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CHAPTER 1

Introduction

Possibly  the  simplest  definition  of  a  design  is  as  a  system (Papalambros  and 

Wilde 2000), where a system is composed of multiple interconnected components which 

interact and must function harmoniously. The designer has the ability to prescribe values 

for some of the properties of the system, which in turn affect the behavior of the system. 

In simple cases,  it  may be possible for  a designer to discern the relationships 

between the parameters he or she prescribes and the performance of the system; then the 

designer can make well-informed decisions about the design. However, if the system is 

complex or if the designer utilizes advanced analysis tools, it is not possible to readily 

predict  the  behavior  of  the  design.  Therefore,  it  is  necessary  to  establish  a  design 

methodology so that the design process is approached rationally and effectively.

This dissertation is focused on the design of complex systems, and the dissertation 

presents  two  new  algorithms  in  the  field  of  multidisciplinary  design  optimization, 

including their application in naval architecture. This chapter introduces two concepts in 

design: design optimization and multidisciplinary design optimization (MDO). 

1.1 Design Optimization

Sometimes, a designer may be satisfied with a design that is simply adequate. 
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However, it  is often desirable to improve the design as much as possible. This is not 

simply a desire for technical improvement (seeking the greatest performance), but also a 

matter of practicality (for example, making the design as inexpensive as possible). Then 

design optimization can be defined as  the process of improving a design in a rational, 

systematic way.

In order to improve a design, the designer must answer the very practical question 

of what makes a design “better” or “best,” which may not be an easy question to answer 

(Papalambros and Wilde 2000). The challenges of selecting appropriate metrics for the 

design are  not  discussed here,  and it  is  assumed that  for  any given design problem, 

quantifiable design metrics are readily available. Given a measure of performance metric, 

called the objective function, the goal is to improve the objective function as much as 

possible. Additionally, the problem may be subject to requirements that must be satisfied, 

called constraints. Then the general design optimization problem statement is to improve 

the objective function as much as possible while satisfying the constraints. For example, 

a structural design problem could be to minimize the weight of a beam while maintaining 

a bending stress less than a specified value.

The field of optimization is extensive with a long history in both engineering and 

mathematics. It is not the intention of this dissertation to cover the topic of optimization 

in detail; instead, the goal of this dissertation is to provide an introduction to optimization 

techniques  as  an  essential  component  of  MDO,  before  presenting  the  new  MDO 

algorithms.
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1.2 Multidisciplinary Design Optimization

It is generally not possible to approach the design of a complex system as the 

solution of a single design problem; instead, the complex design problem can be broken 

down into subproblems of manageable size. For engineering design problems, a complex 

system is often divided into disciplines, which are specific areas or subsystems of the 

design, such as structural design or propulsion in ship design. 

One of the earliest reviews on MDO by Sobieszczanski-Sobieski (1989) explains 

that breaking a complex design into disciplines is intuitive; it  is natural to separate a 

difficult task into parts or divide the work amongst teams of specialists.  The traditional 

approach for handling a complex design is to use a sequential process: proceed linearly 

from one analysis to the next, iterating as needed for convergence. In the context of ship 

design, the sequential design process is often referred to as the design spiral (Watson 

1998). The sequential design process is illustrated in Figure 1.1. 

Fig. 1.1. Illustration of the sequential design process.

The simplest approach for including optimization in the design is to add an outer 

optimization loop to the sequential design process. However, this is often inefficient and, 

most  importantly,  does  not  adequately  capture  the  interaction  between  disciplines 

(Sobieszczanski-Sobieski 1989). These deficiencies in the sequential design optimization 

process motivate the development of MDO methods. 
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The  critical  task  of  MDO  methods  is  to  develop  a  way  to  coordinate  the 

interactions between disciplines. The development of different methods for coordinating 

the  disciplinary  interactions  has  led  to  the  development  of  the  wide  array  of  MDO 

algorithms. One example of MDO methods that contrast the sequential design method is 

the popular class of hierarchical MDO methods. In hierarchical MDO methods, different 

disciplines are arranged in a hierarchy as illustrated in Figure 1.2; in this way different 

disciplines communicate indirectly by exchanging information up and down the hierarchy 

(Sobieszczanski-Sobieski 1989). 

Fig. 1.2. Illustration of a hierarchical MDO method. 

In Figure 1.2, the disciplines are labeled  x.y,  where  x is the level and  y is the 

discipline index on level  x. Use of only the first two levels represents a design that is 

simply divided into  p disciplines. Additional levels are useful when analysis calls for 

further breakdown of the design; for example, if Discipline 2.1 is hull form optimization, 

Discipline 3.1 could correspond to the bow area and Discipline 3.2 could correspond to 

the stern area. 

MDO  methods  are  valuable  for  ship  design  because  the  design  of  a  ship  is 
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normally  broken  down  into  disciplines;  for  example,  hull  form,  structural  design, 

propulsion,  or  seakeeping  performance.  Furthermore,  the  interactions  between  the 

different disciplines are complex, particularly when advanced tools are used to evaluate 

the  disciplines,  such  as  computational  fluid  dynamics  for  hull  form design  or  finite 

element analysis for structural design. 

1.3 Dissertation Contributions and Overview

There are two phases to this research which correspond to the development of two 

distinct MDO algorithms. First is the development of a new multilevel MDO algorithm 

which computes target values for the design variables and uses the target values to drive 

the process at the system level (MDO with target values). Second is the development of a 

new  MDO  algorithm  inspired  by  the  principles  of  set  based  deign.  Research  was 

conducted for both algorithms to demonstrate the value of the algorithms in ship design. 

The first contribution of this dissertation is the development of the new multilevel 

MDO  with  target  values  algorithm.  The  new  MDO  algorithm  seeks  to  offer  an 

improvement  in  efficiency  over  other  multilevel  MDO  methods  with  target  values. 

Further, the new MDO algorithm provides the capability to give more influence to one 

discipline  which  is  considered  to  be  most  important;  this  is  useful  in  practical 

applications because one discipline is often more significant (such as cost). 

This dissertation demonstrates that the new multilevel MDO method is capable of 

handling optimization under  uncertainty.  Techniques for  accounting for  uncertainty in 

optimization (in  terms of  both reliability  and robustness)  were implemented with the 

multilevel MDO algorithm. Additionally, this dissertation shows that the new multilevel 
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MDO method is capable of utilizing surrogate models in place of expensive solvers to 

achieve computational savings. 

The final  contribution of  this  dissertation is  the  development  of  a  new MDO 

algorithm inspired by set-based design. This algorithm employs an optimization strategy 

that incorporates the principles of set-based design, in particular, rather than pursuing a 

single point design, the algorithm manages sets (ranges) of the design variables. The size 

of the sets are gradually reduced during the optimization to yield a reduced design space; 

by seeking a reduced design space (instead of a single point) the algorithm can respond 

flexibly to changes encountered as the design evolves and requirements change. 

This dissertation is organized as follows. Chapter 2 provides a literature review 

and  mathematical  background  for  multidisciplinary  design  optimization.  The  new 

multilevel MDO algorithm with target values is presented in Chapter 3. In Chapter 4, 

methods  for  accounting  for  uncertainty  in  optimization  are  implemented  in  the  new 

multilevel MDO algorithm, and a ship design analysis with uncertainty is conducted. In 

Chapter 5, the new multilevel MDO algorithm is used with surrogate models for a ship 

hull form optimization problem and significant computational time savings are achieved. 

The new MDO algorithm inspired by the principles of set-based design is presented in 

Chapter  6.  In  Chapter  7,  the  set-based  MDO  algorithm is  applied  to  a  ship  design 

problem. Chapter 8 includes conclusions and recommendations for future work. 

Because  this  dissertation  includes  elements  from  many  areas  of  design 

optimization,  the  literature  review  for  each  topic  is  included  with  its  corresponding 

chapter. 
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CHAPTER 2

Multidisciplinary Design Optimization Background

In general, optimization is the improvement of a particular performance metric 

under prescribed conditions. Design optimization can be viewed as the application of 

mathematical optimization techniques to solve design problems. 

In real world design problems, there is often more than one area of interest in the 

design; that is, there may be different disciplines that contribute to the design, such as 

structures, economics, or hydrodynamics. The disciplines may be studied with different 

software tools, or the disciplines may be investigated by different teams of engineers. 

Furthermore, different disciplines are often competing in their objectives; for example, a 

design with high structural strength is likely to be more expensive than a design with less 

structural strength. Due to these complexities, the design problem cannot be formulated 

simply as a single optimization statement. 

Therefore, it is necessary to develop methods to address multidisciplinary design 

problems because they occur in real engineering designs. The goal of multidisciplinary 

design optimization (MDO) is  to  develop a  method to  coordinate  different  discipline 

optimizations, and achieve a design that optimizes all disciplines. 

This chapter begins with the introduction of optimization terminology, and a brief 

discussion of  the optimization techniques as they relate  to  MATLAB which is  used for 
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programming  in  this  research.  History  of  the  development  of  the  field  of 

multidisciplinary  design  optimization  is  presented,  and  a  review  of  multidisciplinary 

design optimization techniques from the literature follows. Finally, a brief comparison of 

multidisciplinary design optimization to the related field of multiobjective optimization is 

presented. 

2.1 Optimization Terminology and Techniques

Multidisciplinary design optimization depends on the utilization of optimization 

techniques; familiarity with the fundamentals of optimization is necessary to understand 

multidisciplinary design optimization algorithms. Optimization is a vast field with a long 

history in mathematics and engineering. There are far too many techniques to discuss 

here,  so this  section will  provide a  brief  introduction to the areas of  interest,  and in 

particular, the techniques included in the  MATLAB software which is used in this work. 

Before discussing the mathematical background on optimization, it is important to define 

the consistent terminology and notation used in this research. 

2.1.1 Optimization Terminology and Notation

Design variables. The design variables are the variables to which the designer can 

assign values; the values of the design variables are used to determine the state of the 

design. The design variables are contained in the vector x∈ℜn , that is, the problem has 

n scalar design variables. Each design variable xi has an allowable range between a lower 

bound and an upper bound; the set of allowable values for x is defined as χ. 

Parameters. Parameters  are  variables  that  are  not  under  the  control  of  the 
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designer.  Values  of  parameters  may  be  determined  by  external  factors,  for  example, 

environmental  parameters  and mechanical  properties.  the  vector  of  parameters  for  an 

optimization problem is denoted p.

Objective  function. The  objective  function  is  the  function  of  interest  that  the 

designer seeks to optimize. The objective function is denoted f (x, p) or simply f (x) when 

there are no parameters in the problem or p is constant. 

Constraints. The  optimization  problem may  include  one  or  more  constraints, 

which are functions of the design variables and possibly the parameters. In general, a 

scalar constraint can be written as a function with a value less than or equal to zero: 

g(x)  ≤ 0;  this  is  known  as  negative  null  form (Papalambros  and  Wilde  2000).  The 

negative null form for constraints is used throughout this work. In the case of multiple 

scalar constraints,  g(x) is a vector of length m that contains all of the constraints  gi(x), 

i = 1, …, m. 

Finally, the constrained optimization problem can be formulated as:

min
x∈χ

f (x ) (2.1)

subject to  g(x) ≤ 0

Equation  (2.1)  defines  the  general  constrained  optimization  problem.  This  statement 

requires minimization of the objective function; for cases where the goal is to maximize 

objective function, the following equivalence can be utilized:

max f (x)=−min (− f (x)) (2.2)

Furthermore, the negative null form for the constraints assumes that the problem contains 

only  inequality  constraints,  because  any  equality  constraints  can  be  rewritten  as 
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inequality using slack variables (Papalambros and Wilde 2000). 

The solution to the optimization problem in Equation (2.1) is indicated using the 

superscript “ * ”. The value of the function f at its minimum is f * and the corresponding 

values of the design variables at the minimum is x*. 

The notation for optimization presented in this section is summarized in Table 2.1. 

The notation maintains the convention that scalar values are italicized while vectors and 

matrices are written in boldface. 

 

Table 2.1. Summary of notation for optimization.

 n number of scalar design variables

 xi scalar design variable with index i, i = 1, …, n

x vector of design variables, x∈ℜn

χ set of allowable values for the design variables, x∈χ⊂ℜn

x* vector of design variables at the optimum point

p vector of parameters

m number of constraints

gi (scalar) constraint with index i, i = 1, …, m in negative null form

g vector of constraints, g∈ℜm

 f (scalar) objective function  

f * objective function optimum

2.1.2 Classical Constrained Optimization 

 The classical approach to solving constraint optimization problems analytically is 

the method of Lagrange multipliers. This section summarizes the discussion presented in 

Chapter 2 of Rao (2009) on the method of Lagrange multipliers and solution with the 

Karush-Kuhn-Tucker conditions (Kuhn and Tucker 1951).

The optimization problem with inequality constraints in Equation (2.1) can be 
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rewritten with equality constraints:

min
x∈χ

f (x ) (2.3)

subject to  gj(x) + yj
2 = 0    j = 1, ..., m

where yj are slack variables, held in the vector y. 

Then construct the Lagrange function L, for the optimization problem in Equation 

(2.3):

L(x , y , λ)= f (x)+∑
j=1

m

λ i( g j(x)+ y j

2) (2.4)

The Lagrange function is a function of the variables x, y, and λ, where λ is the vector of 

Lagrange  multipliers.  The  necessary  conditions  for  a  local  minimum  are  found  by 

differentiating the Lagrange function with respect to each variable:

∂ L

∂ x i

= ∂ f

∂ x i

(x )+∑
j=1

m

λi

∂ g j

∂ x i

(x )=0      i = 1, …, n (2.5)

∂ L

∂λ j

=g j (x)+ y j

2=0      j = 1, …, m (2.6)

∂ L

∂ y j

=2 λ j y j=0        j = 1, …, m (2.7)

Equation (2.6) is simply the statement that all  constraints must be satisfied.  Equation 

(2.7) implies that either  λj = 0 or  yj = 0; when  λj = 0, the constraint  gj is inactive, and 

when  yj =  0,  the  constraint  gj is  active.  Furthermore,  λj must  be  nonnegative  for 

minimization problems with constraints in negative null form. 

The Karush-Kuhn Tucker (KKT) conditions are the necessary and sufficient first-

order conditions for an optimum. The KKT conditions are equivalent to the statements in 

Equations (2.5)-(2.7) evaluated at the optimum (x*, λ*):
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∂ f

∂ x i

(x∗)+∑
j =1

m

λ j

∗ ∂ g j

∂ x i

(x∗)=0      i = 1, …, n (2.8)

λj
*gj(x

*) = 0     j = 1, …, m (2.9)

g(x*) ≤ 0 (2.10)

λ* ≥ 0 (2.11)

Equations  (2.8)  and  (2.9)  provide  a  system of  m + n equations  with  m + n 

unknowns. For simple problems, it is possible to find the partial derivatives analytically 

and then solve the system of equations. However, for practical problems the derivatives 

of the objective function and constraints may be complex or unavailable, and the system 

of equations could become very large and nonlinear. While the KKT conditions can still 

provide insight into a complex problem, it is generally not possible to solve Equations 

(2.8)-(2.11) analytically; instead, numerical optimization methods must be used. 

2.1.3 Numerical Constrained Optimization Techniques

Numerical optimization methods are useful for problems that are too difficult to 

solve analytically, which includes most problems of practical interest. Instead of solving 

the problem directly, numerical optimization methods operate in an iterative procedure. 

The fundamental idea behind iterative methods is to begin at a point, and look in the 

neighborhood of the point for a slightly better point. From the second point, look for 

another slightly better point, and so on, to iteratively improve the objective functions. 

This  section  summarizes  some  of  the  content  presented  in  Papalambros  and  Wilde's 

(2000) summary of numerical optimization methods.

One approach for handling the complex constrained optimization problem is to 
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solve a simpler approximation for the problem, and sequential quadratic programming 

(SQP) is an example of such an approach. SQP became popular in the 1970s, and the 

algorithm continues to be widely used for nonlinear optimization problems because of its 

efficiency and utility. 

The general quadratic programming problem takes the form (Onwubiko 2000)

min  xTQx + cTx (2.12)

subject to  Ax – b ≤ 0

-x ≤ 0

where Q is a matrix of size n n, c is a vector of length n, b is a vector of length m, and 

A is a matrix of size m  n. The quadratic programming program gets its name because 

the  objective function is  quadratic  in  x.  The second set  of  constraints -x ≤ 0 simply 

requires  the  design  variables  to  be  nonnegative  (rewritten  in  negative  null  form). 

Furthermore, it is required that the matrix Q be positive definite. 

The KKT conditions can be applied to Equation (2.12) and differentiation of the 

objective function is necessary for Equation (2.8) of the KKT conditions. Differentiation 

of the objective function with respect to each design variable (the gradient) yields a linear 

function:

∇(xT Qx+cT x )=2 Qx+c (2.13)

Then  all  of  the  KKT conditions  for  the  quadratic  programming  problem  are  linear, 

forming a linear programming program which, as presented earlier, is easy to solve.

The fundamental idea of SQP is to iteratively solve a quadratic approximation for 

the  KKT  conditions.  The  corresponding  quadratic  programming  subproblem  is 
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(Schittkowski and Yuan 2011)

min
d

∇ f (xk )
T
d+ 1

2
d

T
H k d (2.14)

s.t. g j(xk )+∇ g j(xk )
T
d≤0   j = 1, …, m

where xk is the approximation of the solution (to the optimization problem) at iteration k. 

Hk is the Hessian (second derivative matrix) for the Lagrange function at xk. The solution 

of the quadratic programming problem in Equation (2.14) is the vector d (length n). 

The solution d of the quadratic programming problem is a vector which identifies 

the direction used to update the approximation of x*:

xk+1 = xk + d (2.15)

Equation (2.15) can also be modified to include a line search (Schittkowski and Yuan 

2011) 

xk+1 = xk + αk d (2.16)

The purpose of the line search is to adjust the step length parameter αk to minimize the 

objective function in the direction d. 

Finally, at  each iteration, the Hessian of the Lagrange function  Hk is  updated. 

Explicit evaluation of the Hessian is usually not possible, so Hk is typically replaced with 

an approximation for the Hessian,  Bk. The purpose of using an approximation for the 

Hessian  is  to  save  computational  time  (because  evaluating  the  Hessian  with  finite 

differences  is  computationally  expensive),  and  to  ensure  that  the  Hessian  remains 

positive-definite. Many formulas for calculating the approximation Bk are available in the 

literature.

There are many more optimization methods available in the literature (see Rao 
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(2009) for a thorough introduction to a variety of methods). Only two additional methods 

are  discussed  here  because  they  are  encountered  in  some  form  in  the  optimization 

software used in this research: transformation methods and active set strategies. 

Unconstrained  optimization  problems  are  generally  easier  to  solve  than 

constrained optimization, and many methods for unconstrained optimization are available 

in the literature. Transformation methods seek to transform the constrained optimization 

problem in Equation (2.1) to the following unconstrained optimization problem :

min
x∈χ

f (x )+Φ(g(x) , r ) (2.17)

where Φ is a scalar function, referred to as either a penalty or barrier function depending 

on its form, and r is a weighting parameter. 

Penalty functions (also called exterior penalty functions) penalize the objective 

function  when  a  constraint  is  violated.  Penalty  functions  are  constructed  so  that  a 

constraint violation contributes a positive term; one common formulation is 

Φ(g(x) , r)=r
−1∑

j=1

m

[max (0, g j(x))]2
(2.18)

Penalty  function  methods  are  preferred  for  problems  with  only  equality  constraints, 

because they can generate infeasible solutions for problems with inequality constraints. 

Barrier functions (also called interior penalty functions) prevent the design from 

crossing the constraint boundaries. Barrier functions are constructed so that the objective 

function  approaches  infinity  when  the  design  approaches  a  constraint;  one  common 

formulation is:

Φ(g(x) , r)=−r∑
j=1

m

ln(−g j(x )) (2.19)
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Barrier functions are generally preferred over penalty functions because they ensure that 

the solution will be feasible; however, they can only be used for inequality constraints. 

Optimization problems with inequality constraints can be challenging because it is 

not known in advance which constraints will be active at the optimum. The purpose of an 

active  set  strategy  is  to  methodically  study  the  effect  of  activating  or  deactivating 

constraints  during the optimization.  The constraints  can be sorted into three sets:  the 

active set (constraints that are active), the working set (constraints that are active at the 

current  iteration),  and  the  candidate  set  (constraints  that  can  be  selected  to  join  the 

working set). 

The process of  optimization with an active set  strategy begins  from an initial 

feasible point and an initial working set. The objective function is minimized assuming 

that  the  constraints  in  the  working  set  are  active  (that  is,  they  are  now  equality 

constraints). Another constraint is added from the candidate set to the working set, and 

the optimization is repeated to see if the solution improves. Constraints are added to the 

working set with optimization until the objective function no longer improves. 

The KKT condition from Equation (2.8) evaluated at a point xk is

∇ f (xk )+∑
j

λ j ∇ g j(xk)=0 (2.20)

where j is the index of the active constraints. Equation (2.20) can be used to evaluate λj at 

xk; if all λj are nonnegative, xk is a KKT point and the algorithm has reached an optimum. 

If one or more λj are negative, further improvement can be achieved by deactivating the 

constraints.  Constraints  are  removed  from the  working  set  one  at  a  time,  each  time 

performing an optimization with the remaining active constraints to see if the objective 
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function improves. The process of adding and removing constraints is repeated until the 

KKT conditions are satisfied.

2.1.4 Optimization in MATLAB

MATLAB software  includes  powerful  capabilities  for  optimization.  The  MATLAB 

function fmincon is used for constrained optimization problems in the form of Equation 

(2.1),  and  the  function  is  capable  of  handling  both  linear  and  nonlinear  constraints. 

MATLAB’s fmincon is used throughout this research for solving constrained optimization 

problems. 

fmincon uses an SQP algorithm, which as described earlier, seeks to solve the 

KKT conditions  instead  of  solving  the  optimization  problem  directly.  The  quadratic 

programming problem used in the  SQP algorithm takes  the form of  Equation (2.14). 

Because the quadratic programming problem includes inequality constraints,  MATLAB’s 

fmincon includes  an  option  to  utilize  an  active  set  strategy  to  solve  the  quadratic 

programming problem. Additionally,  in the SQP algorithm, the approximation for  the 

Hessian Bk is updated at each iteration using the BFGS formula (Schittkowski and Yuan 

2011). 

