456789*12

c
.. .WORCOMP writes composition input file for origen fort.7, which is

c
c...read by origen as fort.4. Units are g-atoms (grams / atomic mass)
c...{one time execute at beginning of monteburns)
c
subroutine worgom
@
dimension nuc{9%,49),£(99,42) ,gden(49).vol(49) ,nc(99),in(99}
dimension ij{49),nelem(999,49} ,nisop{%99,49),atemfr{999, 49,20},
& nisot(999,49,20),naix(999,49,20),iflag(999,49),gmat (999,49,20),
& aix(999,49,20)
character ju6*6,3juld*10,met*1l,ninat*1Q, fname*12, fnat*12,
& | fmenp*12, nmenp*20
common /mbinp/nmat,mt(49).,voli(49),pow,qu235, days, nouter, ninner,
& npre,nrst, frimp, nautoc{42} ,ntot (49} ,nkeff,nisn(999%,49),
& nisnr{999,49)
common /mbinp2/niso(999,49) ,nisor(999,49).,title,olib, locale, posit
character niso*10,nisor*é,title*72,01ib*2,locale*72,posic*1
c
10 read (5, "(32x,al0)'} juld
if {jull.ne.'mass fract'} goto 10
c
c...Read mass fractions for material
o .

ifd = 0
read (5,%*}

20 read {5,'{i6,5x,4{6x,1i5,2x,1pell_5)) "}
& men, (ne{i}, fn{i},i=1,4)

ii =0

im = 0

do 25 j=1,nmat

1f {mtn.eg.abs{mt{j}}} then

do 22 i=1,4

123

‘nuc{i,j} = nc(i)

22 fli.J) = fni{i)

nmt = j

im = 1

ifd = ifd + 1
endif

25 continue
if {im.eqg.0) gotoc 20

c
30 dii=ii+d
read (%, '{a6)') jub
if {(ju6.eq. lcells') then
ii=ii-4
ij{nmt) = 1Ii
goto 42
else
backspace {5)
endif
read {5, "(16,5x,4(6x%x,15,2x,1pell.5}) "'}
& mtn, {nuc{i, nmmt), f{i,nmE),i=1+ii,4+1i)
if (mtn.gt.0.and.mtn.ne.abs{mt(nnt})) ii=ii-4
if {(mtn.eqg.0.and . nuc(4+ii,nmt).ne.0) goto 30
ij{nmt) = ii
if {ifd.ne.nmat} then
backspace (5}
goto 20
endif
@
c...Determine gram denzity and volume of cells {(for now just 1)
C
40 read (5,'(aé)') jué
1f (jut.ne.'lcells') goto 40
c
42 read (5,'(///)"})
50 read (5,'({216,15,1x,1p3el2.5)") n,ncell,nmt, aden, gdenl, voll
do 51 §=1,nmat
if {nmt.eg.abs{mt(j))) then
vol(3)=vol{j}+voll
gden{j)=gdenl
end if
51 continue
if (n.ne.¢} goto 50
C
C...Make sure isos have been read correctly, erase spurios readings
c

do 80 j=1,nmat
do 52 i=1,4+ij (3}
nogo=0
if (nuc(i,j).1t.1000) nogo=1
if {(nogo.eq.l) nuc(i,j)=0
52 continue

124

...Write grams of material to fort.7 (origen comp file) or mnat.tmp
...1f a natural isc appears in mcnp input file

0 0 a0

if {voli(3).ne.0.) vol{jl=voli{j)
veli(j) = vol(j)
call wmbinp

if (j.1t.10) then
fnat = 'mnat_'//char{j+48}//'.tmp"

fname = 'fort_'//char(j+48}//'.7"'
elseif {j.ge.l0} then
31 = 3710

32 = j - ji*10
fnat = 'mmat_'//char{jl+48)//char(j2+48}//'.tmp"
fname = ‘fort_*//char(jl+48)//char(j2+48)//'.7"
endif)
open (11, file=fname,status="unkoown')
open (12, file=fnat,status='unknown’}
do 58 i=1,4+ij(j}
iflag{i.j) = 0O :
if {(nuci(i,j}-1000%{nuc{i,j}/1000}).eqg.0.and.nuc{i,j).gt.0} then
open {16,file='natelem’, status="'unknown'}
read (16,%*) :
read (16, *)
54 read {16,*) nelemii, j)
read {16,*) nisop(i,i}
do 56 n=1,nisopl(i, i)
56 read (16, " (15,3x,£10.5)"',err=56, end=53)

& nisot!i,3,n).atomfr{i,j,n)
it {(nelem{i,j).eqg.nuc(i,j)/1000) then
iflagii,j) =1
goto 53
elze
goto 54
endif

53 close (16}
open (13,file='mbxs.inp', status="unknown’)
1fa=0
55 read {13,*,end=57) nixs
if {(nixs.eg.nucf{i.j}) ifd=1
if (ifd.eq.0) goto 55
backspace {13)
read {13,'(al0}’) ninat
write (12,'{iZ2,4x,al0)') nelem(i,j),ninat
57 if (ifd.eq.0) write (6,*)
& ' F¥F*F MB WARNING: Natural iso xs not feound ", ,nucii,j)
close (13)
elseif (nuc{i.j).ne.0} then
if {(j-1t.10) then
fmenp = 'menp_* //char{(j+48)//° . inp!

125

elseif {(j.ge.10} then
il = 3/10
32 = j - jl1*10
fmenp = 'menp ' //char(j1+48)//char(j2+48)//' .inp"
endif
open (17, file=fmcnp, status="'unknown')}
open (13,file-"mbxs.inp',status="'unknown'}
ifd=0
66 read (13,*,end=67) nixs
if (nixs.eg.nuc(i,j)) ifd=2
if {ifd.eq.0) goto 66
backspace (13)
read {13, '{al0)'} nmcnp
write (17, '{ab,2x,al10)') nmenp(l:5), nmcnp
67 if (ifd.eqg.0) write (&,%*)
& '¥¥FFx MB WARNING: Iso X2 not found ',nuci(i,j}
cloge {(13)
cend if
58 continue
close {12)
close (17)

iyl

..Write non-actinides to fort.7, sort numerically for xs file yead

do 65 k=1,4+15(3)
nmin=99999
ni=0
do 60 i=1,4+1i7(3)
a=float(nuc(i,i})-fleat (1000* {nuc(i,j)/1000})
1f (rmac{(i,d).lt.83000.and.nuc{i,j).gt.1000) then
1f (nuc(i,j}).it.nmin) then
nmin=nuc{i, j)
if (iflag{i,j).ne.l}) then
ai=a
else
do 59 n=1,nisop{i,j)
naix{(i,j,n)=nisokt(i,j,n} - 1000* (nisot{i,j,n)/1000)

59 aix{i,j,n) = fleoat(nisotii,j.n})
& - float{1000* {nisot{i,j,n}/1000)}
endif
ni=i
end if
end if

60 continue
if (ni.gt.0) then

kxs=1

met="0"

if (iflag{ni,j).eq.l) then
do 62 n=1,nisop(ni,j)
gmat(ni,j.,n} = fini,j)*gden(j)*vel(j)/aix{ni,j,n)
gmat(ni,j,n) = gmat{ni,j,n)*atomfr(ni, j,n)

126

if {naix(ni,j,n).lt.10) then
write (11,912} kxs,nelem(ni,j},naix{ni,j,n},met,gmat({ni,j,n)
elseif (naix(ni,j,n).1t.100) then
write (11,913) kxs,nelem(ni,j),naix(ni,j,n},met,gnatini,j, n}
else
write {(11,914) kxs,nelem{ni,j),naix(ni,j,n),met,gmat(ni,j,n)
endif
62 continue
else
gma=f(ni,jl*gden(j) *vol(j}/ai
write (11,911) kx=,nuc{ni,j},met,gma
endif
nuc{ni, j}=90
end if
65 continue
C
Cc...Write actinides to fort.7, sort numerically for xs file read
c
do 75 k=1,4+ij (3}
nmin=999g49
ni=0
do 70 i=1,4+i5 (7}
a=fleoat{nuc{i,j)}-float (1000* {(nuc (i, J)/1000))
if (nuc{i,j}).ge.83000.and.a.gt.0.) then
if (nuc{i,j).lt.nmin) then
nmin=nuc{i, j)
if (iflag(i,j).ne.1l) then

ai=a

else
do 69 n=1,nisop(i,3)
naix{i,Jj,n)=nisot{i,j.n) -~ 1000*(nisot(i,j.n)/1000}

69 aix{i,3,n) = floati(nisot(i,j,n))
& - float(1l000*{nigot{i,d,n}/1000))
endif
ni=i
end if

end if
70 continue
if (ni.gt.0) then
kxs=2
met='0"
if (nueini,j).eq.95242) met='1"
if {iflagini,j).eg.l}) then
do 72 n=1,nisopi{ni, i)
gmat (ni,j,n} = £(ni,j)*gden{j) *vol(j)/aix{ni,j,n)
gmat{ni,j,n) = gmat(ni,j.n)*atomfr{ni,j,n)
if (naix{ni,j.n).1lt.10} then
write (11,912} kxs,nelem(ni,j),naix(ni,j,n),net,gmat(ni,j.n}
elseif (naix{ni,j,n).1t.100) then
write {11,913) kxs,nelem({ni, j),.naix{ni,i,n),met,gmat{ni,j,n)
else

127

write (11,914) kxs,nelem{ni,j},naix(ni,j,n),met,gmatini,j, n)
endif
72 continue
else
gma=£f{ni,jy*gden{j)*vol(j)/ai
write (11,911) kxs,nucini,j),met,gma
endif '
nuc (ni, j)=0
end if
75 continue
write (11,*(al2}") 0 0 0o O

close {11)
511 format (i4,16,al,lpel2.4,

& ! 0 0.0000E+00 0 0.00CO0E+0O0 ¢ 0.00008+00"')
912 format {(i4,i3,00',il,al,lpel?.4,

& ' ¢ 0.0000E+00 ¢ 0.0000E+0D 0 0.0CGO0E+Q0')
913 format (i4.,i3,'0',i2,al.1lpel2.4,

& ' 0 0.0000E+0C 0 0.0000E+00 0 0.0000E+00")
914 format (i4,i3,i3,al,lpelZ.4,

& ° 0 0.0000E+00 G 0.0000E+0D 0 0.0000E+00")

80 continue

return
end
Lo

c23456789%123456789*123456789*%123456789%123456789*123456789*123456789*12
c

¢...WORINP writes the origen input files.
c...put GTO 9 card 1/2 way for predictor step.
c...Do not write over restart files
c

subroutine worinp
c

common /mbinp/nmat,mt{49),voli{49),pow,qu235, days,nouter, ninner,
& npre,nrst, frimp,nauto{49},ntet {49}, ,nkeff . nisn(999,49),
& nisnr {999,489}

common /mbinp2/nisc(999,49),.nisor{999,49),title,clib, locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale*72,posit*l
character libnam*80,xsglib*6,1ib{9%)*10, decayl*80

character jui+*3, fname*22, flname*22, file%t*12,dec80*80

integer end,olibn

dimension day{99),nfeed(99,49),9£1{99,49),9£2{99,49) ,mfeed (10},
& kfeed(10),kfeedl (10,30),kfeed2 (10,30}, tmst (99},
& ifeed(10,30), ffeed(10,30),tfeed(999,49),ttfeed (595,45},
& nfl{99,49),rf(99,49),pfra{9%),1b(99,4),nmt {45}

itwo=2

if {(0lib(2:2).eqg.' '} olibn=ichar{olib{1l:1))-48

if (olib{2:2).ne.' '} olibn=(ichar(olib(l:1)})}-48)*10+
& ichar{olib{2:2})-48

c...Add crosgss section wvalues to existing fort.9 file, which previcusly
only
c...contained the origenZ decay librarvy.
o
open (15, file="fort.2.0',status="unknown"'}
xslib(l:4)="orig*
xs81ib({5:6) = olib{1:2)
do 2 i=72,1,-1
if (locale(i:i}.eq.’ *) end=i-1
2 continue
decavl = locale(l:end)//'/orig2l"
open (12, file=decayl,status='old")
2 read (12, '(a80)*,end=4) decB(
write (15, '{a80}') dec80
goto 3
4 libnam=locale(l:end}//"'/'//xslib
open (18, file=libnam, status='old’)
5 read {18.'({afl)’',end=6) decB0

write (15,'{a80}') decB80
goto 5
6 close(l2)

close(15)

close(l6)
&
¢...Create data file from scratch ; First read feed rate data file
@

if{days.eq.0.0} then

nfd =1

open (11, file='feed’',status='0ld"'}
c
c...First read the two lines of headings
e .

read (11,*)
read (11,%*)
do 8 i=l,nouter
do 7 j=1,nmat
if (j.eq.l) then
read (11,*) tmgt(i},day{i),
& pfra{i},nmt (1) ,nfeed{i,1),gf1(i,1},gf2(i,1),nE1{1,1),xE(i,1)
elseif (j.ge.2) then
read (11,*) mmt(j},
& nfeed(i,7),gf1l{i,j).gf2(i,3),nfl(i,3),rf{i,)
endif
ndisc = ¢
if {gfi{i.j}.eq.-2.} ndisc = 1
if {(4.3t.10} then
if (i.1t.10) then

flname = './tmpfile/param '//char{ji+48)//'.'//char{i+48}
elseif (i.ge.l0) then
il = i/10

i2 = i - i1*10

129

flname = ' . /tmpfile/param_'//char(j+48)//'."
& //char{il+48}//char{i2+48)
endif
elseif {(j.ge.10) then
31 = §/10
j2 = 4 - j1*10
1f {i.1£.10) then :
flname = './tmpfile/param_'//char(jl+48)//char{j2+48)//'."
& //char{i+48}
elseif {(i.ge.l10) then
il = 1/10
i2 =1 - il*1g
flname = './tmpfile/param_ '//char(j1+48)//char(j2+48)//"."
& //char(11+48) //char(iZ2+48)
endif
endif
open (16, file=flname, status="unknown"')
write (16,910} ndisc
format (i4,' ndisc')
close (16}
if (i.gt.l.and.gfi{i,j}.eq.-1.) gfl(i,ji=gf2{i-1,4)
days=days+day (i)
read (11,'{i4}’) nfs
do 9 n=1,nfs
read {(11,'({id4}') mfeed{n)
do 9 m=1,mfeed(n)
read (11, '{i5,£9.7})') ifeedin,m), ffeed(n,m)
read (11, '(id)'} nrs
do 10 n=1,nrs
read {11,'({(id)') kfeed(n}
do 10 k=1, kfeed{n)
10 read {11, *(id,id4) ") kfeedl(n,k},kfeed2{n, k)

...Rewrite mb.inp with new dayve (later add feed data to output)

call wmbinp
elge
do 42 i=]1,nouter
dayii} = days/float (nouter)
endif
continue
close (11}

...Write flag to file that indicates whether a feed file
...eXilsts or rnot

open {17, file='./tmpfile/paramg2’', status="'unknown')
write (17,950) nfd

950 format {i4,' nfd-")
clogse (17)

c...Write origen input file for cach step and write feed data to mb2.out

<
do 100 j=1,nmat
if (7.1t.10) then
file9t = 'mbft_'//char(j+48}//*'.out’
elseif (j.ge.10) then
jl = 3/10¢
j2 = 3 - j1*1@
fileSt = 'mb9t_'//char(jl+48)//char(j2+48)//'.out’
endif
open (14, file='mb%', status="unknown')
write (14,'(/,a21)") "Monteburns Inventory '
clogse (14}
open {14,file=file9t,status='unknown')
write (14,'{/,a33,al3,i3})"'}
& 'Monteburns Grams of Feed per Step',
& ' for material’,]
write (14, '{ab,2x,a4,5%x,a9,30{1x,a8))")
B 'mat #', 'days', (niso(i,3j),i=1,nauto{3j)}, 'actinide’
do 48 i=1,nouter
zero= (.0
3
c...If restart read flux from cld mbori and put in new mbori
c .

if {(i.eg.nrst+l.and.nrst.gt.0) then
if {(3.1£.10} then
if (i.1t.10} then
fname="*. /tmpfile/mbori_'//char{j+48)//'.'//char(i+48}
elgeif {(i.ge.l10) then
il = i/10
i2 = i1 - 11*10
frame='_/tmpfile/mbori_'//chaxr (j+48)//'."
& //char(il1+48) //char (12+48)
end if
elgeif (j.ge.10) then
31 = 3710
2 = 3 - jJ1*10
if {i.1t.10) then
fname="./tmpfile/mbori ' //char(j1+48)//char(j2+48)//°'."

