

N70-20063

DEVELOPMENT OF NONFLAMMABLE COATING FOR POLYCARBONATE

M. C. Willson, et al.

Monsanto Research Corporation Dayton, Ohio

DISCLAIMER NOTICE

UNCLASSIFIED DEFENSE TECHNICAL INFORMATION ENTER INCLASSIFIED

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

TRAPS

6. NASA C K-102.197

DEVELOPMENT OF NONFLAMMABLE COATING

by

M. C. Willson and C. E. Semler

MONSANTO RESEARCH CORPORATION

Dayton Laboratory Dayton, Ohio 45407

THRU CODE ATEGORY

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Manned Spacecraft Center

Houston, Texas 77058

Contract NAS9-8357

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" indicates any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA or employee of such contractor prepares, disseminates, or provides access to any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration Scientific and Technical Information Facility P.O. Box 33 College Park, Md. 20740

FINAL REPORT

N70-20063

DEVELOPMENT OF NONFLAMMABLE COATING FOR POLYCARBONATE

by

M. C. Willson and C. E. Semler

MONSANTO RESEARCH CORPORATION Dayton Laboratory Dayton, Ohio 45407

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

March 1969

Contract NAS 9-8357

NASA Manned Spacecraft Center Houston, Texas 77058

FOREWORD

The research described herein, which was conducted by Monsanto Research Corporation, Dayton Laboratory, was performed under NASA Contract NAS 9-8357. The work was done under the guidance of the Technical Monitor, Mr. D. G. Sauers, Supporting Development Branch, NASA Manned Spacecraft Center.

ABSTRACT

Sodium and potassium silicates were applied by drawing and dipping techniques to polycarbonate to provide a nonflammable coating. A polyurethane coating between the silicate and the substrate was required to achieve good adhesion. Polymeric films, usually polyurethane or polystyrene, were applied over the silicate to improve the long-time stability of the coating system. Α limited number of organic-modified silica coatings were prepared but were significantly less effective than the alkali-silicate coatings in preventing flame damage to polycarbonate. Experimental glass compositions were formulated for plasma spraying studies from the alkali- B_2O_3 -SiO₂, soda-lime-silica, and BaO-Al₂O₃- B_2O_3 systems. Commercial glasses were also employed. All plasma-sprayed coatings were too translucent to satisfy optical requirements in the intended application. Optically transparent pyrex coatings were applied to polycarbonate by RF sputtering, but substrate discoloration was observed in most cases. Most of the coatings prepared in the program were evaluated for flame resistance, light transmittance, optical uniformity and distortion, humidity and thermal shock resistance, vacuum and ultraviolet stability, and flexural and impact strength.

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

Page

SECTION	Ι.	SUMM	IARY .	••••••••••••••••••••••	
SECTION	II.	INTR	ODUCT	ION	
SECTION	III.	RESU	LTS A	ND DISCUSSION OF RESULTS 4	
		Α.		li Silicate Systems 4	
			1.	Coating Fabrication 4	
• •				 a. Preparation of Bond Coatings 4 b. Preparation of Silicate Coatings 5 c. Curing of Alkali Silicate Coatings 7 d. Cold Forming and Polishing of 	
	·			e. Water Repellant Coatings for Alkali Silicates	
			2.	Coating Testing and Evaluation 23	
	· ·		•	 a. Humidity Resistance	
•	•	Β.	Non-/	Alkali Silicates and Silica Coatings 52	
			1.	Consideration of Approaches	
			2.	Modified Silica Coatings for Flame Retardation	
		С.	Plasn	na-Sprayed Coatings	
		•	1.	Screening of Candidate Materials 55	
•			2.	Survey of Glass-Forming Systems 58	

TABLE OF CONTENTS (Cont'd.)

Ρ	а	g	e

	3. Plasma Spraying of Glass Compositions 6	3
	 a. Preparation and Appearance of Coatings	0
	4. Selective Melting of Plasma-Sprayed Glass Coatings by Laser	0
	D. RF Sputtered Coatings 7	2
SECTION IV.	CONCLUSIONS 7	5
	A. Alkali and Nonalkali Silicate Coatings 7	5
	B. Plasma-Sprayed Glasses 7	5
SECTION V.	REFERENCES	7

vi

LIST OF FIGURES

Figure		Page
1.	Comparison of Distortion in Silicate-Urethane Polycarbonate System	. 21
2.	Appearance of Silicate Coatings After 187 Hour Exposure to High Humidity Environment	. 27
3.	Top View Schematic of Flame Resistance Test	. 29
4.	Appearance of Silicate Coatings After Exposure to 1800°F-2000°F Combustion Flame	. 30
5.	Graph of Flame Resistance Test (Propane Torch) Results for Type K Silicate Coated Polycarbonate Specimens	. 31
6.	Light Transmittance of Silicate-Urethane- Polycarbonate Systems	• 35
7.	Transmittance of Alkali Silicate Systems	. 36
8.	The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 532	. 44
9.	The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 534	. 45
10.	The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 541	. 46
11.	The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 546	. 47
12.	The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 642	. 48
13.	The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 649	. 49
14.	Arrangement of Equipment for Production of Plasma-Sprayed Coatings, showing Details of the Plasma Spray Torch with Standard Argon Electrodes	. 56

LIST OF FIGURES (Cont'd.)

Figure		Page
15.	Schematic Arrangement of Equipment for Observing Melting Characteristics of Spray Powders at Various Torch Conditions	57
16.	Microscopic Appearance of Particles from Impact Studies	59
17.	The Portion of the Ternary System Na ₂ O-CaO-SiO ₂ of Interest to Glass Technology, According to Morey (1930); Weight Percent of Na ₂ O Obtained by Subtracting Sum of CaO Plus SiO ₂ from 100	61
18.	Glass-forming Portion of the System $BaO-Al_2O_3-B_2O_3$	61
19.	Illustration of Transmitted Light Properties of Plasma-Sprayed Glass Coatings	67
20.	Illustration of Reflected Light Properties of Plasma-Sprayed Glass Coatings	68
21.	Transmittance of Plasma-Sprayed Glass Coatings on Polycarbonate	70
22.	An Overall View of the RF Sputtering Module (SM-8500) Mounted on a Veeco 775 Vacuum System	72
23.	<pre>Individual Components of the RF Sputtering Module (SM-8500)</pre>	72

LIST OF TABLES

Table		Page
Ι.	Undercoating Candidates	6
II.	Preparation of Silicate Coatings	8
III.	Oven Drying of Silicate Coatings	13
IV.	Effect of Chemical Setting Agents on Silicate Film Surfaces	16
v.	Pressure Mounted Silicate Coatings	18
VI.	Cold Forming of Silicate Coatings	20
VII.	Water Repellant Materials for Alkali Silicate Coatings	22
VIII.	Silicate Protected with Water Repellant Films	24
IX.	Humidity Resistance of Silicate Coatings	26
Χ.	Effect of a Propane Torch Flame on Silicate- Coated Polycarbonate	32
XI.	Parts A & B: Optical Distortion Values From Federal Test Method 3041 Part C: Optical Uniformity Values From Federal Test Method 3041	3,4
XII.	Vacuum Stability of Alkali Silicate Systems	38
XIII.	Four Point Load Flexural Strength of Alkali Silicate Coatings	39
XIV.	Spectral Distribution of Atlas Enclosed Violet Carbon Arc Lamp (Ref. 4)	40
xv.	Ultraviolet Stability of Alkali Silicate Coatings	41
XVI.	Effect of Water Content on Appearance of Silicate Coatings	50
XVII.	Impact Test Results	51

LIST OF TABLES (Cont'd.)

Table		Page
XVIII.	Effect of a Propane Torch Flame on Uncoated and Coated Polycarbonate Sheet	53
XIX.	Particle Impact Studies of Initial Candidate Materials	60
XX.	Experimental Glass Compositions	63
XXI.	Particle Impact Studies of Experimental Glass Compositions	65
XXII.	Particle Impact Studies of Commercial Glass Compositions	66

SECTION I. SUMMARY

A. Alkali Silicates

Sodium and potassium silicates of varying K₂O/SiO₂ ratios (where K is either sodium or potassium) were applied to polycar-bonate in order to render it nonflammable. The coatings were applied by both conventional doctor blade techniques and modified dip procedures. Early in the program, it was decided that a bond coating was necessary to provide good adhesion for the silicate Consequently, a cryogenic urethane adhesive was selected layer. for this purpose. In most cases the silicate coatings were air dried in a humid atmosphere to reduce the drying rate and minimize the possibility of stress cracking and warping. The hardened air-dried coatings take on glass like properties and require sanding and polishing to reduce optical distortion. Finally, in order to reduce the water loss and subsequent degradation of the silicate coating, a polymeric encapsulator material was applied over the silicate by dipping, drawing and spraying techniques. Commercially available polyurethane and polystyrene were selected on the basis of appearance and good performance during tests. The frosted appearance of the sanded silicate surface was eliminated by the polymer film.

The polycarbonate-polyurethane-silicate-polyurethane (PUSP) systems were evaluated on the basis of various tests considered important by NASA. Foremost of these tests were the optical transmittance, optical distortion, and flame impingement tests. The best PUSP systems were found satisfactory in each of these tests.

In addition, the PUSP system performed satisfactorily in thermal shock, flexural, vacuum, ultraviolet, impact, and humidity tests.

Due to the necessity of applying a flammable polymer moisture barrier over the silicate, some concern was raised over the possibility of the polymer flaming when impinged with a flame in an oxygen atmosphere. However, tests conducted at NASA indicated little flame propagation of the polymer film. Consequently, polymeric films were found to be acceptable.