The solution of the quadratic programming subproblem returns a search direction 

d which is used to update the values of the design variables using a line search as in 

Equation (2.16). Rather than just minimizing the objective function in the line search, 

fmincon utilizes  a  penalty  function  to  ensure  that  the  design  remains  feasible  when 

moving in the direction  d. The penalty function resembles that of Equation (2.18); the 

function minimized during the line search is
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f (x)+∑
j=1

m

r j max [0, g j(x)] (2.21)

where rj is a weighting parameter. 

2.2 History of Multidisciplinary Design Optimization

It is natural and practical to break down a complex design problem into smaller 

subproblems  (Sobieszczanski-Sobieski  1989),  and  the  practice  of  dividing  complex 

engineering problems into disciplines is  common in many fields.  The division of the 

design into disciplines could be a physical separation, where the disciplines are assigned 

to  different  teams  of  specialists.  The  division  into  disciplines  could  also  represent 

different computer programs that address different aspects of the design. With increases 

in  complexity  and advances  in  technology,  modern designs  may utilize  many design 

teams spread across the country (or globe) and many different specialized high-fidelity 

software programs. 

While  the  division  of  a  complex  problems  into  disciplines  describes  a 

multidisciplinary design, multidisciplinary design optimization (MDO) requires more: the 

application of optimization to the design, and a systematic coordination of the exchange 

of  information  between  disciplines.  Cramer  et  al.  (1994)  succinctly  define  MDO as 

"... the coupling of two or more analysis disciplines with numerical optimization." The 

coupling is  the critical  element  that  has motivated development  in the field of MDO 

because it necessitates an efficient, logical approach to coordinate the influences of each 

discipline on the others. In general, a single, independent discipline could be optimized 

easily;  the  challenge  of  MDO  is  to  apply  optimization  to  all  disciplines  when  the 
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disciplines influence each other and the design as a whole. 

The  purpose  of  an  MDO method  is  to  convert  the  complex  multidisciplinary 

design  problem  into  a  numerical  formulation  that  is  solvable  using  the  available 

optimization techniques (Tedford and Martins 2010). Zhao and Cui (2011) explain that 

MDO methods developed over three phases. In the first phase, disciplinary analyses were 

connected  in  a  single  large  optimization  statement;  the  main  disadvantage  of  these 

methods is that they could not handle large, complex problems. In the second phase, bi-

level methods were introduced; these methods separated the system level optimization 

statement from discipline optimization statements, and were more capable of managing 

the  coupling  between  disciplines.  In  the  third  phase,  techniques  for  decomposition 

developed,  which allow the MDO problem to be broken down into independent  and 

coordinated optimization problems (Agte et al. 2010).

MDO is generally computationally expensive, because MDO problems typically 

include a large number of design variables collected from all disciplines, with multiple 

discipline analyses that are called repeatedly within the overall optimization. Early MDO 

was limited by the computer technology available; completing a design in a reasonable 

amount  of  time required a  compromise  between the  number  of  design variables,  the 

number of disciplines, and the fidelity of the analysis models (Agte et al. 2010). Today's 

computer  technology  enables  the  use  of  high-fidelity  analysis  within  large  MDO 

problems, a point which is essential to this work. 

MDO originally developed out of the field of structural optimization, specifically 

with application in aerospace engineering (Agte et al. 2010). One of the most common 

applications of MDO was (and continues to be) aircraft design with the two disciplines of 
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structures and aerodynamics (Sobieszczanski-Sobieski and Haftka 1997).  MDO use in 

aerospace engineering expanded to include other disciplines, such as performance and 

propulsion, and eventually included the entire aircraft (Agte et al. 2010). 

Today,  MDO  is  valuable  in  many  engineering  fields.  MDO  continues  to  be 

popular in advanced aerospace design problems at both the total aircraft level and at the 

detailed component level. For example, Leifsson et al. (2011) studied an MDO problem 

with disciplines of aerodynamics, propulsion, weight analysis, aircraft performance, and 

stability and control. Jouhaud et al. (2007) optimized a two-dimensional wing in turbulent 

flow  with  aerodynamics  and  aeroacoustics  analysis  using  expensive  solvers 

(computational fluid dynamics).

Applications  in  automotive  engineering  are  also  common.  Park,  da  Luz,  and 

Suleman (2008) optimized an electromechanical brake system with disciplines for weight 

and  torque;  their  analysis  includes  utilization  of  expensive  solvers  (finite  element 

analysis). Ferguson, Kasprzak, and Lewis (2009) designed a family of vehicles (race cars) 

with  disciplines  of  aerodynamics,  handling,  and  chassis  design.  In  mechanical 

engineering, Grujicic et al. (2010) optimized a wind turbine blade made of composite 

material  with cost,  aerodynamics,  and structures analyses. In civil  engineering, Geyer 

(2009)  studied the design of  a  large hall  with disciplines for  economic performance, 

environmental impact, and preference. 

Applications  of  MDO  in  naval  architecture  are  of  the  most  interest  in  this 

dissertation. As with aerospace engineering, many naval architecture MDO problems are 

concerned with structural design and fluid dynamics, such as Diez et al. (2012) where 

MDO is applied to the design of a keel fin of a sailing yacht with structural and fluid 

20



dynamics  disciplines.  Kalavalapally,  Penmetsa,  and Grandhi  (2006)  studied a torpedo 

design  with  fluid  dynamics  (specifically  with  underwater  explosions)  and  structures 

disciplines. Besnard et al. (2007) optimized a fast ship hull form using fluid dynamics 

and structures disciplines. 

MDO has also been applied on a larger scale in ship design.  Yang et al. (2007) 

used MDO for  preliminary  ship design with hull  form,  powering,  and cost  analyses. 

Hefazi et al. (2010) developed an MDO tool for the design of multihull ship, including 

hull form, powering, and weight analyses. 

2.3 Review of Multidisciplinary Design Optimization Techniques

A  general  MDO  problem  definition  is  necessary  before  presenting  MDO 

techniques. The following form of an MDO problem is common in the literature and it 

assumes that the MDO problem is described by a single objective function  f, but with 

coupling variables which must be evaluated in the discipline analyses. The general MDO 

problem is

min
x , z

f (x , z , y (x , z )) (2.22)

subject to   g(x, z, y(x, z)) ≤ 0

where  x is  a  vector  of  local  design  variables  (design  variables  that  affect  only  one 

discipline) and z is a vector of global design variables. y is a vector of discipline coupling 

variables which are determined from the discipline analyses (therefore a function of x and 

z). g is the vector of constraints, which could be divided into local and global constraints. 

This definition may seem abstract, so consider an application in ship design. The 
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MDO problem includes two disciplines: hull resistance (fluid dynamics) and structural 

design. The design variables x and z describe the shape of the hull and the properties of 

the hull structure. The objective function  f is the hull resistance (to be minimized). An 

example of a coupling variable y is the structural weight: the structural design discipline 

determines  the  structural  weight  which  affects  the  displacement  of  the  ship.  The 

displacement of the ship then affects the hull resistance, so in order to evaluate the hull 

resistance  for  a  specific  design,  the  structural  weight  (coupling variable)  information 

must be passed from the structures discipline to the hull resistance discipline. 

The remainder of this section presents popular MDO techniques. In general, each 

method  proposes  a  way  to  transform  the  complex  MDO  problem  into  a  solvable 

optimization statement.  Regardless of the approach used, optimization is necessary to 

solve  the  problem,  and  the  optimization  problem could  be  solved  with  the  methods 

presented earlier in the chapter or with other methods. The purpose of this section is only 

to  present  the  structure  of  each  of  the  MDO methods,  so  the  presentation  of  many 

methods has been greatly simplified; details of the exact implementation of each method 

should be sought in the accompanying references. 

It  is  helpful  to  approach  the  MDO  methods  with  classification  of  different 

approaches. While many possible ways of classifying MDO methods exist (de Wit and 

van Keulen 2010),  the  most  common ways  of  classifying MDO methods  is  by their 

structure and the number of levels. An MDO method's structure may be either hierarchic 

or nonhierarchic, as illustrated in Figure 2.1. In a hierarchic structure, disciplines cannot 

communicate directly with each other;  instead,  they can only communicate vertically 

with analyses  above (or  below) them (Balling and Sobieszczanski-Sobieski  1996).  In 
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nonhierarchic MDO methods, there are no restrictions on the communication between 

different elements of the MDO problem. 

Figure 2.1. Illustration of a  hierarchical (left) versus a nonhierarchical (right) MDO system. 

MDO methods may also be classified as single level or multi-level. Single level 

use a single optimizer to determine the local  and global design variables.  Multi-level 

methods transform the the original problem into a structure with multiple levels where 

each  level  in  a  multi-level  MDO  method  can  have  its  own  optimizer  (Balling  and 

Sobieszczanski-Sobieski 1996).

2.3.1 Multidisciplinary Feasible Method

The multidisciplinary feasible (MDF) method (Cramer et al. 1994) is perhaps the 

most intuitive and direct approach to solving the MDO problem. The MDF method is a 

single  level  method  that  solves  the  MDO  problem  in  Equation  (2.22)  directly  by 

performing discipline analyses each time the objective function or constraints must be 

evaluated (Tedford and Martins 2010). 

The  advantage  of  this  method  is  that  the  design  at  each  iteration  is  feasible 

because the discipline analyses are performed at each iteration. A disadvantage of this 
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method  is  that  it  can  become  very  computationally  expensive  when  solved  using 

gradient-based solvers (which utilize a finite difference to estimate the gradient) (Tedford 

and Martins  2010).  Use of  a  gradient-based optimizer  can lead to  a  high number  of 

discipline evaluations, which is problematic when the discipline analyses are expensive.

2.3.2 Individual Discipline Feasible Method

The individual discipline feasible (IDF) method (Cramer et al. 1994) is a single 

level  MDO method that  offers  improvement  over  the  MDF method  by  reducing the 

number  of  discipline  analyses  required  during  the  optimization.  This  is  achieved  by 

removing the multidisciplinary feasibility requirement and only enforcing the discipline 

feasibility at each iteration. 

The IDF method uncouples the disciplines by introducing target values for the 

coupling variables, denoted  yt, which are used as estimates for the coupling variables. 

The discipline analyses can be performed using the target values instead of evaluating the 

true values of the coupling variables, which reduces the number of times the discipline 

analyses  must  be  performed in  each  iteration.  The optimization  statement  includes  a 

constraint that requires the target values to agree with the coupling variable values at the 

end of the optimization. The IDF optimization statement is (Tedford and Martins 2010)

min
x ,z , y

t

f (x , z , y t) (2.23)

subject to   g(x, z, y(x, yt, z)) ≤ 0

yi
t – yi(x, yj

t, z) = 0

where  yi are the coupling variables from discipline  i evaluated using the target values 

from the other disciplines, yj
t. 
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2.3.3 All-at-Once Method

The  all-at-once  (AAO)  method,  is  a  single  level  MDO method  that  does  not 

enforce  multidisciplinary  feasibility  or  discipline  feasibility  at  each  iteration  of  the 

optimization. The reasoning behind this approach is to reduce the time spent seeking 

feasibility when the design is far from the optimum (Cramer et al. 1994). 

To solve the AAO optimization problem, the residual  Ri is used to represent the 

governing equations for the discipline  i analysis,  where  Ri(x,  z,  y,  u) = 0 indicates a 

solution  of  the  discipline  analysis.  The  vector  u contains  state  variables  which  are 

variables only used within the discipline. Then the optimization statement for the AAO 

method is (Tedford and Martins 2010)

min
x , z ,u

f (x , z , y (x , z , u)) (2.24)

subject to g(x, z, y(x, z, u)) ≤ 0

R(x, z, y(x, z, u), u) = 0

A clear disadvantage of this method is that the user must be able to evaluate the 

residuals R; for practical applications the governing equations for the analysis may not be 

available, particularly when using external software to evaluate a discipline (Tedford and 

Martins 2010). Additionally, the AAO method includes a large number of constraints and 

a very large number of design variables (x, z, and u) (Cramer et al. 1994). 

2.3.4 Collaborative Optimization

Collaborative  optimization  (Braun  and  Kroo  1995)  is  a  multi-level  (bi-level) 

method  which  increases  the  disciplines'  autonomy  by  separating  the  disciplines  into 
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independent optimization problems. The collaborative optimization formulation includes 

a system level optimization statement with compatibility constraints to ensure agreement 

between disciplines, which is necessary due to the increased disciplinary autonomy. 

The top level optimization statement is (Tedford and Martins 2010)

min
xobj , z , y

f (xobj ,z ,y) (2.25)

subject to   Ji
* = 0   i = 1, …, p

where xobj are only the local variables that affect the objective function. Ji represents the 

interdisciplinary  compatibility  of  discipline  i,  and  Ji
* is  the  solution  to  (Tedford  and 

Martins 2010)

min
x i ,z i ,y i , j

J
i
=∑ (z

i
−z

i

t)2+∑ (x
i ,obj

−x
i , obj

t )2+∑ (y
i
−y

i

t)2+∑ (y
j , i

−y
j , i

t )2

(2.26)

subject to   g(xi, zi, yi(xi, yj,i, zi)) ≤ 0

Collaborative  optimization  utilizes  target  values  (denoted  with  superscript  t)  for  the 

design  variables  that  are  used  in  the  system.  The  use  of  the  target  values  with  the 

compatibility constraint (Ji
* = 0) allows the disciplines to optimize more independently, 

so  the  structure  of  collaborative  optimization  resembles  the  operation  of  disciplinary 

design teams (Tedford and Martins 2010).

One disadvantage of collaborative optimization is that the compatibility constraint 

can cause difficulties with convergence during the optimization (Zhao and Cui 2011); 

without convergence in the compatibility constraint, the disciplines will not agree on the 

global properties. 
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2.3.5 Concurrent Subspace Optimization

Concurrent  subspace  optimization  (CSSO)  is  a  multilevel  (bilevel)  and 

nonhierarchic  MDO  method  (Sobieszczanski-Sobieski  1988).  CSSO  uses  an 

approximation  for  the  coupling  variables  (using  response  surfaces,  for  example);  the 

advantage of this approximation is that the system optimization problem can be solved 

very  quickly.  The  disadvantage  of  this  method  is  that  it  requires  building  the 

approximation  model  before  beginning  the  optimization.  Additionally,  the  design 

variables  are  divided among the  disciplines  according to  which discipline  the  design 

variable  has  the  most  impact  on;  the  other  variables  are  held  constant  during  the 

discipline optimization (Tedford and Martins 2010). 

The system level optimization problem is (Tedford and Martins 2010)

min
x , z

f (x , z , ỹ) (2.27)

subject to   g(x, z, ỹ) ≤ 0

where  ỹ is the approximation for the coupling variables  y. The discipline optimization 

problem for discipline i is

min
xi , z i

f (x i , x0, z i , z0 , yi(xi , x0, z i , z0 , ỹ j) , ỹ j) (2.28)

subject to    g(xi, x0, zi, z0, yi(xi, x0, zi, z0, ỹj), ỹj)

where xi and zi are the design variables used in discipline i, and the variables x0 and z0 are 

held constant during the discipline optimization. ỹj is the approximation for the coupling 

variables from the other disciplines. 
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2.3.6 BLISS

Bi-level  integrated  system  synthesis  (BLISS)  is  a  multilevel  method,  with  a 

system-level  optimization and discipline optimizations.  The system level  optimization 

optimizes  the  objective  function  with  respect  to  the  system  design  variables  z 

(Sobieszczanski-Sobieski, Agte, and Sandusky 1998):

min
∆ z

f (x , z )= f 0+
df

dz
∆ z (2.29)

subject to   zlb ≤ z + Δz ≤ zub

Δzlb ≤ Δz ≤ Δzub

where the notation Δ indicates an incremental step and subscripts lb and ub indicate the 

lower  and  upper  bounds  for  the  variable,  respectively.  The  subscript  0  indicates 

information from the present state (initial or previous iteration).

At  the  discipline level,  optimization is  performed by varying the  local  design 

variables x but holding the system-level design variables z constant. The discipline-level 

optimization statement does not directly optimize the objective function  f,  but instead 

optimizes a function that measures the influence of that discipline's design variables' on 

the system objective function. The discipline objective function is a weighted sum of the 

local design variables x weighted by an approximation for the derivative of f with respect 

to  x.  The  discipline  optimization  statement  is  (Sobieszczanski-Sobieski,  Agte,  and 

Sandusky 1998)

min
∆ x

( df

d ∆x )
T

∆ x (2.30)

subject to   gi(x + Δx, z, y) ≤ 0
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where the discipline  i is assumed to have access to the coupling variables  y from all 

disciplines. 

2.3.7 Analytical Target Cascading

Analytical  target  cascading  (ATC)  is  a  multilevel,  hierarchical  method  that  is 

useful for MDO problems with design targets and multiple responses of interest. Instead 

of the MDO problem defined in Equation (2.22), which has a single objective function f, 

ATC is interested in problems of the form (Kim et al. 2003)

min
x

∥T−R (x)∥ (2.31)

subject to   g(x) ≤ 0

where T is a vector of target values and R is a vector of response values from the system 

analysis.  Target  values  are  useful  because  in  industry,  designs  are  often  defined  by 

requirements, instead of optimal performance (Agte et al. 2010). 

The  formulation  of  ATC  includes  three  levels:  supersystem,  system,  and 

subsystem (disciplines). The goal of the supersystem (subscript “sup”) level optimization 

statement is to minimize the difference between the supersystem level responses Rsup and 

target values Tsup. The system level constraints include the system design constraints gsup 

and  the  tolerance  constraints  which  include  the  deviation  tolerances  εR and  εy.  The 

deviation tolerances are supersystem-level design variables that coordinate the responses 

and  linking  variables;  when  the  optimization  has  converged  the  deviation  tolerances 

should  reach  zero  to  achieve  consistency.  The  supersystem optimization  statement  is 

(Kim et al. 2003)
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min
x sup , ys , εR ,ε y

∥R sup−T sup∥+ εR + εy (2.32)

subject to    ∑
k

∥R s ,k – R s , k

L ∥≤ εR

∑
k

∥ys , k−ys , k

L ∥≤ εy

gsup(xsup) ≤ 0

where  the  superscript  L indicates  target  values  determined  from  the  system  level 

optimization.  The  subscript  “s”  indicates  elements  evaluated  at  the  system  level 

optimization.

The goal of the system level optimization is to coordinate the supersystem and 

subsystem (discipline) optimizations. The system level optimization problem is (Kim et 

al. 2003)

min
x s, y s, y ss ,εR , εy

∥R s−R s

U∥+∥ys−ys

U∥+ εR + εy (2.33)

subject to    ∑
k

∥R ss , k – R ss , k

L ∥≤εR

∑
k

∥yss ,k −yss , k

L ∥≤εy

gs(xs, ys) ≤ 0

where the subscript “ss” indicates the subsystem level and the superscript “U” indicates 

the targets from the supersystem level. 

Finally, the goal of subsystem optimization problem is to minimize the difference 

between the values of responses and linking variables at  the subsystem level  and the 

system  target  values.  The  subsystem  level  represents  the  discipline  analyses.  The 

subsystem optimization statement is (Kim et al. 2003)
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 min
x ss , yss

∥R ss−R ss

U∥+∥yss−yss

U∥ (2.34)

subject to   gss(xss, yss) ≤ 0

The ATC method may seem overly complex at first because of its use of multiple 

levels, however, there are two key features of the method. First, the capability to handle 

multiple  objective  functions  with  target  values,  and  second,  the  use  of  the  deviation 

tolerances ε as design variables used to motivate consistency. 

2.3.8 Multiobjective Optimization

Multiobjective  optimization  is  a  field  that  is  closely  related  to  MDO.  Multi-

objective  optimization  is  concerned  with  optimization  problems  with  more  than  one 

objective function. Because this work is concerned with MDO problems of the form of 

with  multiple  objectives,  an  understanding  of  the  fundamentals  of  multiobjective 

optimization is important. 

The standard form of a multiobjective optimization problem is (Marler and Arora 

2004)

min
x

f (x)=[ f 1(x) f 2(x) ... f p(x )]T

(2.35)

subject to   g(x) ≤ 0 

As defined earlier in the chapter,  x represents the vector of design variables (length n). 

There  are  p objective  functions  contained  in  the  vector  f.  The  vector  g contains  m 

constraints.  It  is  also  possible  to  include  equality  constraints,  but  only  inequality 

constraints are considered in this work. 

Multiobjective optimization problems include more than one objective function 
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and it is not clear how to minimize multiple functions simultaneously, and in general, 

each  of  the  objective  functions  will  have  a  different  optimum  when  considered 

independently.  Conflicting  objectives  are  very  common  in  multidisciplinary  design 

problems; for example, in structural design, a design with greater strength will often have 

increased weight. 

Because the objective functions have different optima, it is not possible to select a 

single  optimum  for  a  multiobjective  optimization  problem.  Instead,  solutions  to 

multiobjective optimization problems are described by Pareto optimality. The definition 

of Pareto optimal from Marler and Aurora (2004) is: A point x* is Pareto optimal if and 

only if there does not exist a point x such that f(x) ≤ f(x*) and fi(x) <  fi(x
*) for at least one 

i. In plain language,  x* “... is Pareto optimal if there is no other point that improves at 

least one objective function without detriment to another function,” (Marler and Aurora 

2004).  The concept of weakly Pareto optimal is  also useful  in practice;  a  point  x* is 

weakly  Pareto  optimal  if  there  are  no  points  that  are  better  in  all  of  the  objective 

functions.

The goal  of  multiobjective  optimization methods  is  to  locate  and describe  all 

Pareto optimal points (called the Pareto set) for a given problem. Methods for efficiently 

finding Pareto optimal points will  not be discussed here, as it  is  not  the goal of this 

research;  however,  understanding  the  meaning  of  the  Pareto  set  is  important  for 

interpreting  the  performance  of  a  proposed  solution  to  a  multiobjective  (or 

multidisciplinary) optimization problem.  
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2.4 MDO Problem Definition

The MDO problem statement in Equation (2.22) is relevant in many applications. 

However, in this work, a more general problem statement is studied  with  p disciplines 

and p objective functions:

min
x∈χ

f (x) (2.36)

subject to gi(x) ≤ 0    i = 1, …, p

where x is the vector of design variables (length n) and gi is the vector of constraints for 

discipline i. As in Table 2.1, χ denotes the set of allowable values (ranges) for the design 

variables. 