& //char (i+48)
elseif {i.ge.10) then
il = 1/10

i2 = 4i - 1il1*10 _
frname="'./tmpfile/mbori_'//char{31+48)//char{j2+48)//'."'
& //char{il+48)//char (12+48)
endif
endif
open (11, file=fname,status="unknown'’)
12 read {11, '{a3)',end=14} ju3
if (Ju3.ne.'IRF'} goto 12
backspace (11}

131

14
900
c
13
15
s
c

c...Write group info to new file,

c

&

&

&

read (11,800} zero
clozse {11)

format (19x,1pel3.5)
end if

n=nfeed (i, j)
dstep=day (i} /float (ninner)
do 15 m=1,nauto(j)+1
tfeed{m,3)=0.

if {§.1t.10) then
if (1.1t.10} then
fname=' . /tmpfile/mbori_'//char (j+48)//"'
elgeif {i.ge.1l0) then
il = i/10
iZ2 = 1 - i1*10
fname="'./tmpfile/mborl ‘' //char{j+48)//*.°

//char(il1+48) //char {1i2+48}
end if
elseif (j.ge=.10) then
51 = §/10
92 = 4 - 31*10

if (1.1t.10) then

./ /char{i+48)

fname=". /tmpfile/mbhori_'//char{jl+48) //char(j2+48)//"'."

//char{i+48)
elseif (i.ge.10) then
il = 1/10
i2 = 1 - 11*10
fname="'./tmpfile/mbori_'//char{il1+48)//char(jZ2+48};//"'."'
//char (1i1+48) //char{i2+48)
endif
endif

open (13, file=fname, status="unknown'}

(1b(22,1i),4i1=1,3),1ib{(22)
(1b(23,1ii}),4i1=1,3),1ib{23)
{(1b{24,14}),1ii=1,3),1ib(24)
{lb(25,1ii),4i1=1,3),1ib (25}
(1b(26,1i),4ii=1,3).1ib(26)
(1b(27,1i),1i=1,3},1ib(27)
(1b(28,11),4ii=1,3),1ib(28)
(1b(29,ii),1i1=1,3),1ib{29)
{1b(30,1i),41i=1,3},1ib(30)
{(1b{31,1ii),4ii=1,3),1ib{31)
(1b(32,11}),41i=1,3).1ib{32)
{1b(33,1ii),1i=1,3},1ib(33)
{(1b(34,1i),1i=1,3),1ib(34)
(1b(35,1ii),1ii=1,3),1ib(35)
{1b{36,ii},1i=1,3),1ib(36)

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

/204,205,206,
/207,208,209,
/210,211, 212,
/213,214,215,
F225,226,227,
f222,223,224,
/216,217,218,
/219,220,221,
/251,252,253,
/254,255,256,
/257,258,259,
/201,202,203,
/401,402,403,
/404,405,406,
/311,312,313,

132

then write initial commands.

'PWRU"' /
'PWRPUU" /
'PWRPURY" /
'PWRDU3TH® /
'PWRDSD33 "/
'PWRDSD35 "' /
' PWRPUTH® /
'PWRUS0" /
'BWRY "/
'BWRPUU' /
'BWRPURU ' /
'THERMAL' /
'CANDUNAU ' /
'CANDUSEU" /
'AMOPUDUC! /

data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data
data

write
nmn

/314,315, 316,
/317,318,318,
/301,302,303,
/304,305,306,
/307,308,309,
/321,322,323,
/324,325,326,
/327,328,329,
/331,332,333,
/334,335,336,
/337,338,339,
/341,342,343,
/344,345,346,
/347,348,348,
/361,362,363,
/364,365,366,
/367,368,369,
/371,372,373,
/374,375,376,
/377,378,379,
/351,352,353,
/354,355,356,
/357,358,359,
/381,382,383,
/381,382,383,
/204,205,206,

(1b(37,1i),1i=1,3),1ib(37)
(ib(38,41),1i=1,3),1ib(38}
(1b(39,i1),1i=1,3),1ib(39)
(1b(40,1i),ii=1,3),1ib(40)
(1b{41,ii),1ii=1,3),1ib(41)
{1b{42,1ii),ii=1,3),1ib(42)
{1b{43,11),1i1=1,3),1ib(43)
(1b(44,i1),4i=1,3),1ib(44)
(1b(45,1ii),4i=1,3),1ib(45)
{1b{46,1i),1i=1,3),1ibk(46)
{1b(47,1ii),1ii=1,3),1ib(47}
{1b(48,ii},ii=1,3),1ib(48)
{(1b(4%9,4i},1i=1,3),1ib{49}
{1b(50,ii},ii=1,3},1ib(50)
{1b{51,ii),ii=1,3},1ib(51)
{lb{52,1i),1i=1,3},11ib(52)
(1b{53,3i},1ii=1,3),1ib(53)
{1b{(54,i1},4ii=1,3),1lib({54}
(1b{55,1ii},1ii=1,3),1ib(55)
{1b(56,1i),1ii=1,3),1ib(56)
{(1b(57,ii),1i=1,3),1ib{57}
(1b(58,1ii),1ii=1,3),1ib(58)
(1b(59,43),1i=1,3),11ib(59)
{1b{60,1ii),14i=1,3},1lib(60G}
(1b(65,1i),3ii=1,3),1ib(65}
{Ib{66,1i1),1i=1,3),1ib(66)

(13,921)

abs{nfl (i, i}

1f{nfl(i,j).1le.0) then
write (13,921)
goto 19

endif
do 16
write
do 17
write
write
write
if(nn

16

17

write {6,919)
format ('****%* MB:
'entered for outer step number’

919
&

m=1,9

{13,%18) m

m=10,14

{13,922 m

{13,%20) (1.0 - rf£{i,3}}
(13,921)
.gt.nrs) then
i

Invalid removal group

stop

endif
do 18
do 18
write
write
write
write

18
19

k=1, kfeed(nn)

m=abs {kfeedl (nn, k%)), abs{kfeed2 (nn, k) }
{13,923 m '

(13,921)

{13,924)

{13,925)

133

'AMOPUUUA " /
*AMOPUUUR ' /
EMOPUUUC' /
‘EMQOPUUUA!' /
' EMOPUUUR" /
' AMORUUUC' /
' AMORUUUA ' /
' AMORUUUR' /
' AMOPUUTC' /
' AMCPUUTA" /
'AMOPUUTR ' /
' AMOPTTTC' /
tAMOFTTTA® /
'AMOPTTTR® /
"AMOTITTTC' /
"AMOITTTA' /
'AMOITTTR'/
'AMO2TTTC: /
'AMO2TTTA' /
'AMOZTTIR' /
' AMOXTTTC' /
' AMOXTTTA' /
'AMOXTTTR' /
'FFTFC' /
TADV3 T/
'PWRSPEC* /

il

14}

write (13,926) 1lb{oclibn,1}.1lb{(olibn,2),lb(elibn,3),libiolibn}
write (13,927) 1b(olibn,1},1lb(elibn,2),1b{olibn, 3)
write {13,928)

write {(13,82%)

write (13,9830}

write (13,931)

write (13,932)

write (13,933)

write (13,934)

write {13,9835)

write (13,90%)

kk=2

icont=0

if {(n.gt.0.and.gfl{i,j) .ne.-2}) icont=1

if {icont.eg.l) kk=10

c
C... Write various loops into origen input file
ol
do 22 k=1,kk
write {13,901)
if (dcont.eqg.l) then
write (13,911)
write {13,902) ninner/10
dburn=dstep*float (ninner/10}
else
write (13,902) ninner/2
dburn=dstep*float {ninner/2)
end if
write {13,8203) dstep, zero
write (12,904}
write (13,905)
c

if (n.gt.0} then
do 21 m=1,mfeed(n)
nm=2
if (ifeedi{n,m).1t.89000} nm=1
ifdé=ifeed{n,m)*10
if (ifdé6.eq-952420) ifd6=ifde+1
if {(gfl{i,j).ne.-2) then
gfs={float(k)-.5)/float(kk)*(gf2({i,3)-gfl{i,j))+gfl{i, i)
gfeed=ffeed{n,m} *gfs*dburn
else)
if (k.eqg.l) then
gfeed=ffeed(n,m)*gf2{i,j) *day (1)
else
gfeed = 0.0
endif
endif
if {ifeed(n,m).ge.83000) then
tfeed{nauto(j)+1, ji=tfeed{nanto{ji}+1l,j)+gfeed
endif '

134

" do 29 mm=1,nauto (]}
if (ifdé.eq.nisnr(mm,j}} then
tfeed{mm, j}=tfead{mm, j)+gfead

endif
25 continue
C
if {icont.eg.l} write {13,913) nm,ifd6, ffecd{n,m)*gfs
21 continue
if (icont.eqg-1) write (13,914)
end if
el
c... Write end of run 1/2 way through for predictor step
[
ihalf = 0
if {k.eq.5) ihalf = 1
if (k.eg.l.and.icont.eq.0) ihalf=1
if (ihalf.e=q.1l} then
write (13,938)
if (nfl{(i,Jj).gt.0) write {13,836)
write (13,937}
write (13,939)
end if
C
22 continue
[
@ complete end of origen input file
C
if{nfl{i,d).gt.0) write (13,936}
write {13,937}
c .
25 close (13)
write (14,'{i2,1x,f8.2,3x,1pe9.2,30el0.2)")
& i,day(i), {(tfeed(m, j),m=1,nauto{ji+1)
do 46 m=1,naute{j)+1
46 ttfeed{m,j)=ttfeed(m,j)+tfeed(m, i)
48 continue
write (14,*'(a3,f8.2,3x,1pe9.2,30e10.2) "}
& 'tot',days, (ttfeed(m,j) ., m=1,nauto{j)+1)
write (14,'(/,ad4l,al3,i3)")
& 'Monteburns Grams Produced {or Destroved) per Step’,
& ' for material’.j
write (14, (3x,a9,30(1x.a92))")
& {nisof{i,dj),i=1,nauto(j}), 'actinide’
close (14)
<

901 format {'BUP'}

902 format {'DOL 1 +,id)

903 format {'IRF 1, 1p2el3.5," 2 3 4 1)
S04 format ('MOV 3201.0'/'CON 1'/'8UP')
905 format {'sSTP 2') i

911 format {'INP 1 0 1 -1 4 4';

135

913 format (il,i8,1pel2.4,’ g 0.0")
914 format ('0'}

518 format (13,t4,'1 1.0")

920 format ('15',t4,°1 ',£7.3)

%21 format ('-1')

922 format (i2,t4,'1 1.0'")

923 feormat (1i2,' 15')

924 format ('TIT ORIGENZ input file for monteburns')
925 format ('LIP 010"
926 format ('RDA *** Libg ',i3,',',13,','.,1i3,' = ',alQ)
927 format {'LIB 01 23 ",3(43,1x},'9 3 0 3 0"
928 format ('RDA 1 Bundle of fuel',/, '
& 'RDA Read initial comps into vector 1 from fort.4 in ',
& ‘gram-atoms*)
929 format (’INP 1 -20-144")
930 format (*MOV i201.0",/,
& MOV 130 0.0/,
& ' MOV i400.0")
931 format ('RDA ***', /,
& 'RDA **+ Sat output options (print in grams)')
932 format (*HED 1 INITIAL'}
233 format {'CUT 5 1.0-10 =-1'}
934 format {'OPTA A*¥8 7 18*8', /.,
& 'OPTL 4*8 7 19*8', [/,
& 'OPTEF 4*8 7 19*8')
835 format ('RDA **** /,
& 'RDA Begin burn, add cards after STP 2, remove FP at’,
& ' end of burn®)
936 format {‘'FRO 2 3 4 -1
937 format {'MOV 3 2 0 1.0%.,/,
& ' oUT 4 1 1 O T.f,
& 'PCH 2 2 2 Vel o
& 'RDA "ol o
& {END 3

938 format ('RDA First of 1/2 way predictor cards')
939 format ('RDA Last of 1/2 way predictor cards':}

130 continue
return
end
&
C
©23456789%123456789*123456789%123456789*123456789*123456789*%123456789*12
&
c...WORXS calculates new xs from mcnp and modifies the cross
c...sectiong in fort.9. Alsc calculates flux and modifies mbori
c...for 1/2 step
C
subroutine worxs
C .
character jul0*10,ju80%*80, ju3*3, fort7*12, jub*6,blanks*4, mtuf*20

136

common /mbinp/nmat,mt{49),voli(49),pow, qu235, days, nouter, ninner,
& npre,nrst,frimp,nauto(49),ntot(49),nkeff,nisn(999,49),
& nisnri{%99,49)
common /mbinp2/niso(999,4%),nisor (999,49}, title,0lib, locale, posit
character nisc*10,nigor*6,title*72,0lib*2, locale*72,posit*l
character tal=*3,rnm*2,filef*12,file6*12, fname*2], fname2*25
character fort9*12, f9tmp*15, £filel*12, file2*12,file3*12, filelr*12
dimensicn xs(999,4,49),eflx(7,49).day{99),nfeed(99,49), f1x (49},
gfl[99,491.gf2{99,491,nf1{99,49),rf(99¢49),pfra(99),
nmt {49) ,nisqg{49),gad(49), fismac (49}, tnst (99),
qfiz (493, flux{49),Elux2(49), fiscap(999),vol{43) .pwr(42),
aval(4,49),absmac(49), frfast(49), frth{49),nZnmac{4%},
burnup (0:99, 49), fluxy (49%), fluxy2 (49)
real keff,nu,macfis,macabs,macn2n, kinfin(49), kinf, mtu (49}

R R

<

c...First obtain data from feed input file
c
open (17, file='./tmpfile/params2',status='old’)
read (17,'(i4)'} nfd
if (nfd.eqg.l) then
open (11, file='feed’, status='old")
read (11,%*}
read (11,%*)
daynum = 0.0
do 10 i=l1,nouter
do S Jj=1,nmat
if {j.eq.l} then
read (11,%) tmst{i),day{i},pfrafi),
& mmt (1) ,nfeed(i,1},gfl{i,1),gf2({(i,1),nfl(i,1),ri(i,2}
elgseif (j.ge.2) then
read {(11,%*)
& nmt(j),nfeed(i,j),gfl(i,j)fgfz(i,j),nfl{i,j},rf(i,j)
endif
5 continue
if (i.eqg.nrstc+l) goto 15
10 daynum = daynum + day{i)
' else
do 12 i=1,nouter
day{i) = days/float{nouter}
pfra{(i} = 1.0
if {i_ eqg.nrst+l) gote 15
12 daynum = daynum + day{i)
endif
c

c...Read mass fraction section to get volume of each material
C

do 13 §=1,nmat
13 wvoll(jy = 0.0
15 close (11}

open {11,file='mbmco',status="old"}
280 read (11, ‘' ({a6}'} jué

if {(jué.ne.'lcells') goto 280

read (11,'(///}")
250 read (11,'(i6,a6,i5,1x,1ip3el2.5})'} n,ncell,nt,aden,gden,voll
do 295 j=1,nmat
if (nt.eqg.abs{mt(j)}) then
vel({j)=vol{j)+voll
end 1t
285 ceontinue
if {(n.ne.0} goto 2%0

