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Traditionally, the High-Level Synthesis (HLS) for Field Programmable Gate Array (FPGA) devices is a methodology that
transforms a behavioral description, as the timing-independent specification, to an abstraction level that is synthesizable, like the
Register Transfer Level. -is process can be performed under a framework that is known as Design Space Exploration (DSE),
which helps to determine the best design by addressing scheduling, allocation, and binding problems, all three of which are NP-
hard problems. In this manner, and due to the increased complexity of modern digital circuit designs and concerns regarding the
capacity of the FPGAs, designers are proposing novel HLS techniques capable of performing automatic optimization. HLS has
several conflicting metrics or objective functions, such as delay, area, power, wire length, digital noise, reliability, and security. For
this reason, it is suitable to apply Multiobjective Optimization Algorithms (MOAs), which can handle the different trade-offs
among the objective functions. During the last two decades, several MOAs have been applied to solve this problem. -is paper
introduces a comprehensive analysis of different MOAs that are suitable to perform HLS for FPGA devices. We highlight
significant aspects of MOAs, namely, optimization methods, intermediate structures where the optimizations are performed, HLS
techniques that are addressed, and benchmarks and performance assessments employed for experimentation. In addition, we
show the analysis of how multiple objectives are optimized currently in the algorithms and which are the objective functions that
are optimized. Finally, we provide insights and suggestions to contribute to the solution of major research challenges in this area.

1. Introduction

Field Programmable Gate Arrays (FPGAs) designs are made
with High-Level Synthesis (HLS). HLS also is known as be-
havioral synthesis or architectural synthesis, the process to
transform an algorithmic description to a synthesizable
Register Transfer Level (RTL) netlist. HLS allows designers to
work at a higher level of abstraction by using high-level
languages such as C/C++ to define the hardware description.
Typically, behavioral description, also known as algorithmic
level design or system-level design, defines inputs, outputs,
and data flow of the behavior inside the algorithm in terms of
operations to be performed. Inwardly, this description is
usually represented (as an intermediate structure) with an
acyclic directed graph. It establishes the data dependencies
indicated in the data flow and input/output relations of the
design [1]. For any behavioral description, there may be many
possible RTL implementations, each one with its own features.

1.1. High-Level Synthesis. HLS can be performed under
a framework that is known as Design Space Exploration
(DSE), which helps to compute the best design using
scheduling, allocation, and binding techniques. All of these
tasks are NP-hard problems [2]. Scheduling defines how the
design operations will be scheduled into clock cycles. Al-
location determines the type and the number of hardware
resources (for instance, Functional Units (FUs), storage, or
connectivity components) needed to satisfy the design
constraints. Binding, also known as assignment mapping
andmodule selection, determines how each variable (in each
clock cycle) will be linked to an FU. As Coussy et al. stated,
“allocation, scheduling, and binding can be performed si-
multaneously or in specific sequence depending on the
strategy and algorithms used” ([3]; p. 5).

In [4], the evolution of HLS for FPGAs and the HLS tools
with single-objective optimization are discussed; according
to this review, it is clear that HLS is important because (i)
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software programmers want to use FPGA devices to ac-
celerate tasks, so without having knowledge about Hardware
Description Language (HDL)—VHDL (Very High-Speed
Integrated Circuit (VHSIC) Hardware Description Lan-
guage) or Verilog—they can create circuit designs; (ii) de-
signing at a higher level of abstraction leads to increased
productivity; for example, software debugging is faster than
hardware debugging; and (iii) this process has a lot of po-
tential to perform optimizations. Recently, HLS has been
applied to a variety of applications with significant benefits
in terms of performance and energy consumption. For in-
stance, [5] presents a case study comparing HLS and hand-
written RTL implementations, where HLS achieves a drastic
reduction in delay. Another example is a convolutional
neural network developed in [6], demonstrating the ability
of HLS to support complex algorithms. Additionally, there
are many practical applications of HLS where multiobjective
optimization was applied, for example, custom processor
design to find an optimized architecture [7], watermarking
to provide protection of authorship in reusable Intellectual
Property (IP) [8], and exploration of a low-cost Trojan
security hardware [9].

1.2. Multiobjective Optimization in High-Level Synthesis.
-ere are several opportunities to perform optimizations in
HLS during scheduling, allocation, and binding. -ese op-
timizations are highly multiobjective by nature, with con-
flicting objective functions. To deal with that scenario, it is
necessary to apply Multiobjective Optimization Algorithms
(MOAs). -ese algorithms maintain a trade-off between
conflicting metrics. Multiobjective optimization is dedicated
to solve problems in which a set of objective functions
f1(x), f2(x), . . . , fm(x) must be optimized simultaneously.
A multiobjective optimization problem where all objective
functions should be minimized can be defined as

argmin
x∈D

F(x) �〈f1(x), f2(x), . . . , fm(x)〉, (1)

where D is known as the decision space. -e image set O
which results from projecting F: D⟶ O is called the
objective space, which is the space where the objective
vectors belong. An objective vector v � (v1, . . . , vm) domi-
nates u � (u1, . . . , um) if and only if all the components of v
are equal or better than the corresponding components of u
and at least one component of v is strictly better. For
a multiobjective optimization problem where all objective
functions are of minimization, Pareto dominance can be
defined as

∀i ∈ 1, . . . , m{ }: vi ≤ ui ∧∃i ∈ 1, . . . , m{ }: vi < ui. (2)

A point x∗ is Pareto optimal if there is no other solution
x ∈ D that dominates it. -e set of optimal Pareto solutions
are the Pareto optimal set P∗. -e Pareto Front (PF) is the
image of the Pareto optimal set in the objective space PF∗ �
F(x), x ∈ P∗ [10]. Solutions to this problem should ap-
proximate the Pareto Front, instead of a single solution. -e
solution quality is commonly expressed in terms of Pareto
dominance.

Always, it is desired to find an approximation with good
convergence and diversity. Convergence is the proximity to
the set of ideal points. Figure 1 provides two examples of PF
approximations (minimization of two objective functions).
-e first plot (left) contains a set of solutions where some
regions are not covered, so this PF is not attractive because
the decision maker could lose important information of the
PF. -e second one (right) shows a front having a very good
spread of solutions (diversity).

According to the HLS literature, the authors have tried to
optimize the following objective functions, as shown in
Figure 2.

(i) Delay is the total number of time steps or clock
cycles. It is also called control step, timing, latency,
or performance. -is objective can be replaced by
throughput, which is given as the ratio of the
operating frequency to the latency multiplied by
the input size. -ese system-level specifications are
defined by the behavioral description.