B. Non Alkali-Silicates

Organic-modified silica coatings were prepared but were found to be significantly inferior to alkali-silicate coatings in providing flame protection to polycarbonate.

C. Plasma Sprayed Coatings

Extensive studies have been carried out using refined arcplasma spraying techniques in order to develop a nonflammable, transparent coating for polycarbonate. Initially, simple chemical compounds were plasma sprayed and their melt characteristics These materials showed very limited film formation. observed. Consequently, the emphasis was shifted to the development of experimental glass compositions which could be formulated with the physical properties necessary for deposition by arc plasma techniques. In general, the experimental glasses were located in the following systems: $alkali-B_2O_3-SiO_2$, soda-lime-silica, or $BaO-Al_2O_3-B_2O_3$. In addition, several commercial glasses with the properties required to permit deposition by the arc plasma process were located. These experimental and commercial glasses were successfully plasma sprayed on polycarbonate, yielding uniform glass coatings suitable for non-optical-type uses, due to their translucent appearance. The particulate deposition characteristics inherent in the arc plasma process cause the translucent appearance because the resulting grain boundaries do not permit isotropic light transmission. As a result, the plasma-sprayed glass coating prepared in this program did not possess the optical qualities necessary for instrument dials. Such coatings might be of interest, however, for other components where coatings having abrasionresistance, impact-resistance or other special resistance properties are required.

D. Sputtered Coatings

RF diode sputtering of transparent pyrex coatings on polycarbonate was performed. The overheating problem of this setup was basically overcome so that the polycarbonate would not be physically degraded. However, a slight brownish discoloration of the polycarbonate was always observed. Optically, the coatings (1000-2000 Å) retain their transparency but the substrate takes on a slight color.

SECTION II. INTRODUCTION

The objective of this experimental program was to develop a non-flammable transparent coating for polycarbonate, a material with good optical and impact properties, which is currently utilized in transparent visor and instrumentation applications. The work was divided into 3 main areas: 1) alkali silicates; 2) non-alkali silicates; and 3) plasma-spraying of glass. In addition, an effort was made to determine the feasibility of sputtering a nonflammable film on polycarbonate. The latter half of the contract period emphasized the alkali silicate coating approach.

SECTION III. RESULTS AND DISCUSSION OF RESULTS

A. Alkali Silicate Systems

1. Coating Fabrication.

a. Preparation of Bond Coatings. Both sodium and potassium silicates, because of their water content, are nonwetting when applied to a polycarbonate. Indeed, polycarbonate is used as a mold for producing silicate castings.

Coatings have been reportedly produced by treating plastic substrates with polyvinyl alcohol followed by application of the silicate in the form of a silicate-boric acid gel.

Transparent polyvinyl alcohol (PVA) films intended to serve as intermediate coatings formed on glass were well bonded whereas those formed on polycarbonate adhered poorly. Adhesion of silicate films to the PVA films was good with both substrates. No improvement in adhesion of PVA films to polycarbonate was obtained with a hydrolizing treatment of the polycarbonate prior to application of PVA as successfully employed with other substrates (Ref. 1).

Polyvinyl Butyral (PVB) film bonded to polycarbonate film by heating for 10 minutes at 200°F was also investigated as an intermediate coating. However, the optical quality was poor due to trapped bubbles and distortion.

A brief study was made using General Electric RTV108 silicone as an adhesive layer between the silicates and polycarbonate. The silicone coatings were applied with a spatula and air cured at room temperature. However, all coatings were found to have poor adhesion to the polycarbonate.

Initial polyurethane bond coating studies were made using a cryogenic polyurethane made by 3M Company designated Scothweld EC3515. The oven-cured specimens tended to form bubbles indicating the abnormal release of CO_2 . Since aging of the urethane could have been a factor in this case, the 3M urethane was abandoned in favor of a urethane of known quality. No bubbles were observed after oven curing with the Dupont Adiprene L-100 polyurethane. A range of cure cycles were studied with the Dupont polyurethane is shown below:

CURE CYCLES FOR DUPONT ADIPRENE L-100 POLYURETHANE-COATED POLYCARBONATES

Cure Cycles	Cure <u>Time, hr.</u>	Temperature,	Atmosphere		
1	5	212	Air		
2	8	212	Air		
3	32	212	Air		
4	80	212	Air		
5	96	212	Air		
6	6	285	Air		
		•			

No discernible difference was observed in polyurethane properties. In most cases, a MOCA hardner (4'4'-methylene-bis-2-chloroaniline) was used to accelerate the curing time of the polyurethane. In a few instances the MOCA was replaced by ethylene glycol. The curing time, however, was much longer in these cases. The urethane coating procedure consists of a preliminary air removal of the polyurethane to eliminate coating This was accomplished by placing the polyurethane in bubbles. an Erlenmeyer flask which is then evacuated to $\sim 10^{-4}$ torr. When the bubbling stopped, the hardner was mixed with the polyurethane (12.5 parts MOCA to 100 parts polyurethane by weight) and immedi-ately drawn on 9" x 11" polycarbonate with an 8 inch Gardner knife. The polyurethane was drawn in thicknesses ranging from 2 to 10 mils. Generally, the coatings were transparent with minimal distortion. A summary of undercoating materials evaluated and subsequent results is shown in Table I.

b. Preparation of Silicate Coatings. Both sodium and potassium silicate exhibit high transparency over the visible spectrum. The silicates are commercially available from Philadelphia Quartz Company as a water-based solution in various Na_2O/SiO_2 or K_2O/SiO_2 ratios as shown below:

VISCOSITY OF ALKALI SILICATES

(Ref. 2)

<u>Sillcate</u>	Туре	Na ₂ 0/SiO ₂	K20/S102	Viscosity, cps @ 20°C
Sodium	К	2.87	-	960
Sodium	N	3.20	-	178
Sodium	S-35	3.74	 .	222
Potassium	Kasil #6	-	2.11	1010

Table I

UNDERCOATING CANDIDATES

Remarks	Poorly bonded	Poorly bonded	Bubbly distorted film	Bubbly film	Transparent film
Substrate Treatment	None	5 min. in hydrolizing solution	None	None	None
Application Method	Spatula	Spatula	Pressed	Doctor Blade	Doctor Blade
Cure Temperature, °F	220	220	200	200	200
Cure Time, hr.	1/6	η/Γ	1/6	-1	5-96
Pore	viscous liquid	viscous liquid	tacky film	viscous liguid	viscous liquid
Type	Polyvinyl alcohol	Polyvinyl alcohol	Polyvinyl Butyral	3.5 Scotcimeld Polyurethane	Dupont Adiprene L-100 Polyurethane

ŕ,

A variety of solution viscosities and coating properties can be obtained depending on this ratio. Generally, the as received solutions had the consistency of thin molasses. The silicate solutions were applied by both a drawing and a pouring technique. The poured coatings were made by simply pouring the silicate on the flat polyurethane/polycarbonate specimen and spreading it over the plate to achieve a uniform thickness. The drawn coatings were made using either a 4 inch or 10 inch doctor knife, set at the required thickness gap, to pull the solution over the polyurethane surface. Coatings were difficult to produce (with either technique) due to the nonwetting properties of the silicate solution on polyurethane. This problem was greatly alleviated by using the higher viscosity silicate solutions such as K sodium silicate and Kasil #6 potassium silicate. In a few instances, a fine mist of silicate diluted with water (1:1 by weight) was sprayed on the polyurethane surface and allowed to dry.

The heavier silicate was then applied to the sprayed silicate producing good wetting characteristics. The silicate coatings were then air dried in a high humidity environment (>60%) for several days until the coatings had hardened sufficiently for surface finishing.

Cracks and/or wrinkles may develop as the silicate drys depending on the silicate type, drying rate, and water content of the coating. Both K sodium silicate and Kasil #6 potassium silicate were initially found to give the most stable air-dried coatings. The majority of the silicate coatings were made from Kasil #6 potassium silicate because of its resistance to physical and optical degradation when exposed to varying humidity environments. Also, the drying rate must be low enough to allow water to volatilize slowly or cracking will result. If the amount of water retained in the specimen reaches a critical low, cracking and optical degradation will result. Table II summarizes the alkali silicate coating work. Post silicate application treatments and coating evaluation will be discussed in the succeeding sections.

c. Curing of Alkali Silicate Coatings. In order to produce a more stable alkali silicate coating that would be relatively insensitive to environmental changes, several curing methods were attempted. These were oven drying, chemical setting, and pressure curing. Little success was achieved because in most cases the optical properties of the coatings were severely degraded.