&
c...Read keff and calculate nu
<
20 read (11, '{alC)") Jjulf
if {jul0.ne.' neutron c'} geto 20
C
read (11,'(/)")
read {(11,'(31x,1ipel0.4}') sre¢
read (11, {(//////7/77/77))
read (11, '{31x,1lpell.4,54x,1pel0.4)’) fsrc, floss
read {11,'({/////}")
read (11,'{35x,1pe10.4,0p,£f7.4}) ') fmult,err
<
if (fsrc.ne.0.) then
nu=fsrc/floss
keftf = (fmult-1.)/(fmult-1./nu}
relerr = (fmult*{i.+err)-1.)/{fmult* {1 _+err)-1i./nu)
relerr = (relerr - keff) /keff
else
30 read (11,'({ald)") julsC
if {Jull.pe.? -————wwe—-—— '} goto 30
read (11,'({/72x,£f7.5,41x,£f7.5)"'} keff, relerr
nu=keff*src/floss
endif
c
C...Read energy spectrum tallies (if tallies don't exist in mbmco,
c...then tal='yes’ {(used in later commands)
C

if (posit.eq.'m') then
do 68 j=1,nmat
55 read {11,'{alC)',end=67) 3ulld
if {(julC{l:6).ne.'ltally'} goto 55
tal = 'yes”
mat = 0
do 60 m=1,nmat
if {(m.ge.10) then

ml = m/10
mZ = m - ml1*19Q
ml =ml + 1

nm = char{ml+48}//char{m2+48)
elseif {(m.lt.10} then

138

mm = '1l'//char{m+48)

endif

if (mm.eg.juld(8:9)) then
mat = m

goto 61

endif

60 gontinue
if {mat.eg.0) goto 55

C
6l read (11,'{al1@)'} juls
if {julG.ne.’ ener') goto 61
C
do 65 1i=1,7
65 read (11,'{17x,1lpell.5) ') efix(i, mat}
frifast{mat) = 0.
frth(mat) = (eflx{l,mat)+eflx(2,mat)}/eflx(7,mat}
do 66 1i=3,6
66 frfast(mat) = frfast{mat} + eflx{i,mat)/eflx{7,mat)
C
if {(mat.1t.10) then
fileb = 'mb6_"'//char{mat+48)//*.out"’
elseif (mat.ge.10) then
91 = mat/10
j2. = mat - j§1*10
filet = 'mb6_'//char(j1+48}//char{(j2+48}//'.out"
endif -
open {(14,file=file6, status="unknown"*)
write (14,'(i2,1x,6f10.2)') nrst,
& {100.%eflx{i mat) /feflx(7,mat),i=1,6)
close (14)
goto 68
67 write (6,*) ****** MB ERROR: Not all user-~specified MCNP',
& ' materials were found in MCNP ocutput file!
stop
68 continue
o
c...Read tallies and calculate new cross sections
[

do 88 j=1,mmat
iflag = 0
70 read (11, " (al0)}’'}) juld
if (JulQ{1:6).ne. 'ltally'} goto 70
mat = 0
do 72 m=1,nmat
if (m.ge.i0} then
mi = m/1l0
mZ = m -~ ml*10
mi = ml + 5 :
nm = char(ml+48)//char{m2+48}
elseif (m.1t.10} then
nm = *'5'//char{m+48)

139

endif
if {(mm.eqg.jul0{8:2)) then

mat = m
goto 74
endif

72 continue
if {mat.eg.0) goto 70

@
74 read (11, '{aild) ") julo
if (JulD.ne.' multiplie'} gotoc 74
c
read (11, '{17x,1lpell.5)'} flx{mat)}
if (flxi(mat).eqg.0) write (6,*) '***** MB: Tally read error'
do 80 i=1,nktot(j}
do 80 m=1,4
76 read (11.'(alQ)'} JulD
if {jul0.ne.' multiplie'} goto 76
read {11, ' (17x,lpell.5}'} xs{i,m,7)
xs8{i,m, j)=xs{i,m3)/flx(3)
“af inisn{i,d).ge.89000) iflag = 1
80 continue
if {iflag.eq.l) then
. do 85 m=1,4
82 read {11,'{ali0)*} julld
if (julQ.ne.' multiplie') gotc B2
read (11,'{17x,1ipeil.5) ') xsintot(j)+1i,m,Jj}
xs(ntot{j)+1,m,j)=xs(ntot(i}+1.m,3)/£fix(3)
85 continue
endif
do 87 m=1,4
86 read (11,'({alQ}'} 3jull
1f (jull.ne.' multiplie’) goto 86
read (11, '{(17x,1pell.5)') xsintot(3)+2,m,J)
xsintot(Jj)+2,m,J)i=xsi{ntot{j}+2,m,3}/£1x(3)
87 continue
if {msintot{d)+2,1,3) + xs(ntoti(j}+2,4,3).ne.0.0) then
kinfin{j) = (nu*xs(ntot(j)+2,4,3) + 2.0*xs(ntot(j)+2,2,3}}/
& {xs{ntot(j}+2,1,3}) + xsintot(j)+2,4,3})
else
write (6,%*) '**%+* MR ERRQOR: Cross Section Tallies Not Correct'
endif
88 continue
close (11}
endif
c
c...Modify library
@
totpwr = 0.0
totfis = 0.0

if (pesit.eg.'m’) then
do 260 j=1,nmat

140

mtu{j} = 0.0
write {(6,*}) '...MB: Modifying Library for material ',J
- if (3.1t.20} then
fort7 = 'fort_'//char{3i+48}y//*.7"
fort9 = 'fort_'//char(j+48)//".8"

f9%tmp = 'fort_*//char(j+48)//'.9.tmp"’

mtuf = './tmpfile/mtu_'//char(3+48)//' .tmp*
elzeif {j.ge.l0} then

il = 3/10

i2 = J - j1*106
fort7? = '"fort '//char{jl+48)//char{ijz2+48)//'.7"

fort9 = 'fort_'//char(il+48)//char{j2+48)//'.9"

fotmp = 'fort_'//char(31+48)//char(j2+48)//'.9.tmp"'

mtuf = ',/tmpfile/mtu_'//char(ijl+48}//char{i2+48}//' . .tmp’
endif

open (12, file=fort9, status="old")
open {13, file=f9%tmp, status="unknown')
if (nrest.eq.0} open (17, file=mtuf, status="unknown')

<
90 ixs=0
read (12,913, err=97,end=99} nflag,blanks
if (nflag.gt.3.and.blanks.ne.-* '} then
backspace{l1l2)

92 read (12,9521,err=92) .
& nxs,nnuc,xsl,xs2,xs3,xs4,x35,xs6,xflag
do 95 i=1,ntot{j}
if (nisnr(i,j}.eqg.nnuc) then
ixs=1
write (13,921) nxs,nnuc¢, {(xs{i,m,j) m=1,4),xs5,xs6,xflag
end if i
95 continue
end if)
97 if (ixs.eg.0) then
backspace (12}
read (12,'{a80)') juB0
write (13,'{af80)') 3ui0
end if
gote %90
913 format {(id,a4d)
921 format {(i4,i8,1p6el0.3,£7.1)

c
99 continue

close {12)

close {13)
c
¢...Calculate energy per fission gfis and flux norm factor
c...need to determine contribution of each iso to fission
c

100 grat=1.0
1f {gqu235.1t.0.) call calcg{grat,fort7, fort9)
gfis{i)=abs{qu235)*qrat

141

...Calculate the macreoscoplc fission cross section of the
...ilsotopes from the number densities multiplied by the
...microscopic fission cross section

..-Read fort.7 and fort.9 to get density and fis xs

T o0 a0 oa

open (16,file=fort7, status='0ld")
open {13,file=f%tmp, status='old"}
nact = 27

...Calc relative fisgion per nuclide

oo

fismac{j) = 0.
nZnmac(j) = 0.
absmac({j) = 0.
n=20

220 read (16,911,err=220,end=2%0) kxs, (nisqg(m),gad(m),m=1,4)
do 240 m=1,2

ixs=0

230 read {13,913,err=235,end=23%) nflag,blanks
if {(nflag.gt.3.and.blanks.ne.’ ') then
backspace (13}

232 read (13,921,err=232)
& nxs,nnuc,xsl,xs2,xs3,xs4d,xs5,x%xs6,xflag
else
goto 230
endif
if (mnuc.eg.nisqgi{m)} ixs=1
235 if (ixs.eq.0) goto 230

if (voli{i}.eq.0.0) woli(d} = vol{])
aval{m,j) = gad{m)*0.6022/voli(j}
absmac({j) absmac{j) + aval{m,j)*xsl
nZnmac{j) = nZ2nmac({j) + aval{m,j)*xs2
1f (kxs.eq.2) fismac({i}) = fismac{j) + aval{m,3j)*xs4
nisal=nisg{m) /10
nz=nisgl/1000
a=float {nisql)-float (1000* {(nisqgl/1000}}
if {nrst.eq.0} then

if (nz.ge.90) then

mtu{j) = mtu{j} + gad{m)*a

endif
endif
n=1an+1

1l

239 1if (ixs.eq.0) rewind(13)
240 continue
goto 220
&
c...Two different fluxes must be calculated: one for the end

142

c...of step nrst, and one for the beginning of step (nrst+l)
¢...The reason these two values are different is that the

c...power fraction for each outer loop step is different
C

250 totpwr = totpwr + (gfis(j)*flx(j}*fismac(j)*voli{i})
totfis = totfis + {flx(j)*fismac(j)*voli{j)}
gave = totpwr/totfis
it {nrst.eq.0) write (17, '{lpel0.3)') mtuij}

260 continue

Lo
if {nrst.eqg.0) then
pfracl = pfra{l)
pfrac2 = pfra(l)
elseif (nrst.eg.nouter) then
pfracl = pfra{nrst)
pfrac2 = pfra{nrst}
algse
pfracl = pfra(nrst)
pfrac? = pfra{nrst+l)
endif
c
C... Normalize the flux obtained from MCNP by using the factors "nu"
c... power, energy per fission, and k-eif
c
i1f {fsrc.eq.0.) then
frniorm = nu*l.Ce+d6*pow*pfracl/1.602e-13 /gave/keff
f2norm = nu*l.Cle+6*pow*pfrac?2/1.602e-13 /gave/keff
else
frniorm = src*l.0e+6*pow*piracl/1.602e-13/gave/floss
F2norm = src*l.Je+é*powrpfracz/1.602e-13/gave/floss
endif
&
c... Write xs data to varicus wb files
<
do 160 j=1,nmat
if (tal.ne.'ves') goto 120
fsabs=xs (ntot {j)+1,1,7)
fsfis=xs(ntot{3)+1,4,7)
fsn2n=xs{ntot (j}+1,2,7)
falabs=xs{ntot{§)}+2,1,3)
falfig=xs{ntot(3)+2,4,7)
faln2n=xsi{ntot{j)+2,2, 3}
(e

if (§.1it.10}) then

filel = 'mbl_'//char(j+48}//'.ocut’

filelt= 'mblt_‘//char{3i+48)//°.out’

file2 = 'mb2_'//char{j+48}//'.cut’

file3 = "mb3_'//char{j+48)//'.cut'

tile8 'mb&_*//char{ij+48)//"'.cut'

mtuf = ',/tmpfile/mtu_*//char(j+48)//".tmp"
elseif (j.ge.l0) then

143

j1 = §/10
j2 = j - j1*10
filel = 'mbl_'//char(jl+48)//char(j2+48)}//' .out’
filelt= 'mbit *//char(jl+48)//char(j2+48)//'.out’
file2 = '‘mb2 '//char{ji+48)//char{j2+48)//' .cut"
filel ‘mb3_"'//char(ji+48)//char{j2+48)//" .out!
files 'mb8_*//char{jl+48)//char(j2+48)//"' .out®
mtuf '/tmpfile/mtu_ '/ /char(§1+48) //char (j2+48)//"' .tmp'
endif
open (14, file=fileZ, status="unknown')
write (14,'(i2,1x,1pe?.2,3010.2)"'} nrst, {xs(i,1,3),1=1,naute(j)}
close (14)
open ({14, file=file3, status="unknown')
write (14, '(i2,1x,1pe%.2,30e10.2}"') nrst, {xs(i,4,.3).1i=1,nauto(3))
close (14)
do 119 i=1,nauto{j}
it {xs(i,l,.3).ne.0.0.and.nisn{i,j).ge.89000) then
fiscap(i) = {xs({i,4,3)/=xs(i,1,3)}
else
Eiscap{i) = 0.0
endif
continue
open (14, file=filef, status="unknown’)
write (14, "(i2,1x,0pf9.4,30£10.4}")
& nrst, {(fiscap{i}),i=1,nauto(3))
close (14}

. Write monp output to mblt.out

120 flux(j)i=fnorm*flx(j)
flux2{j}=f2norm*flix{J})
pWwrijl=gave*flux{ji*fismac{j}*voli{i}*1.602e-13/1.0e+8

Calculate total accumalated burnup

open (14, file=filelt, status="unknown'}
read (14,%*}
read {(14,*)
read (14, *)
do 121 i=0,nrst-1
read (14, '({43x,0pf10.3)") burnupf(i, j}
close (14}
if {nrst.ge.l) then
open {(17,file=mtuf, status="'unknown'}
read (17, (lpel0.3)') mtu(j)
endif
if (mtu{j).ne.0.0.and.nrst.ne.0) then
burnupinrst,j} = burnup{nrst-1,7j)
& + pwr{j)*1000.0*day (nrst) /mtu(j)
else

burnup ({nrat, j) 0.0

endif
write (6,900) 3,flux(j}.fismac{j),pwr(j},burnup(nrst,j)

c
C
if {fsfis.ne.0.0.and.fsabs.ne.0.0) then
fisabs = fsfis/fsabs
else
fisabs = 0.0
endif
if {(nu*fsfis+2.*fsn2n).ne.0.0.and. (fgabs+fsfis).ne.0.0)then
eta = {nu*fsfis+2.*£fsn2n)/{fsabs+fsfis)
elge
eta = 0.0
endif
if (falfis.ne.0.0.and.falabs.ne.0.0}) then
fisall = falfi=s/falabs
else
fisall = 0.0
endif
if ((nu*falfis+2.*faln2n).ne.0.0.and. {falabs+falfis) .ne.0.0)then
asta = (nu*falfis+2.*faln2n)/{falabs+faifis}
else
aeta = 0.0
endif
open (14,file=filel,status="unknown')
write (14,902) nrst,gfis(d),flux(j).fismac(j),pwrii},
& burnup{nrst,j),
& falabs, falfis, fisall,faln2n,aeta, fsabs, fsfis, fisabs, f5n2n, eta
close (14)
C
c...Modify flux in origen files
[y

do 150 ii=1,2
if (ii.eqg.l) then
if {§.1t£.10) then
fname=‘mbori_'//char{j+48)
fnameZ="mbori_'//char{(j+48}//".tmp’
elseif (j.ge.10} then
31 = 3/10
iz = 3 - j1*10
fname=‘mbori_'//char{jl+48)//char{j2+48)
fname2="mbori_"'//char{jl+48)//char{j2+48)//'.tmp"'
endif
else
i=nrst+1
if (§.1£.10) then
if (i.1t.10) then
fname='. /tmpfile/mbori_'//char{j+48)//'."//char (i+48)
fname?2="'_/tmpfile/mbori_'//char(j+48)//'.'//char(i+48)//' .tmp’
else
il = i/10

145

i2 = 1 - i1*10
fname="'./tmpfile/mbori_'//char{j+48)//"."

& //chari(il+48) //char (12+48)}
fnameZ="./tmpfile/mbori_'//char{j+48}//'."'
& //char (1i1+48) //char(i2+48)//"' .tmp’
end if
aelseif (j.ge.l0) then
jl = 3/10

42 = 4§ - 31*10
if {i.1%.10) then
ftname="'./tmpfile/mbori_'//char{jl+48}//char(j2+48}//'."

& //char(i+48})
fnamelZ=", /tmpfile/mbori_'//char{jl+48)//char (j2+48)//'."
& //char{i+48)//"' .tmp'
elseif (i1.ge.10} then
il = 1/10

i2 =i - 11*10
fname="./tmpfile/mbori_'//char{j1+48)//char{j2+48)//"."'

& //char (11+48} //char (i2+48)
fname2="'./tmpfile/mbori_"'//char{jl1+48}//char{j2+48)//'."
& //char(il+48) //char{(i2+48)//' .tmp'
end 1f
endif
end if
C
openn (12, Eile=fname, status='0ld"',err=140)
open (13, file=fname2, status="unknown'}
if (mt{j).1lt-0) then
flux{(j) = 0.0
flux2(3) = 0.0
endif
[8

130 read {(1Z, '{a3)',end=140) Ju3
if {jul.eq.'"IRF'} then
backspace(12)
read (12,'{a6,lpel3.5)',end=140} Jjub,dstep
if {ii.eg.l) then
write (13,992) dstep, flux(i}
else
write (13,992) dstep, flux2 (i)
endif
else
backspace {12}
read (12, '(a80)',end=3140) ju80
write (13,'(a80)') 3us0
end if
gote 130
140 continue
close (12)
close (13}
150 continue

146

160 continue
¢... Obtain power fraction for ALL steps for flux calculations

if {npre.eq.0) then
if (nfd.eg.l} then
open (15, file='feed’,status='0ld"'}
read (15, %)
read (15,7*)
do 111 i=1,nouter
do 111 j=1,nmat
if (j.eqg.1l} then
read (15,%) tmst(i),dav{i),pfrai{i},
& nmt {1}, nfeed{i,1),gf1{i,1),gf2{(i,1} nfl(i, 1}, rf{i, 1}
elseif (j.ge.2)} then
read (15, %)
& nmt{j) , nfead (i,), gfldi, 3),gf2(i,3) . nf1{i, 3}, rf(i,5)
endif
111 continue
close (15)
else
do 112 i=1,nouter
112 pfra{i}) = 1.0
endif
@
C...Modify flux in origern files. For wmero predictor steps, modify all
fluxes
C
do 170 j=1,nmat
do 168 i=2,nouter
if (3.1t.10} then
if (i.1t.10) then
fname='./tmpfile/mbori_'//char{3+48}//'."'//char{i+48)
fname2="'./tmpfile/mbori_'//char(j+48)//'.'//char(i+48)//"'.tmp"’
alse
il = 1/10
i2 = 1 - 11*10
fname="./tmpfile/mbori_'//char(j+48)//'."