(ii) Area is the total of occupied components in the
device, i.e., FUs plus registers [11]. It is also called
memory or space.

(iii) Power is the total power consumption (dynamic
power plus static power).

(iv) Wire length is the measure of the overall in-
terconnection length plus connectivity compo-
nents used by the design, which is based on a global
routing step. It is also called an interconnection or
data path. -is measurement must be computed
out after binding.

(v) Digital noise is an estimation of computational
errors plus noise propagation when the design
contains real numbers, considering floating-point
accuracy. When real numbers are represented by
a limited number of bits, this causes a loss of in-
formation, which is usually considered as noise. It
is also called error propagation.

(vi) Reliability refers to the need to avoid the presence
of soft error (intermittent failure caused by neu-
trons and alpha particles). -e probability that
a soft error will occur depends on which types of
FUs are used for the design operations since some
FUs are ideal for certain types of operations.

(vii) Temperature should be minimized for every design
because temperature variations and hotspots in-
side an FPGA can cause electronic failures.

(viii) Security is the protection against attacks, for in-
stance, IP protection and reverse engineering at-
tacks. -is objective is also called robustness.

Most of these metrics should be minimized; only re-
liability and security must be maximized. According to the
review of the state of the art that we have made in this survey,
we find that multiobjective optimization works assume that
the objective functions are in conflict but only one work
verifies that some of the objective functions are in conflict
[12]. According to the above, Table 1 presents a summary of
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the possible conflicts between the eight objective functions.
With the symbol ✓, we mark the objective functions where
a conflict was demonstrated through a payoff matrices [12].
-e objective functions that some authors have assumed are
in conflict because they use a multiobjective approach are
shown with the symbol ✓. -en, with the symbol ≈ , we
indicate the objective functions that we hypothesize are in
conflict, according to what is known of the internal structure
of FPGA devices. Finally, the symbol ?means that we do not
know if the two objective functions are in conflict.

1.3. Contribution. Figure 3 is an Euler diagram of the op-
timization methods applied to HLS and highlights in black
the subject area of this paper. -e intersection of the op-
timization methods with three main stages (HLS, logic
synthesis, and layout synthesis) involved in circuits imple-
mentation into FPGA devices is shown in [13]. Considering
that multiobjective optimization is a subarea of optimiza-
tion, this paper focuses on themultiobjective optimization of
HLS for FPGA devices. For instance, HLS with single-ob-
jective optimization is not considered in this survey.

In summary, the novel contributions of this survey in-
clude the following:

(1) A review of the state of the art on HLS techniques
with multiobjective optimization

(2) A description and comparisons of MOAs applied to
HLS, analyzing optimization methods, HLS tech-
niques, intermediate structures where optimization
is performed, objective functions, the cost assign-
ment strategies, and the benchmarks employed for
experimentation

(3) Identification of major research challenges in this
area that should be studied in the near future and
notes on how to tackle them, including a hypothet-
ical grand challenge to carry out HLS as a many-
objective optimization problem with eight objective
functions

-e rest of the paper is organized as follows. Section 2
discusses the related survey, while Section 3 provides an
overview of multiobjective optimization techniques in HLS.
In Section 4, open issues are presented. Finally, we discuss our
conclusions in Section 5 and outline future work in this area.

2. Related Surveys

-e origins of HLS can be traced back to the ALERT system
[14], developed by IBM at the T. J. Watson Research Center
in 1969, but it was not until 2003 [15] that this task was
studied as a combinatorial multiobjective problem for FPGA
devices. Since then, several surveys concerning
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Figure 2: -e 8 objective functions that have been proposed for the grand challenge optimization problem of HLS.
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Figure 1: Examples of Pareto Front approximations: bad diversity (a) and good diversity (b).
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optimizations (regardless of the number of objective func-
tions) in HLS for FPGA devices have been published. -e
work of [16] provides a taxonomy of optimization in HLS on
the basis of the intermediate representation used, such as
a Data Flow Graph (DFG) or Control DFG (CDFG), and the
performed tasks in HLS, namely, scheduling, allocation, and
binding. It also enumerates research based on trans-
formations of initial behavioral descriptions. -e survey of
[17] includes several approaches and frameworks for HLS
optimization. For the first time in this area, a manuscript
mentions multiobjective optimization and even explains
some objective functions. It also presents details inside the
optimization techniques, for example, how different types of
internal structures are used to perform the optimizations.
Four years later, [18] describes a retrospective of HLS and
also explains the algorithms and academic software to apply
optimization approaches.

Reference [19] presents a survey of memory, power, and
temperature optimization techniques in HLS, explaining
how these objective functions had been handled and the
importance of analyzing the relationships (trade-off) be-
tween them.-ey also wrote notes about open issues, such as
the order of optimization and code generation for low
power. -e survey presented in [20] deals with the three
most popular objective functions: delay, area, and power.
-e paper also presented methodologies for multiobjective
optimization and a classification of metaheuristics that were

used. A review of bioinspired optimization techniques was
presented in [21], including a few evolutionary multi-
objective approaches. -ey presented details about using
both evolutionary computation and hardware design. -e
state of the art of HLS software tools is investigated in [22],
which includes comparisons and evaluations of some soft-
ware tools. -e authors also present a taxonomy of input
languages in software tools. Although the survey provides
a comprehensive analysis of HLS software tools (commercial
and academic), it does not mention which tools perform
multiobjective optimization. -e overview presented in [23]
mentions strategies to solve the DSE problem by reducing
the design space-time. -e techniques are compared based
on their performance improvement. -ey also include a few
multiobjective approaches and performance metrics
formulations.

In summary, it is important to note that none of the
previous papers are completely focused on the subject area of
MOAs in HLS for FPGA devices, the main contribution of
this paper.

3. Multiobjective Approaches in High-Level
Synthesis for FPGA Devices

In this section, the state of the art of MOAs in HLS for FPGA
devices is presented.

In order to provide a visual representation of this survey,
we created an online relational graph available at http://
201.174.122.25/moo_hls_fpga [24].

-e graph was created with the [25] library and arranged
by the edge-weighted force-directed algorithm; the graph is
shown in Figure 4.-is graph allows you to search papers on
multiobjective optimization in HLS. Circular gray nodes are
papers in the state of the art and the number of citations is
calculated using Google Scholar and it is represented by the
size of the circle. When a paper is selected, the paper is a blue
node. -e multiobjective methods are classified in the red
box. In the purple box, the MOAs are organized. In the light
blue box, the cost assignment strategies are shown; the
objective functions are shown in the yellow box. In the green
box, the benchmarks are classified; finally, in the blue box,
the compiler techniques are shown.