(1) Oven Drying Studies. Type K & N sodium silicate and Kasil #6 potassium silicate were subjected to various timetemperature cycles as shown in Table III. Initial studies were conducted using specimens which had been air dried for at least

	Т	able II	
PREPARATION	٥٢	SILICATE	COATINOS

.

r

				Ta	bl e 11			•		
			ľ	REPARATION OF			1105			
					Bake	Bake	Prot	ective Conti		
Spec. No.	Тур•	Sigo	Treatment	Туре	Time <u>min.</u>	or.	Silicate	Турс	Thickness, 	Remarks
8-1 8-2	Glass Slide Glass Slide	1"x3" 1"x3"	None None	None None			N N	Sodium Sodium	N.D. N.D.	Well bonded Transparent; well bonded
8-3 8-4	Polycarbonate Polycarbonate	1"x1"]"x1"	None None	None None			N N	Sodium Sodium	N.D. N.D.	Bublly; poor bond Transparent, poor bond
8-5	Glass Slide	1"x3"	None	None			N	Sodium	N.D.	Trunsparent, well bonded
8-6	Olans Slide	2"×3"	None	Polyviny1 Alcohol		R.T.	-	None	N.D.	Transparent, well bonded
5-7	Glass Slide	1"x3"	None	Polyviny1 Alcohol	10	550	N	Sodium	N.D.	Bubbly; well bonded
8-8	Polycar bonate	1"x1"	Non#	Polyvinyl Aloohol	10	220	N	Sodium	N.I.	PVA poorly bonded to polycarbonate
. 8-9	Polycarbonate	1"x1"	5 min in hydrolyz- ing moluti	Polyvinyl Alcohol	10	220	-	None	N.D.	FVA poorly bonded to polycarbonate
5-10	Polycarbonate	1"#1"	5 min in hydrolys≁	None	***		N ¹	Sodium	N.D.	FVA poorly bonded to polycarbonate
5-11	Polycarbonate	1"#1"	ing soluti 10 min in hydrolyz-	Polyvinyl Alcohol	15	220	-	None	N.D.	PVA poorly bonded
8-12	Polycarbonate	1"x1"	ing soluti 10 min in hydrolyz-	None			N	Sodium	N.D.	Sodium Silicate poor- ly bonded
9-13	Polycarbonate	1"x1"	ing soluti Dip in Adetone	Polyvinyl Alcohol	15	220	-	None	N.D.	Polycarbonate became gray after exposure to acetone
5-14	Polyvinyl	1"x1"	None	None			N	Sodium	N.D.	Well bonded; clear
8-15	Butyral Polyvinyl Butyral	1"x1"	None	None			N	Sodium	W.D.	Well bonded; cracked
3-16	Butyral Polycarbonate	1"x1"	None	Polyvinyl Butyral	10	200	N	Sodlum	N.D.	Bubbles under poly- vinyl butyral; well bonded
5-17	Polycarbonate	3"×3"	None	Polyvinyl Butyral	10	200	N	Sodium	N.D.	Bubbles under poly- vinyl butyral; well bonded
8-18	Polycarbonate	3"×3"	None	Polyvinyl Butyral	10	200	N	Sodium	N.D.	Fewer bubbles
8-19	Polydarbonete	1"x1"	Orit blasted	None			N	Sodium	N.D.	Retter bond; some diffusion at inter- face
8-20	Polyanr bonate	1"x1"	Orit Dianted	Notie			N	Sodium	N.D.	Better bond; some diffusion at inter- face
8- 39A	Folycarbonate	1"x1"	None	3M Scotchweld [#] Polyurethane		R.T.	8-35	Sodium	N.D.	Transparent; a few cracks well bonded
5-40	Polycarbonate	1"x1"	None	Polyurethane	240	200	5-35	Sodium	N.D.	Transparent; a few cracks well bonded
8-41A	Polycarbonate	1"x1"	None	Polyurethane	240	- 200	Kas11 6	Potassium	N.D.	Transparent; a few cracks well bonded
3-42	Polycarbonate	1"x1"	None	Polyurethane		R.T.	Kasil 6	Potassium	N.D.	Tranaparent; a few cracks well bonded
3-43	Polycarbonate	1"x1"	None	Polyurethane		R.T.	N	Sodium	N.D.	Transparent; a few cracks well bonded
5-44A	Polycarbonate	1"x1"	None	Polyurethane	240	200	-	Sodium	N.D.	Transparent; many bubbles well bonded
8-45	Polycarbonate	1"x1"	None	Polyurethane		R.T.	Kas11 6	Potassium	N.D.	Transparent; well bonded
5-46	Polycarbonate	1"#1"	None	Polyurethane		A.T.	ĸ	Potassium	N.D.	Transparent; well bonded
5-478	Polycarbonate	- 1"x1"	None	Polyurethane	240	200	ĸ	Potassium	N.D.	Transparent; many bubbles well bonded
S- 48A	Pelyearbonate	3"×3"	None	Polyurethane	240	200	Kamil 6	Potassium	N.D.	Transpurent; many bubbles well bonded
5-49	Polycarbonate	3" × 3"	None	Polyurethane	240	200	Kan1) 6	Potessium	N.D.	Trankparent well bonded
5-51	Olass Silde	1"#3"	None	None			Kan11 6	Potanalum	N.D.	Trensparent; some cloudingss few bubbles
8-50	Polycarbonate	1"#1"	None	Polyurethanp		R. T.	Kan11 6	Potestus	N.D.	Sandwiched between urethane and polycar- bonate mold; trans- parent no distortion
859-65	folyearbonale	1"#1"	Nesta	General Elec MTV 108 Silicone		H.T.	None		N. D.	Transparent, a few bubbles, poor ad- heaton of silicone
71, 75-7 81-82,	- Olaan Sildea 8,	J"#1"	None	None	***	R. T.	Kan11 6	Potapsium	N.D.	Transparent films, a few trapped air bub- bles, made for chem- ical setting studies
110-111 866-67, 72-74, 79-80, 6 108-109	Glass Slides	1"#1"	Nergem	Nune		н.т.	ĸ	Sodium	N.D.	ical setting studies Transparent films, a few trapped air bub- bles, mude for chem- ical setting studies

.

.

.

Cont'd Table II

¥

	• • • • • • • • • • • • • • • • • • •			Undercoating			Pro	tective Coa	ting		
	lipee.		lubstrate			Bake Time	Bake Temp,			Thickness,	
	No.	Туре	Sizo	Treatment	Туре	min.	op	Silicate	Туре	mils	Remarks
	384-85, 90-91, 98-101,	Glass Slides	1"x1"	None	None		R.T.	N	Sodium	N.D.	Transparent films, a few trapped air bub- bles, made for chem-
	112-113 586-89, 96-97, 104-5,	Glass Slides	J.XJ.	None	None	*==	R.T.	Kasil 1	Potassium	N.D.	ical setting studies Transparent films, a few trapped air bub- bles, made for chem-
	114-115 992-95, 102-103, 106-107,	Glass Slides	3"x1"	None	None	***	R.T.	8-35	Sodium	N.D.	ical setting studies Transpurent films, a few trapped air bub- bles, mude for chem-
	116-117.	122 Olman Slides	1"x1"	None	None		R.T.	Kasil 6	Potassium	N.D.	ical setting studies Transparent films, a few trapped air bub- bles, made for oven
	8130-131	Glass Slides	1"#1"	None	None		K.T.	ĸ	Sodium	N.D.	drying studies Transparent films, a few trapped air bub- bles, made för oven
	8132-133	Glass Slides	1"#1"	None	None		R.T.	N	Sodium	N.D.	crying studies Transparent films, a few trapped air bub- bles, made for oven drying studies.
	8-126-127	Glass Slides	1"×1"	None	None		R.T.	Kas11 1	Potassium	N.D.	Transparent films, a few trapped air bub- bles, made for oven drying studies
	8134-135	Glass Slides	1"x1"	None	None		R.T.	8-35	Sodium	N.D.	Transparent films, a few trapped air bub- bles, made for oven drying studies
	3174-175	Polycarbonate	1"x1"	None	None		R.T.	Kasil 6	Sodium	N.D.	Transparent films, poorly bonded
	\$120-121, 123, 153- 162, 171- 172, 185,	Polycarbonate	1 ^m x1 ^m	None	3M Scotchweld Urethane		R.T.	Kas11 6	Sodium	N.D.	Transparent, hubble- free films
	172, 185, 187, 187, 187, 187, 188, 1	194.									
	\$182, 194-196, 198-199, 201, 203,	Polycarbonate	1"x1"	None	Oven cured DuPont Adiprene 100 Urethane	72	212	Kasil 6	Socium	N.D.	Transparent films, a few trapped air bub- bles, well bunded
	207 8119-125, 204	Polycarbonate	2"#1"	None	3M Scotchweld Urethane	***	R.T.	K	Sodium	N.D.	Transparent films, a . few trapped sir bub- bles, well bonded
	142-152, 163-169,	Polycarbonate	1"#1"	None	3M Sootshweld Urethane		R.T.	ĸ	Sodium	N.D.	Transparent films, a few trapped air bub- bles, well bonded
	186 8190-193, 197, 202, 205-206	Folycarbonate	1"x1"	None	Oven sured Dufont Adiprene 100 Urethane		R.T.	ĸ	Sodium	N.D.	Transparent films, a few trapped air bub- bles, well bonded
	8118	Polycarbonate	2"x1"	None	3M Sootohweld Urethane		R.T.	N .	Sodium	N.D.	Transparent films, a few trapped air bub- bles, well bonded.
		Polycarbonate	1"x1"	None	3M Scotchweld Urethane 3N		R.T. R.T.	8-35 Kasil 88	Sodium Potassium	N.D.	Transparent films, a few trapped air bub- bles, well bonded Transparent films, a
	8230-232	Polycarbonate		None	Scotchweld Urethane DuPont		•	x	Sodium	~9-3 0	few trapped air bub- bles, well bonded
	\$234-236 \$233	Folycarbonate	3"#3"	None	Adiprene L-100 Poly- urethane DuPont	•		к V	Sodium	~5	
		- 	· · ·		Adiprene L-100 Poly- urethane			ĸ	Sodium	-8-14	Oven drying and
		Polycarbonate	·	None	DuPont Adiprene L-100 Poly- urethane	-			•		thermal shock studies
	8247-255	Polycarbonate	5.75.	None	DuPont Adiprene L-100 Poly- urethane	8	212	Kas11 6	Potassium	-5-9	Oven drylig and thermal shock studies
	8256-257	Polycarbonat•	3" # 3"	None	DuPont Adiprene L-100 Poly- urethane	Ø	•	K	8odium	~19	Cold forming studies
	8258-264	Folycarbonate	1.81.	None	DuPont Adiprene L-100 Poly- urethane	•		Kasil 6	Potaesiua	s(I-11	Oven drying studies
	8265-271	Folycarbonat.	3**3*	None	DuPont Adiprene L-100 Poly- urethane	4	•	ĸ	Sodium	13-53	· .
. •	8272-276	Polycarbonate	2"#2"	None	DuPont Adiprene L-100 Poly-	•	•	ĸ	8odium -	****	Cold forming studies
	5277-281	Folycarbonate]]/5µXJ]/5µ	None	DuPont Adiprene L-100 Poly- urethane	•	•	Kasil 6	Potassium	~2-6	Oven drying studies
	8282	Polycarbonate	3" = 3"	None	DuPont Adiprene L-100 Poly-	• •	•	Kas11 6	Potansium		Oven drying studics
	8283-288	Polyearbonate	?"x?"	None	urethane DuPont Adiprene L-100 Poly-	80	212	K	Sodium	~6	Oven drying studies
	82A9-294	Polycarbonate	2"x?"	None	urethane DuPont Adiprene L-100 Poly- urethane	80	212	Kasi) 6	Potassium	~2-6	• •