& //char {i1+48}//char{i2+48)
fnameZ="'./tnpfile/mbori_*//char{(j+48)//"."'
& //char (11+48) //char (12+48)//° . tmp'
end if
elseif {j.ge.l0} then
Jjl = 3/10

32 = j§ - F1*10
if {(1.1t.1i0) then
fname="'./tmpfile/mbori_'//char{j1+48)//char(3j2+48)//'."

& J/char (i+48)
fname2="'./tmpfile/mbori_'//char{j1+48) //char (j2+48)//'."
& //char{i+48)//" . tmp!

alseif (i.ge.10} then

147

il = 1/10
i2 = i - i1*10
fname='./tmpfile/mbori_'//char(j1+48}//char{j2+48})//"."

& //char(11+48) //char {(i2+48)
fname2=', /tmpfile/mbori_'//char(jl1+48)//char(j2+48}//"."
& //char(il+48)//char(i2+48)//' .tmp'
end if :
endif
c
fa
c... Normalize the flux obtained from MCNP by using the factors "nu"
¢... power, energy per fission, and k-eff
C
if (fsrc.eqg.0.) then
fnrm = nu*l.0e+6*pow*pfra(i)/1.602e-13/gaveskeff
f2nrm = nu*l.0e+é6*pow*pfra(i)/1.602e-13/gaves/keff
else
fnrm = src*l.fe+6*pow*pfrali)/1.602e-13/qgave/floss
f2nrm = src*l.le+b*pow*pfra{i)/1.602e-13/gave/floss
endif
fluxy (j)=fnxrm*£1x(j)
fluxy2 (j)=f2nrm*flx(7)
if (me{3).1t.0) then
fluxy (i} = 0.0
fluxy2(j} = 0.0
endif
open {12, file=fname, status=‘old', err=166}
open (13, file=fname2,status="'"unknown')
c

164 Tead (12, (a3)',end=166) 3ul

if (ju3.eq.'IRF'} then
backspace {12}
read {(12,'{a6,1lpel3.5)',end=166) jué, dstep
if {(ii.eg.l) then
write (13,992) dstep, fluxy(j)

elgse
write (13,992) dstep, fluxy2i(j)
endif
else
backspace (12)

read (12, '(a80)',end=166) ju80
write (13,'(a80)") ju8d
end if
goto 164
166 continue
close (12)
close (13)
168 continue
170 continue
endif

148

endif

g
open (15,file="mbll.cut', status="unknown')
if (nrst.eq.0} then
time = 0.0
else
if {posit.eq.'b'} then
time = daynum - day{nrst) + 0.01
elseif {posit.eqg. ' m") then
time = daynum - day{nrst)/2.0
else
time = daynum
endif
endif
c
c...Calculate k infinity and output results
@
if {(posit.eq.'m') then
macfig = 0.0
macabg = 0.0
macnZn = 0.0
do 167 i=1,nmat
macn?n = macn2n + n2nmac(j)
macabs = macabs + absmaci{]j)
167 macfis = macfis + fismac{j)
kinf = {(nu*macfis + 2.0*macn2n}/{macfis + macabs)
write {15,903) nrst,posit, time,keff, relerr,nu,gave,kinf
else
write (15,904) nrst,posit, time, keff, releryr,nu
endif
close (15)
write {6,901) keff,nu
900 format {' ...MB: mcnp flux for material ",i3,' = ',lpe%.2,
& ' SigmaF = ',1pef9.2,"' power = ',0pflG.3
& 'MW Burnup = ',0pfl0.3,' GWI/MTHM')
901 format (* ...MB: mcnp keff = ', £7.5,° nu = ',£5.3)
902 format [(i2,1x,0pfl0.3,1p3el0.2,0pfl0.3,1pdelC.2,0p£E8.3, 2x,
& ' 1pdel0.2,0pf8.3)

902 format {i2,al,lx,f8.2,1x,2f10.4,£10.3,1x,2f10.3)
904 format {iZ2,al,1x,f8.2,1x,2£10.4,2£10.3}
911 format (i4,4(1x,16,2x,1pell.4})

952 format ('IRF ', 1p2el3 .5, ! 2 3 4 14
return
end
o .
Cc23456789%123456789*123456789*123456789%123456789*123456789*123456789%12
&

. ..CALCO calculates the MeV per fission based on fission distribution
c...and qu235 (recov. MeV per U235 fission) '
c

subroutine caleqlgrat, fort7, fortd)

149

common /mbinp/nmat,mt(49),veli (49),pow, qu235,days, nouter, ninner,
& npre,nrst, frimp,nauto(49),ntot {49}, ,nkeff, nisn{999,49),

& nisnr(999,49)

common /mbinp2/niso(999,49) ,nisor{999,49),.title,olib, locale, posit
character nigo*10,nisor*6,title*72,0lib*2,locale*72, pogit*l
character fort7*12, fort9+%12,blanks*4

dimension nisg(4),gad{d)

dimension nisact(0:50),gqract{(0:50}, fi=e{0:50)

data {nisact{i),qracti(i},i=0,31) /

& 0,1.0,

& 90227,0.9043, 90229,0.8247,
& 90232,0.9573, 91231,0.2471,
& 91233,0.9850, 92232,0.8553,
& 92233,0.9881, 92234,0.9774,
& 92235,1.0000, 92236,0.8573,
& 92237,1.0074, 52238,1.0175,
& 93237,1.0073, 93238,1.0175,
& 94238,1.0175, 94239,1.0435,
& 94240,1.0379, 94241,1.0536,
& 94242,1.0583, 95241,1.0513,
& 95242,1.0608, 9%h243,1.0685,
& 96242,1.0583, 96243,1.0685,
& 96244,1.078%7, 96245,1.0889,
& 96246,1.0991, 96248,1.1195,
& 96249,1.1296, 98251,1.1501,
& 99254,1.1807 !

grat=0.

nact=31

c
¢...Read fort.7 and fort.9 to get density and fis xs
<

open (12, file=fort7,status="0ld")

open (13, file=fort9,status='cld')

...Calc relative figsion per nuclide

000

do 10 k=0,nact
10 fis(k}=0.
fistot=0.
20 read (12,911,err=20,end=50) kxs, (nisqf{j).gad(j},Jj=1,4}
if (kxs.eqg.2} then
do 40 j=1,4

ixs=0

30 read {13,913,err=35,end=39) nflag,blanks
if (nflag.gt.3.and.blanks.ne.' *1 then
backspace (13}

32 read {(13,921,err=32)
& nxs,nnuc,xsl,xs2,xs3,xsd,xsb,xs6,xflag
endit

150

if (mnuc.eg.nisg{j)}) ixs=1
35 if {ixs.eqg.0) goto 30

nisgl=nisg(j) /10

kk=0

do 37 k=1,nact

if {(nisact(k).eqg.nisql) kxk=k
37 continue :

fis{kk)=fis{kk)+gad({])*xs4d

fistot=fistot+gad(j) *xs4d

39 if (ixs.eq.0) rewind(13)
40 continue
end if
goto 20
3
50 continue
c
c...Calculate Q based on fission percentage
&
if {fistot.eg.0.) then
grat = 0.
else
do 60 k=0,nact
qrat = grat + fis{k)/fistot*gract (k)
60 continue '
end if

911 format ({(id,4{lx,i6,2Zx,lpell.4})
913 format {(id4,Lad)
921 format (i4,i8,1p6ell.3,£7.1)

return

end
c
c23456789*123456789*123456789*123456789%123456789%123456789%123456789*12
C .
C...WMCINP modifies the mcnp input file with new compositions, materials

c...are added if they are deemed "important players". Data is
¢...read from fort.7 in gram-atoms, and put into mass fractions.
c

subroutine wmcinp
[

common /mbinp/nmat,mt (49),voli(49},pow,qu235, days, nouter, ninner,
& npre,nrst, frimp,nauto(49),ntot{49) ,nkeff nisn{%99,49},
& nisnx (999, 49}

common /mbinp2/niso(999,49),nisor{999,49),title,olib, locale, posit
character niso*10,nisor*6, title*72,0lib*2, locale*72,posit*l
dimension nisq{4),gad(4) . nele{d),nisop(4},gmnat{999),gmcnp{999},
& gden{49)

integer o,b{(10},e(10)

151

O anan

=

double precision gm(999,49}
character ninat*10, f7name*12, f9%name*12,file7*12,filed*12,

& fnat+*12, finp*12, fmcnp*12, nmcnp*10, blanks*4,
& nPufp*10,nUfp*10, I%err*8, 1ine80*80, chars5*5,
& line*80

...Read fort.7, and fort.9%. sum tcotal gamma and fission, and
-..then step back through and determine contributors, sum mass
-..0f each contibutor.

do 180 3j=1,nmat

if (3.1t.10} then
finame = 'fort_'//char{j+48)//'.7'

fO9name = 'fort_'//char(j+48)//7.9"'
f9err = 'fSerr_ '//char(j+48}
filed = 'mbd_'//char(j+48)//'.out’

file7 = 'mb7_'//char{i+48}//' .out’
fnat = 'mnat_'//char{j+48}//' .tmp"
fmoenp = 'menp '/ /char{(j+48) /7 Linp®
finp = 'mat_'//char(j+48}y//'.inp"
elseif {j.ge.l0) then
il = 3/10
J2 = 3 - j1i*10
fTname = 'fort_'//char{jl+48)//char(j2+48)//'.7"'
f9name = 'fort_'//char(jl+48)//char{j2+48)//'.9"
f9err "fSerr_'//char{il+48)//char{j2+48)
filed 'mbd_*//char (i1+48) //char(j2+48)//' .out’
file7?7 = 'mbh7_‘'//char(il+48)//char(3j2+48)//' .out"
fnat = 'mnat_'//char{jl+48)//char(342+48)//' .tmp"
fmenp = 'menp ' //char(ji+48)//char{j2+48})//'.inp’
finp = '"mat_'//char(jl+48)//char(j2+48)//'.1inp"
endif
open (12, file=-f7name, status="o0ld")
open {13, file=f9name, status="'o0ld*)
open (15,file=f%err,status='unknown')

]

c...5um total density, gamma and fission

C

15
20

tden=0.

tmas=0.

tabs=0.

tfis=0.

do 15 n=1,99%9

gncnp{n) = 0.

gmnat{(n) = 0.]

read (12,911,err=20,end=50) kxs, (nisg{k),gad(k),h k=1,4)
do 40 k=1,4

if (nisg(k).gt.0) then

152

ixs=0
30 read (13,913,err=35,end=3%) nflag, blanks
if (nflag.gt.3.and.blanks.ne.’ ') then
~ backspace(13)
32 read (13,921,err=32)
& nxs,nnuc,xsl,xs2,xs3,xs4,xs5,xs6,xElag
elge
goto 30
endif
if (nnuc.eg.nisqg(k)} ixs=1
35 if ({ixs.eg.0} goto 30
39 1if (ixs.eq.0) then
rewind(13)
x3l = (0.0
xz4 = 0.0
endif

nisgl=nisq{k) /10
a=float(nisgl)-float {1000* (nisgl/1000})
tmas=tmas+gad{k) *a
tden=tden+gad (k)
tabs=tabs+gad (k) *xsl
if (kxs.eqg.2) then
iflg = 1
tfis=tfis+gadik} *xs4d
endif

... Obtain compogition {in grams) of all isotopes in MCNP input file
to transfer them in case they are not found "important”

naonoan

if (kxs.eg.l.or.kxs.eg.2) then
open (17, file=fmcnp, status="'unknown')
id = 0
m= 0
36 reada (17,'{i8}',err=37,end=38) numcnp
m = m + 1
1f (numcnp.eqg.nisgl) then
id = 1
gmenp (m)= argad(k)
endif
37 if {id.eq.0) goto 36
38 clese (17)
elseif (kxs.eq.3) then
gfp = gfp + a*gad{k)}
endif
end if
40 continue
C
C... Add up gram totals for netural isotopes
(&
backspace (12)

153

read (12,912,end=49) kxs, (nele(k),nisopi{k),gad(k),bk=1,4)
if {kxs.eqg.l.or.kxs.eq.2) then
do 47 k=1,4
n=20
open (11, file=fnat,status="unknown®}
46 read (11,'{i2,4x,al0)}',err=46,end=48) nelem,ninat
n=ns+»:1
if (nele{k).eqg.nelem) then
nisql=nisgl(k) /10
a=float(nisqgl)-£floatc{l1000* (nisgl/1000))
gonat (n)=gmnat (n)+a*gad(k)
endif
goto 46
48 close {11}
47 continue

endif
49 goto 20
c
50 continue
close (11)
close (17)
911 format (i4,4(1x,i6,2x,1pel(.4))
912 format (i4,4{1lx,12,1i4,2x,1lpel0.4))
913 format (i4,ad}
921 format (i4,i8,1p6el0.3,£f7.1)
c
c...Begin list of mecnp input isos with automatic tallies list
c
ntot (j)=nauto{j)
c

c...Now determine which iso's contribute based on frimp or are
c..already selected {auto due to input or may occur twice in table)
&

rewind {12}

rewind{13)

gmtot=0.

U235£=0.

Puzisf=0._

open (16,file=file7,status="unknown'}

write {16,*)

60 read (12,911,err=60,end=90) kxs, {nisg(k),gad{k), k=1,4)
backspace (12)
read (12,912} kxs, (nele{k),nisopi{k),gad{k),k=1,4)

do 80 k=1,4
if (nisg(k).gt.0) then

ixs=0

F0 zread (13,913,err=75,end=7%) nflag,blanks
if (nflag.gt.3.and.blanks.ne.’ '} then
backspace (13}

72 read (13,921,err=72)

154

& nxs,nnuc,xsl,xs2,xs53,xs4,xs5,xs6,xflag
else
goto 70
endif
if {nnuc.eq.nisg(k)) ixs=1
75 1f (ixs.eq.0) goto 70
79 if (ixs.eq.0} then
rewind (13}
if {kxs.ne.3} then

write (15, {(a27,16,a20)') '***** MB WARNING: Isotope ',
& nisg(k), ' not found in fort.9®
endif
xs1 = 0.0
xsd = 0.0
endif
c
C...Determine which isos qualify, or are automatic or repeat.
&
icon=0
nisqgql=nisqg(k) /10
a=float{nizqgl)-float{1000* {nisgl/1000)}
gmtot=gmtot+a*gad (k)
gpct=gad(k}*a/tmas
dpct=gad{k)/tden
apct=gad{k)*xsl/tabs
fpct=0.
nz = nisgl/1000
if {(kxs.eqg.2.and.tfis. ne.0.) then
fpoct=gad{k}*xsd/tfis
if (nz.le.92) U235f = U235f + fpet
if {(nz.gt.92) Pu23%f = Pu238f + fpct
endif
C
if (gpct.gt.abs{frimp)) icon=1
if (dpct.gt.abs{frimp}) icon=1
if (apct.gt.abs{frimp}) icon=1
if (fpect.gt.abs{frimp}) icon=1
kk=0
do 77 m=1,ntotij)
if {nisnr{m,j).eg.nisg{k}) then
kk=m
<
c... 1If a figsion product is flagged "automatic®, then don’'t include it
in
C... lump sum of FPs. Qtherwise, do. (kk=0 indicates it was not
"automatic")
C
if {kxs.eqg.3) gfp = gfp - a*gad{k}
endif
77 continue
c