The MDO statement in Equation (2.36) includes multiple objective functions fi, so 

for  p objective  functions, f is  a  vector  of  length  p.  This  definition  is  more  general, 

because for a multidisciplinary design problem it may not be possible to identify a single 

objective function. For example, a ship design may be concerned with minimizing hull 

resistance  and  minimizing  cost,  where  the  two  objectives  are  evaluated  in  different 

disciplines. The definition of an MDO problem with multiple objectives is not unusual; 

the analytical target cascading method also utilized an MDO model with more than one 

objective function.
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CHAPTER 3

Multidisciplinary Design Optimization Algorithm with Target Values

The previous chapter introduced multidisciplinary design optimization (MDO), 

including MDO techniques and applications of MDO in engineering. In this chapter, a 

new MDO algorithm is presented. The new algorithm falls into the category of multilevel 

algorithms and it utilizes target values at the system level to coordinate the exchange of 

information between disciplines. This chapter begins with the mathematical details of the 

algorithm and then presents an application of the algorithm to a simple MDO example 

problem.

3.1 Motivation and Problem Definition

The previous chapter discussed the value of MDO as an engineering tool;  the 

utility of MDO motivates the development of the new MDO algorithm. The reasoning 

behind the development of this algorithm was to offer improved efficiency over other 

multilevel MDO methods. For example, the analytical target cascading method presented 

in Section 2.3.7 utilizes the additional variables  εR and  εY (compatibility deviations)  as 

defined in  Equation  2.32.  While  both  analytical  target  cascading  and  the  new MDO 

algorithm  utilize  target  values,  the  new  MDO  algorithm  does  not  use  compatibility 

variables. The formulation without compatibility deviation variables is an attempt to offer 
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improved efficiency. 

In  many multidisciplinary  engineering applications,  one  discipline  addresses  a 

global metric, such as cost or weight, that is considered to be the most significant. The 

new MDO method allows the user to select one discipline as the “top” level discipline, 

which is then given more significance during the optimization as is appropriate for a 

discipline of a global nature. 

The general MDO problem was defined in Chapter 2 in Equation (2.36). For the 

new MDO algorithm, the general MDO problem is rewritten in the following form

min
x∈χ

f T(x)                                     min
x∈χ

f i(x)  for all i (3.1)

    subject to gT(x) ≤ 0                            subject to gi(x) ≤ 0    

where x is the vector of design variables, f denotes an objective function, and g denotes a 

vector of constraints. In the formulation in Equation (3.1), the subscript  T indicates the 

top level discipline. While the MDO problem defined in Equation (3.1) uses different 

notation, it is mathematically equivalent to the MDO problem in Equation (2.36). Figure 

3.1 shows a diagram of the MDO problem formulation with a top level discipline.  

Fig. 3.1. Illustration of the MDO problem with top level discipline. 
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3.2 MDO Approach Utilizing Target Values

The purpose of this section is to present the mathematical formulation of the new 

MDO algorithm and demonstrate the use of the MDO algorithm in a simple example 

problem. 

3.2.1 Algorithm Definition

The  mathematical  formulation  includes  two  elements:  the  discipline  level 

optimizations  and  the  system  level  optimization.  The  system  level  optimization 

coordinates the exchange of information between the disciplines, as illustrated in Figure 

3.2. The following definition begins with the discipline level optimizations which are 

used to evaluate the target values for the design variables. The target values are returned 

to  the  system  level  optimization  statement  which  coordinates  the  entire  problem 

optimization. 

At  the  beginning of  each iteration of  the  system level  optimization,  there  are 

current values for the design variables; the current values for the design variables are sent 
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to the disciplines as starting values xstart. An optimization of each discipline is performed 

independently using  xstart as starting values for the design variables. For the discipline 

level optimizations, the design variable ranges are restricted to a subset of their original 

ranges. In the discipline optimizations, the design variables are allowed to vary from xstart 

by ±20%; the reduced design variable space is denoted ψ, so that x ∈  ψ ⊂  χ. There are 

two  reasons  for  performing  the  discipline  optimizations  over  the  subspace  ψ.  First, 

optimization  over  the  (same)  original  design  space  would  often  result  in  the  same 

solution  at  every  iteration,  so  the  system  optimization  may  not  progress.  Second, 

optimization  over  the  subspace  reduces  the  difference  between  xstart and  the  optimal 

values of the design variables returned by the discipline optimization; the limits help 

prevent the design from changing too rapidly which may cause it to converge rapidly in a 

direction that is suboptimal for the system. (Note that the 20% variation can be adjusted 

to another value if needed for the specific application.)

When the discipline optimizations are performed, each discipline independently 

determines optimal values for  the design variables;  the optimal  values for  the design 

variables for discipline i are denoted xi
optimal and the value of objective function fi at xi

optimal 

is  fi
optimal.  Each discipline returns its  values of   xi

optimal and  fi
optimal to  the  system level 

optimization statement.

The  optimal  values  of  the  design  variables  and  objective  functions  from the 

discipline optimizations are used to evaluate target values for the design variables based 

on the improvement achieved in the discipline objectives functions:
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x j

target=
∑
i=1

N j

x j ,i

optimal ( f i

start− f i

optimal )2

∑
i=1

N
j

( f i

start− f i

optimal)2

(3.2)

In Equation (3.2), xj
target is the target value for the jth design variable. xj,i

optimal indicates the 

optimal value of design variable  xj in the  ith discipline.  fi
start is the is the initial value of 

objective function  fi for the current iteration:  fi
start =  fi(xi

start).  Nj is the total number of 

disciplines that share the jth design variable.

The  target  values  for  the  design  variables  are  used  to  evaluate  the  system 

objective function fsystem:

f system(x)= f T (x)+∥x
target−x∥2

2
(3.3)

where fT is the top objective function. Then the system level optimization statement is

min
x∈χ

f system(x) (3.4)

s.t.   gT(x) ≤ 0

                     gi(x) ≤ 0 for all i

The effects of the disciplines are included at the system level by requiring that the design 

variables approach the target values determined from the discipline optima, and at the 

same  time  the  top  level  objective  function  is  improved.  All  of  the  discipline  level 

constraints  are  enforced  in  the  system  level  optimization  along  with  the  top  level 

constraints; this ensures that the optimal point will also be a feasible point for all of the 

disciplines. The procedure for iteration in the MDO algorithm is illustrated in Figure 3.3. 
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Fig. 3.3. Flow chart for the calculations performed in the iterations of the MDO algorithm.

3.2.2 Analytical Example Problem 

A simple analytical example was tested to demonstrate the effectiveness of the 

MDO algorithm. The example problem used three design variables: x1, x2, and x3, where 

the range for each design variable was 0 ≤  xi ≤ 2 and the initial value for each of the 

design variables was 1. Three simple polynomial objective functions were defined as:

f 1(x )=x1+ x2+x3

f 2(x )=x1+ x2−x3

2

f 3(x )=−x1 x2 x3

(3.5)

The example is purely analytical, so none of the objectives signify a top level 

objective; all three objective functions were designated as discipline level objectives. No 

additional constraints were included in the problem, aside from the bounds on the design 
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variables. Figure 3.4 illustrates the setup of the example problem.

Fig. 3.4. Diagram illustrating the simple MDO example.

The  results  of  minimizing  the  objective  functions  independently  can  provide 

insight into the MDO problem. The individual discipline optima can easily be observed 

for this simple example: the minimum for f1 is 0 at xf1
* = (0, 0, 0), the minimum for f2 is 

-4 at xf2
* = (0, 0, 2), and the minimum for f3 is -8 at xf3

* = (2, 2, 2). 

The solution given by the MDO algorithm for  this  simple  analytical  example 

problem is shown in Table 3.1, which includes a comparison to the starting point (which 

was arbitrarily chosen as the midpoint of the design variables' range). The optimal values 

of x1 and x2 are equal, which is expected because the problem is symmetric in these two 

design variables. When compared with the initial point, the optimized solution results in a 

significant improvement in the objective functions  f2 and  f3, while objective function  f1 

increased slightly. This result is reasonable because tradeoff between the disciplines is 

common in MDO problems.  
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Table 3.1. Results from the simple MDO example.

Initial Value Optimal Value

x1 1 1.128

x2 1 1.128

x3 1 1.745

f1(x) 3 4.002

f2(x) 1 -0.790

f3(x) -1 -2.222

A plot of the Pareto front was generated to visualize the results for the simple 

analytical example problem. (Points on the Pareto front were determined using a simple 

Monte  Carlo  approach,  by  generating a  large  number  of  random feasible  points  and 

plotting the dominant points; while this approach is highly inefficient, efficient plotting of 

the Pareto front was not the purpose of this exercise.) The optimal point returned by the 

MDO algorithm is plotted along with the Pareto front in Figure 3.5; the MDO optimum is 

indicated by the (red) star. Figure 3.5 also includes the individual discipline optima for 

comparison, where xfi
* indicates that the objective functions are evaluated at the optimum 

of fi. 

Fig. 3.5. Pareto front for the simple analytical example, with optimum (star).
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Most importantly, Figure 3.5 shows that the optimum lies on the Pareto front, 

indicating that  no further improvement is possible. If  the optimum did not lie on the 

Pareto front, further improvement would be possible, indicating that the result returned 

by the algorithm was suboptimal.  Second,  the optimum does not lie  in a particularly 

extreme position; that is, it does not appear to strongly favor one discipline’s objective 

over another, indicating that the result provides a balance between the disciplines. 

3.3 Chapter Summary

In this chapter, a new MDO algorithm using target values was presented. The 

algorithm was applied to a simple demonstrative example problem. 
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CHAPTER 4

Multidisciplinary Design Optimization Under Uncertainty

In traditional optimization, the optimal solution is a single point that minimizes a 

function of  interest  while  satisfying a  prescribed  set  of  constraints.  However,  in  real 

design problems, design variables and environmental parameters contain uncertainty; for 

example, manufacturing tolerances and environmental conditions are beyond the control 

of  the  designer,  but  they can  affect  the  performance  of  the  design.  Additionally,  the 

simulation  tools  or  regression  models  which  provide  performance  predictions  during 

design  development  are  additional  sources  of  uncertainty;  even  highly  advanced 

simulations  cannot  predict  physical  performance exactly.  Due to  the variations  in the 

design  variables  and  parameters  with  uncertainty,  or  due  to  the  uncertainty  in  the 

performance prediction models, the response of the optimal design will differ from the 

deterministic expectation. This can lead to violation of constraints on the design and/or 

deterioration of the expected optimal performance. 

Often,  the  effects  of  uncertainty  are  not  considered  during  the  ship  design 

process. Capturing the effects of uncertainty in the early stages of the design process can 

eliminate the need for expensive design modifications at later stages. The importance of 

accounting for uncertainty in ship design was highlighted recently by an entire special 

issue of the Naval Engineers Journal (Vol. 114, No. 2, 2002) which was devoted to the 
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subject of reliability-based ship structural design. 

This study is motivated by the importance of managing uncertainty in the ship 

design process.  In this chapter,  two methods for accounting for uncertainty in design 

optimization are presented: robust optimization and reliability-based design optimization. 

These  approaches  are  incorporated  with  the  multidisciplinary  design  optimization 

algorithm presented in Chapter 3 to study the design optimization of a ship hull form.  

4.1 Accounting for Uncertainty in Design Optimization

When discussing the concept of uncertainty in this work, the term “uncertainty” 

refers specifically to what is known as aleatory uncertainty in the field of uncertainty 

quantification. As defined by Noor (2005), “Aleatory uncertainty... is used to describe the 

inherent  spatial  and  temporal  variation  associated  with  the  physical  system  or  the 

environment under consideration as well as the uncertainty associated with the measuring 

device.”  This  is  in  contrast  to  epistemic  uncertainty  which  describes  the  lack  of 

information or understanding about the system. Only aleatory uncertainty is considered in 

this  analysis  because the approaches used require the uncertainties to be definable in 

simple probabilistic terms. 

Methods  for  accounting  for  uncertainty  in  optimization  (also  called 

nondeterministic  approaches)  can  be  classified  into  three  categories  (Noor  2005): 

probabilistic  analysis,  fuzzy  set  approaches,  and  set-theoretical  approaches.  For 

probabilistic  analysis,  the  source  of  uncertainty  is  assumed  to  be  system parameters 

and/or  design  variables  that  are  random  variables  for  which  probability  distribution 

functions can be chosen. Fuzzy set  and set-theoretical  approaches are appropriate for 

44



modeling systems with less information about  the sources of uncertainty.  Methods in 

probabilistic analysis are used in this work.  

4.1.1 Reliability-Based Design

In  reliability-based  design,  the  effects  of  uncertainty  in  design  variables  and 

parameters on the constraints are considered. The goal of reliability is to ensure that the 

optimal  solution  will  satisfy  the  constraints  in  the  presence  of  uncertainty  within  a 

prescribed level of confidence. 

A  simple  two-dimensional  illustration  in  Figure  4.1  shows  an  example  of 

reliability in a constraint. The figure shows the design space for two design variables and 

a constraint boundary (black line with hatching) defines the feasible space which lies to 

the left of the constraint. The contour curves (blue) for a single objective function show 

that  the  objective  function  improves  while  moving  to  the  right.  In  deterministic 

optimization, the optimum would be selected at the green circle lying on the constraint 

boundary because this choice gives the best value of the objective function. However, if 

the realizations of the design variables are determined by the approximate probability 

distributions shown along the axes, the actual outcome of the design could lie anywhere 

within the cloud of points near the deterministic optimum, including points that violate 

the constraint. A reliable optimum is located further from the constraint boundary, at the 

red circle, so that the design realizations are more likely to satisfy the constraint.
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Much of the development in the field of reliability-based design occurred in the 

field  of  structural  design.  However,  reliability-based  design  optimization  has  more 

recently been applied to a wide array of engineering design problems in the literature. 

Acar  and  Solanki  (2009)  applied  reliability-based  design  to  automobile  design  for 

crashworthiness. Allen and Maute (2004) applied reliability-based design to an airplane 

wing structure. Yang et al. (2005) applied reliability-based design to the design of an 

exhaust  system.  Maute  and  Frangopol  (2003)  used  reliability-based  design  for  the 

analysis of micro-electromechanical systems (MEMS). 

Reliability-based design optimization has also been applied to multidisciplinary 

design optimization problems. Ahn and Kwon (2006) utilized reliability-based design for 

the multidisciplinary design optimization of a jet. Sinha (2007) presented an approach for 
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multiobjective optimization with reliability for  automobile crashworthiness.  Yao et  al. 

(2011)  provide  a  thorough  review  of  reliability  methods  in  multidisciplinary  design 

optimization in aerospace applications. 

The  purpose  of  reliability  analysis  is  to  assess  the  probability  that  a  design 

satisfies constraints. For the case of a single constraint g, the constraint is satisfied when

g(x) ≤ 0, where x is the vector of design variables, which are also random variables. Then 

denote  the  probability  of  violating the  constraint  as  pf,  also  called  the  probability  of 

failure (Haldar and Mahadeval 2000), and the probability can be calculated according to

p f =∫ ... ∫
g>0

f x(x1 , ... , xn)dx1... dx n (4.1)

where  fx is  the  joint  probability  distribution  function  (PDF)  for  x.  The  integral  is 

performed  over  the  region  where  the  constraint  is  violated,  that  is,  where  g(x)  >  0. 

Furthermore, the reliability index β is related to the probability of failure by

p f =Φ(−β)=1−Φ(β) (4.2)

where Φ is the the cumulative distribution function for the standard normal PDF.

Evaluation of the integral in Equation (4.1) is task is not trivial because the joint 

PDF can be very complex (Der Kiureghian 2005). One class of widely-used reliability 

methods  is  first-order  reliability  methods (FORM).  First-order  reliability  methods are 

referred to as first-order because the constraint function g is approximated by a first-order 

Taylor series approximation so that the problem can be solved more easily (Haldar and 

Mahadeval 2000).

Reliability-based design optimization problems can be solved by transforming the 

probabilistic problem into a deterministic optimization problem. The general reliability-
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based  design  optimization  problem  given  by  the  following  expression  (Liang, 

Mourelatos, and Tu 2008):

min
d, μX

f (d ,μX ,μP) (4.3)

s.t. P [ g i(d ,X ,P)≤0]≥Ri    i = 1, …, m

d is the vector of deterministic design variables with the range  dL ≤  d ≤  dU.  X is the 

vector of random design variables and μX is the vector of mean values of X with the range 

μX
L ≤  μX ≤  μX

U. P is the vector of random parameters with mean  μP.  f is the objective 

function and  gi are  constraints.  The notation P[.]  indicates  probability.  Ri denotes the 

actual reliability level for the ith constraint so that

Ri=1− p f i
=1−P[ g i(d , X , P)>0 ] (4.4)

where the probability of failure is related to the reliability index β by Equation (4.2). 

The multidisciplinary optimization method presented in Chapter 3 is capable of 

solving  reliability-based  design  optimization  problems.  The  optimization  method 

incorporates  the  reliability-based  design  optimization  framework  described  by  Liang, 

Mourelatos, and Tu (2008). Traditional methods for solving RBDO problems use double-

loop algorithm, with an outer loop to perform the optimization and an inner  loop to 

evaluate reliability. However, the method defined by Liang, Mourelatos, and Tu (2008) is 

a  single-loop  algorithm;  this  method  was  selected  and  incorporated  in  this  research 

because it offers computational savings. 

The single-loop deterministic optimization problem statement is:

min
d ,μX

f (d ,μ X ,μP) (4.5)

s.t. gi(d, Xi, Pi) ≤ 0      i = 1, ..., m
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again with the ranges dL ≤ d ≤ dU and μX
L ≤ μX ≤ μX

U. The constraints gi are functions of d 

and the quantities:

Xi=μX−σ βti
αi (4.6)

Pi=μP−σ βti
αi (4.7)

where  σ the  vector  of  standard  deviations  for  the  random  variables  X and  random 

parameters P.  βti
 is the target reliability index for the ith constraint (the desired level of 

reliability). αi is the normalized gradient for the ith constraint:

α i=
σ⋅∇ g i(d ,Xi ,Pi)

∥σ⋅∇ g i(d ,Xi ,Pi)∥
(4.8)

In Equation (4.5), the objective function is evaluated at the mean point (d, μX, μP), 

and the constraints are evaluated at (d,  Xi,  Pi), which is called the most probable point. 

The most probable point is separated from the mean point in the direction away from the 

constraint, where the direction is determined using the normalized gradient information. 

The distance from the mean point is determined by the standard deviation (a measure of 

the  amount  of  uncertainty  in  the  design variables  and  parameters)  and by  the  target 

reliability  index  (a  measure  of  the  desired  confidence  that  the  constraints  will  be 

satisfied). 

The single-loop reliability-based design optimization algorithm was implemented 

with  the  MDO  algorithm  from  Chapter  3.  The  reliability-based  design  optimization 

algorithm  from  this  section  describes  a  single-discipline  optimization,  not 

multidisciplinary optimization.  The system level optimization in Equation (3.4) includes 

the constraints from all disciplines, so the reliability-based design optimization algorithm 
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was applied to the system level objective function and constraints. 

4.1.2 Robust Design

In robust design optimization, the effects of uncertainty in design variables and 

parameters  on  the  objective  functions  are  considered.  The  goal  of  robust  design 

optimization is to ensure that the performance of the objective functions at the optimal 

solution will not severely deteriorate in the presence of uncertainty. 

Figure 4.2 shows a simple illustration of robust optimization. In the figure, the 

horizontal  axis represents a single design variable,  and the vertical axis represents an 

objective function that is a function of the design variable. The objective function takes 

the values shown by the curve in black. The deterministic minimum of the objective 

function  is  at  the  blue  dot,  at  the  lowest  point  in  the  curve.  However,  if  there  is 

uncertainty  in  the  design  variable  according  to  the  (blue)  bounds  shown  along  the 

horizontal  axis,  the  actual  performance  of  the  objective  function  could  lie  anywhere 

within  the  blue  bounds  on  the  vertical  axis;  the  performance  could  deteriorate 

significantly from the deterministic optimum. A robust optimum is located at the red dot 

to the right, so that the variability in the objective function is reduced under the same 

variation in the design variable. 
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Fig. 4.2. Illustration of robust optimization for one objective function 

as a function of a single design variable. 

Many applications of robust design optimization can be found in the literature. 

Choi et  al.  (2008) apply robust  optimization is  applied to the design of layered plate 

bonding. Reale-Levis, Romero, and Swiler (2008) use a robust design strategy for a snap-

fit device. Steenackers, Guillaume, and Vanlanduit (2009) apply robust optimization to an 

airplane component. Delpiano and Sepúlveda (2006) introduce robustness in optimizing 

the design of a transistor device. 

Robust optimization has also been applied to multidisciplinary design problems. 

Wang et al. (2009) use robust optimization with a multi-objective design application to a 

V6 engine.  Ray and Smith (2006) apply a multi-objective evolutionary algorithm for 

robust  design  of  a  welded  beam  and  a  bulk  carrier.  Kovach  and  Cho  (2008)  use 

multidisciplinary robust  design for  chemical  filtration optimization.  Goh et  al.  (2010) 

compare  different  evolutionary  multi-objective  optimization  algorithms  for  robust 

optimization. 
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Much of the development of robust design is credited to Taguchi, who worked 

from  the  perspective  of  quality  engineering  (Taguchi  1986).  Taguchi  viewed  the 

variability  in  a  product  in  terms  of  quality  loss  and  developed  the  loss  function  to 

describe the loss in performance due to uncertainty. For the case of a performance metric 

y that is to be minimized under uncertainty, the loss function L is 

L(y) = ky2 (4.9)

where k is a constant. The expected value of the loss function for y is

L = k(σ2 + μ2) (4.10)

where σ and μ are the standard deviation and mean, respectively, for y (Park 1996). This 

formulation  for  the  loss  function  forms  the  basis  for  many  robust  optimization 

approaches. 

The field of robust optimization is well-developed and many references for robust 

optimization methods are available in the literature. For an introduction and overview of 

the  subject,  Beyer  and  Sendhoff  (2007)  provide  a  detailed  review  of  current  robust 

optimization  techniques. Schuëller  and  Jensen's  (2008)  review  of  approaches  for 

optimization under  uncertainty includes  robust  design optimization.  Yao et  al.  (2011) 

include robust optimization techniques in their review of methods for multidisciplinary 

design optimization under uncertainty.