Cont'd Table II

•				Undercoating Bake Bake			Pro	lective Cos	ting	
No.	Type	Sizo	Treatment	Туре	Time 	Temp,	Silicate	Туре	Thickness, mila	Remarko
295	Pulycarbonato	5#x2"	None	DuPont Adiprene	80	\$15	ĸ	Sodium	~~ ~~	Produced for future flame tests
296	Polycarbonate	5"x?"	None	L-100 Poly- urethane DuPont Adiprene L-100 Poly-	80	212	ĸ	Sodium	~14	Produced for future flamm tests
97	Polycarbonate	?"x?"	None	urethane DuPont Adiprene L-100 Poly-	80	212	ĸ	Sodium	~12	Produced for future flame tests
98	Polycarbonate	2" * 2"	None	urethane DuPont Adiprene L-100 Poly-	80	212	ĸ	Sodium	~12	Produced for future flame tests
?99	Polycarbonate	2"x2"	None	urethane DuPont Adiprene L-100 Poly-	80	515	Kasil 6	Potassium	~0.5	Produced for future flame tests
) 00	Polycarbonate	5.*5.	None	urethane DuPont Adiprene L-100 Poly- urethane	80	212	Kasil б	Potassium		Curved from substrate during draw down
903	Polycarbonate	2"x2"	None	DuPont Adiprene L-100 Poly- urethane	80	515	Kasil 6	Potassium	~9	Produced for future flame tests
305	Polycarbonate	2"x2"	None	DuPont Adiprene L-100 Foly- urethane	80	212	Kasil 6	Potassium	~11	Produced for future flame tests
303-308, ?1-3?3 10-33?	Lexan Polycarbonate	5"×5"	None	None	RT Air		ĸ	Sodium	4-13	Oven drying studies
309-314	Lexan Polycarbonate	2"x2"	None	None	RT Air		Kan11 6	Potassium	4-13	Oven drying studies
315-320	Lexan Polycarbonate	2"x2"	None	None	RT Air		N	Sodium	6 39	Oven drying studies
124-326 13-335	Lexan Polycarbonate	2" x 2"	None	None	RT Air		Kasil 6	Potassium		Oven drying studies
27-329 6-338	Lexan Polycarbonate	2" x 2"	None	None	RT AIr		N	Sodium	****	Oven drying studies
155-361	Insan Polycarbonate	2"x2"	None	None	5	212	ĸ	Sodium	4-17	Flame teats; cold forming studies Water repellent cont:
80-385	Lexan Polycarbonate	2"x2"	None	None	32	212	K v	Sodium	22-26	ing studies. Flame tests; cold
193, 15-396	Lexan Polycarbonate	2" x 2"	Nona	DuPont Adiprene L-100 urethane	79	212	К	Sodium		forming atudies
198-400	Lexan Polycarbonate	2**2*	None	DuPont Adiprene L-100 urethane	79	215	к	Sodium	23-34	Cold forming studies
101-402	Lexan Polycarbonate	2"x2"	None	DuPont Adiprene L-100 urethane	79	212	Kan11 6	Potassium	19-21	Cold forming studies
103-404	Lexan Polycarbonate	2"x2"	None	DuPont Adiprene L-100 urethane	79	212	K	Sodium	35-73	Flame test; cold forming studies Cold forming studies
105-406	Lexan Polycarbonate	2"x2"	None	Dufont Adiprene L-100 urethane	79	212	Kasil 6	Potassium	15-23	
133-434	l"xl" Polycarbonate	1"x1"	None	DuPont Adiprene L-100 urethane	RT Air		к.	Sodium	61-63	Adhesion studies
35, 440	1"x}" Glass Slide	1"x3"	None	DuPont Adiprene L-100 urethane	•	•	Kasil 6	Potassium	• • •	Future oven drying studies Future oven drying
)"я3" Glass Slide	1"x3"	None	DuPont Adiprene Ir 100 urethane	•	•	X	Sodium	15-19	protective coaling
07-415 9	Lozan Polyenrbunato	?"x?"	None	Dufont Adiprene L=100 urethane	5	212	Kan11 6	Potansium		studion
18-420	Lexan Polyearbonata	3" *7" .	None	Dufont Adiprone L-100 urethans	32	212	Kasil 6	Potassium	15-16	Cold forming studies protective costing studies Transmittance studies
**1-445	Lexan Polycarbonate	2" x7"	None	DuPont Adiprene L-100 urethane	79	212	Kan11 6	Fotassium	23-25	Protective conting
s s y	Lezan Polycarbonate	5"x5"	None	DuPont Adiprene L-100 urethane	79	212	ĸ	Sodium		studies
*75	Lexan Folycarbonat#	\$"x}"	None	DuPont Adiprene L-100 urethane	96	515	Kasil 6	Potensium	47 2049	Protective coating studies Cold Forming studies
1		2"x?"	None	DuFont Adiprene L-100 urethanr	79	212	K .	Bodium		protective coating studies
.0	lesan Folycarbonate	2"x7"	None	Dufont Adiprene L-100 ursthans	79	212	Kamij 6	Fotganlum	35	Cold forming, pro- tective conting, and transmittance studie

Cont'd Table II

Sont u Tao	1		Undercoating Bake Bake			Pro	tective Coa	ing			
					Bake Time	Bake Temp,			Thickness,	Deserbu	
No.	ype	Sise	Treatment	Туре	min.	op	Silicate	Type	mila	Remarks	
1403-404	lexan 'olycarbonate	2"x2"	None	DuPont Adiprene L-100	80	212	Kasil 6	Potassium	30	Protective coating studies	
3476-479	lexan Polycarbonate	5 ₄ ×5"	None	urethane DuPont Adiprene L-100	5	575	Kasil 6	Potassium	19-35	Protective coating studies	
	lexan Polycarbonate	2" x2"	None .	urethane DuPont Adiprene L-100	5	575	K .	Sodium	45	Protective coating and transmittance studies	
	Lexan Polygarbonate	2"x2"	None	urethane DuPont Adiprene L-100	32	212	K	Sodium		Cold forming pro- tective coating, and transmittance studies	
	Lexan Polycarbonate	3" x2"	None	urethane DuPont Adiprene L-100	72	212	Kasil 6	Potassium	36-42	Cold forming studies protective coating	
	Lexan Polycarbonate	3" 16"	None	urethane DuPont Adiprene L-100	72	515	Kasil 6	Potassium	18-39	Flame propagation studies	
5497-502,	Lexan Polycarbonate	5.×5.	None	urethane DuPont Adiprene L-100	72	212	ĸ	Bodium	20-77	Vacuum studies	
	Lexan Polycarbonate	3" x6"	None	urethane DuPont Adiprene L-100	72	212	K .	Sodium	35-53	Flame propagation tests	
	0.5. Lexan Polycarbonate	5"×2"	None	urethane DuPont Adiprene L-100	72	212	Kasil 6	Potassium	29-64	Protective coating studies	
8532-540	0.5. Lexan Polycarbonate	\$"x\$"	None	urethane DuPont Adiprene L-100	72	212	Kasil 6	Potessium	15-35	Protective coating, U.V. stability, and weight loss studies	
3541-56 0	0.E. Lezan Polycarbonate	2"x2"	None	urethane DuPont Adiprene L-100 urethane	72	212	Kasil 6	Potassium		U.V. stability and protective costing studies	
1573-576	G.E. Lexan Polycarbonate	2"x2"	None	DuFont Adiprone L-100 urethane	72	575	Kamil 6	Potassium		Protective costing studies	
1580-582 583	0.E. Lexan Polycarbonate	3*x2"	None	DuPont Adiprene L=100 urethane	72	212	Kasil 6	Potassius		Protective coating atudies	
8585-596	G.E. Lesan Polyearbonate	2"x2"	None	DuPont Adiprene Le100 urethane	72	· 313	Kasil 6	Potassius		Flexural strength a protective coating studies	
8595	Lexan Polycarbonato	1/2"x3 1/2"	None	DuPont Adiprene L-100 urethane	72	212	Kasil 6	Potassiu		Plexural test	
8596	Lexan Polycarbonat(1/2"x3 1/2" •	None	DuPont Adiprene L-100 urethane	72		Kasil 6			Sent to NASA for	
3597	Lexan Polycarbonat	3"x6"	None	DuPont Adiprene L-100 urethane	72		Kasil 6			flame propagation tests	
3598	Lexan Polycarbonat	3"x6"	None	DuPont Adiprene L-100 urethane	72		•			flame propagation tests	
8599	Lezan Folygarbonat	2*x2" *	None	DuPont Adiprene L-100 urethane	72		_			flame propagation tests Sent to NASA for	
8600	Lexan Polysarbonat		None	DuPont Adiprene L-100 urethane	71		•			flame propagation tests - Sent to NASA for	
8601	Lexan Polycarbonat		None	DuFont Adiprene L-100 wrethane	71	,				flame propagation tests Sent to NASA for	
8603	Lexan Polycarbonat		None	DuPont Adiprene L~100 urethane DuPont	7					flame propagation tests Sent to NASA for	
8603	Lexan Polyearbonat		None	Adiprene 1-100 urethane		2 21			• •	fiame propagation teate	
8604	Lexan Polyearbonal		None	DuPont Adiprene L+100 urethane DuPont						flume propagation tests .0 Impact tests	
8613, 615, 616 618		· ·.	None None	Adiprene L-100 urethane DuPons	-	0 20			un 9.5-1	6 Sent to NASA	
8620, 623, 625 626				Adiprene L-100 urethane DuPont		10 - 20	· · · .	Sodium	31-4	6 Impact tests	
8644 643-848 8642,	Polycarbona Polycarbona		•	Adiprene L-100 urethane DuPont		0 20	ο Χ.	Sodium	28-3	6 U.V. stability	
č ij ² .				Adiprene Le100 urethane						•	