-e edges are the connection between the papers with
the multiobjective method, the cost assignment, the objec-
tive functions, the benchmarks used in the paper, the

Table 1: Possible conflicts of the eight objective functions. In this case, ✓, is the objective functions where a conflict was demonstrated. -e
symbol ✓ means the objective functions that some authors have assumed are in conflict. -e symbol ≈ is the objective functions that we
hypothesize are in conflict. And the symbol ? means that we do not know if the two objective functions are in conflict at the moment.

Objective functions Delay Area Power Wire length Digital noise Reliability Security Temperature

Delay ✓ ✓ ✓ ✓ ✓ ≈ ≈
Area ✓ ✓ ✓ ✓ ≈ ≈
Power ? ✓ ≈ ✓ ≈
Wire length ≈ ≈ ≈ ≈
Digital noise ? ? ≈
Reliability ? ?

Security ≈
Temperature

High-level synthesis 
(algorithmic level) 

Logic synthesis 
(logic gates level) 

Optimization 
methods

Multiobjective 
optimization 

methods Layout synthesis 
(electrical and 
layout level) 

Figure 3: Euler diagram with different areas of knowledge, and the
intersection in black is the study area of this survey.
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compiler techniques, and the MOA. Figure 5 is an example
of the graph, the paper [26] is the gray node, the multi-
objective method is a branch and bound, Pareto dominance
is the cost assignment strategy, DFG and CDFG are the
compiler techniques, while branch and X is the MOA, area
and power are the objective functions, and finally, exper-
iments were carried out on the CDFG toolset benchmark.
In this case, the gray nodes [27, 28] are the papers that have
at least one author in common with respect to the blue
node.

3.1. Optimization Approach. -e optimization approaches
can be classified into the following two categories [29]:

(1) Compiler Techniques. Behavioral description is rep-
resented by an acyclic directed graph, such as DFG,
CDFG, Synchronous-DFG (SDFG), Loop-Array

Dependency Graph (LADG), Timed Marked Graph
(TMG), Sequencing and Binding Graph (SBG),
Prefix Graph, Problem Graph, and Specification
Graph (CDFG and DFG are the most used, see
Figure 6). All these intermediate structures have the
same intention, to represent the semantics of the
behavioral description. -is technique requires,
before optimization, converting (compilation) the
behavioral description into the structure and, after
the optimization, converting the optimized struc-
ture to RTL (RTL generation). Figure 7 presents the
general framework of compiler techniques. -e
behavioral description and the components library
are inputs, where the latter describes the charac-
teristics of the FPGA device. -e multiobjective
optimization process must perform scheduling,
allocation, and binding. Generally, the output is an

Figure 4: -e relational graph of the state of the art of papers that apply MOAs in HLS.
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HDL code that is ready for an EDA software tool to
perform logic and layout synthesis.

(2) HLS Tool as a Black Box. -ese are approaches that
explore the design space using commercial and ac-
ademic HLS tools as black boxes. -ese approaches
invoke the software tool to choose the objective
functions. -is technique is more comfortable to
code because there is no need to worry about
compilation, RTL generation, and estimations; but it
is strongly dependent on the selected software tool.
-e variations of the scheduling, allocation, and
binding are made through simulation tasks, knob
settings, pragma directives, or profiling annotations
inside the behavioral description. Figure 8 presents
the general framework of approaches that use HLS
tools as a black box. -is methodology has a higher
computational cost because in each iteration the
selected HLS tool has to recompile the behavioral
description and regenerate the RTL.

Figure 9 shows a taxonomy of multiobjecive methods
based on [30]. In this survey, we focus on the highlighted
boxes which are MOAs in HLS.

Six multiobjective methods have been studied by authors
in this domain, organized as exact or approximate methods.
According to Figure 9, these methods are branch and X,
problem-specific heuristics, single-solution-based heuristics,
learning-based methods, evolutionary algorithms, and swarm
intelligence systems. Figure 10 shows six multiobjective
methods represented in our relational graph in the state of
the art. For instance, in the graph, we can see that the branch
and X method is the least used since it has the least amount
of edges. On the other hand, the most used multiobjective
method is the swarm intelligence system.

Next, we explain each approach highlighted in Figure 9.

(1) Among exact methods [30], branch and X searches over
the whole solution space, which is explored by dy-
namically building a treewhose root node represents the
problembeing solved.-e optimization is performed by
subdividing the problem into simpler subproblems.

(2) Problem-specific heuristics are, as the name implies,
methods that are based specifically on the problem.
-ey can achieve good results but cannot be applied
generically to other problems.

(3) Single-solution based metaheuristics function as
walks through local neighborhoods in the search
space [30].

(4) Learning-based methods approximate the PF using
machine learning models that learn by posing
a classification or regression problem using a train-
ing set of instances. -en, the model acts over the
decision-making process.

(5) Evolutionary algorithms are population-based meta-
heuristics, where solutions are selected and reproduced
using variation operators (for instance, mutation and
recombination). -e main components to design an
evolutionary algorithm are the following: representa-
tion, selection strategy, reproduction strategy, and
replacement strategy. Population-based metaheuristics
share common concepts. -ey start with a random
initial population. Later, a new population is created in
each generation that replaces the current population.
-is process iterates until a stop criterion is met.

(6) Swarm intelligence systems are another population-
based metaheuristic, and these systems are inspired
by the collective behavior of species such as ants,
bees, and wasps. -e key features of these algorithms
are simple and nonsophisticated agents; they move
in the search space and cooperate with each other by
an indirect communication [30].

In [30], it is argued that it is better to use population-
based metaheuristics than exact methods for multiobjective
optimization problems. -e reason is that, with exact
methods, if the number of objective functions increases, then
the algorithm design is more complex. In the same way,
population-based metaheuristics are better than single-so-
lution based metaheuristics because the population of so-
lutions helps with diversity preservation on the PF, and
consequently the convergence too.

On the other hand, in multiobjective optimization, to be
able to compare solutions, it is necessary to apply cost as-
signment strategies. For a given solution, a cost assignment
strategy maps to a cost vector (several objective functions)
into a single value. Figure 11 shows a taxonomy of cost
assignment strategies based on [30], where we are high-
lighting works of HLS in the literature.