Before  presenting  the  mathematical  details  of  robust  optimization  methods, 

consider the following optimization problem:

min
x

f (x , p) (4.11)

s.t. g (x ,p)≤0
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where x denotes the vector of design variables and p is a vector of parameters. The value 

of the objective function may be very sensitive to changes in the design variables and 

parameters,  so  that  the  actual  outcomes  of  the  selected  solution  vary  significantly 

(Schuëller and Jensen 2008). 

The goal of robust design optimization is to address the optimization problem in 

Equation  (4.11)  and  select  a  solution  which  is  insensitive  to  changes  in  the  design 

variables and parameters.  In practice,  there are two categories of  robust  optimization 

methods: methods which evaluate robustness metrics numerically, and methods which 

treat the uncertainties directly using simulation (Beyer and Sendhoff 2007). The approach 

for robust optimization used in this work evaluates robustness metrics; this approach is 

popular and practical because it transforms the complex robust optimization problem into 

a new problem in terms of the robustness metrics. Standard optimization techniques can 

then be used to solve the optimization problem with the robustness metrics (Schuëller and 

Jensen 2008).

Standard  metrics  for  robustness  are  the  mean  and  variance  of  the  objective 

function at the selected design point, using the notation

E[ f  | x] = μf (4.12)

Var( f  | x) = σf
2 (4.13)

These metrics are useful  in the robust  optimization problem because the mean is the 

expected value for the objective function while the variance describes the variability in 

the objective function at the selected point x. 

In order to evaluate the mean and variance during the optimization, the robust 

optimization in Equation (4.11) is redefined in the following manner:
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min
x

f (x+δ ,p) (4.14)

s.t. g (x+δ ,p)≤0

In this formulation, the vector of design variables x is considered deterministic, but with a 

random variation term δ so that the probabilistic input value is described by x + δ. Then 

the  mean  and  variance  of  the  objective  function  f can  be  evaluated  by  (Beyer  and 

Sendhoff 2007):

μ f (x)=∫ f (x+δ ,p)P (δ ,p)d δd p (4.15)

σ f

2 (x)=∫ ( f (x+δ ,p))2
P (δ ,p)d δ d p−(μ f (x))2

(4.16)

P(δ, p) denotes the joint probability distribution function for  δ and  p.  The analytical 

evaluation of the integrals in Equations (4.15) and (4.16) is generally not possible, so 

numerical approximation is used in practice (Beyer and Sendhoff 2007).

The general robust optimization statement using the mean and variance as metrics 

is (Yao et al. 2011)

min
x

F (μ f (x , p) ,σ f (x , p)) (4.17)

s.t. g (x ,p)≤0

where  F is a new objective function in terms of the mean and standard deviation (or 

variance).  The simplest  form  of  F  is  a weighted sum which is  the form used in this 

research; then the robust objective function Rf for an objective function f is defined as

Rf (x) = af (x) + (1 – a)f (x) (4.18)

where  a is  a  weighting  parameter,  0  ≤  a ≤  1,  that  can  be  adjusted  for  the  relative 

importance of the mean and standard deviation for the particular application. 

The  robust  design  optimization  method  was  implemented  with  the  MDO 
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algorithm from Chapter 3. Although the robust design optimization method defined in 

this chapter describes single-discipline optimization, robust optimization can be applied 

to a multidisciplinary problem by transforming each of the discipline objective functions 

according to Equation (4.18).  

4.2 Preliminary Design of  a Bulk Carrier

The design process for a ship is typically divided into four phases, in order of 

increasing detail: concept design, preliminary design, contract design, and functional (or 

detail)  design.  The  purpose  of  the  first  design  phase,  concept  design,  is  to  perform 

feasibility studies and identify a design that satisfies the design requirements, without 

necessarily performing detailed analyses (Gale 2003). This level of design is suitable for 

study in multidisciplinary design optimization because detailed engineering analysis is 

not  required;  instead,  regression  equations  and  empirical  models  that  are  simple  to 

evaluate can be used to predict the design's performance.

 Sen and Yang (1998) developed a multiobjective model for the concept design of 

a bulk carrier. Sen  and  Yang's  model  for  the  bulk  carrier  design  is  a  collection  of 

empirical  and regression models,  with a  focus on economic aspects  of  the design.  A 

further economic analysis of the design can be found in Hunt and Butman (1995). Details 

on the development of the bulk carrier model are available in Scher and Benford (1980). 

 The  optimization  of  the  bulk  carrier  concept  design  has  been  studied in  the 

literature. Parsons and Scott (2004) applied a multicriterion design optimization approach 

to the bulk carrier model. Ray and Smith (2006) utilized neural networks to reduce the 

computational effort of the optimization. Hart and Vlahopoulos (2010) implemented a 
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particle swarm optimizer to perform multidisciplinary design optimization of the bulk 

carrier. Xuebin (2009) performed optimization of the mutltiobjective bulk carrier model 

using multiple attribute decision making (an approach for evaluation of preference among 

Pareto-optimal solutions). 

4.2.1 Bulk Carrier Model Definition

In Sen and Yang's (1998) model, the ship is described by six design variables: 

length  L,  beam  B,  depth  D,  draft  T,  block  coefficient  CB,  and  speed  Vk.  The  design 

variables are used to evaluate the three objective functions: lightship weight  LS, annual 

cargo AC, and transportation cost TC. The problem also includes nine constraints. Table 

4.1 shows the mathematical  formulation for  the  objective functions,  design variables, 

constraints, and other calculations used in this study of the bulk carrier design. 

The goal of the multidisciplinary design optimization for the bulk carrier is to 

solve the problem

min LS(x)                        min AC(x)                      min TC(x) (4.19)

subject to g(x) ≤ 0          subject to g(x) ≤ 0          subject to g(x) ≤ 0

where x is the vector containing the design variables, x = (L, B, D, T, CB, Vk), and g is the 

vector containing all of the constraints (defined in Table 4.1).  
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Table 4.1. Bulk carrier model definition, from Sen and Yang (1998).

Objective Functions: Design Variables: 

Lightship Weight (t)  LS = WS + WO + WM Length, L (m) 150 ≤ L ≤ 274.32

Annual Cargo (t/yr)  AC = DWCRTPA Beam, B (m) 20 ≤ B ≤ 32.31

Transportation Cost (₤/yr) TC =
C A

AC

Depth, D (m) 13 ≤ D ≤ 25

Draft, T (m) 10 ≤ T ≤ 11.71

Block Coefficient, CB 0.63 ≤ CB ≤ 0.75

Ship Speed, Vk (knots) 14 ≤ Vk ≤ 20

Constraints:

Length-to-beam ratio
L

B
≥6

Length-to-depth ratio
L

D
≤15

Length-to-draft ratio
L

T
≤19

Froude number  Fn ≤ 0.32

Deadweight  25,000 ≤ DW ≤ 500,000

Empirical constraint on T and DW  T – 0.45DW0.31 ≤ 0

Empirical constraint on T and D  T – 0.7D – 0.7 ≤ 0

Empirical constraint for stability 0.07 B−0.53 T−
(0.085C B−0.002)B

2

TC B

+1+0.52 D≤0

Calculations for Model:

Steel Weight  WS  = 0.034L1.7B0.7D0.4CB
0.5

Outfit Weight  WO = L0.8B0.6D0.3CB
0.1

Coefficient for P Calculation  a = 4977.06CB
2 – 8105.61CB + 4456.51

Coefficient for P Calculation  b = -10847.2CB
2 + 12817CB – 6960.32

Froude Number Fn=
0.5144V k

√9.8065 L
Displacement  Δ = 1.025LBTCB

Power P=
∆2 /3

V k

3

a+b⋅Fn

Machinery Weight  WM = 0.17P0.9

Deadweight  DW = Δ – LS

Daily Fuel Consumption  DC=0.2+0.19×24

1000
P

Sea Days  D
S
= 5000

24 V
k

Fuel Carried  FC = DC(DS + 5)

Crew, Stores, and Water  CSW = 2DW0.5

Cargo Deadweight  DWC = DW – FC – CSW

Port Days  D P=2
DW C

8000
+1

Round Trips per Year  RTPA= 350

D
S
+D

P

Ship Cost  CS = 1.3(2000WS
0.85 + 3500WO + 2400P0.8)

Capital  C = 0.2CS

Running Cost  CR = 40000DW0.3

Voyage Cost  CV = 1.05DCDS100 + 6.3DW0.8

      Annual Cost    CA = C + CR + CVRTPA
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4.2.2 MDO Without Uncertainty

The MDO algorithm presented in Chapter 3 was applied to the bulk carrier design 

problem given in Equation (4.19). When the model is defined as in Table 4.1, there is no 

uncertainty in the design variables and parameters; solution of this MDO problem gives a 

baseline for comparison to other results. The results are listed in Table 4.2 in the column 

labeled “Deterministic Optimum.” 

Table 4.2. Summary of results from multiple MDO analyses.

Deterministic

Optimum

Reliable 

Optimum

Reliable & Robust 

Optimum

Transportation Cost 8.424 8.635 8.838

Annual Cargo 506,320 550,140 566,690

Lightship Weight 8,198 8,803 8,462

L 188.90 193.86 182.61

B 31.485 32.310 30.435

D 15.729 15.364 15.729

T 11.710 11.455 11.710

CB 0.630 0.657 0.750

Vk 14.000 15.027 15.027

Because the purpose of the reliability analysis is to study the effect of uncertainty 

on the constraints, the properties of the constraints were evaluated at the deterministic 

optimum. The results are listed in Table 4.3. The table shows that all of the constraints are 

satisfied at the deterministic optimum (as expected), and also that several constraints are 

active: the minimum length-to-beam ratio, the deadweight constraint based on draft, and 

the draft-depth relation.
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Table 4.3. Constraint evaluation using deterministic design optimization.

Constraint Constraint Value
L

B
≥6 6.0000

L

D
≤15 12.010

L

T
≤19 16.131

Fn ≤ 0.32 0.167

25,000 ≤ DW ≤ 500,000 36,775

T – 0.45DW0.31 ≤ 0 6.05210-4

T – 0.7D – 0.7 ≤ 0 2.24310-14

0.07 B−0.53 T−
(0.085C B−0.002)B

2

TC B

+1+0.52 D≤0 -1.751

4.2.3 MDO with Reliability-Based Design

The  next  step  in  the  bulk  carrier  optimization  was  to  introduce  uncertainty. 

Uncertainty was included in the bulk carrier model in two ways: uncertainty in a design 

variable and uncertainty in a parameter. Uncertainty in a design variable was introduced 

for the ship speed. For a selected design ship speed Vdesign, the actual ship speed follows a 

normal distribution about Vdesign; that is, 

Vactual = Vdesign + v (4.20)

where Vactual is the actual ship speed and v is a normally distributed random variable with 

zero mean. The uncertainty in the ship speed was defined in this manner to agree with the 

form of  Equation (4.14).  The physical  situation that  Equation (4.20)  describes  is  the 

variance v from the intended ship speed Vdesign due to sea conditions or other factors. For 

this analysis,  v follows a normal distribution with zero mean and standard deviation of 

0.5 knots. 

Next, uncertainty in a parameter was introduced in the model. The model defined 

by Sen and Yang (1998) as given in Table 4.1 uses the following regression equation to 
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calculate the steel weight WS of the ship:

WS = 0.034L1.7B0.7D0.4CB
0.5 (4.21)

To apply uncertainty in a parameter to this model, the exponent on the ship length L is 

considered to be a random parameter, ε:

WS = 0.034LB0.7D0.4CB
0.5 (4.22)

For  this  analysis,  the  parameter  ε follows  a  normal  distribution  with  mean  1.7  and 

standard deviation 0.05.

There  are  five  total  constraints  affected  by  these  uncertainties.  The  simplest 

constraints  are  the  upper  and  lower  limits  on  the  ship  speed.  The  other  constraints 

affected by the uncertainties  (repeated from Table  4.1)  are  the  constraints  on Froude 

number Fn and deadweight DW:

Fn ≤ 0.32 (4.23)

25,000 ≤ DW ≤ 500,000 (4.24)

T – 0.45DW0.31 ≤ 0 (4.25)

The multidisciplinary optimization was run including the uncertainty in Vk and ε 

and the results are included in Table 4.2. A 98% reliability level was prescribed for the 

probabilistic constraints. 

It is immediately clear that the performance in all three objectives at this selected 

optimum is inferior to the performance at the deterministic optimum. This is expected 

because a safety margin has been introduced in order to satisfy the constraints in the 

presence of uncertainty. The constraints were evaluated at the optimum point and the 

values  are  shown  in  Table  4.4;  the  constraints  that  are  affected  by  uncertainty  are 
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indicated with a check mark in the column labeled “Uncertainty.” Two constraints are 

active:  the  constraint  on  the  minimum length-to-beam ratio  and  the  draft  and  depth 

relation. The constraints which are affected by uncertainty are not active; the constraint 

on  the  Froude  number  and  the  bounds  on  the  deadweight  were  not  active  in  the 

deterministic  solution  so  it  is  not  surprising  that  they  are  not  active  in  the  reliable 

solution. However, the constraint on the relationship between the draft and deadweight 

was active in the deterministic solution but now has an appropriate margin to account for 

the variability in the ship speed Vk and exponent ε.

Table 4.4. Constraint evaluation using reliability-based design optimization.

Constraint Constraint Value Uncertainty
L

B
≥6 6.000

L

D
≤15 12.618

L

T
≤19 16.924

Fn ≤ 0.32 0.177 
25,000 ≤ DW ≤ 500,000 39,435 
T – 0.45DW0.31 ≤ 0 -0.511 
T – 0.7D – 0.7 ≤ 0 -2.02010-14

0.07 B−0.53 T−
(0.085C B−0.002)B

2

TC B

+1+0.52 D≤0 -2.289

4.2.4 MDO with Reliability and Robust Design

The  final  step  in  the  bulk  carrier  optimization  was  to  include  robustness. 

Uncertainty was considered in the design variable Vk and the parameter ε as described in 

Section 4.2.3. 

The  robust  objective  function  from Equation  (4.18)  was  scaled  to  define  the 

robust objective function for each objective function f  in the bulk carrier example:
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R f (L , B , D ,T , CB , V k )=a
μ f (L ,B , D ,T ,CB ,V k)

f 0

+(1−a )
σ f (L , B , D ,T ,C B ,V k )

σ0

(4.26)

The mean μf and standard deviation σf are evaluated at the design point (L,  B,  D,  T,  CB, 

Vk). The variance is scaled by σ0, the value of the variance at the initial point. The mean is 

scaled by  f0, the value of the objective function f at the initial point (not the mean value 

at the initial point) to allow comparison between the robust optimization results and the 

other results.

To calculate the necessary mean and standard deviation,  Equations (4.15)  and 

(4.16) are used with the two random variables v and ε. Then the equations become:

μ(L ,B ,D ,T ,CB ,V k )=∬ f ( L , B ,D,T ,C B ,V k+v ,ε ) p(v ,ε )dvdε (4.27)

σ2(L, B, D, T, CB, Vk) = (4.28)

∬ f (L , B ,D ,T ,C B ,V k+v ,ε )2
p(v ,ε )dv dε−μ( L ,B ,D ,T ,C B ,V k )

2

where f is any of the objective functions and p(v, ε) is the joint PDF for v and ε. The ship 

speed variation and the exponent are assumed to be independent, so the equations become

μ(L ,B,D ,T ,C B,V k )=∬ f (L ,B,D ,T ,C B ,V k+v ,ε ) pv(v) pε (ε )dvdε (4.29)

σ2(L, B, D, T, CB, Vk) = (4.30)

∬ f ( L, B ,D,T ,CB ,V k+v ,ε )2
pv(v )pε(ε )dvdε−μ( L,B ,D ,T ,CB ,V k )

2

where pv(v) and p() are the PDFs for v and , respectively.

The integrals  are evaluated numerically  during the optimization.  Each PDF is 

integrated over ±4σ to cover approximately 99.99% of the area under the normal curve. 

The numerical  integration is  performed using 200 points  in each random variable,  or 

40,000 points total over the integrand. The effect of increasing or decreasing the number 

of  points  was  investigated  and  it  was  found  that  200  points  led  to  a  satisfactory 
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compromise of computation time and accuracy. Additionally, the results of the integration 

were compared to a simple Monte Carlo simulation, which randomly placed 1000 points 

in the design space according to the distributions of  v and  ε.  The mean and variance 

resulting  from  the  Monte  Carlo  simulations  confirmed  the  results  of  the  numerical 

integration. 

The robust and reliable optimization was performed using the parameter value a = 

0.5 and the results are included in Table 4.2. The constraints at the robust and reliable 

optimum were evaluated and are included in Table 4.5. All of the constraints are satisfied, 

with two of the constraints active:  the constraint  on the length-to-beam ratio and the 

empirical  constraint  on  the  draft  and  depth.  The  safety  margins  introduced  in  the 

constraints are comparable to the margins in the probabilistic constraints of the MDO 

reliability analysis. However, the margins differ because in the current case the optimum 

has shifted due to the robust considerations. 

 Table 4.5. Constraint evaluation using reliable and robust optimization.

Constraint Constraint Value Uncertainty
L

B
≥6 6.000

L

D
≤15 11.610

L

T
≤19 15.595

Fn ≤ 0.32 0.183 
25,000 ≤ DW ≤ 500,000 41,569 
T – 0.45DW0.31 ≤ 0 -0.453 
T – 0.7D – 0.7 ≤ 0 2.24310-14

052.01
)002.0085.0(

53.007.0
2




 D
TC

BC
TB

B

B
-1.410

To  study  the  effects  of  the  robust  optimization  on  the  optimum  design,  the 

statistics at the three different optima were computed; Table 4.6 summarizes the statistics 
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for  the  three  optimization  approaches.  The  deterministic  optimum  shows  the  best 

performance for the transportation cost (the top level objective) and the lightship weight. 

However,  for  the  deterministic  case,  without  the  consideration  of  uncertainty  in  the 

constraints,  it  is unlikely that the constraints would be satisfied when considering the 

uncertainty of the ship speed  Vk and exponent  ε.  For the robust and reliable case, the 

standard deviation has been reduced from the reliable case for all three of the objective 

functions. 

Table 4.6. Statistics for MDO results in the bulk carrier example.

Deterministic

Optimum

Reliable 

Optimum

Robust & Reliable 

Optimum (a = 0.5)

Transportation Cost 8.4240 8.6351 8.8380

Transportation Cost Mean 8.5401 8.7523 8.9472

Transportation Cost Standard Deviation 0.7174 0.7241 0.6792

Annual Cargo 506,320 550,140 566,690

Annual Cargo Mean 503,650 547,300 564,160

Annual Cargo Standard Deviation 20,504 21,022 19,266

Lightship Weight 8,198 8,803 8,462

Lightship Weight Mean 8,434 9,137 8,698

Lightship Weight Standard Deviation 1,858 2,012 1,857

4.2.5 Optimization Under Uncertainty Results

The  bulk  carrier  design  problem  was  first  solved  using  deterministic 

multidisciplinary  design  optimization;  this  solution  does  not  consider  any  sources  of 

uncertainty. The resulting solution was (L,  B,  D,  T,  CB,  Vk) = (188.90, 31.485, 15.729, 

11.710, 0.630, 14.000). However, if the ship speed Vk and parameter ε include uncertainty 

with  the  properties  given  in  Section  4.2.3,  a  simple  Monte  Carlo  simulation  can  be 

performed to generate  random realizations  of  the  ship design about  the  deterministic 

optimum design.  For  a Monte Carlo simulation of  10,000 randomly generated points 

about the deterministic optimum, only 2,424 satisfied all of the constraints. 
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To  illustrate  the  effect  of  selecting  a  reliable  optimum,  the  reliable  design 

optimum design  was  (L,  B,  D,  T,  CB,  Vk)  =  (193.86,  32.310,  15.364,  11.455,  0.657, 

15.027). When a Monte Carlo simulation was performed to generate random realizations 

about  the  reliable  optimum  design,  9,574  out  of  10,000  randomly  generated  points 

satisfied  all  of  the  constraints.  This  is  a  very  significant  improvement  over  the 

deterministic case. 

For the reliable and robust optimum design (L, B, D, T, CB, Vk) = (182.61, 30.435, 

15.729, 11.710, 0.750, 15.027), 9,595 out of 10,000 randomly generated points satisfied 

all of the constraints in the presence of uncertainty. The results for the reliable optimum 

and the robust and reliable optimum are reasonable for the 98% reliability level used in 

the analysis. 

To visualize the results, the values of the objective functions at the optima can be 

plotted. A simple Monte Carlo technique was used to approximate the Pareto front for 

this problem (while inefficient, this method was selected for its simplicity because the 

purpose of this work was not to find the Pareto front). The optima are shown in two plots 

in Figure 4.3: the deterministic optimum is shown in blue, the reliable optimum is shown 

in red, and the robust and reliable optimum is shown in green. 

In  Figure  4.3,  the  objective  functions  are  scaled  so  that  all  of  the  objective 

functions have a magnitude of one at the initial point (L, B, D, T, CB, Vk) = (195, 32.31, 

20, 10.5, 0.7, 16). Figure 4.3(a) shows the scaled values of all three objective functions, 

and Figure 4.3(b) shows the scaled annual cargo  versus the scaled transportation cost. 

Figure  4.3  demonstrates  that  the  MDO  algorithm  selects  ship  designs  that  perform 

relatively  well  because  the  optima  lie  on  or  near  the  Pareto  front.  Additionally,  the 
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algorithm seeks to reduce the top level objective as much as possible (transportation cost) 

while the discipline level objectives are not as important.
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Fig. 4.3. Approximate Pareto front with optima for the MDO of the bulk carrier concept design: (a) Plot 

showing all three objectives' axes, (b) Plot with two-dimensional projected view. 

4.3 Chapter Summary

In this chapter, two methods for accounting for uncertainty in multidisciplinary 

design optimization were integrated in the MDO algorithm with target values: reliability-

based  design  optimization  and  robust  optimization.  The  purpose  of  reliability-based 

design optimization is to ensure that realizations of the optimum satisfy the constraints 

with a prescribed probability. The purpose of robust design optimization is to ensure that 

the performance of objective function at the optimum does not deteriorate significantly. 

Reliability-based design optimization and robust optimization were applied to an MDO 

problem for  the  concept  design of  a  bulk  carrier;  the  problem was  solved using the 

multidisciplinary design optimization algorithm presented in Chapter 3. 