e se ma**te II** - ¹ an

•

•

				Underco			Pro	tective Coa	ting		۱
Spec. No.	STypeS	Size	Treatment	Туре	Bake Time 	Dako Temp, •p	Silicate	Type	Thickness 	Remarks	
8650-655 660, 662	Polycarbonate	1 1/2"x1 1/2"	None	DuPont Adiprene L-100 urethane	50	500	Kasii 6	Potassium	N.D.	Impact tests	
634 67,656- 47,656-	Polycarbonate	10"x10"	None	DuPont Adiprene L-100 urethane	50	200	Kas11 6	Potassium	4-27	Sent to NASA	
8669-672	Polycarbonate	10"x10"	Non#	DuPont Adiprene 1,-100 urethane	50	200	K	8odium	17-27	Sent to NASA	
867 1	Polycarbonate	10"#10"	None	DuPont Adiprene 1-100	50	\$00	Kawil 6	Sodium	27	Sent to NASA	
8675	Polycarbonate	10"#10"	None	DuPont Adiprene 1-100	50	200	Kasil 6'	Sodium	5	Sent to NASA	

⁸ Scotchweid EC 3515 R.T. - room temperature All silicate supplied by Philadelphia Quartz Co. Polyurethane: Scotchweid KC 3515 Polyvinyl Alcohol: Elvanol 70-05 (low mol. wt.) Polyvinyl Butyral: Nonsanto Company MOCA Hardener: 4'4'-methylene-bis-2-chloroaniline

.

•

.

,

¥

.

٠.

Table III

OVEN DRYING OF SILICATE COATINGS

			L	Protect	ive Coating		Coating Thickness	
Spec. Number	Substrate Type	Undercoating	Туре	Silicate	Bake Time, hr.	Bake Temp, °F	mils	Appearance
120	Polycarbonate	EC 1535 (3M)	Kasil 6	Potassium		R.T.*	N.D.	Transparent film No change
-	-	Scotchweld Urethane			.5	100 150		No change White translucent film
		NO. 17.51 (5M)	Kasil 6	Potassium	.5	200 R.T.#	N.D.	Transparent film
123	Polycarbonato .	KC 1535 (3M) Scotohwold	KUB11 0	rocassium	۰5	100		No change No change
		Urethane			.5 .5	150 200		Small scattered bubbles
128	Glass	None	Кавіі б	Potassium	18	125	~19	Transparent film No change
					22	150		No change Transparent, no bubbles or
					2	175		cracks
129	Q1mm.	None	Kasil 6	Potassium	18	125*	~19	Transpurent film No change
					22	150 175		No change Transparent, no bubbles or
				•	*	175		cracks
171	Polycarbonate	EC 1535 (3M)	Kasil 6	Potassium	1	R.T.* 100	~4	Transparent film No ohange
		Scotchweld Urethane			21	125		Many small bubbles; good adhesion
	h	BC 1535 (3M)	Kasil 6	Potassium		R.T.#	~4	Transparent film
172	Folycarbonate	Scotchweld	REG.I C	10000000	1 21	100		No change Many small bubbles, good
		Upet hypo			**			adhesion
174	Polycarbonate	None	Kanll 6	Potansium	1	H.T.* 100	N.D.	Transparent fllm No change
					21	125		No bubbles; poor adhesion
175	Polyearbonate	None	Kasil 6	Potassium	1	N.T.* 100	N.D.	Transparent film No dhange
					21	125	~15	No bubbles; poor adhesion Transparent film
185	Falsantonate	EC 1535 (3M) Bnotchwold	Kasil 6	Pot assiu m	28.5	119* 119	~17	Bubbles Rubbles, white area, cracks
		Urethane	4 A		16	198 1194	~13	Transparent film
187	Polycarbonate	KC 1535.(3M) Séotchweld	XABII D	Potassium	28.5	119	-23	Bubbles, cracks Bubbles, cracks, white area
		Urethane	Kasil 6	Potassium	16	198 119*	~9	Transparent film
188	Polycarbonate	EC 1535 (3M) Scotchweld	NUBII D	FOCABBIUM	28.5	119 198	•	Bubbles, cracks Hubbles, cracks, white area
105	the Transfermente	Urethane DuPont	Kasil 6	Potassium	16	104*	~12	Transparent film
195	Polycarbonate	Adiprene			19 16	104 118		Bubbles, transparent No change
		L-100 Ursthane			~8 19	126 158		No change Bubbles, cracks
196	Polycarbonate	DuPont	Kasil 6	Potassium	19	104*	~13	Transparent film
190	rorreationate	Adiprene			19 16	104 118		Bubbles, transparent No change
		L-100 Urethane			8	126 158		No change Bubbles, cracks
203	Polyearbonate	DuPont	Kas11	Potassium	19	R.T.*	~5	Transparent film
203	1023621001100	Adiprene 1-100 Urethane			.5 41	125 125		No change Cracks, no bubbles
		L-100 Orechane		•	52	125		No change; removed
119	Folycarbonate	KC 1535 (3M) Scotchweld	K	Sodium	.5	100 * 150	∿39	Transparent film No change
		Urebhane			~19	200	N.D.	Large bubbles Transparent film
130	01468	None	ĸ	Sodium	18	119* 125	N.D.	No change
					.55	150 175		No change No bubbles or cracks
1 3 1	01460	None	ĸ	8od1um	5	100*	N.D.	Transparent film No change
					18	125		No change No change Cracka, no bubbles
		tu Bent	×	Sodium	2	175 N.T.¶	~15	Transparent Clim
192	Polycarbonate	DuPont Adiprene	~	aca i um	2.5	100		Some edge cracks and bubble No change
		1-100 Urethane			26	180		No change, removed
202	Polycarbonate	DuPont Adiprene	ĸ	Sodium	.5	R.T.* 125	~19	Transparent film No change
		L-100 Urethane			41 52	125 125	·	Cracks, no bubbles No change, removed
118	Polycarbonate	RC 1535	N	Sodium		R.T.*	~24	Transparent film
		Scotchweld Urethane			•5 •5	100		No change No change
		v 114/14			.5	200		Large bubbles, test terminated
137	01as#	None	N	Sodium		125	~7	Transparent film
2 J*	· • • • • •				18 22	125		No change No change
					2	175		Cracks, transparent Transparent film
133	Glass	None	N	Sodium '	18	125 ⁸ 125	~16	No change
					22	150		No nhange Cracks, transparent
177	Polyearbonate	EC 1535 (3M)	8-35	Sodium		100.	N.D.	•
		Boot thwe ld Urethane	- *		.5 .5 .5	150 160		Transparent film No change
					.5	170 160*	N.D.	No dhanke Transparent film
124	Folgenrhonals	EC 1535 (3M) Neotehweld	8-35	flod1um	• 5	100	N . 17 .	No ohange Cracks and bubbles
		Urethane			.5	120		FIRCEN HULL PREASED