155

¢... Make sure natural isotopes are not deemed "important® since they
are
Boo e included later
c
open (11, file=fnat,status="unknown')
78 read (11,'(iZ2,4x,al0)*,err=78,end=92) nelem,ninat
if {neleifk).eg.nelem} then

icon = {
endif
goto 78
92 close (11)
oo
c...1lf repeat or automatic isotope
C
if (kk.gt.0} then
gm{kk, j)=gm{kk, j)+a*gad{k)
if (gm(kk,3}.gt.a*gad{k}} then
write {6,953) nrst,kk.nisnr{kk,i).gm{kk,j},gpct,dpct,apct, fpct
write (16,953} nrst,kk,nisnr(kk,j).gm(kk,j),gpct,dpct,apct, fpet
else
if (icon.eqg.l}) write(6,951) nrst,kk,nisnr{kk,j),gm(kk,]j).gpct,
& dpct, apct, fpct
if {icon.eg.() write{6,952} nrst,kk,nisnr{kk,3},gm{kk,j),gpct,
& dpet ., apct, £fpct
if {icon.eqg.l}) write(l6,951} nrst,kk,nisnr(kk,3j).gm{kk,3j), gpct,
& dpet, apet, fpet
if {icon.eqg.0) write(l6,952) nrst,kk,nisnr{kk,3j},gm{kk,j),gpct,
& dpct, apct, fpct
end if
end if
c
c... Fission products that were not previously deemed "important” will
C... be treated as a lump sum
c
if {kxs.eqg.3.and.kk.eq.C.and.frimp.1t.0.0} then
else
c
c... If new qualifying isotope, first check if xs exists then add to
ntot
c

if {icon.eg.l.and.kk.eg.0} then

open {15, file="mbxs.inp',status="unknown')

ifd=0
95 read {15,*,end=105} nixs
nixsl0 = nixs*10

if {nixs.eqg.95242) nix=sl0 = nixsld + 1
if {nisg(k).eg.nixsl0) ifd=1

if {(ifd.eq.0} goto §5

backspace (15)

read (15,'{al0)"') niso(ntot{j)+1, j)

156

C

C... Print error message if no cross section exists in MCNP for isotope
o)
105 if {ifd.eg.0) then
write {(6,%) '***** MB WARNING: mcnp xs not found *, nisgik)
write (16,*) '***** MB WARNING: mcnp xs not found °*, nisgl(k)
end if
close (15}
c .
€... Print isotope-specific information if xs does exist =
=

if {ifd.eg.l) then
ntot{il=ntot(j)+1
niznr{ntot(j).j)=nisg(k)
nisn{ntot(j),j)=nisnri{ntot{j},Jj)/10
gm{ntot{j),j)=a*gad (k)
write (6,951) nrst,ntot{j).nisnr(ntot(j),J),gm{ntot{3),d),
& gpct,dpect, apct, fpect
write (16,951) nrst,ntot(j).,nisnrintot{j},j).gm(ntot{i),.J),
: gpct, dpct,apct, fpct
end if
end if
endif
end if
80 continue
goto 60

90 continue
951 format (i4,i4,il0,1p5el0.2)
952 format {i4,i4,110,1p5el0.2, 'avtomatic’}
953 format (i4,14,i110,1p5e10.2, *repeat '}

close (16}
=
C...Write grams of material
(e
if (posit.eqg.'m’) then
open {l1l4,file=filed, status="unknown')
write (14, '(i2,1x,1pe9.2,30e10.2}') nrst, (gm(i,Jj},i=1,nautoc (i)}
close (14)
endif
o
close (12)
close (13)
-
C...Rewrite mb.inp
<
call wmbinp
&
c...Check if mass of isos sent back to mcnp is same as came in.
c E
gmtot2=0.

157

do 140 i=1,ntot (3}
140 gmtot2=gmtot2+gm(i,j)

...Read natural iso file and add to total mass

n=20
open (11, file=fnat,status="unknown')
142 read (11, "(6x,all}’',end=144) ninat
n=mn+1
gmtot2=gmtot2+gmnat {n)
goto 142
144 continue

... Add isotopes in original MCNP input file

m = {
open (17, file=fmenp, status="unknown')
read (17,'{1i5,2x,a10) ', end=148}) nmc,nmcnp
m=m+ 1
ifg = 0
do 147 i=1,ntot(j)
if (nisn{i,j).eg.mmc) ifg =1
continue
if (ifg.ne.l) then
gmtot2=gmtot2+gmenp (m)
endif
goto 145
148 continue
C
c... Add fission products to gram total, then separate into U-235 & Pu-
2358 ones
C
1f (gfp.gt.0.0.and.frimp.1lt.0.0} then
gmtotZ=gmtot2 + gfp
gutf = U235f*gfp
gPuff = pPul23%f*gfp
endif

.. Compare total of isotopes to total included in MCNP inpur file
.. Calculate gram density of material

write {6,%*) 'mass not accounted for and % ',gmtot-gmtotZ,
& (gmtot-gmtot2) /gmtot
gden(j} = -gmtot2/voli(j}

..Modify mt card with input file mat.inp

160 open (12, file=finp,status='unknown")
if (abs(mt{j)}.1t.10) write {12,931) abs{mt{j})
if (abs(mt{j)}.ge.l10.and.abs{mt(j)).1t.100)
& write (12,932) abs{mt(j})

158

if (abs(mt{j})).ge.100.and.abs{mt{3j}).1t.1000}

& write {12,933) abs{mt{j})
if {abs(mt{j})).ge.1000.and.abs{mt{j)}.1t_10000)
& write {12,934) abs{mt{j))
931 format ('c'/'m',il)
932 format ('c¢'/'m',i2}
933 format ('¢'/'m',i3}
934 format {'e'/'m',6id}
C
c... Add isotopes in original MCNP input file
[&4

m= 0
rewind (17)
155 read (17, '(i5,2x,a3l190)'.end=168) nmc,nmenp
m=m + 1
ifg = 0
do 157 i=1,ntot{3)
1f (nisn{i,j).eq.nmc) ifg = 1
157 continue
if {ifg.ne.l) then
if {gmcnp(m).eg.0.) omcnp{m)=1.0e-20*gmtot2
write (12, '{6é6x,al10,1lpel3.4}'} nmcap, -gmenp (m) /gmtotc2

endif
goto 155
c
C...Add natural isos
c
168 n = 1

rewind (11)
152 read {11, '(i2,4x,al10)',end=15%4) nelem,ninat
do 153 i=1,ntot{Jj}
aa=(nisn(i,j}-1000*{nisn(i,j)}/1000))
if {aa.eg.0} then
nz=nisn(i,j) /1000
if {nz.eqg.nelem) then

iftg = 1
gm(i,j) = gm(i,j) + gmnat(n)
endif
endif

153 continue
if (ifg.ne.l) then
if {(gmnati{n}.eq.0.) gmnat{n)}=1.0e-20*gmtot.2
write {12,'{6x,all,lpel3.4)') ninat,-gmnat{n}/gmtot2
n=n-+1:1 :

endif
goto 152
i%4 n =n - 1
B
c... Add "important" isctopes
=

de 150 i=1,ntot(j)

159

if (gm(i,j).eq.0.) gm(i,Jj)=1.0e-20*gmtot2
if (nisn{i,j).ne.45117.and.nisn{i,j).ne.46119) then
write (12,'(6x,al0,1lpel3.4)') nisol{i,j}.,-ogm{i,) /gmtot?
endif
150 continue

... Add fission products to mat.inp files

n a0

if (gfp.gt.0.0.and.frimp.1lt.0.0) then
open {18, file="mbxs. inp',status='unknown’)
if {(gUff.ne.0) then
ifd=0
158 read {18,*,end=159) nixs
if (nixs.eq. 45117} ifd = 1
if (ifd.eq.0) goto 158
backspace (18)
read (18,7 (all) '} nUfp
159 if (ifd.eqg.0} then
write {(6,*) **%*** MB WARNING: No Uranium Fission Product ',
& 'library was provided in mbxsg.inp'
else
write (12, '({6x,al0,lpel3 . 4)'} nUfp, -gUff/gmtot2
endif
rewind (18}
endif

if {(gPuff.ne.0) then
ifa=0
161 read (18,*,end=162) nixs
if (nixs.eq.46118) ifd =1
if {ifd.eq.0}) goto 16t
backspace (18)
read {18,'(al0)'}) nPufp
162 if (ifd.eq.0) then
write (6,*} '***** MB WARNING: No Plutonium Fission Product ',
& 'library was provided in mbxs.inp'
else
write (12,'(6x,al0,1lpel3.4})"') nPufp,-gPuff/gmtot2
endif
close (18)
encdif
endif

s}

... End main material input section

write (12,*{al}‘} 'c!

...Write actinide tally material

9]

ii = 900 + j

160

do 165 i=1,ntot{j)
165 if {(nisn{i,j).ge.89000) iflag = 1
if (iflag.eg.l) then
write {(12,'(al,i3)') 'm',ii
do 170 i=1,ntot{3j)
if (nisn(i,d).ge.89000) then
if {gm{i,]).eq.0.} gmi(i,ji=1.0e~-10*gmtot2
write (12,'{6x,al0,1pel3.4}') niso{i,i),-gm{i,J) /gmtot2
end if
170 continue
write (12,'(al)’) ‘c-
endif

close (11)
close {12)
close (15}
close (17)
180 ceontinue

Rewrite density{s) in MCNP input file

o nn

nflag = 0
cpen (15, file='mbmc.skl', status="unknown')
open (17,file="mbmc.tmp', status="unknown'}
181 read (15, '{a%)'.end=19%0) char5
if {char5{1:1}).eq.'C'.or.char%(1:1).eqg.'c'.or.
& charb.eq.' t.or.nflag.eqg.1) then
backspace (15)
read (15,'{(a80)'} line80
if {lineB0(1:42) .eq.’ b
& .and.line80(43:76) .eq." ') then
nflag = 1
write (17, {a80}") line80
else
write {17,'(a80)'} lineB0
endif
else
backspace (15)
read {15,*,err=185,end=190) ncell, nmater
ident = 0
do 187 j=1,nmat
if (nmater.eg.abs(mt(j)}) then
ident = 1
backspace (15)
read (15, '{aB0)") lineB80
o =1
n =1
ncount = 1

161

C.

First find the first number

same position}

c

[ad

183

B oo
blanks

C

C

<.

182

184

187
185

if {line80(n:m).ne.’' '}
n=mn+ 1
ncount = ncount + 1

gotoc 183

Then identify the location

if (lineB0(n:n).eq.' '}
bio) = n
if {o.eq.3) goto 185
m=n
if
m=m+ 1
goto 184
else
ef{o) =
endif
o =0+ 1
n=m-+1
goto 182
else
n=mn+1
goto 182
endif
else
goto 187
endif
continue
if (ident.eq.l)

mn

then

Replace wvalues before

density

o

188

151

182

nident = 0

do 188 i=b({3},80

line{i:i) = line80(i:i)

if (1line80(i:i).ne.®

if (ncount.ge.2} then
do 191 i=1,ncount-1
line80{i:i1) = * *

endif

if {e{2).le.24} then
do 192 i=e(2}+1,25
1ineB80(i:i} = *

endif

if {nident.eg.l) then

{line80{m+l:m+1} . .eqg."

density,

{ncount allows it to always start in

goto 182

of the next two numbers relative to

then

'} then

density, and then theose after

‘) nident =1

write (17,'(a25,f£f10.5)') line80{1:25),.gden{j}

162

do 189 i=1, (b{3)-1}

189 line{(i:i} = ' !
write (17, "{a80)*) line
else
write (17, '{a2b,fl0.5}') 1line80(1:25),gden(]3)
endi £
else

backspace (15)
read {15, "{a80}') line80
write {17, (aB0)'} line80

endif

endif

goto 181

190 return

end
@
c23456780%123456789%123456789*%123456789%123456788%123456789+%123456789%12
C
C...3RAMS reads fort.7 and prints out grams of tracked material to mbb
c

subroutine grams
c

common /mbinp/nmat,mt(49),veli{49),pow, qu2is, days, nouter, ninner,

& npre,nrst, frimp,nauto(49) ., ntot{49) ,nkeff nisn{999,49},

& nisnr(999,49) :
common /mbinp2/nisc{%%9,49),nisor(99%,49) ,title,clib, locale,posit
character niseo*10,nisor*6,title*72,01ib*2, locale*72,posit*1
character f7name*12,file5*12,filebx*12,filel2*12,£fill2x*12
dimension nisqg{4),gad(4),gm{999, 49)

c
do 40 3=1,nmat
if (3.1t.10) then
f7name = 'fort_'//char{j+48)//'.7’
fileS5 = 'mb5_'//char{j+48})//'.out’
filel2 = 'mbi2_'//char(4+48)//'.out’
£1i112x% = 'mbl2x_*//char{j+48}//" .out’
filebx = 'mbSx_'//char{j+48)//'.out*
elseif {j.ge.l0} then
jl = 3/10
2 = 5 - 31%10
finame = 'fort_'//char(j1+48)//char{j2+48)y//'.7'
file5 = 'mb5_'//char(jl+48)//char{j2+48)//"' .out’
filel2 = 'mb12_'//char(jl+48}//chaf{j2+48}//'.out'
fill2x = 'mbl2X_'//Char(jl+48}//char(j2+48)//'-out‘
filebx = 'mb5x_*//char(jl1+48)//char(j2+48)//'.out"
endif
open (12, file=f7name, status="'old"'}
@
10 read (12,911,err=10,end=30) kxs, (nisgi{m),gad{m},m=1,4)
C

do 20 m=1,4

163

15

c

S
20

c
30

o
211

c

c
40

¢

c
c2345

c

kk=0

do 15 k=1,nauto{j)

if (nisnri{k,3).eg.nisg{m)) kk=k
continue

if {(kk.gt.0.or.nisg(m).ge.890000}) then
niggl=ni=zgim) /10
a=floatinisgl)-float {1000* {nisgl/1000})
if (kk.gt.0) gmikk,J}=gmikk,j}+a*gad{m}
if (nisqi{m).ge.890000) gm{nauto{j}+l,j}=
& gui{nauto(})+1,j)+a*gad{m)
end if

continue
gote 10

continue
format (i4,4{1x,i6,2x,1lpell.4))

if (posit.eq.'e') then

open (l14,file=fileh,status="unknown'}

open (15, file=filebx,status="unkncwn'}

write (14, '({i2,1x,1pe9.2,30el10.2)'} nrst, {(gm(i,j},i=1,nauto(j)+1)
write (15, '({i2,1x,1lpel3.7,30eld4.7) ") nrst, (gm{i.j).,i=1 . nauto{j}+1}
close (14)

cloze {15}

elseif (posit.eqg.'b') then

open (14,file=fi1ilel2, status="unknown')

open {(15,file=fil12x,status="unknown')

write (14, '{i2,1x,1lpe9.2,30el0.2)'} nrst, (gm{i,j}.i=1,nauto{j)+1)
write (15, '(i2,1x,1pel3.7,30el4.7) ") nrst, (gm{i, i), ,i=1,nauto{j}+1}
close (14)

close {(15)

endif

close (12)
continue

return
end

6783*123456789%123456789%123456789*%123456789%123456789*123456789*%12

C...RMHALF removes 1/2 way predictor cards in mbori

[

subroutine rmhalf {nmat}
character juB8*8,3juB0*80, fname*12, f2name*12

do 140 j=1,nmat
if (3.1¢.10} then

164

fname = 'mbori_'//char{j+48)

f2name = 'mbori_'//char{j+48)//'.tmp’
elgeif {j.ge.l0) then

31 = /10

j2 = 3 = J1*10

fname = "mbori_ '//char(jl+48)//char(i2+48}

f2name = ‘mbori ‘//char(31+48)//char{j2+48)//"' .tmp"
endif

open (12, file=fname, status='cld')
open (13, file=fZname, status='unknown')

&
ine = 0
120 read {12, (a8)',end=125) Jul
c
if (juB.eq.'RDA Firsg'} ino=1
if (ino.egqg.9) then
backspace{1l2)
read {12, ' {aB80)',end=125}) juf8l
write (13, '{a80})') juB0
end if
if (juB.eq.'RDA Last') ino=0
goto 120
125 ceontinue
close {12)
cloge {13)
140 continue
c
return
end
c
Cc23456789%123456789%123456789%123456789*123456789*123456789*1234567859%12
c
¢ .. .BURNCALC calculates material burmned/produced based on feed and inven
&
. subroutine burnca
&
common /mbinp/nmat.mt (49}, veli(49),pow, qu235,days, nouter, ninner,
& npre,nrst, frimp,nauto{49),ntot(42) . nkeff,nisn(299,49},
& nisnr(999,49}
common /mbinp2/niso(999,49),nisor{999,49),title,0lib,locale,posit
character niso*10,nisor*6,title*72,0lib*2, locale* 72, posit*l
character £ilel0*12,file9t*12,file5t*12, filebx*12, filed*12
character fileb*12,fill2a*12 '
dimension tfeed{999),gl1(999),g2(999),bhb{992),.bb2(9%9),day(29)
dimension dfeed(999)
@
c...Read feed data
c

do 100 j=1,nmat
1f {j.1t.10) then

file9t=

'mb9t_'//char(j+48)//'.out’