Next, we describe in chronological order specific works
of HLS for FPGA devices.

3.2. Branch and X Approaches. In [26, 27], a branch and
bound algorithm was developed, which is capable of

Mukherjee et al. (2012)

Mukherjee et al. (2012) (b)

Pareto dominance

Power

Branch and X

CDFG toolset

Branch and bound

Control/Data Flow Graph

Mukherjee et al. (2013)

Area

Figure 5: -e paper [26] as an example query of the online graph
developed in this survey.
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generating a nondominated solution with the CDFG toolset
[31]. Over a CDFG, a multiobjective optimization is carried
out with a Pareto dominance technique considering area and
power as metrics (see Figure 5). One year later, in [28],
published by the same authors, a biobjective proposal with
similar characteristics was presented, taking into account
FUs that support dynamic voltage and frequency. -e
publications of the branch and X method are scarce, due to
their ineffectiveness dealing with multiobjective problems
and their high probability of being stuck in a local optimum.

3.3. Problem-Specific Heuristic Approaches. -e paper [32]
was the first application of a Fuzzy Inference System (FIS) to
optimize this problem with a multiobjective focus. -ree
proposals based on the DFG are presented: a module se-
lection scheme in the HLS using fuzzy logic, an allocation
process of DFG, and scheduling of DFG with processing
times characterized by fuzzy sets. Two years later, [33]
presented another problem-specific heuristic based on the
decomposition of an Architecture Configurations Graph
(ACG). In [34], a greedy algorithm to optimize delay and
area was studied. -e authors analyzed in detail the esti-
mations of the objective functions. Two years later, [35]
explored power-area trade-offs in HLS through dynamic FU
allocation with a network flow rebinding using a DFG

Data Flow Graph

Knob settings

Prostboucle et al. (2014)

Loop-Array Dependency Graph

Control/Data Flow Graph

Mukherjee et al. (2013)Weak dominance

Pareto dominance

Bilavarn et al. (2006)

Problem Graph

Profiling annotations

Simulation configuration

Meng et al. (2016)

Sequencing and Binding Graph

Prefix Graph

Pragma directives

Specification Graph
Synchronous

Figure 6: Graph of the intermediate structures used in the state of the art.
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Figure 7: General framework of compiler techniques.
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representation. In [36], a hierarchy factor method to si-
multaneously optimize delay, area, and power was studied.
-e authors in [37] studied a greedy algorithm to minimize
the area, power, and digital noise as objective functions. -e
authors introduce an analytical precision analysis approach
based on a quantization error propagation model.

Sengupta et al. presented several papers with a priority
factor-based heuristic [1, 38–41]. -e proposed approaches
try to resolve several issues related to the DSE, such as the
precision from evaluation, when the time is exhausted
during the evaluation, and also automation of the explo-
ration process. Furthermore, scheduling, allocation, and
binding were tested with several DSP benchmarks and real-
world problems. At the same time, [42] introduced a hybrid
priority factor-based heuristic and FIS employing an ag-
gregation method and fuzzy dominance to optimize delay,
area, and power. -e proposed hybrid exploration was
applied to different DSP benchmarks, and these methods
provide acceleration compared to some DSE approaches. A
DSE by hybrid priority factor-based heuristic and FIS is
presented in [43]. It is a combination of the priority factor

method and fuzzy search technique that is rapid and ac-
curate, used in the evaluation and selection in the archi-
tecture design space. Other hybrid approaches that use an
aggregation method are presented in [44], which is a com-
bination of a priority factor-based heuristic and a de-
pendency matrix algorithm. -is iterative heuristic method
has a considerably good exploration runtime while delay and
area are used as the objective functions. Krishna et al. [45]
proposed a different hybrid heuristic, which is a combina-
tion of a priority factor-based heuristic and greedy algorithm
to optimize delay and power. -is work also has a design
with less execution time, providing increased acceleration
when it is compared with other iterative proposals.

Another FIS was presented in [46], this time with the
cost assignment strategies of fuzzy dominance. It achieves
significant improvement in speedup with a real benchmark.
A brute force search based on adders and multipliers is
presented by [47]. -e authors considered the code level
transformations together with the architectural level opti-
mizations and their impact on the scheduled data path. -e
same authors optimized delay and area again, but this time

HLS software tool

Multiobjective
optimization
or learning

model

Behavioral
description

Objective 1

...

Objective n 

Scheduling

Allocation

Binding

HDL code 
(VHDL or 

verilog)

EDA software tool 
for logic and layout 

synthesis

Parameters and
configurations

Iterations to
approximate

the Pareto
Front or to

train the
model

RTL
generation

Compilation

Figure 8: General framework of the HLS tool as a black box.
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with a gradient-based heuristic pruning [48, 49]. -e work
[50] presents a clustering method that acts over pragma
directives to optimize delay and area using a PF approxi-
mation. In [51], a schedule and binding heuristic with
network flow rebinding is described. -eir work employs
a dynamic FU allocation strategy in HLS to achieve
a compromise between power and area. References [52–54]
proposed an algorithm to explore the design space using
binary search employing an ACG. Alternatively, the problem
of DSE was addressed in [55, 56] by a D-logic based ex-
ploration. -ese are mathematical models for the power,
delay, and area metrics that deterministically prune the vast
design space into a subset of valid design variants without
compromising the speed and the quality of the design.

-e HLS design requires an efficient exploration ap-
proach with the ability to determine optimal/near-optimal
scheduling solutions and module selection with significant
speed and precision. Based on this idea, [57] introduced
a heuristic based on the primacy selector (s-value) metric
which is common with the matrix topology methods. Most
of the research has focused on using an HLS tool as a black
box with pragma directives, and [58] is another example. In
this case, the divide and conquer algorithm with the
CHStone benchmark was used [59]. By profiling

annotations, in [60, 61], a greedy algorithm to optimize
delay and area with an aggregation method is presented.
-is methodology is completely autonomous and it in-
corporates area and frequency like constraints. -e work of
[62] presented a fully automated C-to-FPGA framework to
address this problem. -is technique can satisfy hardware
resource constraints (scratchpad size) while still aggres-
sively exploiting data reuse. -is approach can also be used
to reduce the on-chip buffer size subject to bandwidth
constraints. In [29], an iterative method with pruning that
can deal with the DSE of multiple loops on FPGAs is
described.