dont'd Pable 111

				Protecti	ve Coating	Nake	Coating Thickness	
Rone. Rone.	Nubet rate Type	Undercoating	Type		liako Tima, bri	Temp,	<u>mi le</u>	Appedrause
1 14	(jane	None	11-35	Bodlum	10	319# 125	~12	Transparon. (11m No change
					22	150 175		No calingo Cracks, transparent
135	01688	Noné	8-35	Sodium	18	119# 125	~13	Transparent film No change
• •					22	150		No change Cracks, transparent
176	Polycarbonate	EC 1535 (3M)	Kasil 88	Potassium		1104	~3	Transparent film No change
140	Forycarbonave	Scotchweld Urethane			17 7	110 136		No change No change Microcracks, bubbles
		EC 1535 (3M)	Konil 88	Potassium	25	156 110*	~8	Transparent film
180	Polycarbonate	Scotchweld Urethane	KREAT OF		17 7	110		No change No change
				Sodium	25 .5	156 100	~8	Microcracks, bubbles A few dispersed bubbles;
8242A	2"x2"Lexan Polycarbonate	DuPont Adiprene	ĸ	200 T MB	.5	150 208		Blight removable haze
8283A	2"x2" Lexan	1,-100 Urethane Dufont	x	Sodium	.5	100 150	~8	A few disponsed bubbles whift removable phase
	Poly carbonate	Adiprene j100 Urethane			:5	208		No bubbles; alight
5247A	2"z2" Loxan Polycarbonate	Duront Adiprene	Kamil 6	Potassium	•5 •5	100	~7	crating
		L-100 Urethane	Kan11 6	Potanelum	.5	208	~7	No bubbles; alight
82491	2"x2" Lexan Polycarbonute	DuPont Adiprene	VØDTY C	100gnation	•5 •5	150 208		oraning
\$260A	2"x2" [#xan	1-100 Urethane DuPont®®	Kad11 6	Potassium	•5	100 150	~17	A few dispersed bubbles
	Polynarbunate	Adiprene 1-100 Urethane			.5	205		a a demonst hubbles
\$261A	2"x2" Lexan	DuPont ^{∎∎} Adiprene	Kasil 6	Potanelum	.5 .5 .5	100 150	~23	A faw dispersed bubbles
	Polycarbonate	1-100 Urethane		Sodium		205	N.D.	Many bubbles
8769A	2"x2" Lexan Polycarbonate	DuPont"" Adiprene	ĸ	DOUTUR	.5 .5	150 205		
8766A	2"x?" Lexan	1-100 Urethane DuPont**	ĸ	Sodium	•5 •5	100 150	N.D.	Many bubbles
	Polycarbonate	Adiprene L-100 Urethane				205		Essentially no bubbles:
S287A	2"x2" Lexan Polycarbonate	DuPont Adiprene	ĸ	Sodium	.5	100	N.D.	alight removable bare
	-	L-100 Urethane DuPont	Kas11'6	Potassium	.5	200	N.D.	Essentially no bubbles;
8294A	2"x2" Lexan Polycarbonate	Adiprene L-100 Urethane			.5	150 200		orazed surface
S 304	2"x2" Lexan	None	ĸ	Sodium	Room Tempe	rature	5 mils	Initially acceptable (smeoth and transparent) but cracked
	Polycarbonate					· · · · · · · · · ·	10 mils	later. Initially acceptable (emonth
\$ 305	2"x2" Lexan Polycarbonate	None	ĸ	Sodium	Room Tempe	racure		and transparent) but crached later.
8307	2"x2" Lexan	None	ĸ	Sodium	Noom Tempe	rature	20 mila	Initially acceptable (smooth and transporent) but cracked
11301	Polycarbonate							loter.
8309	2"x2" Lexan	None	Kasil 6	Potassium	Room Temp	erature	5 mile	Initially acceptable (smooth and transporent) but cracked
	Polycarbonate						10 mils	later. Initially acceptable (amouth
\$312	2"x2" Lexan Pulycarbonate	None	Kanil 6	Potassium	Room Temp	51. 6 .01.6		and transparent) but cracked? later.
\$314	2"x2" [øxan	Nona	Kasil 6	Potassium	Room Temp	erature	20 mils	initially acceptable (amouth and transparent) but eracked
	Polyoarbonate							later.
8315	2"x2" Lexan	Nune	M	Bodium	Room Temp	erature	5 m114	Initially acceptable (emooth and transporent) but eracted later.
	Polycarbonata		м	Sodium	Room Temp	erature	10 m1)s	Initially acceptable (amooth
£317	2"x2" Lexan Polycarbonate	None	N	1 00100	10000 0000			and transparent) but eracked Inter.
5319	2"x2" Lexan	None	N	Bodi um	Hoom Temp	oraturo	20 mile	Initially acceptable (accoth and transparent) but cracked
-	Pulyearbonate						5 mile	later. Cracked; nome bubbled; peelod
5 30 3	2 ⁸ x2 ⁸ Lexan Polycarbonate	None	K	Sodium	20	110		off. Cracked: Many bubbles; some
8 306	2"x2" Lexan Polycarbonate	None	K	Bodium	50	110	10 mile	porling off.
\$308	2"x2" Lexan	None	ĸ	Sodium	50	110	20 miln	Cracked; Many bubblen; some peeling off.
5310	Polyearbonate 2 [#] x2 [#] Lexan	None	Kasil 6	Potaselum	20	170	5 m11a	Cracked, a little popular off.
	Polycarbonate 2"x?" Lexan	None	Kanil 6	Potanelum	20	110	10 mils	Cracked; some bubbles; very little pacing off.
\$ 311	Polycarbonal e				20	110	20 miln	Cracked; for bubbles.
5313	∂"x2" Lexan Polycarbonate	Nonø	Kasil 6				5 m11s	Cracked; parting off
5 9 1 6	2"x2" Lexan Polyoarbonate	None	N	Rodium	20	110		Concked; none substant proling
8318	2"#2" Lexon	Nune	N	Bodium	#0	310	10 mlie	off.
\$ 320	Polycarbonate 2"x2" Lexan	Hone	N	, Rodtum	2 0	110	20 milh	Cracked; some buddlen; peeling off,
8321	Pulyenrbunate 2 ⁴ x2 ⁴ Lexan	None	ĸ	Bodtum	20	150	5 m118	Crocked; once hubbles.
	Polyesrbonate 2"x?" Lexan		ĸ	Sodium	20	250	10 mt)n	Cracked: many bubbles.
8322	folyenrbonnt		ĸ	Bodium	20	150	20 mils	Crnchad, many publicar,
6323 4	2"x2" imxan Pulyuarbonate	None	•					
•								

Cont'd Table III

	Substrate Type	Undercoating		Protect	ive Coating		Coating			
Spec. Number			Туре	Type Silicate		Bake Temp_°F	Thickness mils	Appearance		
3324	2"x2" Lexan Polycarbonate	None	Kasil 6	Potassium	20	150	5 mile	Some cracks; few bubbles.		
325	2"x2" Lexan Polycarbonate	None	Kasil 6	Potassium	20	150	10 m11s	Some cracks; few bubbles.		
326	2"x2" Lexan Polycarbonate	None	Kas11 6	Potassium	20	150	20 mils	Few cracks; many bubbles.		
327	2"x2" Lexan Polycarbonate	None	N	Sodium	20	150	5 mila	Cracked; few bubbles; some peeling off.		
328	2"x2" Lexan Polycarbonate	None	N .	Sodium	20	150	10 mils	Cracked; some bubbles; some peeling off.		
329	2"x2" Lexan Polycarbonate	None	·N	Sodium	20	150	20 mils	Cracked; many bubbles		
3 30	2"x2" Lexan Polycarbonate	None	x	Bodium	20	200	5 mila	Many bubbles.		
331	2"x2" Lexan Polycarbonate	None	ĸ	Sodium	50	208	10 mile	Many bubbles.		
332	2"x2" Lexan Polycarbonate	None	K	Bodium	20	200	20 mils	Many small bubbles.		
333	2"x2" Lexan Polycarbonate	None	Kasil 6	Potassium	20	200	5 mila	Coating white, opaque, and blistered.		
8334	2"x2" Lexan Polycarbonate	None	Kas11 6	Potassium	20	200	10 mile	Coating white, opaque, and blistered.		
8-335	2"x2" Lexan Polycarbonate	None	Kasil 6	Potassium	20	200	20 mils	Coating white, opaque, and blistered.		
336	2"x2" Lexan Polyearbonate	None	N	Sodium	20	209	5 mila	Many bubbles.		
3337	2"x2" Lesan Polycarbonate	None	*	Sodium	50	200	10 mils	Many bubbles.		
3-338 .	2"x2" Lexan Polycarbonate	None	N	Sodium	20	200	20 mils	Many large bubbles.		

N.B. - Not Determined due to degradation of the specimen

*Temperature at entry into even

softwese pelyurethane underscatings were room temperature air oursd

one day. In this case, a large proportion of the water contained in the silicate had evaporated prior to thermal curing. In most cases, bubbling was observed after short exposure to temperatures above 175°F and after long exposure to 100°-125°F. The absence of bubbling in the silicates (made on glass) indicated the possibility of some out-gassing of the polycarbonate/urethane. However, various specimens made with high temperature cured urethane undercoatings specimens 192, 194, 195, 196, 202, 203 did not appear appreciably better than those on uncured polyurethane. In most cases, bubbling was observed indicating the presence of water vapor inside the coating. Apparently, a watertight outer film forms during air drying and prevents the volatilization of water from inside of the coating.

Subsequently, a second study was conducted using specimens coated only with silicate. The specimens were placed in a preheated oven at 110°F. However, cracking and/or bubbling occurred in each silicate coating. It is apparent that water retention is critical in order to maintain a good coating. This can be observed with air-dried films which are allowed to remain in a low humidity environment as well as with oven-dried specimens. Cracking and fogging are observed when the water content of the coating falls below a minimum value. It does not appear that fluctuations in the oven-curing time can be used to improve this method.

(2) Chemical setting agents. A brief study was made to determine the feasibility of rendering the silicate film surface insoluble. Various silicate films were applied to glass slides and allowed to air dry. The chemical setting agents were applied from an aqueous solution (1 part H_2O to 1 part agent by weight) to the surface of the silicate. The results of this study are shown in Table IV. In most cases, the silicate surface was made either opaque or cloudy. The unaffected silicates were tested for water resistance and found to be soluble.