165

<

i0
&

fileS5 ='mb5t_*'//char{j+48)//' .out’
filebx='mb5tx_*//char{j+48)//' .out'
fillZ2a='mbl2a_*//char{j+48}//’ .out"'
file9 ='mb8 '//char(j+48)//".out!’
filelO="mbl0t_'//char{j+48)//" .out'

elseif (j.ge.l0} then
il = 3/10
42 = 4 ~ 41*10
file9t="mbot_*//char(j1+48}//char{j2+48)//' .out’
fileSt="'mbhbt_*//char(jl1+48)//char{j2+48)//' .out"’
fileSx="mhb5tx '//char{jl+48)//char(jZ+48)//' .out"
fillZ2a='mbl2a _'//char{jl+48)//char(j2+48)//' .out"
filed ='mb9_'//char{jl+48)//char{i2+48)// _out’
filelO="mbl10t_'//char{jl+48)//char{32+48)//"'.out"’

endif

open (11, file=fileft, status="unknown')

read (11,'(//)")

do 10 i=1,nrst

read (11,'(3x%,£f8.2,3x,1pe9.2,30el10.2)")

day(i), {tfeed(m},m=1,nauto(j)+1)
close {11}

¢...Read inventory data

<

3]

o]

20

22

.. Wr

30

&

. Wr

40

open {(11,file=filebx,status="'unknown')

read (11,°(//)")

do 20 i=0,nrst

read (11, (3x,1pell3.7,30eld.7}"') {g2{m},m=1,nauto{j}+1}
close {11)

open (11, file=filiZa, status='unknown')

read (11,*1(//)")

do 22 i=0,arst

read (11, ' (3x,1lpel3.7,3014.7})"'} (gl{m},m=1,nauvto{j}+1}
close {11)

ite burn data

do 30 m=1,nauto(j)+1

bhim)=g2{m)-gl{m)-tfeed(m)

open {(l4,file=file9, statua="unknown'}

write (14,'{i2,1x,1pe%.2,3010.2})")
nrst, {bb{m),m=1,nautoc(j)+1}

ite final burn data if last step

if (nrst.eq.nouter) then

open {(ll1,file=filedt, status='"unknown’)
read (11,'{//}"}

do 40 i=1,nrst

read (11,%*)

166

o]

]

read (11, ' (3x,£8.2,3x,1pe%.2,30e10.2}")
& day(nrst), {tfeed(m),m=1, nautoc({j) +1}
cloge (11}

open (11,file=filebx,status="unknown'}

read (11,'{//)'}

read (11, '(3x,1pell3.7,30eld.7)'} (glim).m=1,nauto{ji+1)
close (11}

do 50 m=1,nauto{j)+1
50 bb2(m)=g2{m)-gl{m)-tfceed(m)
write (14, '(a3,1pe9.2,30e10.2)}') ‘tot’, (bb2(m),m=1,nauto(j)+1)
write (14,°'(/,a36,al3,1i3,a22,i3,al1)")
& 'Summary of Inventory/Feed/Production',
& ' for material’,j," (MCNP Material Number',abs{mt(j)}, '}’
write {14, '{3x,a9,30(1x,a%}) ') {(niso{i,j).i=1,nautol{i}), 'actinide’

write (14, '({(a3,1pe9.2,30<10.2}') 'ini’', (gli(m),m=1,nauto(j)+1)
write (14, {(a3,1lpe9.2,3010.2}') 'fin', (g2{m),m=1,nauto(j)+1)
write (14,'(a3,1lpe9.2,30e10.2)') 'fed', (tfeed{m),m=1,nauto{j)+1}
write (14, '(a3,lpef.2,30el0.2)’} 'net', (bb2(m),m=1,nauto(ji+1)

end if

close {14}

L.Write mbl0.out containing feed/burn rates

if (nrst.eg.nouter} then

open {14,file=‘*mbi(',status="'unknown')

write (14, '({(/,a28)'} 'Monteburns Inventory {cont.)'’
close (14) :
open {14,file=filell,status="unknown')

..Read data and divide by time interval

open {11,file=filebt, status="'unknown'}

read (11,'(//}")

write (14,‘{/,al?,élS,iB,a22,i3,al)') 'Feed Rate {g/dav}',
& ' for material®,j,’ {MCHP Material MNumber',azbs{mt{i)),)"
write (14, " {3x,a29,30{(1x,a%))") (niéo(i,j),izl,nauto(j}),'actinide'
do 80 i=1,nouter

read {11, '{3x,£8.2,3x,1pe%.2,30210.2) "}
& dayv{i}, {tfeed{m),m=1,nauto{j)+1)

open {17,file='./tmpfile/params2’',status="0ld")

read (17, (i4)'} nid

close {17)

if {nfd.eg.1l) then

write {14, '(i2,1x,1pe%.2,3010.2)") i,
& {(tfeed(m)/day(i),m=1,nauvto(j)+1}

else

167

do 77 m=1,nauto{j}+1
7T dfeed(m) = 0.0
write {14,'{i2,1x,1pe%.2,30e10.2}"'} i,
& (dfeedim),m=1,nauto{j)+1)
endif
80 continue
read (11, (///)")
write (14,'{/,a35,al3,1i3,a22,i3,al)")

% 'Production/Destruction Rate (g/dayl}’',

& ' for material',j.' {(MCNP Material Number*,abs (mt{(J}),)"
write (14, '{3x,a%,30({1x,a9)}"') {niso{i,j).i=l,nauto{j)}, 'actinide’
do 90 i=1,nocuter-1
read (11,'({3x,1pe9.2,30el10.2}"') (bb2(m).m=1,nauto(j)+1)

G0 write (14,'{i2,1x,1pe9.2,3010.2)"') i,

& {(bb2{m)/day(i),m=1,nauto(j)+1)
write (14,'{i2,1x,1lpe9.2,30e10.2)'} nouter,

& (bb(m)/day{nouter] ,m=1,nauto(j}+1)

close (11)
write {14,%*)
close (14}
end if
100 continue

E
return
end

c

c...DISCRETE makes additions in fort.7 and mat.inp for discrete feed
subroutine discr

common /mbinp/nmat,mt (49} ,voli (49),pow, qu235, days, nouter, ninner,
& npre,nrst, frimp,nauto{49),ntot(49) . nkeff, nign (999,49},
& niznr(999,49)
character line*80, fort7*12, f7tmp*15, met*1L
. dimension nisqg{4),gad{4),gmafed{99,49),1i£d6(99,49),a(99)
dimension day{99),nfeed(99,49),9£1(99,.48),9f2(99.49) ,mfeed(939},
&k kfeed (99}, kfeedl!(99,99),kfeed2{99,99),ifeed (99,99} ncount {99,482},
& nfl{99,49),rf(99,49),pfra(99),nmt (49),ffeed(9%,699)},
& nelem(929,49), tmst {59)
dimension nisoto{99,49,99),nisop(99,49},atomfr{99,49,99),
& iflag(99,49),imfeed(99,99), fmfeed{99,9%) ,mnfeed(99), gfeed(52,493)

c... Determine if feed file exists

open (17,file='./tmpfile/params2', status='cld")
read (17, '(i4})*) nfd
cloge (17}
if {nfd.eg.l) then
open (11,file='fead’,status='01d")
read {(11,*)
read (11,%*)

168

do 10 i=l,nouter
do 10 Jj=1,nmat
it {(j.eqg.l) then
read (11,%*) tmst(i),dav{i),
& pfra(i) , nmt {1}, nfeed{i,1},gf1(i,1},gf2{i,1),nf1{i, 1), rE{(i, 1)
elseif (3.ge.2) then
read (11,*) nmt{j),
& nfeed(i,3).gf1(i,3),9f2(3,3) . . nf2{i,j),cE£{di,3])
endif
10 continue
read (11, "(i4)}') nfs
do 12 n=1,nfs
read {11,'(id)"') mfeed(n)
do 12 m=1,mfeed{n}
iz read (11, (i5,£9.7)'} ifeedin,m}, ffeed{n,m}
read (11, {id)') nrs
do 15 n=1,nrs
read (11,'(i4d)'} kfeed(n)
do 15 k=1, kfead(n)

15 read (11,’'(i4,i4)') kfeedl (n,k),kfeed2{n,k}
endif
C
¢...Rewrite fort.7
fod
do 100 j=1,nmat
i = nrst
n = nfeed (i, i}
if {j.1t.10) then
fort7 = 'fort_'//char{§+48)//'.7"
E7emp = 'fort '//char{j+48)//'.7.tmp’
elseif (j.ge.10) then
il = 3/10
32 = 3 - ji*10
fort7 = 'fort_'//char(jl+48})//char{j2+48)//'.7"
f7tmp = ‘'fort_*//char(§1+48)//char{32+48)//' .7 . tmp"
endif
openn (12, file=fort7?, status="'unknown')
if (n.eqg.0}) then
goto 90
endif
open (13, file="fort.tmp',status="unknowrn’)
c
¢... Check to see if any feed materials are natural elements
c

munfeed(n) = mfeed(n)

do 25 m=1,mfeed(n)

iflag{m,j} = 0

nai = ifeed(n,m}-1000* (ifeed{n,m}/1000)

if (nai.eq.0.and.ifeed{n,m).gt.0} then
open (1l6,file="natelem', status="unknown')
read (16,*) '

169

read (16&6,*)
13 read (16,*) nelem{m,j)
read {16,*) nisop(m,J)
do 20 mm=1,nisop(m,j}
20 read {16, '{i5,3x,f10.5)"',err=20,end=23}
& ‘nisoto(m, j,mm}, atomfr{m, j, mm)
if (nelem(m,j).eqg.ifeed{n,m)/1000) then
iflagi{m,j} = 1
imfeed(n,m} = niscto{m,j, 1)
fmfeed(n,m) = ffeed{n.,m)}*atomfr{m,j, 1}
do 22 mn=1, (nisop{m,ij)-1)
imfeed(n,mmfeed{n)+mn} = niscto(m, i, l+mn)
22 fmfeed(n, mmfeed(n)+mn} = ffeed(n,m)*atomfr(m,j,l+mn)
mmfeed(n) = mmfeed(n) + {nisop(m,j)-1)
goto 23
elge
goto 18
endif
23 close (16)
else
imfeed(n,m} ifeed(n,m)
fmfeed{n,m} = ffeed(n,m)
endif
25 continue

1

S
c...Convert grams of feed to gram-atoms of feed
&
do 28 m=1,mmfeed{n)
ifdé{n.m}) = imfeed{n,m)*10
if (ifdé(n,m) .eq.952420) ifdé{n,m)=ifd6(n,m)+1
gfeed(m, j)=fmfeed{n,m) *gf2 (i, j} *day (i)
ali = float{imfeed{n,m))-float{l1000* {imfeed(n,m)/1000))
gmafed(m,j) = afeed(m,3)/ai
ncount (m, j) = 0
28 continue
30 read (12,901, err=45,end=50) kxs, (nisqg(k),gad(k},k=1,4)
901 format {i4,4{1x,1i6,2x,1peld.4))
if (kxs.eq.0) goto 45
do 40 k=1,4
do A0 m=1,mfeed(n)
if {nisgik).eq.ifdé6{n,m).and.kxs.le.2}) then
if (ncount(m,j).eq.0) gadik) = gadi{k) + gmafed(m, 3)
ncount (m,j) = 1
endif
40 continue
write {13,901) kxs, (nisg{k}.,gad{k).k=1, 4)
goto 30
45 backspace (12}
read {12, *'{a80)') line
write (13, '{a80)'} line
goto 30

170

50 close (12}
close (13)
B
¢...Write non-actinides to fort.7 that are part of discrete feed but did
not :
C... previously exist
L
open (13,file='fort.tmp’',status="unknown"')
cpen (14, file=f7tmp, status="unknown'}
kxseold = 1
nadd = ¢
63 read (13,'(id)',err=80,end=99) kxa
if (kxs.eq.kxsold} then
backspace {(13)
read (13, '{a80}') line
write (14,'{aB80)'}) line
kxsold = kxs
elze
kxsold = kxs
if {nadd.eqg.)) then
do 65 k=1,mmfeed{n)
nmin=9999%
ni=0
do 60 m=1,mmfeed{n}
al{m}=float{imfeed(n,m)}-float (1000* {imfeed{n,m) /1000})
if (imfeed(n,m) .1t.83000.and. imfeed(n,m).gt.1000) then
if {aim}.gt.0) then
if {imfeed{n,m}.lt.nmin) then
nmin=imfeed(n,m)
ni=m
end if
endif
end if
60 continue
if (ni.gt.0) then
kxs=1
met="0"
if {ncount(ni,j).eq.0) then
ncount{ni,3} = 1
write {14,912) kxs,ifd6{n,ni),gmafed{ni, j}
endif
imfeed{n,ni)=0
end if '
65 continue
c
C...Wirite actinides to fort.7, sort numerically for xs file read
[
do 75 k=1, mmfeed(n)
nmin=9999%
ni=0
do 70 m=1,mmfeed{n)

171

a{m)=float (imfeed(n. m))-floatc{l1000* {imfeed(n,m) /1000})
if {imfeed{n,m).ge.83000.and.a(m}.gt.0.) then
if (imfeedin,m}.lt.nmin) then
nmin=imfeed{n,m}
ni=m
end if
end if
70 continue
if (ni.gt.0) then
kxs=2
met='0"
if f(ncountini,j).eq.Q) then
ncount {ni,j} = 1
write {(14,912) kxs,ifdé6(n,ni),gmafed(ni, j}
endif
imfeed(n,ni)=0
end if
75 continue
nadd = 1
endif
if {kxsold.eqg.0) gotc 80
backspace(13)
read (13, '{a80)'} line
write {14,'{a80)') line
endif
goto 63
backspace (13}
read (13, {(a80)'} line
write (14,'(aB0)'}) line
goto 63
open (14, file=f7tmp, status="unknown"')
read (12, '(aB0}',end=929) line
write {14,'{aB0)") line
goto 95
99 close (13)
cloze (14}
100 continue
911 format (id,i16,al,lpel2.4,
& 0 B.0000E+00 0 0.0000E+00 0 0.00D00E+00*)
912 format (i4,1x,16,1lpel2.4,
& ! 0 0.0000E+00 0 0.0000E+D0 ¢ 0.0000E+00'}
end

subroutine dremo

common /mbinp/nmat,mt(49),voli(49),pow, qu235,days, nouter, ninner,
& npre,nrst, frimp,nauto(49) ,ntot(49) ,nkeff,nisn{999,49},
& nisnr{999,498)

character line*72,fort7*12, £7tmp*15,nisg2{4)*4

dimension nisqgl{4).gad{4),nisq3 (4}

dimension day(99),nfeed(99,49),gf1(99,49),9£2(99,49) ,mfeed (99},

172

& kfeed(99),kfeedl (99,99}, kfeed2(99,99),ifeed(99,99), tmst (99},
& nfl1(59%,49),rf(99,49) ,pfra(99),nmt (49), ffeed(99,99)

c
C... Determine if feed file exists
c
open (17, file='./tmpfile/params?’, status='old"')
read (17,'{i4)') nfd
close (17)
if {nfd.eq.l) then
cpen {11,file='feed',K status="o0ld"')
read (11,%*)
read (11, *)
do 10 i=1i,nouter
do 10 j=1,nmat
if (j.eg.l) then
read (11,*) tmst(i},day(i},pfra(i),
& nmt (1), nfeed(1,1),gfl{i,1},gf2(i, 1), nfi(i,1},rf(i, 1)
elseif (j.ge.2} then
read (11,%*)
& nmt {(j),nfeed(i,), gfi (i, d),gf2{(i,9).nE2{i,J),rf(i,3)
endif
10 continue
read {11, (id)*") nfs
do 12 n=1,nfs
read (11,'{id)'} mfeedin}
do 12 m=1,mfeed{n}
12 read (11, "(i5,£9.7)"') ifeed{n,m}, ffeed(n,m)
read (11,'{id4)') nr=
do 15 n=1,nrs
read (11, '{id4}') kfeed(n)
do 15 k=1, kfeed{n}
15 read (11,'(id4,id)') kfeedl(n,k},kfeed2(n, k)
endif
c
c...Rewrite fort.7
a!
do 60 i=1,nmat
if (nfl{nrst,j).ge.0} goto 60
if (3.1t.10) then
fort7 = *fort_'//char(J+48)//".7"
t7tmp = ‘fort_r'//char(j+48)//' .7 .tem’'
elseif {(j.ge.l0) then
31 = j/1¢
j2 = § - 41*10
fort7 = ‘faort_'//char (jl+48)//char{j2+48)//'.7"
f7tmp = ‘fort_'//char{jl+48)//char(j2+48)//' .7 .tem"’
endif
open (12, file=fort7,status="'unknown’)
open (13, file=f7tmp,status="unknown')
c
C... Remove elements in removal group from fort.7