Many methodologies have been introduced which are
capable of drastically reducing the number of variants to be
analyzed for the selection of the optimized design using the
minimal execution time. -e paper [63] presented a prob-
lem-specific heuristic based on a graph merging approach to
deal with delay, area, and power. Allocation and scheduling
of reconfigurable arrays are implemented in Verilog HDL
and synthesized by an RTL representation using the Xilinx
ISE Design Suite. -e graph merging approach is validated
by the results which showed that the area allocated is less
for the graph merging technique than the reconfigurable
array using multiplexers. Concerning the objective

Exact methods

Optimization
methods

Approximate
methods

Heuristic
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Figure 9: Taxonomy of multiobjecive methods in HLS for FPGA devices.
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function digital noise (as well as area), [64] studied a bit-
width optimization by a divide and conquer algorithm for
fixed points. In [65], the authors present a hierarchical DSE
method that can speed up the exploration and can also
perform incremental DSE avoiding rerunning a full
exploration—by an HLS tool—each time that the changes
in the source are made, a Cyclic Redundancy Check- (CRC-)
based method is used to detect changes at the behavioral
description (source code).

Pham et al. [66] proposed a heuristic based on an access
pattern simulator by a LADG to reduce the dimensions of
the design space. A scheduling and binding heuristic for HLS
of fault-tolerant FPGA applications is presented in [67]. -e
authors stated that integrating redundancy into the HLS is
an attractive approach that enables synthesis to rapidly
explore different trade-offs at no cost to the designer. In [68],
the authors present a multiobjective optimization with quick
estimates of cycle count and FPGA area usage for designs in
the Delite Hardware Definition Language (DHDL). -eir
estimations take into account available off-chip memory
bandwidth and on-chip resources for data path and routing,
as well as effects from low-level optimizations like LUT
packing and logic duplication. A year later, linear pro-
gramming for multiobjective optimization is studied by
[69, 70] and a colored interval graph approach is studied by
[71, 72].

3.4. Single-Solution Based Metaheuristics. Aggregation
method consists of changing a multiobjective optimization
problem into a monoobjective one or a set of such problems.

It consists of using an aggregation function combining
various objective functions fi into a single-objective func-
tion f generally in a linear way:

F(x) �∑n
i�1

λifi(x), x ∈ D, (3)

where the weights λi ∈ [0...1] and ∑ni�1 λi � 1. However, the
use of scalarization approaches is only justified when they
generate Pareto optimal solutions [30]. Zwolinski and Gaur
[15] optimized the delay and area by an aggregation method,
scaling from multiobjective to monoobjective with a simple
weight vector (see equation (3)). Within the next two years,
another three approaches from this emerging research field
were published, and one of themwas [73] with single-solution
based metaheuristics. On this occasion, simulated annealing,
random search Pareto, and tabu search algorithms were used,
with the peculiarity of selecting weak dominance as the cost
assignment strategy. In [74], a similar approach employing
simulated annealing was used. -is time with pragma di-
rectives instead of simulation configurations. -e paper [75]
studied the trade-offs between power and security estimations
on a CDFG. -is paper considers IP protection as a new
objective function of the DSE.

3.5. Learning-Based Methods. Machine learning methods
have been used in recent years, almost all of them using HLS
tools as a black box (see Figure 8). -ese techniques always
perform scheduling, allocation, and binding because HLS
tools are responsible for carrying them out. In [76],
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Figure 10: State of the art of six MOAs.
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a machine learning algorithm is presented, where the au-
thors determine the PF approximations by only sampling
and synthesizing a fraction of the design space. A DSE to
derive PF approximations of the design configurations for
a set of targeted metrics (in this case delay and area) is
developed in [49].-at work used a response surface method
with Pareto dominance to perform scheduling, allocation,
and binding. In the same year, [77] investigated a method-
ology based on random forest and results compared fa-
vorably with other black box alternatives. -is research
optimizes simultaneously the same objective functions
(delay and area), but this time using knob settings to create
variations on the search process. One year later, a machine
learning approach based on simulated annealing was created
for HLS of the DSE [78] using pragma directives. -is
approach employs a standard simulated annealer to generate
a training set and uses this set to implement a decision tree.
-e delay and area optimization developed by [79] used an
Adaptive -reshold Non-Pareto Elimination (ATNE). -is
approach focuses on understanding and estimating the
inaccuracy, instead of focusing on regression accuracy
improvement. -ey employed five OpenCL applications as
behavioral descriptions to perform experiments.

An alternative strategy was proposed in [80], called
cluster-based heuristic, an open-source project. -e explo-
ration methodology is divided into five steps: initial

sampling, clustering, cluster selection, intracluster explo-
ration, and intercluster exploration. Ma et al. [81] presented
a Gaussian process regression to optimize simultaneously
delay, area, and power. Machine learning is applied to
predict the PF approximation of the adders in the physical
domain, because it is infeasible to exhaustively run the HLS
tools for many architectural solutions. On the other hand,
[82] developed HyperMapper 2.0, a methodology and
corresponding software framework, which handles multi-
objective optimization in the DSE for FPGAs. -is meth-
odology also can incorporate prior knowledge from the user
in the search. Another random forest approach is presented
in [83], which focuses on hardware loop unrolling with an
HLS directive.

3.6. Evolutionary Algorithms. Evolutionary algorithms have
been good candidates to tackle DSE. -e first one was in
[84], making use of a Weighted Sum Genetic Algorithm
(WSGA). -is is the first proposal where area and digital
noise are objective functions. Additionally, the same authors
propose an extension with a similar DFG-based method-
ology [85–88], but with power as an additional objective
function. One of the most important contributions in this
field was offered in [89], since they explained the use of
a multichromosome approach, and consequently, it was
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more feasible to represent the scheduling and allocation
tasks concurrently.

Strength Pareto Evolutionary Algorithm 2 (SPEA2),
using Pareto dominance, is an algorithm that performs
a much more intelligent multiobjective search. In 2006, it
was used for the first time in this problem by [90] with two
objective functions and in [91] with three objective func-
tions. Another evolutionary algorithm that uses Pareto
dominance is the Nondominated Sorting Genetic Algorithm
II (NSGA-II), which uses the crowding distance as a di-
versity preservation technique. -is algorithm was used for
the first time in HLS for FPGA devices in [92–94] to op-
timize delay and area. One year later, these same proposals
were improved, in terms of the representation of the so-
lutions (encoding) in [95–97].