Table IV

EFFECT OF CHEMICAL SETTING AGENTS ON SILTCATE FILM SURFACES

			Silicate Type						
Setting Agent	N Sodium Silicate	S-35 Sodium Silicate	K Sodium Silicate	Kasil l Potassium Silicate	Kasil b Potassium Silicate				
Borax	Cloudy	Cloudy	Cloudy	Unaffected	Unaffected				
NaBO ₂	Unaffected	Cloudy	Unaffected	Unaffected	Unaffected				
MgSO4	White	White	Cloudy	Cloudy	Unaffected				
$Al_2(SO_4)_3$	Cloudy	White	Cloudy	White	White				

(3) Pressure Curing of Silicate Coatings. In order to observe the effect of pressure on the silicate coatings under investigation, a metallographic pressure curing chamber at Mound Laboratory, Miamisburg, Ohio, was utilized. This pressure chamber (of Monsanto design) was evacuated by a vacuum pump and then pressurized with argon. Although the pressure can be varied from O-3000 psi, the pressure in the present work was maintained at 800 psi. The chamber temperature was held constant at 131°F by means of a Variac-controlled winding.

Two sets of samples were run in this pressure experiment. One set was exposed in the pressure chamber for 3 1/2 hours. Then the most promising specimens were prepared again and cured overnight. The results of these two runs are presented in Table V. The silicate liquids used in this work were Kasil 6, Kasil 1, Kasil 88, Kasil 6 + 0.2% Sterox, and Kasil 6 + 0.2% isopentylamine. Sterox and isopentylamine are surfactants and were included in this study hopefully to improve the wetting characteristics of the silicate liquid, giving a better bond to the substrate. In all cases, the silicate liquid was applied to either an uncoated or a polyurethane-coated polycarbonate substrate. Following the curing time in the pressure chamber, the samples were air dried overnight and subsequently dried overnight in a recirculating oven at 150°F. This drying caused deterioration of every sample, inducing more bubbles, milkiness, and some curling of the silicate coating.

The desired effect of this pressure mounting was to induce better bonding of the silicate liquid to the respective substrates. This effect was not observed; every coating was still soft after curing under pressure. Apparently, the pressure in the chamber was detrimental to the curing of the silicate coatings. All of the water in the silicate could not escape to allow complete curing of the coatings as a rigid film; hence, coatings remained in a plastic state.

d. Cold Forming and Polishing of Silicate Coatings. In most cases, further surface finishing was required to eliminate optical distortion. Two methods have been attempted to achieve this. The first method utilizes the cold flow properties of the silicate. Air dried silicates tend to increase in hardness with age because of water loss. After about 24 hours at 50% relative humidity, the coatings are hard enough to handle without leaving fingerprints. Under pressure, however, the films will flow. If a polycarbonate sheet with minimum optical distortion is placed on the silicate coating and pressure the applied, the silicate surface will conform to the polycart tet and form an optically flat surface. Preliminary cold-forming studies were made using thick, type K, air-dried silicate coatings. Pressing time and

Table V

PRESSURE MOUNTED SILICATE COATINGS

	Appearance	surface bubbles but smooth; soft, no bond	surface bubbles but smooth; soft, no bond	few bubbles, smooth, poor bond	very bubbly; poor bond	very bubbly; poor bond	some bubbles, but smooth; poor bond	very bubbly; poor bond	many bubbles; better bond	many bubbles; poor bond	mary bubbles; poor bond	some bubbles, poor bond; soft	more bubbles, better bond; soft	some big bubbles; poor bond	many bubbles; poor bond
	dia	131	131	131	131	131	131	131	131	131	TE t	131	131	131	131
ating	Hr Bake	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	3 1/2	17	11	17	17
S	Type	Kasil 6	Kasil 6	Kasil l	Kasil l	Kas11 88	Kasil 88	Kasil 6 water Sterox	Kas11 5 water Sterox	Kasil 6 water 1sopentyl- amine	Kasil 6 water isopentyl- amine	Kasil 6	Kasll 6	Kasil l	Kasil l
	Under coating	none	Polyurethane	none	Polyurethane	none	Polyurethane	none	Polyurethane	none	Polyurethane	none	Polyurethane	none	Polyurethane
	Size	l"xl"	"IT"I	"IT"I	1"X1"	l'xlr	"IX"I	1 T X 1 T	1"X1"		т <u>к</u> т	lrz1"	l"xl"	l"xl"	1"X1"
SUDSTRACE	Type	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate	Polycarbonate
-	Sample	S-212	S-213	S-214	S-215	S-216	S-217	S-218	S-219	S-220	S-221	S-222	. S-223	S-224	S-225
		Substrate Coating Coating Bake Temp Type Size Undercoating Type Hr of	SubstratecoatingTypeBakeTypeHrPolycarbonate1"x1"Polycarbonate1"x1"NoneKasil 63No bond	SubstrateCoatingTypeBakeTypeSizeUndercoatingTypeHroPPolycarbonate1"x1"noneKasil 6Nolycarbonate1"x1"Polyc	SubstrateCoatingCoatingPakeTempBakeTempBakeSizeUndercoatingTypeHrPolycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"noneKasil 13 1/2131surface bubbles but smooth;Polycarbonate1"x1"noneKasil 13 1/2131few bubbles, smooth, poor bub	SubstrateCoatingCoatingTypeBakeTempPolycarbonateSizeUndercoatingTypeHroPPolycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 13 1/2131surface bubbles, smooth,Polycarbonate1"x1"PolyurethaneKasil 13 1/2131few bubbles, smooth,Polycarbonate1"x1"PolyurethaneKasil 13 1/2131very bubbles, smooth,	SubstrateCoatingCoatingTypeSizeUndercoatingTypeEakeTempPolycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"noneKasil 13 1/2131surface bubbles, smooth;Polycarbonate1"x1"noneKasil 13 1/2131rev bubbles, smooth;Polycarbonate1"x1"PolyurethaneKasil 13 1/2131very bubbles, smooth;Polycarbonate1"x1"noneKasil 1883 1/2131very bubbles; poor bondPolycarbonate1"x1"noneKasil 883 1/2131very bubbly; poor bond	SubstrateCoatingCoatingTypeSizeUndercoatingTypeBakeTempPolycarbonateI"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 13 1/2131surface bubbles, smooth, poor bcPolycarbonate1"x1"PolyurethaneKasil 13 1/2131very bubbles, smooth, poor bcPolycarbonate1"x1"PolyurethaneKasil 13 1/2131very bubbles, poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbles, but smooth; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbles, but smooth; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbles, but smooth; poor	SubstrateContingConting BakeConting PakeConting PakeAppearancePolycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth; no bondPolycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth; no bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth; no bondPolycarbonate1"x1"noneKasil 13 1/2131rery bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131very bubbly; poor bond	SubstrateCoatingCoatingTypeJypeBakeTempAppearancePolycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"PolyurethaneKasil 13 1/2131surface bubbles, smooth, poor bondPolycarbonate1"x1"noneKasil 13 1/2131rery bubbly; poor bondPolycarbonate1"x1"noneKasil 13 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 13 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2	SubstrateContingContingTypeSizeUndercoatingTypeBitTempPolycarbonateI'xi'noneKasil 63 1/2131surface bubbles but smooth;PolycarbonateI'xi'PolyurethaneKasil 63 1/2131surface bubbles but smooth;PolycarbonateI'xi'PolyurethaneKasil 13 1/2131surface bubbles but smooth;PolycarbonateI'xi'noneKasil 13 1/2131surface bubbles, smooth, poor bodPolycarbonateI'xi'PolyurethaneKasil 13 1/2131very bubbly; poor bondPolycarbonateI'xi'PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonateI'xi'PolyurethaneKasil 63 1/2131very bubbles; poor bondPolycarbonateI'xi'PolyurethaneK	NubstrateCostingCostingTypeAnder TempType31231/2131Surface bubbles but smooth;Polycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"noneKasil 63 1/2131surface bubbles but smooth;Polycarbonate1"x1"noneKasil 63 1/2131surface bubbles, smooth, poor bodPolycarbonate1"x1"noneKasil 13 1/2131very bubbly; poor bondPolycarbonate1"x1"noneKasil 183 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 883 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131very bubbly; poor bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131many bubbles; better bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131many bubbles; poor bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131many bubbles; poor bondPolycarbonate1"x1"PolyurethaneKasil 63 1/2131many bubbles; poor bondPolycarbonate1"x1"Polyuretha	Substrate Costing Temp Appearance Type Size Undercoating Type Bake Temp Appearance Polyearbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polyearbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 rev bubbles, smooth, poor bond Polycarbonate 1"x1" Polyurethane Kasil 88 3 1/2 131 very bubbles, but smooth; poor bond Polycarbonate 1"x1" Polyurethane Kasil 88 3 1/2 131 very bubbles, but smooth; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbles; better bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbles; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbles; poor bond <th>Substrate Costing Costing Costing Temp Appearance 7ype 312 312 313 surface bubbles but smooth; Polycarbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 8 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 many bubbles; poor bond Polycar</th> <th>Substrate Costing Temp Appearance Type Size Undercoating Type Hr P Polycarbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 8 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 meny bubbles; better bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 meny bubbles; poor bond Polycarbonate 1"x1"</th>	Substrate Costing Costing Costing Temp Appearance 7ype 312 312 313 surface bubbles but smooth; Polycarbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 8 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 many bubbles; poor bond Polycar	Substrate Costing Temp Appearance Type Size Undercoating Type Hr P Polycarbonate 1"x1" none Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 surface bubbles but smooth; Polycarbonate 1"x1" Polyurethane Kasil 1 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 8 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 very bubbly; poor bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 meny bubbles; better bond Polycarbonate 1"x1" Polyurethane Kasil 6 3 1/2 131 meny bubbles; poor bond Polycarbonate 1"x1"