173

30 read (12,901, err=45,end=50) kxs, (nisgl(k).nisq2(k},gad(k),k=1,4)
backepace (12)
read {12,903,err=45,end=50) kxs, {(nisqg3{k}),nisg2{k}),gad{k) . k=1,4)
901 format (i4,4(1x,1i2,a4.2x.1pel0.4)}
903 format (i4,4{1x,a2,ad,2x,lpell.4}}
nrem = abs{nfli{nrst, i)}
do 40 k=1,4
do 40 n=1,kfeed(nrem)
do 40 m=abs({kfeedl (nrem,n)), abs (kfeed (nrem,n)}
if (nisgli{k}.eq.m} then
if {(kfeedl(nrem,n).lt.0.and.kxs.eq.3)

& .or _kfeedl {nrem,n}.ge.0) then
gad(k) = gad(k) - gadik})*rfinrst,j}
endif
endif

40 continue
if {kxs.eq.0) then
write (13,%02) kxs, (nisqgZ(k),gad{k), k=1,4)
902 format {(i4,4(1x,2x,a4,2x,1pell_4)}
else
write (13,903) kxs, {nisg3(k).nisqg2(k},gad(k),h k=1,4}
endif
goto 30
45 backspace (12)
read (12,'(a72)') line
write (13, '(a72)') line
goto 30
50 close (12)
close (13)
60 continue
end

c
c...REGION makes indicates what materials are substituted in various
¢... regions
c
subroutine region
L
common /Smbinp/nmat,mt {(4%) ,voli {49) ,pow, qu235%, days, nouter, ninner,
& npre,nrst, frimp,nauto{49),ntot (49}, nkeff, nisn{v99,49),
& nisnr{%999,49)
character fname*25
dimension day(99),pfra(9292),nmt (49} ,nfeed(99,49),g£1(99,49},
& gf2(9%,49),ntl(99,49),rf{99,49), tmstc {39}
c
c...Firgt discover if feed imnput file exists
e

open {17,file='./tmpfile/params2',status="0ld"')
read {17,'{id}'}) nfd
if (nfd.eg.l}) then

174

¢...First read the two lines of headings

open (11,file='feed', status='unknown’}
read (11,7*}
read (11,%*)
do 8 i=1,nrst
do 8 j=1,nmat
if {(j.eq.l) then
read {11,*) tmst{i),dayl(i),
& pfra(i),nmt(1),nfeed(i,l},gf1(i,1),gf2(i,1),nfl(i,1}),rf(i, 1}
elseif (j.ge.2} then
read (11,*) nmtij),
& nfeed(i,j),gfl(i,d),gf2(i, 3} , nfl{i,.3),cE(i,.3)
endif
8 continue
close {11)
else
do 10 j=1,nmat
10 mmti{3y =0
endif

do 20 +4=1,nmat
if (3.1t.10) then
fname = './tmpfilefparam3_'//char{j+48})
elseif (j.ge.10) then
jl = 3/10
42 = 4 - §1*10
fname = './tmpfile/param3_'//char{jl+48)//char{j2+48)
endif
open (12, file=fname, status="'unknown"')
write (12,905) nmt(3)
$05 format {(i4d4,' nval’}
20 continue
end
c
C23456789%123456789*123456789*123456789*123456789%123456789*%123456789*12
C
c...WMBINP rewrites mb.inp
o
subroutine wmbinp
@
common /mbinp/nmat,mt(49}),veli(49),pow, qu235, days, nouter, ninner,
& mpre,nrst, frimp,nauto{49),ntot{49),nkeff nisn{999,49),
& nisnr{999,49}
common /mbinp2/niso(999,49) ,nisor(999,49),title,0lib, locale, posit
character niso*1(,nisor*6,title*72,01ib*2, locale*72,posit*1

. -Rewrite mb.inp

9]

open (11,file='mb.inp’,status="unknown’)

175

write (11,'(a72)') title
write (i1,*) nmat
do 20 j=1,nmat

20 write {11,*) mt{j}
do 30 j=1,nmat

30 write {11,*) wvoli{j}
write {11,*) pow
write (11,*) gu23s
write (11,*} days
write {11,*)} nouter
write {(11,*) ninner
write (11,*) npre
write {11,*) nrst
write (11, "{a2)') olib
write (11, :{a72}') locale
write (11,*) Efrimp
write (11,*) nkeff
do 60 j=1,nmat
write (11,%) nauto{j}
write (11,*} ntot(j)
do 60 i=1,ntot(j)

60 write (11, (al10)') niso(i, 3}

close (11}
lod

return

end
Cc23456789%1234567809%12345678B9%123456789%123456789*%123456789*%123456789*12
c

¢ This subroutine creates a file containig isotopic breakdowns
¢ for natural elements :
c

subroutine natele
dimension nelem{40),nisot {(40,40),atomfr{40,40) ,nisopr{40)

Isctopic compositions of natural elements
Ref: HNuclides and Isotopes, Fifteenth Editien

0 anaq

open (16,file='natelem’', status="unknown')
data (nelem(i}.i=1,33} /
6, 12, 14, 16, 17, 18, 18, 20, 22,
23, 24, 25, 26, 28, 29, 30, 31, 40,
42, 47, 48, 49, 50, 51, b4, 63, 64,
T2, T4, 77, 78, 806G, 82 /
write (16,%*)
write (16,*}
do 80 i=1,33
nz = nelem{i)
if {nz.eg.6} then ! Carbon
nisoe = 2 ! Number of isotopes in natural carbon
data {nisot{l,n),atomfr{i,n},n=1,2} /
& 6012, 0.98%200,

oo op

176

& 6013, 0.01100 /

endi f
if {nz.eq.l2) then ! Magnesium
nisoc = 3 ! Number of isotopes

data (nisot(2,n),atomfr(2.,n),n=1,3) /
& 12024, 0.78990,
& 12025, 0.10000,
& 12026, 0.11010 /

endif
if (nz.eq.14) then I gilicon
niso = 3 ! Number of isotopes

data (nisot(3,n),atomfr{3,n},n=1,3) /
& 14028, 0.92230,
& 14029, 0.04670,
& 14030, 0.03100 /

endif
if {nz.eg.1l6) then 1 Sulfur
niso = 4 ' I Number of isotopes

data (nisot{4,n),atomfr{4,n),n=1,4) /

& 16032, 0.95020,

& 16033, 0.00780,

& 16034, 0.04210,

& 16036, 0.00020 /

endif

if (nz.eq.l17) then ! Chleorine
nisoc = 2 I Mumber of isotopes
data (niseot(5,n),atomfr(5,n),n=1,2) /

& 17035, Q.75770,

& 17037, 0.24230 /

endif

if (nz.eq.18) then I Argomn
niso = 3 ' Number of isotopes
data {nisoct(6,n},atomfr{6,.n),n=1,3} /

& 18036, 0.00337,

& 18038, 0.00063,
& 18040, 0.9%600 /

endif _
if {(nz.eq.19) then ! Potassium
niso = 3 ! HNumber of isotopes
data {(nisot{7,n),atomfr{7,n},n=1,3) /
& 19039, 0.93258,

& 19040, 0.00012,
& 13041, 0.06730 /

endif
if (nz.eqg.20) then ! Caleium
niso = 6 ! Number of isotopes

data (nisot(8,n}),atomfr(8,n).n=1,6) /
20040, 0.96%41,
20042, C.00647,
20043, 0.00135,
20044, 0.02086,

R R R R

177

in

in

in

in

in

in

natural

natural

natural

natural

natural

natural

natural

carbon

carbon

carbon

carbon

carbon

carbon

carbon

& 20046, 0.00004,
& 20048, 0.00187 /

endif
if (nz.eqg.22} then I Titanium
riiso = 5 ! Number of isotopes in natural carbon
data {nisot{(9,n),atomfr(9,n),n=1,5) /
& 220486, 0.08250,
& 22047, 0.074440,
& 22048, 0.73720,
& 22049, 0.05410,
& 22050, 0.05180 /
endif
if {nz.eg.23} then ' Vanadium
nigo = 2 ! Number of isotopes in natural carbon
data (nisot{l0,n},atomfr{l0,n},n=1,2) /
& 23050, 0.00250,
& 23051, 0.99750 /
endif
if {nz.eqg.24) then ! Chromium
niso = 4 ! Number of isotopes in natural carbon
data {(nisct(1l,.n}.atomfr(ll,n),n=1,4} /
& 24050, 0.04350,
& 24052, .83790,
& 24053, 0.09500,
& 24054, 0.02360 /
endif
if {nz.eg.25}) then I Manganese
niso = 1 ! Number of isotopes in natural carbon
data {nisoti{l2.n),atemfr{li2,n),n=31,1) /
& 25055, 0.10000 /
endif
if (nz.eq.26) then 1 Iron
niso = 4 ! Number of isotopes in natural carbon
data (nisct(l3,n),atomfr{13,n),.n=1,4) /
& 26054, 0.058540,
& 26056, 0.91750,
& 26057, 0.02120,
& 26058, 0.00280 /
endif
if (nz.eq.28) then 1 Nickel
niso = 5 ! Number of isotopes in natural carbon
data (nisct(l4,n),atomfr{l4,n},n=1,5) /
& 28058, 0.68080,
& 28060, 0.26220,
& 28061, 0.01140,
& 28062, 0.036340,
& 28064, 0.00930 /
endif
if (nz.eg.29) then ! Copper
niso = 2 ! Number of isotopes in natural carbon

data (nisot({l5.,n),atomfr{l5,n},n=1,2) /

178

& 28063, 0.691740,
& 29065, 0.30830 /
endif

if (nz.eq.30) then

179

Zinc
of isotopes in natural carbon

Gallium
of isotopes in natural carbon

Zirconium
of isotopes in natural carbon

Molyvbdenum
of isotopes in natural carbon

Silver
of isotopes in natural carbon

Cadmium
of isotopes in natural carbon

nisoc = 4 ! Number
data {(nisot{lé6.n),atomfr(lé6,n}, n=1,4) /
& agoe4, 0.48600,
& 30066, 0.27900,
& 30067, 0.04100,
& 30068, 0.18840 /
endif
if (nz.eqg.31l} then !
nisc = 2 ! Number
data (nisct{l7.n}).atomfr{l7,n),.n=1,2) /
& 31069, 0.60110,
& 31071, 0.39890 !
endif
if (nz.eq.40} then !
niso = 5 ! Number
. data {nisot(l8,n),atomfr(18,n) ,n=1,5%) 7/
& 40080, 0.51450,
& 40091, 0.11220,
& 40092, 0.17150,
& 40094, 0.17380,
& AQD96, 0.02800 /
endif
if {(nz.eq.42) then !
niso = 7 ! Number
data (nisot(l9,n),atomfr{19,n},n=1,7} /
& 42092, 0.14840,
& 42094, 0.09250,
& 42095, 0.15920,
& 420%¢, 0.16680,
& 420587, 0.08550,
& 42098, 0.24130,
& 42100, 0.09630 /
endif
if (nz.eqg.47} then g
nisc = 2 ! Number
data (nisot(20,n),atomfr{20,n),n=1,2)
& 47107, 0.51839,
& 47109, 0.48161 /
endif
if {(nz.eq.48} then t
niso = 8 ! Number
data {(nisot{21,n),atomfr(21,n),n=1,8) /
& 48106, 0.01250,
& 48108, 0.00890,
& 48110, G.12490,
& 48111, 0.12800,
& 48112, 0.24130,

& 48113, 0.12220,
& 48114, 0.28730,
& 48116, 0.074890
endif
if {nz.eq.49%9) then 1 Indium
niso = 2 ! Number of isctopes in natural carbon
data (nisot(22,n),atomfr(22,n),n=1,2) /
& 49113, 0.042%0,
& 49115, Q0.95710 /
endif
if {(nz.eq.50} then P Tin
niso = 10 ! Number of isotopes in natural
carbon
data (nisot(23.n),atomfr(23,n),n=1,10} /
50il1lz, 0.00970,
50114, .00650,
50115, .00340,
50116, .14540,
50117, 07680,
50118, .24220,
50119, .08530,
50120, .32580,
50122, .04630,
50124, .05780
endif
if (nz.eqg.51) then ' Antimorny
nise = 2 ! Number of isotopes in natural carbon
data (nisot(24,n),atomfr{24,n),n=1,2} /
& 51121, 0.57300,
& 51123, 0.42700 /
endif
if {nz.eg.54} then ! Xenon
niso = 9 I Number of izotopes in natural carbon
data {nisot(25,n).,atomfr{25,n),n=1,9) /
h4124, 06.00100,
54126, .00090,
54128, 01810,
54129, . 26400,
54130, .04100,
54131, .21200,
54132, L2600,
54134, .10400,
54136, .08900
endif
if {nz.eg.63} then ! Europium
nisc = 2 ! Number of isotopes in natural carbon
data {(nisot(26,n),atomfr{(26,n},n=1,2) /
& 63151, 0.47800,
& 63153, 0.52200 /
endif
if (nz.eqg.64) then ! Gadolinium

R R R R R
QOO0 O0O0 0000

oL L L Cl L -
[l =N ol v Nao o]

nigso = 7 ! Number of isotopes in natural carbon
data {(nisot(27,n),atomfr{27,n},n=1,7) /
& 64152, 0.00200,
& 64154, 0.02180,
& 64155, 0.14800,
& 64156, 0.20470,
& 64157, 0.15650,
& 64158, (.24840,
& 64160, 0.21860 /
endif
if (nz.eq.72} then ! Hafnium
niso = 6 1 Number of isctopes in natural carbon
data (niscot(28,n},atomfr(28,n),n=1,6} /
& 72174, 0.00162,
& 72176, 0.05206,
& 72177, 0.18606,
& 72178, 0.27287,
& 72179, 0.136289,
& 72180, 0.35100 /
endif

if {nz.eq.74}) then

Tungsten

nigso = 5 I Number of isocotopes in natural carbon
data (nisot(29,n),atomfr{2%,n),n=1,5) / '

& 74180, 0.00120,

& 74182, 0.26498,

& 74183, 0.14314,

& 74184, 0.30642,

& 74186, 0.28426 !

endif

if (nz.eqg.77) then

Iridium

niso = 2 I Number of igotopes in natural carbon
data (nisot(BO,n],atomfr(BO,n},nzl,Z) /

& 77191, 0.37300,

& 71193, 0.62700 /

endif

if {nz.eq.78) then

1

Platinum

nisec = 6 ! Number of isotopes in natural carbon
data (nisot{31,n}),atomfr(31,n),n=1,6) /

& 78190, 0.00010,

& 78182, 0.007%0,

& 78164, 0.32900,

& 78155, 0.33800,

& 78186, 0.25300,

& 78198, 0.07200 !

endif

if (nz.eg.80) then

!

Mercury

nisec = 7 ! Number of isotopes in natural
carbon
data (nisot{32,n),atomfr{32,n),n=1,7} /
& 80196, 6.00150,
& 80198, 0.099740,

181

& 80199, 0.16870,
& B200, 0.23100,
& 80201, 0.13180,
& 80202, 0.25860,
& 80204, 0.06870 /
endif
if (nz.eg.82) then ! Lead
niso = 4 ! Number of isotgopes in matural carbon

data (nisot{33,n},atomfr{33,n),.n=1,4) /
& 82204, G.01400,
& 82206, 0.24100,
& 82207, 0.22100,
& 82208, 0.52400 {

endif
&
nisop(i) = niso
write (16,*) nelem{i}
write {(16,*) nisopi{i}
do 60 n=l,nisop{i)
60 write (16, (i5,3x,£10.5)"}
& nisot{i,n),atomfri{i,n)
20 continue
close (16)
c
return
end

182

APPENDIX C. SAMPLE MCNP INPUT FILE

MCNP Input File for Test Case #2

C Cell Cards

C Irradiation of a Single Pin

C Fuel Pin

1 1 -10.045 -1 -2 3 u=2 imp:n=1 %fuel
8 8 -0.781le-3 i -4 -2 3 u=2 imp:n=1 Sgap
6 6 -6.44 4 -6 -2 3 u=2 imp:n=1 Sclad
7 7 =0.7569 6 u=2 imp:n=1 Swat
C Pin Cell

20 0 -9 10 -11 12 -7 & £ill=2 imp:n=1

9% ¢ #20 imp:n=0

C Fuel Rod

1 cz 0.47815

C Axial Distribution

2 pz 347 .4

3 pz 0.0

C Gap

4 ¢z 0.493

C Fuel Cladding

6 cz 0.559

C Unit Cell (Pitch)

7 pz 347.3

8 pz 0.1

*§ px 0.7793
*10 px =0.7793
*11 py 0.7793
*12 py -0.7793

C Control Cards

keode 1000 1.0 -15 115

ksrc¢ 0 0 173.6

tmp 7.25e-8 6.5=-8 5.34e-B 4.81le-8 &.0e-8 &.0e-8

C Material Cards

C Fuel

mi 92234.88c 6.151658e~-6 92235.88c 6.89220e-4 92236.8Bc 3.16265e-6
92238.88c 2.17104e-2

6000.88c 9.13357e-6 7014.88c 1.04072e-5 8016.88c
4.48178e-2
C Cladding :
mé 26000.85¢ -0.005 40000.65c -0.9791 50000 -0.0159
C Coolant

m7 1001 5.06153e-2 8016.85¢ 2.53076e-2 -
5010.85¢c 2.75612e-6 5011.85¢c 1.11890e-5

mt7 lwcr.04t

C Gap

mE 2004.85¢c -1.0

APPENDIX D. SAMPLE MONTEBURNS INPUT FILE

Monteburns Input File for Test Case #2

2

1

=7
249.37
502.44
0.001
-200.
a.