This  research  demonstrated  that  techniques  for  accounting  for  uncertainty  in 
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design optimization can be applied to the MDO algorithm presented in Chapter 3, and 

that  the MDO algorithm with uncertainty can be effectively utilized in a ship design 

problem.
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CHAPTER 5

Surrogate Models in Multidisciplinary Design Optimization

Functions that are computationally expensive to evaluate present a challenge in 

design optimization,  because  the  iterative  and often  complex process  of  optimization 

requires  many  function  calls.  As  functions  become  more  expensive,  the  cost  of  the 

optimization increases, requiring increasingly long computation times. The problem of 

the high cost of optimization is common in complex engineering analysis codes such as 

computational fluid dynamics (CFD) or finite element analysis (FEA), where a single 

evaluation may take hours or even days. The situation becomes even more challenging 

for  multidisciplinary  design  optimization,  where  multiple  discipline  optimization 

problems must be solved repeatedly. 

Surrogate models (also called metamodels or response surfaces) are mathematical 

interpolation  models  that  approximate  the  behavior  of  expensive  functions  with 

acceptable accuracy at a reduced computational cost.  Surrogate models are developed 

from a limited number of function evaluations at specific sample points; once surrogate 

models  are  available  they  can  be  used  to  replace  the  true  functions  during  the 

optimization process.

This  chapter begins with the mathematical  background for several  commonly- 

used  surrogate  modeling  techniques,  including  Kriging,  the  technique  used  in  this 
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research. A discussion on the use of surrogate models in optimization from the literature 

follows. Finally, the multidisciplinary optimization of a ship’s hull form is performed; the 

hull form is evaluated with computationally expensive solvers, so surrogate models are 

developed and utilized instead of the actual solvers during the optimization. 

5.1 Surrogate Models

Surrogate  models  are  useful  in  cases  where  the  function  of  interest  is  not 

explicitly known (a “black box”) or where the function is very expensive to evaluate. The 

goal of the surrogate model is to define an expression for the function that is relatively 

simple  to  evaluate,  but  still  adequately  accurate.  In  this  section,  brief  mathematical 

background information on several of the most commonly used types of surrogate models 

is  reviewed.  Before  presenting  mathematical  details,  the  notation  used  in  surrogate 

modeling techniques is defined in this section. 

Forrester,  Sóbester,  and  Keane  (2008)  provide  a  guide  on  the  procedure  of 

constructing surrogate models. The first step in creating a surrogate model is to select the 

variables that will be used as inputs; define the vector of input variables as x, which has k 

elements. Let  f   be the true function which determines the performance of interest as a 

function of x: f (x). 

The second step is to select a set of sample points; this process is called design of 

experiments.  The  task  of  selecting  appropriate  sample  points  is  not  trivial,  however, 

design of experiments will not be covered in this dissertation; see Kleijnen (1998) for an 

introduction to design of experiments. Let  x(i) be the input values selected for sample 

point i. Then the true function is evaluated at each sample point: y(i) = f (x(i)). 
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The  next  step  is  to  select  a  surrogate  modeling  technique.  Each  surrogate 

modeling technique uses parameters to describe the behavior of the function f, and values 

for  the  parameters  can  be  determined  based  on the  sample  data  {x(i),  y(i)}.  Once  the 

surrogate model has been built, the surrogate model for f (x) is denoted f̂ (x) .

The notation for surrogate models used in this chapter is summarized in Table 5.1. 

Table 5.1. Summary of notation for surrogate models.

 k number of input variables

 xi (scalar) input variable with index i = 1, …, k

 x vector of input variables, x∈ℜk

 n number of sample points

 x(i) input variables for a sample point with index i, i = 1, …, n

 y(i) value of the true function at sample point x(i)

 y vector of the true function values at sample points y(i), y∈ℜn

 f true function 

f̂  surrogate model for function f

The remaining portion of Section 5.1  provides an introduction to several popular 

surrogate  modeling  techniques.  This  brief  mathematical  introduction  begins  with  the 

simplest  surrogate  modeling technique  and then  describes  techniques  with  increasing 

complexity.  The final  technique  is  Kriging which is  presented in  detail  because  it  is 

utilized  later  in  this  work.  The  purpose  of  providing  information  on  other  surrogate 

modeling techniques is to gradually build up from the simpler techniques to the more 

complex, and to provide a basis for comparison to the Kriging method. 
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5.1.1 Linear Least Squares (Polynomial) Regression

A polynomial model can be formulated in the following general form: 

f̂ (x)=β0+∑
i=1

k

βi x i+∑
i =1

k

βii xi

2+∑
i

∑
j

βij x i x j+⋯ (5.1)

where  βi are model-fitting parameters. The expression in Equation (5.1) is quadratic in 

the input variables xi, but it may be expanded to include higher order terms. For the least 

squares  regression, β is  an  (m +  1)×1  vector  that  contains  all  of  the  parameters  in 

Equation (5.1), where m + 1 is the number of coefficient parameters. 

Let  X be  the  n×(m +  1)  matrix  that  contains  the  design variable  information 

corresponding to Equation (5.1), with one row per sample point; that is, each row i is of 

the form:

[1  x1
(i) … xk

(i)  (x1
(i))2 … (xk

(i))2  x1
(i)x2

(i) …] (5.2)

Then the least squares estimate β̂  for β is given by Kleijnen (2009)

β̂=(X
T
X)−1

X
T
y (5.3)

The estimate β̂  can be used in place of β in Equation (5.1) to estimate the response at a 

new point x. 

The least squares estimate determines the values of β̂  to minimize the sum of the 

squares  of  the  error  between  the  true  sample  point  responses  y(i) and  the  predicted 

responses f̂ (x
(i))  (Papalambros and Wilde 2000). 

The least squares regression does not require that the regression equation be a 

polynomial in x, even though polynomials are the most common. The only requirement 

for Equation (5.3) to hold is that the expression in Equation (5.1) must be linear in β; one 

could, for example, have terms of the form βiln(xi). 
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5.1.2 Neural Networks

Neural networks utilize a network of simple functions called nodes to build a 

surrogate model.  One common model for node behavior is a logsig sigmoid function 

(Papalambros and Wilde 2000):

logsig (z1 ,... , zm)= 1

1+exp (b−∑ w i z i)
(5.4)

where b is called the bias for the node and wi are weights for the inputs zi. 

The nodes are arranged in the network in layers, usually three: the input layer, a 

hidden layer, and the output layer (Chen et al. 2006). The input layer node(s) take the 

input variables x as inputs. The outputs from the input layer nodes are used as input for 

the hidden layer nodes. Finally, the output from the hidden layer is input to the output 

layer  node(s),  and  the  output  layer  returns  the  approximation  f̂ (x) .  Values  for  the 

parameters (biases  b and weights  wi) can be determined by minimizing the sum of the 

squares of the error in the prediction at the sample points (Papalambros and Wilde 2000).

5.1.3 Radial Basis Functions

The  radial  basis  function  model  takes  the  form (Chen  et  al.  2006;  Forrester, 

Sóbester, and Keane 2008):

f̂ (x)=β0+∑
i=1

m

βi b(∥x−c
(i )∥) (5.5)

where βi are coefficients, b is a basis function, and c(i) are centers for the basis function. 

The centers c(i) can be chosen as the sample points: c(i) = x(i). The most common choices 

for the basis function b are

• linear: b(z) = z
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• cubic: b(z) = z3

• thin plate spline: b(z) = z3 ln(z)

• Gaussian: b(z) = exp(-z2/(2σ2))

• multi-quadratic: b(z) = (z2 + σ2)1/2

• inverse multi-quadratic: b(z) = (z2 + σ2)-1/2 

The  last  three  basis  functions  listed  include  an  additional  parameter  σ  for  improved 

model-fitting. 

Once a  basis  function has been selected,  values for  the  coefficients  βi can be 

determined by minimizing the sum of the squares of the error of the prediction at the 

sample points (Forrester, Sóbester, and Keane 2008). 

5.1.4 Kriging

The Kriging method is employed in this work for constructing surrogate models. 

A number of reviews (Chen et al. 2006; Kleijnen 2009; Simpson et al. 1998; Simpson et 

al. 2001; Wang and Shan 2007; Zhao and Xue 2010) have compared Kriging to other 

surrogate modeling techniques, including linear regression, MARS, neural networks, and 

radial basis functions. In general, the reviews found that while Kriging models can be 

complex to build and evaluate, Kriging models provide accurate predictions and are very 

flexible, that is, they can model a wide range of function behavior. Another advantage of 

the Kriging method is that Kriging models return the true value at sample points (Kriging 

is  an  exact  interpolator);  this  is  the  preferred  behavior  for  surrogate  models  for 

deterministic functions. 

The  mathematical  approach  for  Kriging  shown  here  is  based  on  Sacks  et  al. 

(1989) and Martin and Simpson (2005). The fundamental idea of Kriging is to model the 

response of the function as the sum of a simple regression model and a stochastic process. 
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The Kriging model f̂ (x) for the true response f (x) is

f̂ (x )=∑
i=1

m

βi b i(x)+Z (x)=b(x)T β+Z (x) (5.6)

where  the  summation  term is  a  regression  model  using  regression  functions  bi. Z(x) 

represents a stochastic process which is assumed to have zero mean and a covariance 

given by

Cov(Z(x), Z(w)) = σ2R(x, w) (5.7)

where σ2 is the process variance. R(x, w) is the spatial correlation function for two points 

x and  w;  the  spatial  correlation function describes  the  smoothness  of  the  model  and 

controls the influence that nearby points have on each other.  

One  of  the  most  common  choices  for  the  spatial  correlation  function  is  the 

Gaussian spatial correlation function (used in this work):

R(x ,w)=∏
i =1

k

exp(−θi∣xi−w i∣
2) (5.8)

where  xi and  wi indicate  the  ith elements  of  the  vectors  x and  w,  respectively.  The 

parameter θ affects the influence points have on other nearby points. 

The next step in creating a Kriging model is to train the model using sample data. 

Let x(i), i = 1, …, n, be the input for the sample points, and let y be the vector of length n 

that contains the true values of f(x(i)) for the sample points. Define the n×m matrix F as 

the regression functions b evaluated at the sample points:

F=(b(x1)
T

⋮
b(xn)

T) (5.9)

Define R as the n×n matrix of correlations for the sample points, R(x(i), x(j)).
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Next,  the parameters  for  the  model  can be determined.  The generalized least-

squares estimate of β is given by

β̂=(FT
R

−1
F)−1(F

T
R

−1
y) (5.10)

and the maximum likelihood estimate of σ2 is

σ̂2= 1

n
(y−F β̂)T

R
−1(y−Fβ̂) (5.11)

This work uses ordinary Kriging, a common special case of Kriging, where the 

regression functions  b(x) are taken to be a constant term. Then only one value of  θ is 

necessary to fit the model, and the maximum likelihood estimate of  θ is given by the 

maximization of the following quantity with respect to θ (Sasena 2002):

−1

2
(n ln (σ̂2)+ln(det R)) (5.12)

The final step is to use the Kriging model to predict the response at a new point, 

x. Define the vector  r(x) of length  n as the correlation between the new point and the 

sample points:

r(x) = [R(x(1), x) … R(x(n), x)]T (5.13)

The best linear unbiased predictor (BLUP) for the performance at the new point  x is 

given by

f̂ (x )=b
T (x)β̂+r

T(x )R
−1(y−F β̂) (5.14)

5.2 Surrogate Models in Optimization

Surrogate models can be a very powerful tool in optimization. Forrester, Sóbester, 

and Keane (2008) provide a readable, friendly introduction to the important concepts in 
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surrogate-based optimization. In particular, the authors point out that surrogate models 

are useful not only for approximating the objective function in an optimization problem, 

but also for constraints. Queipo et al. (2005) highlight the straightforward nature of this 

approach: once surrogate models are constructed, the optimization problem can be solved 

with any popular optimization technique by simply replacing the functions with their 

surrogates. 

Wang and Shan (2007) discuss three different strategies for the use of surrogate 

models  in  optimization:  sequential,  adaptive,  and  direct  sampling.  In  the  sequential 

approach,  sample  points  are  selected  and  the  surrogate  model  is  constructed  before 

beginning  the  optimization.  In  the  adaptive  approach,  validation  (and  possibly  some 

optimization)  is  included  during  construction  of  the  surrogate  model;  the  validation 

and/or optimization are used to determine new sample points which update the surrogate 

model iteratively. In the direct sampling approach, the surrogate model is used only to 

determine new sample points while moving toward the optimum (optimization is based 

on the sample point evaluations not the surrogate model predictions). In this work, the 

traditional sequential approach is used. 

Three  very  thorough  review  articles  (Forrester  and  Keane  2009;  Jones  2001; 

Queipo et al. 2005) provide further technical information on sampling schemes, popular 

surrogate  modeling  techniques,  and  evaluation  of  surrogate  model  accuracy  for  the 

support of surrogate-based optimization. 

Techniques  for  the  use  of  surrogate  models  in  design  optimization  are  also 

applicable in MDO. Surrogate models are valuable in MDO because MDO problems 

include more functions to evaluate, giving a greater potential for computational cost and 
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time savings. Wang and Shan (2007) highlight the value of surrogate models for MDO, 

because  MDO typically  uses  a  large  number  of  design variables,  expensive  function 

evaluations, and coupling between disciplines. 

Many  specific  technical  examples  of  the  application  of  surrogate  models  in 

optimization are available in the literature, which will be discussed in this section. The 

use of surrogate-based optimization in a wide range of fields demonstrates the versatility 

of the approach.

Wan (2004) applies surrogate-based optimization to supply chain management (in 

particular,  management  of  inventory);  Wan  uses  surrogate  models  that  are  updated 

iteratively  during  the  optimization  process  to  provide  better  local  estimation.  Glaz, 

Friedmann, and Liu (2008) use polynomial regression, radial basis functions, and Kriging 

surrogate  models  to  replace  an  aeroelastic  analysis  for  evaluating  vibrations  in  the 

optimization of a helicopter blade. Song et al. (2010) use response surfaces models and 

Kriging surrogate models to replace high-fidelity finite element methods analyses for the 

optimization of an automotive suspension component. 

Surrogate-based  optimization  has  also  been  used  in  multidisciplinary  design 

optimization.  Jouhaud  et  al.  (2007)  use  the  Kriging  method  for  a  multidisciplinary 

optimization of a foil geometry with aeroelastic analysis and acoustic analysis. Queipo et 

al.  (2005)  study  the  multiobjective  optimization  of  a  liquid  rocket  injector  using 

polynomial regression models, with the objectives of optimizing performance and life. 

5.3 Ship Hull Form Optimization 

The multidisciplinary design optimization of a ship hull form, with the use of 
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surrogate models, is presented in this section. The goal of this study is to demonstrate that 

the  MDO  framework  presented  in  Chapter  3  can  effectively  incorporate  surrogate 

models, which can produce accurate predictions and successfully optimize a design. 

A container  ship hull  form was selected for  this  analysis.  This  hull  form was 

selected  because  a  full  model  of  the  hull  geometry  was  readily  available  (from the 

website  for  the  commercial  naval  architecture  software  MaxSurf, 

www.formsys.com/maxsurf).  The  hull  geometry  model  greatly  facilitated  the 

computational fluid dynamics analysis. The parent hull form had the following principal 

dimensions:  length  L =  111.19  m,  beam  B =  19.5  m,  draft  T =  7.24  m,  and  block 

coefficient Cb = 0.71. 

5.3.1 Problem Definition

The  hull  form is  described  by  three  design  variables:  molded  ship  length  L, 

length-to-beam ratio L /B, and beam-to-draft ratio B/T. The lower and upper bounds of the 

design variables are summarized in Table 5.2. The selection of L, L/B, and B/T as design 

variables offers a practical advantage over the use of the dimensions L, B, and T as design 

variables: the upper and lower bounds on  L/B and  B/T enforce the constraints on these 

defined by Watson (1998).

Table 5.2. Lower and upper bounds of the design variables

Design Variable Lower Bound Upper Bound

L (m) 151.957 205.589

L/B 5.00 8.00

B/T 2.25 3.75
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All disciplines included two constraints (upper and lower bound) on the block 

coefficient Cb to ensure that the geometry remained reasonable. The displacement Δ of the 

ship  was  set  constant  and  equal  to  38,500  tonnes;  then  the  block  coefficient  was 

computed from the constant displacement requirement:

Cb=
∆

γ LBT  (5.15)

where γ is the weight density of sea water.

The average (mean) value of the block coefficient Cbm can be estimated based on 

the operational speed requirement from Watson (1998):

Cbm=0.70+0.125 tan
−1(23−100 Fn

4 )  (5.16)

where Fn is the Froude number, defined as

Fn= V

√ gL
(5.17)

V is the ship speed (in m/s); in this analysis, the ship speed was held constant at 19 knots. 

Watson  (1998)  recommends  an  allowable  variation  margin  of  0.025  from the 

mean for the block coefficient. To ensure compatibility for the block coefficient values in 

Equation (5.16), two constraints were specified in all of the optimization statements: 

Cbm – 0.025 ≤ Cb ≤ Cbm + 0.025 (5.18)

A very simple cost regression model from Parsons (2003) was employed to define 

the  top  level  objective  function.  The  cost  model  considered  the  effects  of  the  main 

principal dimensions on capital cost, and is given by

cost=100(1.03
L

L0

+0.78
B

B0

+0.18
Cb

Cb0
)  (5.19)
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where L0, B0, and Cb0 are the initial values for the length, beam, and block coefficient. 

Three disciplines  were  studied  in  the  multidisciplinary  design  optimization: 

seakeeping, maneuvering, and resistance. 

5.3.2 Seakeeping Discipline Analysis

The  seakeeping  analysis  utilizes  the  Seakeeping  Prediction  Program  (SPP) 

(Parsons, Li, and Singer 1998), which is  an  implementation of the SCORES Program 

(Raff 1972). This section presents an overview of the analysis performed by SPP.

In SPP, strip theory is used to approximate the hull’s inertia properties and the 

loading  from waves.  The  root-mean-square  (RMS)  responses  of  the  ship  due  to  the 

prescribed wave conditions are evaluated; this analysis focuses on the RMS response in 

heave and pitch. 

The equations of motion for heave z and pitch θ are given by

m z̈=∫
x s

xb

dZ

dx
dx+Zw

I Y θ̈ =−∫
x

s

x
b

dZ

dx
xdx+M w

(5.20)

where m is the mass of the ship, IY is the mass moment of inertia of the ship about the y 

axis,  dZ/dx is the local sectional vertical force on the ship, and Zw and Mw are the wave 

excitation force and moment on the ship. The limits xs and xb indicate integration from the 

stern to the bow. 
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The wave excitation is given by the integrals

Z w=∫
x s

xb dZ w

dz
dx

M w=−∫
x

s

x
b dZ w

dz
x dx

(5.21)

where

dZ w

dx
=−[ρ g B

∗η+(N z '−V
dA33 '

dx )η̇+ A33η̈]e
−k h̄

 (5.22)

B* is the waterline beam, η is the surface wave elevation, Nz' is the local sectional vertical 

damping force coefficient,  V is the ship speed,  A33' is the local sectional vertical added 

mass, k is the wave number, and h̄  is the mean section draft. 

The solution of  the differential  equations for  heave and pitch (Equation 5.20) 

yield  solutions of the following form:

z=z 0sin (ωe t+δ)
θ =θ 0 sin(ωe t+δ) (5.23)

where  ωe is  the  encounter  frequency.  The  RMS  responses  for  heave  and  pitch  are 

determined from Equation 5.23, and SPP evaluates and returns these values.

The objective of the seakeeping discipline was to minimize the maximum vertical 

movement  of  the  bow  when  the  pitch  and  heave  motions  are  synchronized.  The 

maximum bow movement Mmax is defined as

M max=max(RMS heave)+ L

2
max (RMS pitch ) (5.24)

SPP was used to evaluate the pitch and heave response of the ship in Sea State 4 using the 

ISSC spectrum. The heading angle was varied from 0º to 180º to estimate the heading 

where the worst seakeeping performance was encountered.
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Two additional constraints were introduced in the seakeeping discipline: the RMS 

heave amplitude must be less than 0.56 m and the RMS pitch amplitude must be less than 

0.55º. 

5.3.3 Maneuvering Discipline Analysis

The maneuvering analysis utilizes the Maneuvering Prediction Program (MPP) 

(Parsons, Li, and Singer 1998); calculations in MPP are based on the formulation from 

Clarke,  Gedling,  and  Hine  (1982).  This  section  presents  mathematical  background 

information on the maneuvering calculations performed by MPP.

The maneuvering analysis treats the ship as a rigid body with only three degrees 

of freedom: surge, sway, and yaw. Then the equations of motion can be written

X =m( u̇−rv−xG r
2)

Y =m( v̇+ur+xG ṙ )
N = I Z ṙ+mxG ( v̇+ru )

(5.25)

where  u and v are the longitudinal and lateral velocities, respectively, and  r is the yaw 

rate.  m is the mass of the ship,  Iz is the moment of inertia about midship, and xG is the 

location  of  the  center  of  gravity  (measured  from  midship).  X,  Y,  and  N are  the 

hydrodynamic forces and moments that act on the ship. 

For a linear analysis of Equation 5.25, only the terms linear in  u,  v,  r and the 

corresponding derivatives are considered. Then the hydrodynamic forces can be written

X = X u̇ u̇+ X u ∆u

Y =Y v̇ v̇+Y v v+Y ṙ ṙ+Y r r

N = N v̇ v̇+N v v+ N ṙ ṙ+N r r

(5.26)

where Δu is the perturbation velocity about a steady speed u0, and using the notation
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Y v=
∂ Y

∂ v
 (5.27)

and similarly for the other variables. Then the linear equations of motion become

( X u̇−m)u̇+ X u ∆ u=0

(Y v̇−m) v̇+Y v v+(Y ṙ−mxG) ṙ+(Y r−m u0)r=0

(N v̇−mxG) v̇+ N v v+( N ṙ−I z) ṙ+(N r−mxG u0)r=0

 (5.28)

where  u0 denotes a steady forward speed and  Δu is  the perturbation about the steady 

speed; that is, u = u0 + Δu. 