In [98, 99], a dynamic combination of WSGA and Ant
Colony Optimization (ACO) is presented. In this method,
the initial pheromone distribution is generated with WSGA,
and then ACO is used to obtain the solutions. Dynamic
switching conditions are also discussed. In [100, 101], the
SystemCoDesigner software tool was presented, which offers
a fast DSE and rapid prototyping of behavioral SystemC
models. -e work [102] presents a multiobjective evolu-
tionary algorithm for hardware-software partitioning of
embedded systems, and the MediaBench benchmark [103]
was selected for testing. Anderson and Khalid [104] applied
the Simple Evolutionary Algorithm for Multiobjective
Optimization (SEAMO), a genetic-based algorithm to prune
the design space of the parametrized core and determine
a PF approximation by simulation. Speeding-up expensive
evaluations in HLS using solution modeling and fitness
(cost) inheritance are presented in [105]. -ey use NSGA-II
with CDFG for delay and area optimization. -e works
[11, 106, 107] present a different approach with respect to the
previous ones. -e research employs the multichromosome
representation presented in [89] but incorporates an ac-
curate power estimation.-e methodology based on NSGA-
II was evaluated through the MediaBench benchmark in
DFG, and the results indicate that it yields improved so-
lutions with better diversity compared to aWSGA approach.

In [108–111], the authors solved scheduling, allocation,
and binding using WSGA. -e presented approach in-
corporates a new seeding process for two special parent
chromosomes as well as a load factor heuristic, which
guarantees that the final solution will always be near-optimal
in terms of the user-specified constraints. In [112], a fully
automated design flow that exploits multiobjective DSE to
enable runtime resource management is studied. -ey de-
veloped a technique that identifies the most promising
operating points by using profiling information coming
from both software simulation and hardware synthesis. -e
optimization is done by using the Greedy Evolutionary
Multiobjective Optimization (GEMO) algorithm. Schafer
and Wakabayashi [113] demonstrate the feasibility to apply
NSGA-II in conjunction with a machine learning-based
predictive model. It is an HLS tool based on a black box
method that creates a predictive model from a training set
until a given error threshold is reached. -en, it continues
with the exploration using the predictive model avoiding

time-consuming synthesis and simulations of new config-
urations. HLS for FPGA devices by Learning Automata
Genetic Algorithm (LAGA) is studied in [114]. According to
this work, the scheduling and allocation are performed over
a DFG, optimizing delay and area simultaneously.

In another example, [115] presented a technique for
area-delay trade-off using residual load decoding heuristics
with genetic algorithms for integrated DSE of scheduling
and allocation. -ey employed the aggregation method as
a cost assignment strategy. -e work [116] summarizes a set
of techniques that were presented in previous papers, the
main one being [11].-is work explains how to deal with the
simultaneous optimization of delay, area, and power. In the
same year, [117] released another chromosome represen-
tation along with a driven integrated exploration of loop
unrolling factor and data path by WSGA for scheduling of
the CDFG. In [118], a DSE methodology for the optimi-
zation of delay and area by an evolutionary algorithm based
on pragma directives is presented. One year later, [119]
described another application of NSGA-II for the optimi-
zation of delay and power with the NCBI BLASTP bench-
marks [120]. Other methods use a predictive model to avoid
having to resynthesize each new configuration to be ex-
plored. In [121], a dedicated DSE for FPGAs is presented that
is based on a pruning algorithm with an adaptive windowing
method to extract the design candidates to be further (logic)
synthesized after HLS. -e adaptive windowing is based on
a learning method inspired by the Rival Penalized Com-
petitive Learning (RPCL) model in order to classify which
designs need to be synthesized.

In [12], an approach to apply two optimizations con-
secutively is presented. As the first optimization, several
metaheuristic algorithms for multiobjective optimization
were applied in HLS based on [116]. As a second optimi-
zation, reductions of LUTs at the logic synthesis stage were
carried out. -e paper showed how several optimizations
belonging to different design stages can coexist. One year
later, as an extension, a many-objective optimization algo-
rithm—Nondominated Sorting Genetic Algorithm III
(NSGA-III)—was applied in [122] for the first time to this
problem. In [123], a delay and power optimization is pro-
posed. In this case, an SDFG is employed for modeling DSP
applications. In [124], the authors focused on finding the
smallest microarchitecture for a specific target latency. -ey
used pragma directives with the S2CBench benchmark [125].
-e authors of [126] incorporated a new dimension to the
multiobjective optimization of this problem, the reliability.
-is methodology is composed of two main phases. -e first
one performs HLS for DSE leading to a trade-off curve of
designs with delay, area, and reliability. -e second phase
finds the most reliable system given delay and area con-
straints by either implementing time or space redundancy,
or a mixture of both using any combinations of micro-
architectures found by the explorer.

3.7. Swarm Intelligence Systems. -is family of algorithms
did not appear in this domain until 2006, when [127, 128]
implemented an ACO to perform scheduling and allocation
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taking into account the objective functions delay and area. A
comparison between Particle Swarm Optimization (PSO)
and the evolutionary algorithms NSGA-II and WSGA was
made in [11]. According to their work, it is observed that,
compared to WSGA, PSO shows considerable improvement
in runtime with a comparable solution quality.-e proposed
integrated approach in [129] comprises a comprehensive
mapping process and a sophisticated strategy for evaluating
solutions. -ey introduced a PSO driven DSE methodology
for delay and power trade-off over a CDFG.

An adaptive DSE framework called integrated Particle
Swarm Optimization (i-PSO) for delay and power as ob-
jective functions in HLS is presented in [130], including
a sensitivity analysis of the algorithm.-e use of PSO for the
DSE of data paths in HLS is also proposed in [131–134], and
the MediaBench benchmark and another DSP benchmark
(the paper does not provide details of the benchmark name)
to measure the optimization quality of the simultaneous
exploration of data path and loop unrolling factor are used.
Other authors published a similar strategy, but delay and
area were optimized in [135, 136]. -e authors in [137]
describe an approach to solve the DSE problem, which is
based on the Bacterial Foraging Optimization Algorithm
(BFOA).-ey also study BFOA in a similar way, where delay
and power were optimized in [138–144]. -e proposed
exploration approach is simulated to operate in the feasible
temperature range of an Escherichia coli bacterium in order
to mimic its biological life-cycle. Mishra and Sengupta [7]
studied the trade-offs between delay and power proposing
MOPSE, an adaptive multiobjective PSO based on DSE.
Sengupta and Mishra [145] described an approach to solve
the DSE problem based on Weighted Sum Particle Swarm
Optimization (WSPSO) with two variants of the acceleration
coefficient, a hierarchical time-varying acceleration co-
efficient and a constant acceleration coefficient.