8

40

1

0

22

8

|
1
1
1
|
1

1
]
1
I

1
1

Number of MCNP materials

MCNP Material #1 {must be less than 100}

MCNP Material #2

Material volume #1

Material volume #2

Total Power of System {in MWL)

Recov. energy/fission {MeV); 0. uses default value
Total number of days burned (used if no feed)
Number of outer burn steps

Number of internal burn steps (multiple of 10)
Number of predictor steps (+1 on first step)
Step number to restart after (0=beginning)
Nunber of origen? library

/export/iol/dip/origen/libraries ! location of ORIGEN2 library

1.0

0

28
92234,
92235
92236.
92238,
93237.
94238,
94239.
94240,
94241 .
94242
95241.
95243.
42095,
43099,
44101
45103.
47109 .
55133,
55135.
60143
60145,
©2147
62149
62150
62151.
62152,
63153.
64155
2
5010.8
5011.8

B3c

B8

88c
88¢
88c
BRc
88c
28c
88c

.B8¢

88¢
B8c
88¢
88c

.88c

88c
88¢c
88c
88c

.B8¢

88c

.88c
.88¢c

88c
88c¢c
8Bc
88c

.B8c

e
5S¢

t
I
1

Importance Fraction
Intermediate keaff calc. 0) No 1) Yes
Automatic Isotopes for Region 1

! Automatic Isotopes for Region 2

APPENDIX E. SAMPLE FEED INPUT FILE

Stap Time PowFr.mat# Feed Beg.Rate End Rem# Fract.Rem.

int real real int int real real int real
1 306.0 38.066 1 0 0.0 0.0 0 0.000
2 g 0.0 0.0 0 0.000
2 71.06 0.000 1 0 0.0 0.0 0 0.000 !
2 Q 0.0 0.0 -1 1.000
3 381.7 42.9015 1 0 0.0 0.0 0 0.000 !
p 1 -2.0 4.684=-4 0 0.000
4 83.1 0.000 1 0] 0.0 0.0 0 0.000 1
2 0 0.0 0.0 -1 1.000
5 466.0 37.624 1 0 0.0 0.0 0 G£.000 !
2 1 -2.0 4.118e-4 ¢ 0.000
6 85.0 0.000 1 0 0.0 0.0 0 06.000 ¢
2 0 0.0 0.0 -1 1.000
7 461.1 32.171 1 0 0.0 0.0 0 0.000 !
2 1 -2.0 4.066e-4 ¢ 0.000
8 1874.0 0.000 1 0 0.0 0.0 o 0.000 !
2 ¢ 0.0 0. 0 0.000
1 ! # of feed specs
2 ! # isos in Feed #1
5010 .20 i B-10
5011 .80 ' B-11
1 ! # of removal groups
1 ' # of ranges in removal group
5 5 ' lst range for Feed #1 (B)

185

REFERENCES

1. LF. BRIESMEISTER, “MCNP™ . A General Monte Carlo N-Particle Transport
Code,” LA-12625-M, Version 4B, Los Alamos National Laboratory (March 1997).

2. A. G. CROFF, “A User’s Manual for ORIGEN2 Computer Code,” ORNL/TM-7175,
Oak Ridge National Laboratory (July 1980).

3. F. VENNERIL N. LI, M. A. WILLIAMSON, M. G. HOUTS, and G. P. LAWRENCE,
“Disposition of Nuclear Waste Using Subcntical Accelerator-Driven Systems:
Technology Choices and One Implementation Scenario,” LA-UR-98-985, Los Alamos
National Laboratory (March 1998).

4. 1. J. DUDERSTADT and L. J. HAMILTON, Nuclear Reactor Analysis, pp. 76, 338,
634-635, John Wiley & Sons, New York (1976).

5. C. D. HARMON 1II, R. D. BUSCH, J.F. BRIESMEISTER, and R. A. FORSTER,
“Criticality Calculations with MCNP™: A Primer,” LA-12827-M, Los Alamos National
Laboratory (1994).

6. O. W. HERMANN and R. M. WESTFALL, “ORIGEN-S: Scale System Module to
Calculate Fuel Depletion, Actinide Transmutation, Fission Product Buildup and Decay,
and Associated Radiation Source Terms,” Oak Ridge National Laboratory, NUREG/CR-
0200, Rev. 5, Vol. 2, Sect. F7 (September 1995).

7. M. BENEDICT, T. H. PIGFORD, and H. W. LEVI, Nuclear Chemical Engineering,
2nd ed., pp. 76-78, 135-142, McGraw-Hill Inc., New York (1981).

186

8. C.F. GERALD, and P. O. WHEATL_EY, Applied Numerical Analysis, 5th ed.,
Addison-Wesley Publishing Co., Reading, Massachusetts (1994).

9. R. L. MOORE, B. G. SCHNITZLER, C. A. WEMPLE, R. S. BABCOCK, and D. E.
WESSOL, “MOCUP: MCNP/ORIGEN Coupling Utility Programs,” Idaho National
Engineering and Environmental Laboratory, INEL-95/0523 RSICC Code PSR-365.

10. O. W, HERMANN, “COUPLE: Scale System Module to Process Problem-
Dependent Cross Sections and Neutron Spectral Data for ORIGEN-S Analyses,” QOak
Ridge National Laboratory, NUREG/CR-0200, Rev. 5, Vol. 2, Sect. F6 {September 1995).

11. D. BOWEN and R. D. BUSCH, “Using ORIGEN and MCNP to Calculate Reactor
Criticals and Burnup Effects,” Trans. Am. Nucl. Soc., 77, 223 (1997).

12. S. L. EATON, C. A. BEARD, K. B. RAMSEY, J. J. BUKSA, and K. CHIDESTER,
“Development of Noﬁfertile and Evolutionary Mixed Oxide Nuclear Fuels for Use in
Existing Water Reactors,” LA-UR-97-1359, Los Alamos National Laborafory {April
1997). |

13. R. D. BUSCH, “A Primer for Criticality Calculations with DANTSYS,” LA-13265,
Los Alamos National Laboratory (1997).

14. R. E. MACFARLANE and D. W. MUIR, “The NJOY Nuclear Data Processing
System, Version 91,” LA-12740-M, Los Alamos National Laboratory (Oct 1994).

187

15. D. M. ETTER, FORTRAN77 With Numerical Methods for Engineers and Scientisis,
The Benjamin/Cummings Publishing Company, Inc., Redwood City, California (1992).

16. 1. R. LAMARSH, Introduction to Nuclear Engineering, 2nd ed., pp. 65, 77,
Addison-Wesley Publishing Co., Reading, Massachusetts (1983).

17. W. B. WILSON, T. R. ENGLAND, D. C. GEORGE, D. W. MUIR, and P. G.
YOUNQG, “Recent Development of the CINDER'90 Transmutation Code and Data
Library for Actinide Transmutation Studies,” Proc. GLOBAL'95 Int. Conf. on Evaluation
of Emerging Nuclear Fuel Cycle Systems, Versailles, France, September 11-14, 1995, p.
848 (19953).

18. D. I. POSTON, and H. R. TRELLUE, “User’s Manual, Version 1.00, for
Monteburns, Version 3.01,”" LA-UR-98-2718, Los Alamos National Laboratory (June
1998).

19. 0. W. HERMANN, S. M. BOWMAN, M. C. BRADY, and C. V. PARKS,
“Validation of the Scale System for PWR Spent Fuel Isotopic Composition Analyses,”
ORNL/TM-12667, Oak Ridge National Laboratory (March 1995).

20. M. D. DEHART, M. C. BRADY, and C. V. PARKS, “OECD/NEA Bumup Credit
Calculational Criticality Benchmark Phase I-B Results,” NEA/NSC/DOC(96)-06 and

ORNL-6901, Oak Ridge National Laboratory (June 1996).

21. Chart of the Nuclides, 15th ed., General Electric Company, San Jose, California
(1996).

188

22. J. E. TURNER, Afoms, Radiation, and Radiation Protection, pp. 60, 64, McGraw-
Hill, Inc., New York (1992).

23. H. GRUPPELAAR, H. TH. KILIPPEL, J. L. KLOOSTERMAN, J. E. HOOGEN-
BOOM, P. F. A. DE LEEGE, F. C. M. VERHAGEN, and J. C. BRUGGINK,
“Evaluation of PWR and BWR Assembly Benchmark Calculations,” ECN-C--93-088,
Netherlands Energy Research Foundation and Energieonderzoek Centrum Nederland

{November 1993).

24. B. D. MURPHY, “Characteristics of Spent Fuel from Plutonium Disposition
Reactors, Vol. 1: The Combustion Engineering System 80+ Pressurized- Water-Reactor

Design,” ORNL/TM-13170/V i, Oak Ridge National Laboratory (June 1996).

25. H. M. FISHER, “A Nuclear Cross Section Data Handbook,” LA-11711-M, Los

Alamos National Laboratory {December 1989).

26. 1. D. COURT, J.S. HENDRICKS, and S.C. FRANKLE, “MCNP™ ENDF/B-VI
Validation: Infinite Media Comparisons of ENDF/B-VI and ENDF/B-V.” LA-12887, Los

Alamos National Laboratory (December 1994).

27. Management and Disposition of Excess Weapons Plutonium, Committee on
International Security and Arms Control, p. 1, National Academy of Sciences, National

Academy Press, Washington D.C. (1994)}.

189

28. B. D. MURPHY, “Characteristics of Spent Fuel from Plutonium Disposition

Reactors, Vol. 3: A Westinghouse Pressunzed-Water Reactor Design,” ORNL/TM-

13170/V3, Oak Ridge National Laboratory (July 1997).

29. M. M. EL-WAKIL, Powerplant Technology, p. 448, McGraw-Hill, Inc., New York
(1984).

	LIST OF TABLES
	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 MCNP
	2.2 ORIGEN2
	2.3 PREVIOUS WORK
	2.3.1 Linkage Codes
	Discrete Ordinate Burnup Codes

	DESCRIPTION OF CODE/THEORY
	DESCRIPTION OF MONTEBURNS
	3.2 CALCULATIONS

	3.2.1 Recoverable Energy per Fission
	3.2.2 Flux TalIy Normalization
	3.2.3 Reactor Physics Constants
	3.2.4 Effective Multiplication Factor
	3.2.5 Power
	3.2.6 Importance Fraction
	3.3 USER INPUT
	MCNP Input File
	Monteburns Input File
	Feed Input File
	Identijer Input File

	3.4 OUTPUT

	4.0 BENCHMARKING/STATISTICS
	4.1 BENCHMARKING
	4.1.1 Isotopic Concentration
	4 1 1 I Description
	4.1.1.2 Results
	4.1.1.3 Resonance Self-shielding
	4.1.1.4 Cross Sections
	4.1.1.5 Fission Products
	4.1.2 Pin-Cell Burnup
	4.1.2.1 Description
	4.1 2.2 Results
	4.1.2.3 Differences in Energy Spectra
	4.1.2.4 Recoverable Energy Per Fission
	4.1.2.5 Fission Yields
	4.1.2.6 Statistical Variances
	4.1.2.7 Additional Burnup

	4.1.3 Assembly Burnup
	4.1.3.1 Description
	4.1.3.2 Results
	4.1.3.3 Actinides
	4.1.3.4 Fission Products
	4.1.3.5 Comparison to SCALE
	4.1.4 Power Distribution
	4.1.4.1 Description
	4.1.4.2 Results
	4.1.5 Activity Calculation
	4.1.5.1 Description

	4.1 S.2 Results
	4.1.5.3 Actinides
	4.1.5.4 Fission Products

	4.2 STATISTICAL ANALYSES
	4.2.1 Input Parameters
	4.2.1.1 Number of Outer and Internal Bum Steps
	4.2.1.2 Number of Predictor Steps
	4.2.1.3 Importance Fraction
	4.2.1.4 Recoverable Energy Per Fission
	4.2.2 System-Dependent Changes

	4.2.2.1 Modeling a System
	4.2.2.2 Temperature- and Material-Dependent Parameters
	4.2.2.3 Axial Boundary Conditions

	APPLICATIONS OF MONTEBURNS
	ACCELERATOR TRANSMUTATION OF WASTE
	5.2 PLUTONIUM DESTRUCTION

	5.2.1 Fuel Form
	5.2.2 Isotopic Composition
	5.2.3 Energy Spectrum
	LIMITATIONS OF AND FUTURE WORK FOR MONTEBURNS
	7.0 CONCLUSIONS

	APPENDIX A LISTING OF C-SHELL FILE MONTEBURNS
	APPENDIX B LISTING OF FORTRAN77 PROGRAM M0NTEB.F
	APPENDIX C SAMPLE MCNP INPUT FILE
	APPENDIX D SAMPLE MONTEBURNS INPUT FILE
	APPENDIX E SAMPLE FEED INPUT FILE
	REFERENCES
	INTERACTION OF MONTEBURNS WITH MCNP AND ORIGEN2
	MONTEBURNS FLOW CHART
	PREDICTED BY MONTEBURNS

	FIGURE 3B PUBLISHED[71 ISOTOPIC DISTRIBUTION AS A FUNCTION OF BURNUP
	DIFFERENCES IN HIGHER ISOTOPES OF PLUTONIUM
	LAYOUT OF ASSEMBLY FOR TEST CASE #3
	3x3 ASSEMBLY
	SAMPLE OF CORE CONFIGURATION FOR ATW
	PLUTONIUM DESTRUCTION AS A FUNCTION OF BURNUP
	TABLE 1 CONDITIONS OF K
	COMPARISON OF LINKAGE AND/OR BURNUP CODES
	DIVIDED BY THE RECOVERABLE ENERGY PER FISSION FORU-235
	kfONTEBURNS WITH BURNUP TO THERMAL ONES USED IN REF
	MONTEBURNS WITH BURNUP TO THERMAL ONES USED IN REF

	PARAMETERS FOR TEST CASE #2
	RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO A
	RESULTS AND A COMPARISON OF EXPERIMENTAL DATA FOR SCENARIO B
	TABLE 7A RESULTS FOR BURNUPS OF 16.00 AND 23.84 GWD/MTHM (G/G u02)
	TABLE 7B RESULTS FOR BURNUPS OF 28.64 AND 3 1.86 GWD/MTHM (G/G u02)
	PIN POWER DISTRIBUTION
	RESULTS FROM ACTIVITY CALCULATION
	STEPS

	COMPARISON OF RESULTS AS A FUNCTION OF NUMBER OF PREDICTOR STEPS
	TABLE 1oF RESULTS AS A FUNCTION OF RECOVERABLE ENERGY PER FISSION (G/G u02)
	A - MG/G UOz)

	TABLE 12 EFFECT OF TEMPERATURE ON POWER DISTRIBUTION
	TABLE 13 RESULTS OF CHANGES IN AXIAL PARAMETERS (MG/G U02)
	TABLE 14 FEED MATERIAL FOR ATW (KG)
	TABLE 15 AMOUNT OF MATERIAL PRODUCED(+)/DESTROYED(-) BY ATW (KG)
	FISSION-TO-CAPTURE RATIOS OF ISOTOPES IN EACH SPECTRUM
	APPENDIX A LISTING OF C-SHELL FILE MONTEBURNS
	APPENDIX B LISTING OF FORTRAN77 PROGRAM M0NTEB.F
	APPENDIX C SAMPLE MCNP INPUT FILE
	APPENDIX D SAMPLE MONTEBURNS INPUT FILE
	APPENDIX E SAMPLE FEED INPUT FILE