The first  equation in surge is decoupled from the equations in sway and yaw; 

however, the sway and yaw equations are coupled. The sway and yaw equations can be 

decoupled by writing them in the following form:

T 1 ' T 2 ' r̈ '+(T 1 ' +T 2 ') ṙ '+r '=K ' δ+K ' T 3 ' δ̇ '

T 1 ' T 2 ' v̈ '+(T 1 '+T 2 ' ) v̇ ' +v '=K v ' δ+ K v ' T 4 ' δ̇ '
   (5.29)

Equation 5.29 introduces the rudder angle δ; the effect of the rudder is to apply a side 

force and moment proportional to rudder angle. The prime superscripts indicate that the 

variables  are  written  in  nondimensional  form,  and  values  for  the  variables  can  be 

estimated using regression equations given by Clarke, Gedling, and Hine (1982). 

Finally, the solution to the decoupled equations of motion becomes: 

[v '
r ' ]=[v1

r1
]exp(− t '

T 1 ' )+[v2

r 2
]exp(− t '

T 2 ' ) (5.30)

where the coefficients v1, v2, r1, and r2 are constants determined by the initial conditions. 

The  solution  of  the  equations  of  motion  can be  used  to  evaluate  the  steady  turning 

diameter, advance, and tactical diameter for the ship. 

The ship’s maneuverability is also assessed using Clarke's turnability index. The 
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following equation describes the motion due to a rudder angle δ:

ψ(t )
δ =K '[1−(T

1
' +T

2
'−T

3
' )+

(T1' −T 3' )
(T1'−T 2 ')

T
1
' e

(− 1

T1' )−(T 2'−T 3' )
(T 1 '−T 2' )

T
2
' e

(− 1

T 2 ' )] (5.31)

where  ψ  describes  the  change  in  heading.  Clarke's  turnability  index  PC is  an 

approximation for ψ(t )/ δ  that can be used to evaluate the turning ability of the ship. 

Dynamic stability is assessed using the stability criterion C:

C = Yv'(Nr' – m'xG') – Nv'(Yr' – m) (5.32)

The stability criterion must be positive for the linear system to be stable. 

The objective of the maneuvering discipline was to minimize the steady turning 

diameter  of  the  ship,  subject  to  constraints  on  advance,  tactical  diameter,  Clarke’s 

turnability index, and the stability criterion. The advance was required to be less than or 

equal to 4.5 times the ship length. The tactical diameter was required to be less than five 

ship lengths. Clarke’s turnability index must satisfy PC ≥ 0.3, and the stability criterion 

must be positive (C > 0). 

5.3.4 Resistance Discipline Analysis

The resistance computations were performed with computational fluid dynamics 

(CFD) using  FLUENT software. The volume of fluid model in FLUENT was selected to 

solve the multiphase CFD problem, because the CFD model consists of two different 

phases:  water  and  air.  The  k-omega  shear-stress  transport  model  was  used  to  model 

viscosity. 

The CFD mesh was generated by using GAMBIT, the pre-processing software for 

FLUENT.  To  improve  the  numerical  stability  of  the  CFD  computation,  structured 
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hexahedral elements were used for the far field domain, while tetrahedral elements were 

used for the domain around the hull surface. Boundary layer elements on the hull surface 

were also modeled in order to account for the viscosity effects. A typical CFD model used 

in this work had 235,538 nodes and 428,629 elements. Figure 5.1 shows the CFD mesh 

of the computation domain. 

More than 12 hours were required for completing the CFD computation for a 

single hull form configuration using a Windows machine with a Pentium-4 3.40 GHz 

CPU and 2 GB 3.39 GHz RAM. This high computational cost illustrates the potential 

benefit of using surrogate models instead of the CFD solver within the optimization. 

(a)

(b)

Fig. 5.1. CFD mesh of the computation domain for resistance calculation; 

(a) CFD mesh of full domain, (b) CFD mesh near the hull surface.
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The objective of the resistance discipline was to minimize the resistance of the 

ship, where the resistance included both the wave-making resistance and the frictional 

resistance. No additional constraints were introduced in the resistance discipline. 

The entire ship MDO problem is summarized in Figure 5.2. 

Fig. 5.2. Summary chart of MDO process for the ship hull form optimization.

5.3.5 Construction of Surrogate Models

Surrogate models were used instead of the actual solvers to evaluate objective 

functions and constraints in all three discipline analyses. A surrogate model was used for 

the resistance discipline because of the prohibitively long computation time required for 

the CFD analysis. Surrogate models must be used for the seakeeping and maneuvering 
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Top Level Optimization

Design Variables: 

   L

   L/B

   B/T

Objective: Minimize cost function

Constraints:

   Cbm – 0.025 ≤ Cb

   Cb ≤ Cbm + 0.025

Maneuvering Discipline

Design Variables: 

   L

   L/B

   B/T

Objective: Minimize steady  

                  turning diameter

Constraints:

   Cbm – 0.025 ≤ Cb

   Cb ≤ Cbm + 0.025

   Advance ≤ 5L

   Tactical diameter ≤ 4.5L

   PC ≥ 0.3

   C > 0

Seakeeping Discipline

Design Variables: 

   L

   L/B

   B/T

Objective: Minimize maximum 

                  movement

Constraints:

   Cbm – 0.025 ≤ Cb

   Cb ≤ Cbm + 0.025

   max(RMS heave) ≤ 0.56

   max(RMS pitch) ≤ 0.55

Resistance Discipline

Design Variables: 

   L

   L/B

   B/T

Objective: Minimize resistance

Constraints:

   Cbm – 0.025 ≤ Cb

   Cb ≤ Cbm + 0.025



disciplines because of the practical limitation that MPP and SPP lack a batch mode; for 

these programs the data for each sample point must be input manually via the GUI.

For the maneuvering discipline, surrogate models were developed to evaluate the 

steady  turning  diameter,  advance,  tactical  diameter,  turnability  index,  and  stability 

criterion. For the seakeeping discipline, surrogate models were developed to evaluate the 

maximum  RMS  heave  and  maximum  RMS  pitch.  For  the  resistance  discipline,  a 

surrogate model was developed to evaluate the resistance. The input parameters to the 

surrogate models were the three design variables: length L, length to beam ratio L/B, and 

beam to draft ratio B/T . 

The first step in the development of the surrogate models was to evaluate data at a 

set of sample points. An optimal symmetric Latin hypercube algorithm was used to select 

the sample points. The seakeeping and maneuvering discipline surrogate models used 34 

sample points and the resistance discipline surrogate model used 31 sample points. The 

number of sample points (34) was selected based on practical time limitations for running 

the solvers; three of the CFD simulations did not converge in the resistance analysis so 

only 31 points were used to build the surrogate model for resistance. At each sample 

point, the actual solvers were used to evaluate the quantities of interest, and this set of 

data was used to build the surrogate models using the Kriging method.

The  accuracy  of  the  surrogate  models  was  tested  before  using  the  surrogate 

models in the optimization analysis. Two additional points were selected randomly; the 

actual  solvers  were  used  to  evaluate  the  performance  at  these  points  and  the  actual 

performance was compared to the surrogate model predictions. Table 5.3 compares the 

actual solver results and the surrogate model predictions for the two test points A and B, 
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defined in the top half of the table. The data show that the surrogate models provide good 

predictions for the responses of interest.  For test  point  A, only two responses have a 

percentage error with a magnitude greater than 5% (the stability criterion at 12.0%, and 

the maximum RMS pitch at 6.5%). For test point B, only one of the responses has a 

percentage error with a magnitude greater than 5% (the resistance at 5.9%). This indicates 

an acceptable level of accuracy in the surrogate models to proceed with the optimization. 

Table 5.3. Comparison of surrogate model predictions and actual solver results for two test points.

       Test Point A             Test Point B

L (m) 199.67         180.23       

L/B   6.766           6.038       

B/T   3.369           2.934       

Predicted: A Actual: A Predicted: B Actual: B

Advance (m) 762.18   759.79   705.47   703.41   

Tactical diameter (m) 967.31   962.31   906.52   902.52   

Turnability index PC 0.3168   0.3182   0.3380   0.3391   

Stability criterion C 1.5910-5   1.4210-5   3.0610-5   2.9610-5   

Steady turning diameter (m) 849.67   843.91   800.18   795.75   

Maximum RMS heave (m) 0.487   0.487   0.528   0.518   

Maximum RMS pitch (deg) 0.494   0.460   0.539   0.529   

Maximum movement (m) 1.348   1.288   1.376   1.350   

Resistance (kN) 1813.4   1755.0   2279.2   2152.6   

5.3.6 Hull Form Optimization Results

The  optimization  was  run  using  the  MDO algorithm presented  in  Chapter  3. 

Throughout  the  optimization,  the  expensive  objective  functions  and  constraints  were 

replaced with their surrogate models defined previously in this section. The optimization 

was started from an initial point that represented the original parent hull form; this was 

selected as  the  initial  point  because  it  was known to be feasible  and had reasonable 

performance characteristics. The values for the design variables, objective functions, and 
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constraints  are  shown  in  Table  5.4  for  the  initial  point  and  optimal  point.  The 

performance at the optimal point was also evaluated using the actual solvers; the actual 

solver results are included in Table 5.4 for comparison. (Note that the data for the initial 

point are from the actual solvers.)

Table 5.4. Comparison of initial point and MDO optimal point.

Initial Point Optimal Point

Actual Solver Surrogate Model Actual Solver

Design Variables

L (m) 178.77   155.42   

L/B 6.000   5.161   

B/T 3.000   2.566   

Beam B (m) 29.80   30.12   

Draft T (m) 9.932   11.74   

Objective Functions

Cost function 100.0   93.33   

Steady turning diameter (m) 759.04   681.69   672.55   

Maximum displacement (m) 1.335   1.279   1.247   

Resistance (kN) 2153.2   2029.9   2078.9   

Constraints

Cb 0.7100   0.6836   

Upper bound on Cb 0.7332   0.6834   

Lower bound on Cb 0.6832   0.6334   

Advance (m) 683.55   609.44   602.17   

Advance constraint: 4.5L (m) 804.49   699.41   

Tactical diameter (m) 867.91   779.80   769.77   

Tactical diameter constraint: 5L (m) 893.87   777.12   

Turnability index PC 0.3351   0.3791   0.3862   

Stability criterion C 2.7×10-5   5.0×10-5   5.5×10-5   

Maximum RMS heave (m) 0.510   0.551   0.552   

Maximum RMS pitch (deg) 0.529   0.537   0.513   

Comparing the results between the starting point and the optimal point, the system 

level cost function and the three discipline objective functions have all been improved at 
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the MDO optimum, while all of the constraints are satisfied. To confirm that the surrogate 

models performed well in this application, the actual solvers were used to re-evaluate the 

performance  at  the  MDO  optimal  point.  The  results  show  that  improvement  in  the 

objective functions was achieved in the actual solver results, and that all the constraints 

are satisfied. 

Compared to the initial design, the length of the MDO optimal hull is reduced, 

while the beam and draft are increased. The cost function is highly dependent on the 

length of the hull and, in general, the maneuverability increases as the length of the hull 

decreases.  For  the  selected  seakeeping  metrics,  the  seakeeping  performance  typically 

improves as the beam and draft increase. Half-hull models for the initial and the optimal 

designs are shown in Figure 5.3 to illustrate the change in dimensions.

Fig. 5.3. Half hull models for the initial design (upper) and MDO optimal design (lower).

The purpose of utilizing surrogate models in the optimization was to achieve time 

savings during the optimization. In the optimization, the resistance objective function was 

called 167 times (using the pre-computed surrogate model);  a single run of the CFD 

90



analysis took over 12 hours, while the entire optimization was completed in about 15 

seconds.  Furthermore,  the  maneuvering  and  seakeeping  solvers  cannot  be  called 

automatically, making their direct use in optimization impossible; manual operation of 

these solvers within the optimization would have made the optimization extremely slow. 

5.4 Chapter Summary

In this chapter, several popular surrogate modeling techniques were introduced, 

including the Kriging method. Surrogate models are useful in optimization and MDO 

because expensive functions can be replaced with surrogate models that can be evaluated 

quickly.  An  MDO  problem  relevant  to  ship  design  was  defined  with  the  following 

disciplines:  cost,  resistance,  maneuvering,  and  seakeeping.  Surrogate  models  were 

developed to replace the expensive objective functions and constraints in the resistance, 

maneuvering,  and  seakeeping  disciplines,  and  the  MDO  problem  was  solved  using 

surrogate models with the MDO algorithm presented in Chapter 3. The results of the 

optimization  yielded  an  improved  design  which  satisfied  all  of  the  constraints  when 

evaluated with the surrogate models. The performance at the optimum was reevaluated 

using  the  actual  solvers;  the  true  values  of  the  objective  functions  demonstrated  the 

predicted improvement and the constraints were satisfied. These results demonstrated that 

surrogate  models  (in  particular,  Kriging  models)  are  valuable  in  reducing  the 

computational time when solving MDO problem relevant to ship design. 
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CHAPTER 6

Set-Based Design and Multidisciplinary Design Optimization

The MDO methods discussed thus far pursue a single point design, and once the 

optimal  configuration  has  been determined,  the  design is  fixed.  The  design  of  naval 

vessels is a process which evolves over an extended period of time. During the design 

process, performance and cost requirements can change due to changes in the geopolitical 

and economic environments. A single point design that is fixed from the early stages of 

the design timeline cannot adapt easily to meet the evolving performance requirements. 

Alternatively,  set-based  design  offers  flexibility  in  the  design  process  by  pursuing  a 

gradual reduction of the design space. In set-based design, designers begin with a broad 

set of values for the design variables, then gradually narrow the sets as more information 

becomes available. 

In this  chapter,  background and theory of set-based design are presented. The 

techniques  and  advantages  of  set-based  design  which  are  used  to  develop  an  MDO 

algorithm  along  with  the  mathematical  formulation  of  the  new  MDO  algorithm are 

described in this chapter. Finally, the set-based MDO algorithm is applied to a simple 

ship design analysis, and the results are presented to demonstrate the effectiveness of the 

algorithm. 

92



6.1 Set-Based Design Background and Review

The conventional design approach is point-based and iterative. Designers begin 

by selecting a variety of possible solutions, then choosing one to investigate further. The 

single  design is  evaluated and modified  as  necessary,  then re-evaluated and changed 

again, in an iterative process which continues until a satisfactory design has been found 

(Liker et al. 1996). This process can be inefficient because new designs must continually 

be evaluated. The problem is compounded in complex multidisciplinary problems, with 

multiple likely-conflicting discipline analyses, and where different disciplines may be the 

responsibility of different design teams. 

Set-based design is a design methodology that seeks to offer improvements over 

the traditional point-based design approach. Set-based design was popularized in a series 

of articles (Ward et al. 1995; Liker et al. 1996; Sobek et al. 1999) discussing Toyota's 

success with set-based design practices. The fundamental idea behind set-based design is 

to utilize sets of values for the design variables so that engineers communicate about the 

design in  terms of  those  sets,  instead of  points.  Singer,  Doerry,  and Buckley (2009) 

outline the following four features of set-based design:

1. Initially define a broad set of values for the design parameters.

2. Delay narrowing the sets to increase the amount of information available when 

making decisions. 

3. Narrow the sets gradually as the design is improved.

4. Increase the design fidelity as the sets are narrowed. 

In  set-based  design,  engineers  from  different  areas  of  the  design  (or  disciplines) 

determine  sets  of  feasible  values  for  their  own  analysis,  possibly  also  including 
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preference information. Engineers share the set information to determine areas of feasible 

overlap, then gradually reduce the sets to focus on the feasible region.

The advantages of set-based design may not be immediately clear; it may seem 

inefficient to examine multiple designs simultaneously and to delay decisions about the 

design, hence Ward et al.'s (1995) term “the second Toyota paradox,” when describing the 

effectiveness of set-based design. In this work, four broad advantages of set-based design 

are considered: (1) communicating with sets leads to less rework than point-based design, 

(2)  delaying decisions means that decisions are better-informed,  (3) working with sets 

and delaying decisions allows for  better  to handling of uncertainty during the design 

process,  and  (4)  the  set-based  design  process  inherently  includes  some  degree  of 

optimization. 

The first advantage of set-based design is that it can reduce the amount of rework 

required in the design process. In point-based design, changes are made to the (single) 

design  of  interest  when  moving  from  one  iteration  to  the  next.  It  is  unlikely  that 

properties of the new design are the same as the previous iterations (otherwise there is no 

reason to move to the new design); this requires that the analyses for the new design be 

performed again with the new design characteristics. Therefore, a clear disadvantage of 

point-based design is that iterations of the design require constant rework and re-analysis 

(Liker et al. 1996).

In contrast, in set-based design, engineers work with sets of values for the design 

variables, and the sets are gradually narrowed as work progresses. Because the sets are 

being narrowed, no new designs are added to the design space; not allowing the sets to 

expand once they have been reduced is a critical aspect of Toyota's implementation of 
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set-based design (Ward et al. 1995). Therefore, the previous analysis performed on the 

larger  set  is  still  valuable for the reduced set  and rework is  not  necessarily required. 

While  it  may not  seem possible to maintain analysis  information on an entire  set  of 

points, Bernstein (1998) points out that the analysis does not need to be highly detailed. 

During the set-based design process,  the  purpose  of  the  analysis  is  to  determine  the 

boundaries for the sets and also possibly assess preferences, not perform high-fidelity 

evaluations. 

The  second  advantage  of  set-based  design  is  that  design  decisions  are  more 

informed because the decisions are delayed. The amount of information about a design 

increases with time, as more analyses are performed and requirements become more clear 

(regardless of the choice of design method). An illustration of knowledge over time is 

shown in Figure 6.1. The figure shows that initially, there is very little knowledge about 

the design, then the amount of knowledge increases rapidly in the first portion of the 

design time (Bernstein 1998). 

Therefore, when design decisions are made early in the design process, there is 

less information available on which to base the decisions. This may lead to increased 

iterations with point-based design because it is highly unlikely that the first few iterations 

will be based on accurate information. One of the principles of set-based design is to 

delay decisions until more information is available, because designers are much more 

likely to make a good decision when they have more information (Sobek, Ward,  and 

Liker 1999). Delaying decisions about the design becomes possible because the design is 

described  using  sets,  because  engineers  can  continue  to  study  the  range  of  designs 

available without requiring a specific design selection.
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Fig. 6.1. Illustration of designers' knowledge about a design over time. 

Adapted from Bernstein (1998).

Not only does utilizing sets and delaying decisions improve decision-making, but 

it  also improves the process'  response to uncertainty.  By using sets of values for the 

design variables,  the design maintains flexibility in an uncertain environment (Sobek, 

Ward,  and  Liker  1999).  The  advantage  over  the  point-based  method  is  expressed 

concisely by Lee (1996): “... designers can represent sets of design possibilities instead of 

guessing one design if there are uncertainties.” With set-based design, small changes due 

to uncertainty do not necessarily push the design into an unfeasible region or require 

rework.

Finally, the set-based design process inherently includes a degree of optimization. 

Singer,  Doerry,  and  Buckley  (2009)  point  out  that  set-based  design  requires  the 

coordination of feasible sets between different disciplines. Engineers can locate and focus 

on  the  feasible  intersection  between  the  sets  and  integrate  discipline  information  to 
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further narrow the design space in the direction of an optimum (Bernstein 1998).

As the studies at Toyota by Liker, Sobek, Ward, and Cristiano (1995, 1996) show, 

set-based design practices are already in use in industry. However, there is a distinctive 

difference  between  implementing  principles  in  an  industrial  setting  and  specifying  a 

mathematical  algorithm  to  solve  design  problems  analytically.  Recently,  analytical 

formulations for set-based design have been presented in the literature. 

Wang and Terpenny (2003) developed an evolutionary design synthesis procedure 

that handles populations of designs with the principles of genetic algorithms. The method 

utilizes  fuzzy set  theory to handle modeling inaccuracies,  and principles  of  set-based 

design are included in the evolutionary procedure for generating and selecting designs. 

The method was applied to an automotive speedometer design problem. 

Nahm and Ishikawa (2006)  developed  a  design  method inspired  by set-based 

design.  The  method  begins  by  developing  a  mapping  from  the  design  space  to  the 

performance  space  using  interval  arithmetic.  The  authors  created  an  aggregated 

preference and robustness index that measures the designer's preference, and that includes 

robustness for handling uncertainty in the preference metrics. The aggregated preference 

and robustness index is used to narrow the design space. The authors applied this method 

to the preliminary design of a vehicle side impact beam. 

Shahan and Seepersad (2009) developed a set-based design technique where a 

Bayesian network (essentially  a  joint  probability  distribution)  is  constructed  for  each 

discipline. The Bayesian networks indicate the regions of interest in the design space for 

each  discipline,  and  the  networks  are  shared  to  communicate  information  about  the 

design. This method was then applied to the design of an unmanned aerial vehicle with 
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aerodynamics, structures, and performance analyses. 

Madhavan  (2008)  et  al.  developed  a  set-based  design  method  where  a 

compromise  decision  support  problem  (a  mathematical  model  for  multiobjective 

decision-making) is developed for each discipline. The disciplines calculate and share 

target values for coupled parameters, then the disciplines use the target values to generate 

Pareto optimal solutions; the final solution is selected from the Pareto optimal designs. 

This strategy was used in an industrial application in the design of a downhole module 

for oil and gas drilling applications. 

Malak, Aughenbaugh, and Paredis (2009) developed an approach for conceptual 

design that handles imprecision, or the lack of specific knowledge for the design. The 

authors  implemented  features  from  multi-attribute  utility  theory  (scalar  preference 

functions  for  design  attributes)  and  set-based  design.  The  authors  utilized  set-based 

design  because  sets  are  useful  for  describing  imprecision  in  the  design.  The  design 

strategy was applied to the conceptual design of a vehicle transmission. 

Finally,  Avigad and Moshaiov (2010) developed a computational  approach for 

multiobjective  problems  to  incorporate  the  set-based  design  concept  of  intentionally 

delaying decisions about  the  design.  The authors utilized a tree representation of  the 

design space,  where  different  branches represent  different  possible  decisions,  and the 

trees are pruned as decisions are made. Robustness to the uncertainty delayed decision-

making was included by using worst-case considerations. The method was applied to an 

example problem in structural mechanics. 
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6.2 Multidisciplinary Design Optimization Algorithm

In this section, the new MDO algorithm inspired by the principles of set-based 

design is presented.  Incorporating features of set-based design and allows for greater 

flexibility  when  dealing  with  evolving  requirements  compared  to  a  single-point 

optimization.  The  principles  of  set-based  design  which  are  included  in  the  MDO 

algorithm  are  identified  in  the  following  sections  (indicated  with  italics)  and  then 

transformed into mathematical statements for the optimization algorithm. 