A compiler approach performing delay, area, and power
optimization is presented in [146], where a better behavior of
the firefly algorithm over simulated annealing (single-so-
lution based metaheuristic) stands out. -is metaheuristic
has a competitive execution time, compared, for instance,
with an evolutionary algorithm. Research in [136] described
a methodology based on automating DSE and loop unrolling
factor using the high-level transformation during area-delay
trade-off using the PSO. Using CDFG, [147–155] described
approaches based on the k-cycle transient fault secured data
path during the HLS. Bhuvaneswari [116] studied a multi-
chromosome structure on a DFG to optimize delay, area,
and power using several algorithms, including swarm in-
telligence and evolutionary algorithms. Multiobjective op-
timization is performed in [9, 156], considering an
interesting topic, the secure information processing against
a hardware Trojan. In [157], a low-cost (delay and area)
approach that relies on the PSO metaheuristic to explore the
Trojan secured schedule with optimal unrolling is proposed.
-is paper also provides security against specific Trojans
(causing a change in computational output), while the area
and delay constraints are provided by the user. In [158],
a low-cost optimized Trojan secured schedule at the be-
havioral level for single and nested loop CDFG was studied.

Other examples within the use of this type of meta-
heuristic can be found in [8, 159], and a multivariable
signature encoding for embedding a dynamic watermark in
an IP design was presented. -ese investigations used the
same DSE framework with the PSO optimizing delay and
area. -e authors of [160, 161] proposed a firefly algorithm
for scheduling and allocation on the DFG using the
MediaBench benchmark and another DSP benchmark (in
the paper, no details of the benchmark name are given).
Besides, these papers report a sensitivity analysis that pro-
vides a good tuning of the algorithm control parameters for
performing the DSE that leads to faster convergence.

Obfuscation is the process of transforming an original
application or design into a functionally equivalent form to
make the reverse engineering process significantly more
complex. -e authors in [162] provided a structural ob-
fuscation methodology for protecting IP core at the HLS
design stage. -e proposed approach specifically targets
the protection of IP cores that involve complex loops. -e
authors of [163, 164] created a multiobjective optimization
(delay and area) that can deal with low-cost functional
obfuscation of reusable IP cores. -e work in [165] was the
first to incorporate the switching device and the storage
element delay from scheduling during the delay estima-
tion. -ey provide a BFOA that gives a balanced DSE
methodology and includes comprehensive delay estima-
tion by considering the combined delay of FUs, the
switching devices, and the storage elements directly from
scheduling. Results indicate improvement in achieving
a more realistic delay estimation process than previous
approaches.

In [166], the authors presented an optimization of delay
and area of the obfuscated JPEG CODEC IP core design
using particle swarm based on the DSE. And [167] in-
troduced an obfuscation of fault secured design through
a hybrid transformation with delay and area objective
functions by a PSO. In [168], a BFOA to achieve low-cost
(delay and area) IP design is performed. And [169] studied
a PSO to achieve delay and power minimization combined
with an IP functional locking.

3.8. Analysis, Comparisons, and Main Findings. Figure 12
shows all the MOAs used over the years. -is chart evi-
dences, in addition to the increase of papers over the years,
that swarm intelligence systems have been the most studied.
Evolutionary algorithms have also been used, due to the
simple way in which chromosomes can be generated.

Analyzing the cost assignment strategies in HLS, scalar
approaches have been the most used. Among these strate-
gies, the aggregation (or weighted) method has been the only
one studied, due to it is simplicity. During the last decade,
more methods such as dominance-based approaches and
indicator-based approaches have been used.

In Figure 13, the cost assignment strategies used over the
years are shown. In Figure 14, the cost assignment strategies
are shown, in the proposed relational graph, where the
aggregation method and Pareto dominance are the most
used.
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Objective functions have been estimated, represented,
and calculated in different ways (especially delay, area, and
power, as seen in Figure 15).

-e authors have proposed many ways to represent the
circuit design, and therefore, the estimations have to be
coupled to the data structure of the representation (for
instance, chromosome representation in evolutionary al-
gorithms). At least one of the delay, area, and power metrics
is present in almost all works covered in this survey. For that
reason, their estimation methods have become sophisticated
over time. In Figures 16 and 17, we can see the objective
functions using compiler techniques and an HLS tool as
a black box; it is important to note that delay, area, and
power stand out from the rest.

Furthermore, thanks to a technique called payoff ma-
trices, [12] showed how the objective functions of delay,
area, and power are in conflict. It demonstrates the im-
portance to solve this problem with a multiobjective ap-
proach. However, until now, the optimization process has
not been solved considering all eight objective functions

simultaneously. -e papers that used the most objective
functions have been [86–88] dealing with four (considered
to be a many-objectives optimization problem). In the case
of the optimizations with HLS tools as a black box, the
objective functions have been delay, area, power, and re-
liability because those are the ones that can be obtained
from the software tools.

Regarding the optimization method, diversity is as
important as convergence. -erefore, MOAs should have
techniques for diversity preservation with statistical density
estimations. In this sense, the following techniques have
been applied in HLS for FPGA devices: nearest neighbor and
histogram ([30]; p. 343).-ese techniques are implicit inside
many MOAs mechanisms. For example, the NSGA-II uses
the nearest neighbor technique (with crowding distance)
and the NSGA-III uses the histogram (with reference
points).

-e benchmarks used to evaluate these techniques are
very important for the experiments, comparisons, and
validation of the results. In the state of the art, we can find
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that MediaBench, also called Express benchmark, is the most
used. MediaBench was introduced in [103] for performance
evaluation of solutions on microprocessor architectures
applied to multimedia and communication systems. Fig-
ure 18 shows the benchmarks used in the state of the art
considered in this survey.

Nonetheless, many papers have used DSP benchmarks
like [170] or real-world benchmarks like [33]. -e

benchmark proposed in [31] is used by the authors who
proposed using the branch and X approach. -e S2CBench
benchmark [125] was employed for optimization proposals
that use pragma directives for the search process. On the
other hand, the PERFECT benchmark [171] is referenced in
[69, 70] for an accelerator of Wide-Area Motion Imagery
(WAMI) applications for SystemC specifications. Schafer
et al. have used the [172] in [50, 74, 113] with pragma
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Figure 14: Subgraph of cost assignment strategies.
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directives to optimize delay and power. -e experiments in
[62, 66, 123] are performed for five applications from the
polyhedral benchmark suite (PolyBench) [173], a bench-
mark for testing loop and array related problems. Another
benchmark used with pragma directives and profiling an-
notations was CHStone, a benchmark program suite for
practical C-based HLS [59]. It was used by learning-based
methods and problem-specific heuristics. Other benchmarks
of less use were the ACM/SIGDA benchmarks [174] in
[7, 116], the Linpack benchmark [175] in [75], the NCBI
BLASTP [120] in [119], the BDTI DSP [176] in [162], and the
SHOC benchmark suite [177] in [83].