This section is discusses the details of the new MDO algorithm. Information from 

five  areas  of  the  algorithm is  presented:  system design  variables,  objective  function 

scaling, flexibility in constraints, the system optimization statement, and the discipline 

level optimization statement. 

6.2.1 System Design Variable Definition

The MDO algorithm assumes the formulation of the MDO problem as in Equation 

(2.36), which is repeated below: 

min
x∈χ

f (x) (6.1)

subject to gi(x) ≤ 0    i = 1, …, p

In  the  MDO problem,  there  are  n design  variables  contained  in  the  vector  x,  and  p 

disciplines  with  p corresponding objective  functions  fi(x)  which are  contained  in  the 

vector  f(x). The vector of constraints  gi(x) applies to discipline  i. The allowable ranges 

for the design variables are denoted χ; the ranges for the design variables can be defined 

with lower and upper bounds:

x i ∈ [ xi , LB , x i ,UB]  i = 1, …, n (6.2)
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The range of allowable values for xi can be viewed as the set of values between the lower 

bound xi,LB and the upper bound xi,UB.

As  described  in  Section  6.1,  one  of  the  principles  of  set-based  design  is  to 

describe the design variables  by sets  which change while  the  design progresses.  The 

bounds on the design variables for the original MDO problem are defined in Equation 

(6.2). Because the bounds on the design variables change during the optimization, the 

bounds on the design variables at any other state are defined as

x i ∈ [ xi , min , x i , min+∆ x i]  i = 1, …, n (6.3)

This expression indicates that the new lower bound on xi is xi,min and the new upper bound 

on xi is xi,min + Δxi, where Δxi is the width of the interval for xi. While it may seem simpler 

to define a maximum for xi, instead of the sum xi,min + Δxi, the purpose of this formulation 

is to easily track the width of the interval. 

Figure 6.2 illustrates the change in the bounds on the design variables for a simple 

case with only two design variables. The figure shows the original design space as the 

large outer rectangle, and the new design space is the smaller, lightly shaded region. The 

new design space is defined by the dashed lines which indicate the new ranges on the 

design variables. 

The purpose of  the new MDO algorithm is to use the  principles of  set-based 

design to motivate the design optimization. This means that the design space is changed 

through the optimization process; the design space is defined using the sets for the design 

variables defined in Equation (6.3). Therefore, the choice for the design variables in the 

system optimization statement are not the design variables  x,  but the variables which 

define the sets: xi,min and Δxi. 
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Fig. 6.2. Illustration of the reduction in size of the design 

space by changing the ranges of the design variables. 

Additionally, before beginning the optimization, scaling of the design variables is 

important  for accurate performance of the optimizer.  The system design variables are 

scaled so that they take values between zero and one:

z i ,min=
x i ,min− xi , LB

x i ,UB− x i , LB

(6.4)

∆ zi=
∆ x i

x i ,UB− x i , LB

(6.5)

In summary, the system level optimization includes 2n design variables: zi,min and Δzi (i = 

1, …, n), or as vectors zmin and Δz; these design variables describe the size and location of 

the new design space. Furthermore, the system level design variables describe the design  

space in terms of sets for the design variables, which is a fundamental requirement for 

set-based design.
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6.2.2 Objective Function Scaling

The MDO problem includes p objective functions which may have different units 

of measurement and vastly different magnitudes. Additionally, some objective functions 

may  vary  greatly  throughout  the  design  space,  while  others  exhibit  less  variation. 

Therefore, in order to include any evaluation and comparison of the different objective 

functions, they must be scaled, or normalized. The objective functions are normalized as 

in Marler and Arora (2004):

F i(x)=
f i(x)− f i

∗

f i

m− f i

∗ (6.6)

where  Fi is the normalized form of objective function fi.  fi
* is the minimum of  fi when 

considering only discipline i, or

f i

∗= f i (x i

∗) = min
x

f i(x) (6.7)

subject to   gi(x) ≤ 0

fi
m indicates the maximum value of fi, and fi

m can be approximated according to (Marler 

and Arora 2004)

f i

m = max
j

f i(x j

∗)     i ≠ j (6.8)

Typically,  the objective functions are conflicting (otherwise the problem is not a true 

multidisciplinary  problem);  then  fi
m is  close  to  the  worst  performance  that  may  be 

encountered in objective i.

Equation (6.6) yields values for the normalized objective function Fi in the range 

between  0  and  approximately  1.  The  discipline  optimum  xi
* gives  the  best  possible 

performance for  fi,  and at that point  Fi is 0. The value of  Fi can be interpreted as an 
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amount of compromise in objective fi; small values of Fi indicate little compromise, while 

values close to 1 indicate that the current point is far from fi
*. 

6.2.3 Flexibility in Constraints

When an engineer configures a real design, it may not be preferable (or possible) 

to select a design that exactly satisfies all of the constraints. Instead, it may be beneficial 

to relax a constraint if it allows for a significant improvement of the objective function. 

For example, consider a single-objective optimization problem where the objective is to 

maximize the speed of a vehicle, subject to a constraint for the maximum cost of the 

vehicle. For a real design problem, the designer may be willing to compromise on the 

cost constraint;  if a small violation in the cost constraint (say, 1%) allows for a 20% 

increase in speed, the designer could choose to allow the slightly higher cost. One way to 

handle compromise in the constraints would be to determine the maximum allowable 

compromise,  and simply shift  the  constraint  by  that  amount.  However,  this  does  not 

ensure that the compromise in the constraint will correspond to a significant improvement 

in the objective function. 

A method to  handle the  compromise in the  constraints  and the corresponding 

changes in the objective functions is included in the system level optimization of the new 

MDO algorithm. A new design variable denoted ε is introduced where each element in ε 

corresponds to a constraint in the MDO problem:

gj(x) ≤ εj (6.9)

This expression indicates that the original constraint gj can be violated by as much as εj. 

However,  because  εj is  a  design  variable,  not  a  constant,  the  amount  by  which  the 

103



constraint can be violated will vary during the optimization; the size of εj is controlled by 

the system level optimization statement. 

6.2.4 System Level Optimization Statement

This section describes the system level optimization statement, where the purpose 

of the system level optimization is to coordinate the discipline optimizations. This section 

begins  with  reviewing  the  design  variables  used  in  the  system  level  optimization 

statement.  Then the system level  optimization statement  is  presented, followed by an 

explanation of each term included in the optimization statement. 

Before introducing the system level optimization, it  is important to review the 

design variables used in the system optimization. The system optimization statement uses 

the design variables  zmin,  Δz,  and  ε which were defined in the previous sections.  The 

design variables zmin and Δz describe the location and size of the modified design space, 

and because they are scaled, both take values in the range 0 to 1. The design variable εj 

takes values between 0 and a predefined value εj,max, where εj,max is the absolute maximum 

amount  the  designer  is  willing to compromise on constraint  j  (this  amount  will  vary 

depending on the problem). 

Therefore, the system optimization problem has 2n + m design variables (when n 

is the number of design variables for the original problem and m is the total number of 

constraints with flexibility). The design variables for the system level optimization are no 

longer the design variables x for the original MDO problem, because in set-based design 

logic, point designs are no longer the focus of the optimization. 

The system level optimization statement is:
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min
zmin , ∆z ,ε

exp (∆ z1⋅...⋅∆ zn)+∑
j

exp( ε j

ε j , max )+∑
i=1

p

exp (F i(xi

new)) (6.10)

subject to    gj(xi
new) ≤ εj    for all j and for all i

The first term in the system objective function describes the size of the design 

space (the hypervolume Δz1·...·Δzn).  The first term is used reduce the size of the design 

space as much as possible, because minimization of this term reduces the size of the 

design  space.  Therefore,  this  term  implements  the  principle  of  set-based  design  to 

gradually reduce the size of the design space. 

The  second  term  in  the  system  objective  includes  the  compromise  values  ε. 

During the optimization, the compromise values allow the constraint j to be violated by 

as much as εj. However, the amount of compromise should be as little as possible, thus 

the system objective function minimizes the compromise values. The summation over 

index j represents the summation over all constraints which allow for compromise; this 

allows for the possibility that some constraints cannot be relaxed. 

The third term includes the effects of the discipline objective functions. The term 

includes the function Fi evaluated at the point xi
new, where xi

new denotes the current value 

for the design variables returned by the discipline i optimization (details of the discipline 

level optimization are given in the following section). The purpose of the third term is to 

evaluate the current performance of the (normalized) objective functions. Because of the 

normalization,  Fi takes  values  close  to  zero  when  xi
new is  close  to  xi

*;  therefore, 

minimization of the sum of Fi seeks to minimize the discipline objective functions.

The system objective function is composed of a sum of functions (terms) that 

essentially represent a multiobjective problem (the first  term describes the size of the 
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design space,  the  second term describes  the  constraint  flexibility,  and  the  third  term 

describes the improvement in the disciplines' objective functions). Objective functions 

which are stated as a sum of other functions sometimes are not well-behaved, because the 

Pareto front for the corresponding multiobjective problem is not necessarily convex. In 

Equation (6.10), the system objective function evaluates the exponential of each term. 

The purpose of this choice is to make the Pareto front convex (Athan and Papalambros 

1996), which can improve the performance of the optimization.

 Finally,  the  system optimization statement  includes  the  constraints  gj from all 

disciplines (including the tolerance of εj) and the constraints are evaluated at each of the 

new discipline optima i; that is, every constraint is checked at each discipline optimum 

xi
new.  The constraints  ensure  that  all  of  the new discipline optima are  feasible  for  all 

disciplines, or that all (new) discipline optima lie within the common feasible space. This 

enforces the concept of set-based design that designs must be found in the intersection of  

the sets. 

To  reiterate  the  earlier  statements  regarding  the  system  design  variables,  the 

solution of the system optimization returns the optimal values  zmin
* and Δz*. The values 

describe the reduced design space, not a specific choice for the original design variables 

x. This is in agreement with the set-based design perspective of viewing the design space 

in terms of sets instead of point designs. 

6.2.5 Discipline Level Optimization Statement

The purpose of the discipline level optimization statement is to call the discipline 

analyses and calculate the new design point xi
new for each discipline i. At each iteration in 
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the  optimization,  discipline  optimizations  are  performed,  but  with  the  bounds  on the 

design  variables  determined  by  the  current  values  of  zmin and  Δz.  The  discipline 

optimization statement is

min
x ∈ χ(z min , ∆z)

f i(x ) (6.11)

subject to   gj(x) ≤ εj   for all j in gi

The  primary  difference  between  this  discipline  optimization  statement  and  the 

independent  discipline  optimization  in Equation  (6.7) is  the  allowable  ranges  of  the 

design variables, χ. For the discipline level optimization statements, χ is a function of the 

current  values  of  the  system  design  variables  zmin and  Δz.  Therefore,  the  discipline 

optimization is performed over the reduced design space described by zmin and Δz, so the 

results  for  the  discipline  level  optimization  will  be  different  from  the  discipline 

optimization of Equation (6.7). 

The discipline level optimization also includes the flexibility in the constraints, ε. 

The optimization statement of Equation (6.11) requires that the constraints for discipline 

i, gi, are satisfied but with the appropriate level of flexibility given by the corresponding 

values of  εj. The values for  ε are the current values from the system level optimization 

and they will change during the system optimization process.

The discipline level optimization with the new variable bounds χ(zmin, Δz) returns 

the  optimum values  for  the  design  variable  values  xi
new and objective  function value 

fi(xi
new). The purpose of the discipline optimization is to locate the the discipline optimum 

within the current design space, defined by the sets at the system level; this ensures that 

the  algorithm  takes  into  account  the  discipline  optima  (or  viewed  as  discipline  
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preference), which is part of the set-based design approach. 

6.3 Simple Example Application

To demonstrate the new MDO algorithm, a simple example problem relevant to 

ship design was tested. The simple example problem was defined with only two design 

variables so that the results of the algorithm can easily be visualized in a two-dimensional 

plot. The two design variables are the length of the ship (in meters) 145 ≤ L ≤ 170 and the 

beam of the ship (in meters) 25 ≤  B ≤ 28. There are three disciplines: cost, speed, and 

stability, and two constraints. Calculations for the model are based on simple regression 

equations from Parsons (2003); details for the model are provided in Table 6.1. 

Table 6.1. Simple ship model definition. 

Depth D (m) D= B

1.70

Draft T (m)
B

T
=5.93−3.33 C

M

Midship Coefficient CM  CM = 0.977 + 0.085(CB – 0.60)

Block Coefficient CB
CB= ∆

LBT 1.025⋅1.005

Cost C C=1.03
L

L
0

+0.78
B

B
0

+0.18 C
B

Speed Vk  (knots) V k =
(1.18−CB)

0.69
√3.2808 L

KG (m)  KG = 0.68D

Waterplane Coefficient CWP  CWP =
1+2C B

3

Vertical Prismatic Coeff. CVP CVP=
C B

CW P

KB (m) KB=T

3
(2.5−C

VP
)

Waterplane Inertia Coeff. CI  CI = 0.1216CWP – 0.041

BM (m) BM=
C I L B

3

∇
GM (m)  GM = KG + BM – KB
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The first discipline is the cost estimate for the ship, and the goal of the discipline 

is to minimize the (nondimensional) cost; that is, f1(x) = C, where C is the cost evaluated 

according to the equations in Table 6.1. The seconddiscipline is the speed of the ship, and 

the goal of the discipline is to maximize the speed (in knots); that is, f2(x) = -Vk, where Vk 

is evaluated according to Table 6.1. The third discipline is the stability, which is measured 

by the GM (transverse metacentric height, in meters). The goal of the discipline is to 

maximize the GM; that is, f3(x) = -GM, where GM is evaluated according to Table 6.1. 

The design problem includes two constraints which are upper and lower bounds 

on  the  block  coefficient,  CB.  The  Watson  and  Gilfillan  mean  line  recommendation 

(Watson 1998) for the mean value of CB is CB,mean:

C B, mean=0.70+0.125 tan
−1(23−100 Fn

4 ) (6.12)

The  recommended  variation  from  CB,mean is  0.025  (Watson  1998),which  defines  the 

constraints:

CB,mean – 0.025 ≤ CB ≤ CB,mean + 0.025 (6.13)

The constraints on CB are contained in the vector g(x), rewritten in negative null form.

With the definitions  for  the three disciplines  (cost,  speed,  and stability),  and the two 

constraints, the example MDO problem can be defined as:

min  f1(x)         and         min  f2(x)         and         min  f3(x) (6.14)

s.t.   g(x) ≤ 0                    s.t.   g(x) ≤ 0                  s.t.   g(x) ≤ 0

The design space for the example problem is shown in  Figure 6.3.  The figure 

includes the individual discipline optima and the constraints on the block coefficient. The 

figure shows that the individual discipline optima are in different corners of the design 
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space,  indicating  that  compromise  is  necessary  in  order  to  find  a  multidisciplinary 

solution.

Fig. 6.3. Initial design space for the simple example.

The set-based MDO algorithm was applied to the simple ship example problem, 

and the results are shown in Table 6.2.  For the top portion of the table,  the “Initial” 

column describes the initial design space, where the design space is the original size and 

the  constraints  are  unmodified.  The  “Optimal”  column  describes  the  design  space 

determined by the optimization algorithm. For the bottom portion of the table, the lower 

and upper bounds for the two design variables are given for the initial conditions and the 

results given by the optimization.

The results in Table 6.2 are plotted in Figure 6.4. The new boundaries for the 

design space are shown as dashed lines, and the discipline optima within the new design 

space are shown as stars. The design space has been reduced to the rectangle in the upper 

left corner; the vast majority of the multidisciplinary compromise is in f2, which has been 

moved from its original location in the lower left corner. This result makes sense because 
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the discipline optima for f1 and f3 are relatively close together, so that they pull the final 

design space in their direction. 

Table 6.2. New design space for the simple ship design problem.

Individual System

Discipline 1 Optimum  f1
* 1.905 1.906

Discipline 2 Optimum  f2
* -11.025 -10.492

Discipline 3 Optimum  f3
* -11.388 -11.386

Initial Optimal

L min 145.00 145.01

L max 170.00 153.95

B min 25.00 26.97

B max 28.00 27.78
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For  this  example  problem,  the  algorithm did not  result  in  compromise  in  the 

constraints  (both εj were  approximately zero).  This  makes sense when looking at  the 

location of the constraints in Figure 6.4; in particular, it can be seen that relaxing the 

constraints would not yield an improvement in f2, and improvements in f1 and f3 would be 

minimal because these solutions are already so close to their individual discipline optima.

6.5 Chapter Summary

This chapter introduced the theory and advantages of set-based design. A new 

MDO  algorithm  was  developed  using  the  principles  of  set-based  design,  and  the 

mathematical  formulation  was  presented.  The  performance  of  the  algorithm  was 

demonstrated through a simple ship design example.
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CHAPTER 7

Set-Based Design and Multidisciplinary Design Optimization Application to Ship 

Design

The final element of this dissertation is a comprehensive application of the set-

based design MDO algorithm presented in Chapter 6 to a ship design problem. Fortran 

codes were used for conducting resistance, maneuvering, and seakeeping computations 

based on mathematical models from the literature. The results from the set-based design 

MDO  algorithm  are  compared  with  results  from  a  point-based  multiobjective 

optimization. 

7.1 Ship MDO Problem Definition

A tanker hull that was readily available from the website of the commercial naval 

architecture software MaxSurf was selected for this study. The MaxSurf model provided 

a useful starting point because the hydrostatic properties of the hull could be evaluated 

directly and accurately within MaxSurf.  Several  dimensions of the original  hull  form 

from  MaxSurf  were  outside  the  range  of  applicability  for  the  software  used  in  the 

discipline  analyses,  so  the  hull  form  was  adjusted  using  MaxSurf's  parametric 

transformation. The modified hull form is referred to as the parent hull for this analysis, 

and a profile view of the hull form is shown in Figure 7.1.   
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The next step in defining the MDO problem is  to select  design variables that 

describe the hull form parametrically; the design variables for ship model are length L, 

length-to-beam ratio  L/B,  and  beam-to-draft  ratio  B/T.  Ratios  are  selected  as  design 

variables instead of the dimensions (such as beam) because the programs used for the 

discipline analyses have requirements on the ratios; the lower and upper bounds on the 

design variables ensure that the values for the length, length-to-beam ratio, and beam-to-

draft ratio meet the requirements for the discipline analyses. The allowable ranges for the 

design variables are given in Table 7.1; the table also includes the values for the parent 

hull for comparison. 

Table 7.1. Ranges for the design variables.

Lower Bound Upper Bound Parent Hull

L (m) 250.0 320.0 315.0

L/B 5.60 8.00 6.20

B/T 2.25 3.75 3.00

While it  is  possible to use MaxSurf's  parametric  transformation capabilities to 

generate new hull forms based on the values of the design variables, including MaxSurf 

within  the  optimization  loop  was  considered  infeasible  since  manual  operations  are 

required for using the program. Instead, parametric models were developed to evaluate all 

of the information necessary to run the discipline analysis codes; the following section 

presents the parametric modeling information. The remainder of the section defines the 

MDO  problem,  which  includes  three  disciplines:  resistance,  maneuvering,  and 

seakeeping. 
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7.1.1 Hull Modeling

The codes for the discipline analyses require a variety of input information that 

describes the hull form. In order to run the discipline analysis, parametric models for the 

inputs were developed so that the necessary inputs could be calculated from the three 

design variables. 

Some properties of the hull form were fixed, for example the displaced volume 

and  the  speed  of  the  ship.  Other  characteristics  were  assumed  to  be  approximately 

constant, such as the midship coefficient; the midship coefficient for the parent hull was 

0.996 (essentially a box barge midsection), and scaling the geometry was assumed to 

have a negligible effect on the midship section. All design properties that were either held 

fixed or assumed to be constant are listed in Table 7.2. 

Table 7.2. Ship modeling properties fixed or assumed constant. 

displaced volume (m3) ∇  216,971

transverse bulb area (m2)     ABT 0

transom area (m2) ATR 0

nondimensional bow profile ABOW -0.0055

midship coefficient CM 0.996

VCG (as proportion of draft) VCG 1.076

ship speed (knots) Vk 18

The waterplane coefficient CWP is estimated with a simple parametric model using 

the block coefficient CB (Parsons 2003)

CWP=
C B

0.471+0.551C B

(7.1)

The seakeeping analysis requires the most extensive hull information, including 

the draft, beam, sectional area, and weight distribution at each station. A simple approach 
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was used for assessing the draft at each station because, as shown in Figure 7.1, the long 

parallel midbody gives a hull form where only stations 0 and 10 do not have a sectional 

draft equal to the draft at midship. Therefore, the draft at each station was assumed to be 

proportional to the draft of the parent hull, simply scaled by the new draft. 

The sectional beam was assumed to be more sensitive to the changes in the hull 

form. While the large area of parallel midbody was assumed to have constant beam, the 

bow and the stern areas were adjusted from their parent hull values. The sectional beam 

in the bow and stern areas was scaled by the ratio of the waterplane coefficient of the new 

hull  to  the  waterplane  coefficient  of  the  parent  hull.  The  waterplane  coefficient  was 

selected for the scaling because it is defined using the waterline beam along the length of 

the hull. 

The sectional area curve was modeled using the technique of Taylor (1915), who 

described  the  sectional  area  curve  using  two  fourth-order  polynomials  (one  for  the 

forward half of the ship and one for the aft half). Parameters were fit to the fourth-order 

model using the parent hull; then the sectional area curve can be generated for a new hull 

given the  prismatic  coefficient.  Additionally,  the  sectional  area  curve  can be  used to 

evaluate the LCB (the centroid of the sectional area curve). 

A very simple weight  distribution was developed for  the parent  hull,  where a 

portion  of  the  displacement  was  assigned  to  each  station.  To  determine  a  weight 

distribution for a new hull, the relative weight of the stations is adjusted until the LCG 

matches the LCB. 

Several of the discipline analyses have requirements on the value for the block 

coefficient. All disciplines include the block coefficient constraints:
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0.56 ≤ CB ≤ 0.87 (7.2)

7.1.2 Resistance Discipline

The first discipline considered in the optimization analysis is the resistance. The 

objective function is the hull resistance, which is evaluated using the powering prediction 

method of Holtrop and Mennen (1982) and Holtrop (1984).  The resistance discipline 

includes  the  two  constraints  on  the  block  coefficient  from Equation  (7.2).  Then  the 

resistance discipline optimization problem is

min
x

RTOTAL (7.3)

s. t.  
0.56−CB≤0

C B−0.87≤0

where  RTOTAL denotes the total resistance of the hull, and  x is the vector containing the 

three design variables L, L/B, and B/T.

7.1.3 Maneuvering Discipline

The second discipline is the maneuvering performance, which is evaluated using 

the Maneuvering Prediction Program (MPP) that was introduced earlier in Chapter 5, 

Section  5.3.3.  The  objective  function  of  the  maneuvering  discipline  is  the  tactical 

diameter, which is to be minimized. The maneuvering discipline includes the constraints 

on the block coefficient from Equation (7.2). The maneuvering discipline also includes a 

constraint  on  the  stability  criterion  C,  which  is  required  to  be  positive;  the  stability 

criterion  was  originally  defined  in  Equation  (5.32).  Then  the  maneuvering  discipline 

optimization problem is  

118



min
x

DT (7.4)

s. t.  

0.56−CB≤0

C B−0.87≤0

−C≤0

where DT is the tactical diameter of the ship.

7.1.4 Seakeeping Discipline

The third discipline is the seakeeping performance, which is evaluated using the 

Seakeeping Prediction Program (SPP) that was introduced earlier in Chapter 5, Section 

5.3.2. The objective function of the seakeeping discipline is a metric which represents the 

maximum combined motion:

M max=max(RMS heave)+ L

2
max (RMS pitch)+ B

2
max (RMS roll) (7.5)

where roll is evaluated at a 30 degree heading, heave is evaluated in beam seas, and pitch 

is evaluated at a 120 degree heading; the sum in Equation (7.5) does not represent the 

actual motion of any part of the ship, but a multiobjective metric for the ship motion. The 

seakeeping discipline includes  the  constraints  on the block coefficient  from Equation 

(7.2). The seakeeping discipline also includes a stability constraint on the GM, where an 

approximation for the GM (as calculated by SPP) is required to be greater than the US 

Coast Guard GM requirement. Then the seakeeping discipline optimization problem is

min
x

M max (7.6)

s. t.  

0.56−CB≤0

C B−0.87≤0

GMUSCG−GM≤0
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7.1.5 Cost Estimate

An additional constraint was introduced on the cost of the ship. A simple linear 

cost model based on Parsons (2003) is used to evaluate the cost of the ship, where the 

subscript “0” indicates properties of the parent hull:

cost(x )=[1+1.01
( L−L0)

L
0

+0.58
( B−B0)

B
0

+0.40
(T −T 0)

T
0

+0.22
(CB−C B0)

C
B0

] (7.7)

Based on this cost formulation, the cost of the parent hull  is 1 and variations can be 

viewed as percentage increases or decreases in cost from the parent hull (for example, the 

cost of another hull may be 1.02, which indicates a 2% increase in cost). A cost constraint 

is defined so that the cost of the new hull must be less than or equal to the cost of the 

parent hull:

gcost(x) = cost(x) – 1 ≤ 0 (7.8)

Flexibility was only considered in the cost constraint; no flexibility was included 

in the other four constraints because the they help ensure that the discipline analyses run 

properly (for example, the seakeeping analysis code will error if the ship has a negative 

GM due to flexibility introduced in the corresponding constraint). 

7.1.6 MDO Problem Summary

The  disciplines  can  be  optimized  individually  by  solving  the  independent 

optimization statements in Equations (7.3), (7.4), and (7.6). Results for the independent 

discipline optimizations are given in Table 7.3; the results show that the optima occur at 

different points for the different  disciplines, which is  expected for a multidisciplinary 

problem. 
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Table 7.3. Independent discipline optimization results.

Design Variables x* Objective Function fi
*

L (m) L/B B/T

  Discipline 1 320.00 6.8889 2.2500 4.2301109 N

  Discipline 2 303.18 5.6000 3.5633 869.78 m

  Discipline 3 314.22 5.7716 3.7291 22.178 m

Additionally, the constraints at the three discipline optima were evaluated and the 

results are summarized in Table 7.4. The Discipline 1 optimization statement in Equation 

(7.3) includes only the constraints on the block coefficient, so it is not surprising that the 

optimum violates the constraint for GM (this makes sense because the hull form with the 

least resistance is long and thin, which will also have the least transverse stability). The 

conflicts between the different disciplines illustrate that  this ship design problem is a 

good example MDO problem because compromise must be achieved to ensure that all 

discipline optima are feasible. 

Table 7.4. Independent discipline optimization constraint values. 

Discipline 1 Optimum Discipline 2 Optimum Discipline 3 Optimum

g1 = 0.56 – CB -1.4710-1 -3.1010-1 -3.0910-1

g2 = CB – 0.87 -1.6310-1 -1.9610-11 -1.2510-3

g3 = -C -2.3310-5 -3.0010-7 -2.0010-6

g4 = GMUSCG – GM 1.61 -6.66 -7.83

gcost = cost – 1 0.075 0.034 0.062

Table 7.4 also includes the cost constraint evaluated at the discipline optima; the 

cost  constraint  was  not  enforced  during  the  discipline  optimizations  and  all  three 

discipline  optima  violate  the  cost  constraint.  Therefore,  significant  compromise  is 

expected during the multidisciplinary analysis for either the cost constraint (utilizing the 

flexibility) or the location of the final design space. Figure 7.2 shows a plot of horizontal 
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contours of the cost constraint (which is a surface); the constraint is satisfied to the left of 

the contours, showing that all three discipline optima are fairly far from the constraint 

boundary.

Fig. 7.2. Discipline optima and contours of the cost constraint. 

To summarize the overall set-based design MDO statement, the system design 

variables  are listed in Table 7.5.  The table  relates  the system design variables to  the 

discipline design space. Figure 7.3 reviews the structure of the set-based design MDO 

problem.

Table 7.5. System level design variables for the ship design problem. 

System Design Variable Discipline Equivalent

z1,min Lower bound on L

Δz1 Width of interval in L

z2,min Lower bound on L/B

Δz2 Width of interval in L/B

z3,min Lower bound of B/T

Δz3  Width of interval in B/T

ε Relaxation in the cost constraint
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Fig. 7.3. Diagram of the ship design MDO problem. 

7.2 Application of the Multidisciplinary Design Optimization Algorithm

The set-based design MDO algorithm is applied for analyzing the ship design 

problem.  In order to demonstrate the benefits of the new algorithm, a single-point multi-

objective optimization was conducted by considering the same design disciplines.  the 

ship MDO problem was approached in two ways.  

7.2.1 Results from the Set-Based Design MDO Analysis

The cost constraint from Equation (7.8) was included at the system level. The 

system optimization optimization statement for the ship design problem is

min
zmin , ∆z ,ε

exp (∆ z1⋅∆ z2⋅∆ z3 )+exp ( ε
εmax )+∑

i=1

3

exp ( F i(xi

new)) (7.9)

s. t.    gj(xi
new) ≤ 0    for j = 1, 2, 3, 4 and for i = 1, 2, 3

gcost(xi
new) ≤ ε   for i = 1, 2, 3
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Discipline 3: Seakeeping

   min   M
max

   subject to 

0.56 – C
B
 ≤ 0

C
B
 – 0.87 ≤ 0

GM
USCG

 – GM ≤ 0

Discipline 2: Maneuvering

   min   D
T

   subject to 

0.56 – C
B
 ≤ 0

C
B
 – 0.87 ≤ 0

-C ≤ 0

Discipline 1: Resistance

   min   R
TOTAL

   subject to 

0.56 – C
B
 ≤ 0

C
B
 – 0.87 ≤ 0

Cost Constraint with Flexibility

cost – 1 ≤ ε



The maximum relaxation of the constraint εmax was set to 0.1. 

The results for the optimization are tabulated in Table 7.6. The upper half of the 

table shows the bounds on the new, reduced design space. The lower half of the table 

shows the  properties  for  the  discipline  optimizations  when performed in  the  reduced 

design space. The resulting value for the relaxation of the cost constraint is ε = 0.046. 

The results  are also shown in a series of plots.  Figure 7.4 shows the original 

design space with the reduced design space indicated by dashed lines. The individual 

discipline  optima  are  marked  with  small  dots  and  the  discipline  optima  within  the 

reduced space are marked with stars. Figures 7.5-7.7 show the same plot but with 2D 

projections so that it is easier to see the new design space boundaries.

Table 7.6. Results from the set-based design inspired MDO algorithm. 

Reduced design space results

Initial Optimal

L min 250.00 302.12

L max 320.00 314.86

L/B min 5.60 6.66

L/B max 8.00 7.02

B/T min 2.25 2.69

B/T max 3.75 3.08

Properties of the discipline optima in the new design space

Discipline 1 Discipline 2 Discipline 3

L* 314.86 309.99 310.23

L/B* 6.66 6.66 6.66

B/T* 2.69 2.69 2.70

fi
*

8.1882109 995.30 25.566
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Fig. 7.4. Reduced design space returned by the set-based design MDO algorithm. 
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Fig 7.5. New design space viewed in the L-L/B plane. 

Fig 7.6. New design space viewed in the L-B/T plane. 

Fig 7.7. New design space viewed in the L/B-B/T plane. 
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The results for the application of the MDO algorithm to the ship design problem 

yielded a reduced design space, which is  the goal of the algorithm. As expected, the 

discipline optima within the reduced design space (shown in the lower half of Table 7.6) 

are  inferior  to  the  individual  discipline  optima,  due  to  the  compromise  between 

disciplines. 

The  relaxation  in  the  constraint  returned  by  the  optimization  was  ε =  0.046. 

Relaxation of the cost constraint was expected because as shown in the single discipline 

optimizations  (Table  7.4),  much of  the  original  design space did  not  satisfy  the  cost 

constraint,  including  the  individual  discipline  optima.  The  MDO results  are  valuable 

because  the  algorithm seeks  to  allow  only  the  minimum relaxation  necessary.  Even 

though  εmax was 0.1, the MDO algorithm was able to find a suitable solution without 

having to relax the constraint the maximum amount.

The set-based design MDO algorithm returns a reduced portion which represents 

preferred region of the original design space. The reduced space can be used as the design 

space for  conducting a  point-based optimization at  later  stages  of  the design process 

when the requirements are better defined.

7.2.2 Comparison to Point-Based Design

The results of the new set-based design MDO algorithm are compared to results 

from a single point design multiobjective optimization. The purpose of the comparison 

was to illustrate the advantages of the set-based design MDO algorithm by modeling 

flexibility  in  the constraints  and by handling design requirements  which may change 

during the design process. For the comparison, three different point-based optimizations 
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were performed:

1. Point-based optimization without the cost constraint in the original design space.

2. Point-based optimization with the relaxed cost constraint in the original design 

space.

3. Point-based optimization without the cost constraint in the reduced design space. 

Case 1:  The ship MDO problem was studied using a point-based optimization 

approach (a weighted sum of the objective functions) in the original design space. The 

point-based optimization included all of the disciplines' constraints but did not include 

the cost constraint. The optimization statement is:

min
x∈χ

∑
i=1

3

F i(x) (7.10)

s. t.    gMO(x) ≤ 0

where χ is the original design space defined in Table 7.1. Fi are the normalized objective 

functions, where the three disciplines objective functions (RTOTAL, DT, and Mmax) are scaled 

according  to  Equation  (6.6).  The  vector  gMO contains  the  constraints  from  all  three 

disciplines (a  total  of four constraints),  but  not the cost  constraint.  Omitting the cost 

constraint  represents  a  situation  where  the  design  is  initially  driven  by  technical 

requirements and cost enters the decision-making process at a later stage.  

The results of the multiobjective optimization are shown in Table 7.7 in the row 

labeled “Case 1,” and the multiobjective optimization results are plotted with comparison 

to the individual discipline optima in Figure 7.8 (note that the plot is rotated to the same 

angle as Figure 7.4 for comparison).
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Table 7.7. Comparison of the results for multiple point-based optimizations. 

L* L/B* B/T* f1
* f2

* f3
* gcost(x

*)

Case 2 314.91 5.6000 3.7473 11.963109 989.2 23.296 0.081

Case 3 314.89 5.6000 3.7471 11.972109 989.0 23.295 0.081

Case 4 314.00 6.6609 2.7000 8.999109 1,057 26.917 0.029

The weighted sum approach is successful at locating one possible solution to the 

multiobjective problem. The multiobjective solution satisfies the four constraints from 

the  disciplines  (upper  and lower  bound on  CB,  maneuvering stability,  and  GM).  The 

performance of the three discipline objective functions at the multiobjective solution is 

inferior to the individual optima, as expected. However, upon visual inspection (Figure 

7.8) the multiobjective solution may not be a good candidate for a solution because it is 

located in a corner of the design space; this does not illustrate much compromise between 

all three disciplines, and more importantly, leaves almost no room to adjust the design 

should  any  changes  in  requirements  occur  (for  example,  inclusion  of  a  cost 

consideration). 

Additionally,  the  cost  constraint  was  not  considered  in  the  multiobjective 

optimization.  Without  accounting  for  cost,  neither  the  discipline  optima  nor  the 

multiobjective optimum satisfy the cost  constraint;  the value of the cost  constraint  is 

0.081  at  the  multiobjective  optimum  (a  value  greater  than  zero  indicates  that  the 

constraint is violated). Starting from this specific design point, it would be difficult to 

approach the problem with the cost constraint because none of the current solutions are 

feasible. 
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Fig. 7.8. Multiobjective optimization results.

Case 2: The ship MDO problem was next solved using a point-based optimization 

including the cost constraint in the original design space. The cost constraint was relaxed 

according to εmax to model the situation that the designer has decided that the constraint 

may be violated by as much as εmax; this is the same statement made for the set-based 

design MDO, except that the set-based design MDO algorithm can reduce the constraint 

relaxation during the optimization. The optimization statement is:

min
x∈χ

∑
i=1

3

F i (x)

s.t.   gMO(x)≤0

       g cost(x)≤εmax

where gMO contains all of the constraints from the disciplines and χ indicates the original 

design space. This optimization problem represents the situation where the designer has 

encountered  a  new,  strict  constraint  during  the  point-based  design  process  and  the 
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constraint has been relaxed in order to locate feasible solutions. 

The results for this point-based optimization are shown in Table 7.7, in the row 

labeled “Case 2.” The solution is almost identical to the solution for Case 1; this result is 

expected because the solution to Case 1 yielded a cost  constraint  violation of  0.081, 

which is less than εmax = 0.1. Addition of the cost constraint with the maximum relaxation 

of 0.1 has no effect on the solution because it is not active, and therefore the design from 

Case 2 has not incorporated any changes due to the cost requirements when compared to 

Case 1. 

Case 3: To demonstrate the benefits of the set-based design MDO algorithm, a 

multiobjective optimization was conducted using the reduced design space determined by 

the set-based design MDO algorithm. The multiobjective optimization statement is

min
x∈χS

∑
i=1

3

F i(x) (7.11)

s. t.    gMO(x) ≤ 0

where  χS is the reduced design space located by the set-based design MDO algorithm 

(listed in Table 7.6). The cost constraint was not included in the optimization statement. 

The results of the multiobjective optimization are summarized in Table 7.7 in the row 

labeled “Case 3;” the results are clearly very different compared to the multiobjective 

optimization in Table 7.7. The results are plotted in Figure 7.9 along with the contours of 

the cost constraint. 
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Fig. 7.9. Multiobjective optimization results for the new design space 

with contours of the cost constraint. The constraint is satisfied on the 

left side of the contours.

As Figure 7.9 shows, the discipline optima and the multiobjective optimum are 

closely grouped within the new design space; they are also located very close to the cost 

constraint  boundary.  Even  though  the  cost  constraint  was  not  included  in  the 

multiobjective  optimization,  the  value  of  the  cost  constraint  at  the  multiobjective 

optimum is 0.029; not only is this a smaller constraint violation compared to the previous 

multiobjective optimization, but 0.029 is also less than the relaxation of the constraint 

from the MDO solution (ε = 0.046). Thus the single-point multiobjective optimization 

solution achieved by operating within the reduced design space satisfies the relaxed cost 

constraint  even  though  the  cost  constraint  was  not  included  in  the  multiobjective 

optimization. This is accomplished because the cost constraint was accounted for when 

determining the reduced design space by the set-based design MDO algorithm.
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7.3 Chapter Summary

This chapter presented an application of the set-based design MDO algorithm to a 

ship  design problem.  Resistance,  maneuvering,  and seakeeping design disciplines  are 

considered along with a simple cost estimate. A reduced design space is identified by the 

set-based  design  MDO  algorithm.  The  MDO  solution  also  resulted  in  introducing 

relaxation to the cost constraint.

A multiobjective  optimization  is  performed  within  the  reduced  design  space 

located by the MDO algorithm, and the results are preferable to the results of a similar 

multiobjective optimization performed within the original design space. This ship design 

application  illustrates  that  is  it  is  valuable  to  first  utilize  a  space-reducing  technique 

(using sets to describe the design variables) before approaching a problem with a single 

point-based optimization. Furthermore, incorporating flexibility in the constraints of the 

set-based  design  MDO allows  the  optimization to  handle  a  problem with  very  strict 

constraints in a rational manner and minimize the relaxation introduced in the constraints.

133



CHAPTER 8

Conclusion, Thesis Contributions, and Future Research

This  dissertation  discussed  the  topic  of  multidisciplinary  design  optimization 

(MDO), the optimization and systematic coordination of the exchange of information of a 

design problem with multiple discipline analysis. 

The first  contribution of this dissertation is a new multi-level  MDO algorithm 

which was presented in Chapter 3. The MDO algorithm has two levels: a system level 

optimization and a discipline level optimization. The system level optimization is used to 

coordinate the discipline optimizations using target values for the design variables. 

Next, this dissertation discussed two popular areas of MDO: optimization under 

uncertainty  (Chapter  4)  and  surrogate-based  optimization  (Chapter  5).  Optimization 

under uncertainty describes the process of optimization while accounting for variables 

and  parameters  that  cannot  be  exactly  predicted.  Surrogate  models  are  mathematical 

interpolation  models  that  approximate  the  behavior  of  expensive  functions  with 

acceptable accuracy at a reduced computational cost.

Due to the variations in design variables and parameters  with uncertainty,  the 

response of the optimal design will differ from the deterministic expectation, which can 

lead to violation of constraints on the design and/or deterioration of the expected optimal 

performance.  The  research  presented  in  this  thesis  implemented  two  techniques  for 
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addressing uncertainty (robustness and reliability) in the MDO algorithm using target 

values. The MDO algorithm using target values was applied to a conceptual ship design 

problem with uncertainty and it was demonstrated that the variability in the objective 

function was reduced and that the prescribed probability of not violating constraints at the 

optimum was met, while improving the discipline objective functions. 

In  surrogate-based  optimization,  surrogate  models  replace  expensive  functions 

during the optimization to reduce the computational time required for optimization. One 

method  for  surrogate  modeling  is  Kriging,  which  has  been  shown  to  have  good 

performance and flexibility. Kriging models were developed for three disciplines in a 

ship design problem: resistance, maneuvering, and seakeeping. This thesis demonstrated 

that  the MDO algorithm using target values is  capable of performing surrogate-based 

optimization using  Kriging models. The optimization with Kriging models achieved a 

computational time savings with accurate predictions when compared to the true solvers.

A discussion and review of set-based design was presented in Chapter 6. Set-

based  design  is  a  design  methodology  that  seeks  to  offer  improvements  over  the 

traditional  point-based design approach.  In  set-based design,  engineers  from different 

disciplines determine sets of feasible values for their own analysis. Engineers share the 

set information to determine areas of feasible overlap, then gradually reduce the sets to 

focus on the feasible region. 

The final  contribution of  this  thesis  is  the  development  of  a  set-based design 

MDO algorithm. Greater flexibility is achieved by the set-based design MDO algorithm 

compared to single-point optimization. The new algorithm was defined in Chapter 6 and 

then applied to a ship design problem in Chapter 7.  The ship design analysis included 
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resistance, maneuvering, and seakeeping performances, along with a cost estimate. The 

ship  design  problem  was  solved  using  the  set-based  design  MDO  algorithm,  which 

yielded a reduced design space. A multiobjective optimization was performed within the 

reduced design space identified by the set-based design MDO algorithm, and the results 

were preferable when compared to the results of a multiobjective optimization performed 

within  the  original  design  space.  The  ship  design  application  illustrates  that  is  it  is 

valuable to first utilize a space-reducing technique before approaching a problem with a 

point-based optimization. Furthermore, incorporating flexibility in the constraints allows 

the optimization to handle a problem with very strict constraints in a rational manner and 

minimize the necessary constraint relaxation.

This research has inspired several questions for future research. While the areas of 

optimization  under  uncertainty  and  surrogate-based  optimization  have  received  much 

attention in the literature, there are still relatively few analytical methods for optimization 

in  set-based  design.  More  interpretations  of  optimization  with  set-based  design  are 

needed to fully explore this topic; this dissertation presents only one “translation” of the 

principles of set-based design into mathematical statements. 

While other formulations for optimization with set-based design exist, it is very 

difficult  to  compare approaches because authors  have  different  understandings of  the 

design problem and the  underlying goals  and assumptions are  different.  Because  the 

algorithm developed in this work is an MDO algorithm, the focus is on coordinating the 

exchange of information between disciplines. Other authors have formulated set-based 

design  algorithms  from  the  perspective  of  fuzzy  set  theory  or  multi-attribute  utility 

theory, for example, where the focus is on designer or discipline preference information. 
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Therefore, it is valuable to develop an approach for comparing set-based design 

algorithms,  both  in  terms  of  formulation  and  performance.  The  study  of  a  common 

benchmarking  problem  is  perhaps  the  most  direct  approach  for  comparing  the 

performance of  different  algorithms,  however,  comparing the formulation of  different 

approaches is a challenging problem. 

Furthermore, the set-based design MDO algorithm presented in this dissertation 

can only work with continuous design variables, and examines continuous intervals of 

those  design variables.  Real  design problems  often  include  discrete  design variables, 

which would be a valuable element to add to the algorithm. The capability to examine 

sets of the design variables which are disjoint would be beneficial when designers are 

interested in different areas of the design space. 
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