In addition to the benchmarks, a better way to measure
the performance of the optimization method is by quality
indicators. However, quality indicators have been studied in
a few papers, [12, 29, 49, 58, 65, 66, 73, 77, 79–82,
91, 102, 113, 118, 121–123, 134, 145, 178]. Some quality
indicators used are Average Distance from Reference Set
(ADRS) in [179], Epsilon in [180], Hypervolume in [181],
and R in [182]. ADRS was the most frequent quality in-
dicator and is usually represented by percentage. It is based
on the normalized distance between two PF approximations
(P, P):

ADRS(P, P) �
1

|P|
∑
p∈P

minp∈Pc(p, p){ }, (4)

where

c(p, p) � max
i�1,...,m

0,
fi(p) − fi(p)

fi(p)
{ }, (5)

and m is the number of objective functions. A high value of
ADRS reports a low-quality approximation, while a low one
indicates that P has good approximates to P.

-e main findings of these works can be summarized as
follows. After reviewing and analyzing the state of the art
about MOAs in HLS for FPGAs, we found only one paper
that demonstrates that some of the objective functions are in
conflict [12]. -is is an important aspect; in the rest of the
publications, the authors assume that the objective functions
are in conflict. On the other hand, with the review of the state
of the art, we conclude that there is no survey that allows
researchers to contextualize all of the related works related to
MOAs in HLS for FPGAs. -is paper is intended to be of
help to carry out new research in this area. In this survey, we
have focused on organizing the papers according to the
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MOAs, the cost assignment strategies, the objective func-
tions, the benchmarks, and the compiler techniques. With
this analysis, we have detected that swarm intelligence
systems and evolutionary algorithms are the most used. -e
most used graphs of the intermediate structures are DFG
and CDFG. -e aggregation method and Pareto dominance
are the most used cost assignment strategies. Moreover, of
the 8 objective functions studied, the most optimized
functions are area, power, and delay. Regarding the
benchmarks, MediaBench and other DSPs are the most used
in these studies.

4. Open Issues

In this section, future challenges are presented. In addition,
some ideas about how to approach them are mentioned:

(1) It is important to use quality indicators to measure
the convergence and diversity of the PF, instead of
observing the convergence of only some solutions
within the PF approximation, as is done in most of
the papers. -e Hypervolume quality indicator is
a good option because it measures the volume of the
dominated space bounded from below by a reference
point and it is capable of measuring convergence and
diversity at the same time [183, 184].

(2) Temperature has been studied in a few papers
[185, 186] with a single-objective approach. -is
objective function should be studied with a multi-
objective approach, since the temperature is in

conflict with the wire length objective function,
because if the use of FUs is increased, then more
interconnections will be needed.

(3) -e grand challenge is the optimization problem of
HLS with 8 objective functions: delay, area, power,
wire length, digital noise, reliability, security, and
temperature (see Figure 2). We want to push the
FPGA designers and researchers to create a new
representation for solutions that includes schedul-
ing, allocation, and binding, with which all these
objective functions can be estimated. -en, we verify
by payoff matrices that these eight objective func-
tions are in conflict. Later, it is necessary to use
many-objective optimization algorithms like NSGA-
III [187, 188] or MOEA/D [189] to solve the prob-
lem. Finally, with many-objective optimization, the
results obtained can be analyzed.

(4) To develop more estimations methods for the ob-
jective functions: wire length, digital noise, re-
liability, security, and temperature, this is an area of
opportunity where researchers can develop estima-
tions of these metrics with the intention of increasing
their potential. One possibility is to use machine
learning for this task.

(5) -e HLS software tools with multiobjective opti-
mizations should show the PF approximation. Also,
these tools should let the designer select the opti-
mization method and configure the most important
parameters which are most convenient to him, so the

PolyBench benchmark

SHOC benchmark suite

S2CBench benchmark

PERFECT benchmark

Krishna et al. (2013)

Anderson et al. (2009) Mukherjee et al. (2012)

Kougianos et al. (2015)

Resmi et al. (2014)

Harish et al. (2011)

ACM/SIGDA benchmark

BDTI DSP kernel benchmark

CDFG Toolset

WSGA

Yang et al. (2012)

CyberWorkBench benchmark

Linpack benchmark

Other DSP benchmarks

NCBI BLASTP

Zuluaga et al. (2012)

Nardi et al. (2018)

Mediabench benchmark

CHStone benchmark

Figure 18: Benchmarks used in the state of the art of multiobjective HLS.
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designer can choose which solution will be imple-
mented into the FPGA device. In [190], visualization
techniques are presented which can be used to im-
prove the HLS software tools. In this challenge, the
runtime of Multiobjective Optimization Algorithms
could be considered a weakness relative to modern
tools, such as Vivado HLS.-erefore, to improve this
point, we pose the following challenge.

(6) Since multiobjective optimizations require large
execution times, it is desirable that the executions of
the algorithms are performed on a web server with
high-performance computing and parallelization
potential, instead of the user side. -is can be
achieved by developing an HLS web-based software
tool with a microservices-based architecture or
service-oriented architecture, instead of a monolithic
application [191] or using cloud computing to
streamline the process.

5. Conclusions

-is paper presented the state of the art of multiobjective
optimization methods in HLS. An online graph was
designed with the aim of creating a visual representation of
this survey. In summary, an analysis of the convergence of
two fields was carried out: HLS and MOAs. -e optimi-
zations methods were identified and classified, as well as
internal aspects within them, such as the intermediate
structures where the optimizations are performed; HLS
techniques; and the benchmarks employed for experimen-
tation. Moreover, this work also studied what cost assign-
ment strategies have been used in the algorithms and which
are the objective functions to be optimized. In addition, it
was demonstrated that multiobjective HLS is a knowledge
area that has been in constant growth since 2003, where
a wide range of algorithms and specific details in the
scheduling, allocation, and binding techniques have been
addressed. To finish, we identified open issues and we
mentioned some ideas about how to approach them. -e
main one is that this problem must be visualized as a many-
objective optimization problem with eight objective func-
tions to optimize simultaneously.
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