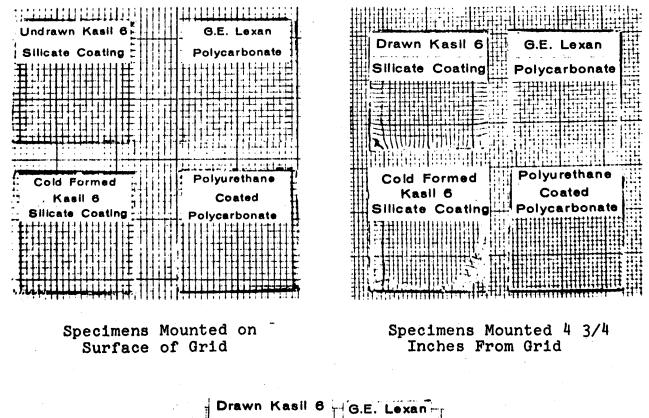
ram force were varied in order to determine their effect. The silicate coatings formed for a short time under high pressure tended to lose adhesion along the edges. Improved coating adhesion was obtained using a long pressing time and low pressure. However, the pressed coatings tended to experience surface changes after several days, indicating the presence of residual stresses. Additional coatings made from both K sodium silicate and Kasil 6 potassium silicate produced similar results. A summary of pressing conditions and results is shown in Table VI. Figure 1 shows the degree of distortion of a cold-formed coating when compared to the uncoated polycarbonate, urethane coated polycarbonate, and drawn silicate, urethane-polycarbonate system. The slight distortion of the grid lines for the cold-formed coating indicates the specimen is somewhat distorted probably due to residual stresses in the coating.

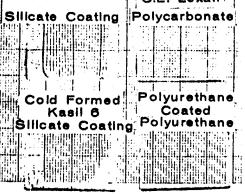
The second method involved surface polishing. The coatings were either placed on a rotating lap and sanded using an ethanol coolant or block sanded both manually and mechanically. The primary difficulty encountered was overheating and subsequent bubbling of the silicate. This problem was eliminated by carefully controlling the sanding rate.

The best results were obtained by block sanding with Luna Pregrinder 320 and 400 grit papers, respectively. The resultant coatings were translucent. When protective coatings of polymers were applied, the transparency of the silicate was recovered, yielding a transparent panel free of distortion.

e. Water Repellant Coatings for Alkali Silicates. Early in the program, the need to prevent the silicate from degrading due to humidity variations was observed. Various attempts, e.g., by oven drying, etc., were made to physically change the silicate. Finally, an attempt was made to apply a moisture barrier film over the silicate in order to both retain the water contained in the specimen and to prevent the absorption of water from the atmosphere. Usually the coatings were air dried until they were hard enough to be sanded. Immediately after sanding the protective coating was applied. Eleven commercial polymers were selected for use as possible water repellant films on silicate. These are shown in Table VII. Materials were selected for transparency, ease of application, and water vapor permeability.

The best results were obtained with DuPont Duco polystyrene and Hughes Chemical Co. Chemglaze polyurethane. The coatings produced were transparent with minimal bubbling or surface distortion. Some difficulty was encountered in attempting to produce quality coatings of Krylon 1302 and Aqua Guard acrylic. Apparently, both materials tend to crack the silicate soon after application. Crazing occurred in Owens Corning 650 glass resin coatings after dipping and air drying.


Table VI


COLD FORMING OF BILLCATE COATINGS

Spec. No	Туре	Silicate_	Ram Force, ton	Approximate Pressure, <u>lb/in²</u>	Pressing <u>Time</u>	Appearance After
\$236	K	Sodium	∿8 ·	∿1777	∿60 sec	Some wavy distortion and loss of coating adhesion on edges
\$256	K	Sodium	~4	~888	∿60 sec	Some wavy distortion and loss of coating adhesion on edges
s257	ĸ	Sodium	~4	~888	∿60 sec	Some wavy distortion and loss of conting adhesion on edges
8276	к	Sodium	~2	∿500	~17 hrs	Good coating; essentially distortion-free
\$273	к	Sodium	.5	~250	~ 1 hr	Good conting; essentially distortion-free
\$275	к	Sodium	.5	∿250	∿24 hrs	Good coating; essentially distortion-free
\$398	ĸ	Sodium	800	200	24	Good distortion free film
8403	ĸ	Sodium	5,000	1,250	1/12	Coating cracked
8395	ĸ	Sodium	5,000	1,250	1/4	Coating cracked
8361	K	Sodium	10,000	2,500	1	Coating cracked
\$400	K	Sodium	15,000	3,750	1/4	Coating cracked
8402	Kasil 6	Potassium	800	200	25	Good partically flattened film
S401	Kasil 6	Potassium	15,000	3,750	1	Good distortion free film
S195	Kasil 6	Potassium	400	100	48	100% distortion free; silicate flowed from surface resulting in a thin silicate coating
s468"	Kasil 6	Potassium	800	200	66	Flat silicate film
8469 [#]	Kasil 6	Potassium	1,200	300	73	Distortion free; small area spall- ed from surface; silicate very thir due to flowing.
S459	Kasil 6	Potassium	2,000	500	1	Some residual distortion 90% distortion free
\$458	Kasil 6	Potassium	2,400	600	1	75% distortion free; poor silicate bonding
8420 [#]	Kan11 6	Potassium	4,800	1,200	24	Flat silicate surface
S481*	K	Sodium	400	100	100	100% distortion free; silicate very thin due to flowing
\$4650	к	Sodium	800	200	1	v75% distortion free
3464*	ĸ	Sodium	1,200	300	1	<pre>∿75\$ distortion free; some silicate cracking</pre>
94660	к	Sodium	1,600	400	1	∿25≸ distortion free; several distorted areas
8461P	к	Sodium	2,000	500	1	~75% distortion free
34678	ĸ	Sodium	2,400	600	1	100% distortion free; silicate very thin

Specimens coated after pressing with an enamel moisture resistant conting (Waterspar clear enamel).

<u>50</u>

Specimens Mounted 9 3/4 Inches From Grid

Figure 1.

Comparison of Distortion in Silicate-Urethane-Polycarbonate System.

Table VII

WATER REPELLANT MATERIALS FOR ALKALI SILICATE COATINGS

Material	Trade-name	Supplier	Application Method
Acrylic	Waterspar Clear Enamel	Pittsburgh Paints	Spray
Acrylic	Lucite 140	Dupont	Spray
Acrylic	Krylon # 1302	Krylon, Inc.	Spray
Acrylic Polycarbonate	Aqua Guard Lexan	Micro Chem. Inc. General Electric	Spray
Polystyrene	Styron 700	Dow Corning	Spray
Polystyrene	Duco	Dupont	Doctor Blade
Polyurethane	Adiprene L-100	Dupont	Doctor Blade
Polyurethane	Adiprene L-100	Dupont	Spray
Polyurethane	Chemglaze	Hughson Chemical Co.	Spray
Silicone	RTV	General Electric	Doctor Blade
Silicone	Qlass Resin ∦650	Owens Illinois	Dipor Spray

A vital question at this time would be: How can a flammable polymeric film be used as a component in a system designed to act as a fire barrier? Others have observed that certain flammable materials when applied to a nonflammable material (such as silicate) are nonflammable in the form of a coating (Ref. 3). Initial studies conducted at NASA using a flame propagation test on several of our silicate specimens confirmed this fact. The polymer did not burn beyond the point of actual flame impingement. It is practical, therefore, to consider polymeric water-repellant coatings even though the overall polycarbonate-urethane-silicate-protective coating system is intended to be a fire protection coating. A summary of the protective coating studies is given in Table VIII.

2. Coating Testing and Evaluation.

a. Humidity Resistance. Eight silicate coated polycarbonate samples were used to observe the effect of a high humidity environment on these materials. The samples were exposed in a humidity cabinet, with the temperature, humidity, and percent weight change being noted at certain intervals. The samples were exposed for no less than 43 hours, with some test runs lasting 187 hours. The humidity test results are summarized in Table IX.

Initially, coating failures were experienced with both silicate types tested, regardless of the type of curing cycle (room temperature cured or thermally cured) used. Varying degrees of peeling, cracking, and whitening (of the silicate coating) were observed on all unprotected silicate coatings. Two samples were then coated with clear acrylic lacquer in order to observe its moisture resistance and compatibility with the silicate. These protected silicate coatings showed no degradation whatsoever, even after 187 hours in the humidity chamber. Figure 2 shows a comparison of the protected and unprotected silicate coatings after 187 hours at high humidity. The unprotected coatings (S-241 and S-285) are dried out and whitened, while the protected coatings (S-252 and S-286) remained unchanged.

b. Thermal Shock Resistance. The thermal shock resistance of two alkali silicate compositions (Type K [sodium] and Type Kasil 6 [potassium]) was checked. One specimen (alkali silicate on polycarbonate) of each composition was heated in an air oven to 150°F for approximately 30 minutes and then quenched in a Dewar cooled by liquid nitrogen to -90°F. The Dewar temperature was determined with a potentiometer reading the output of a copper-constantan thermocouple.

Tablé VIII

SILICATE PROTECTED WITH WATER REPELLANT FILMS

.

.

					Silicate	Protective Nominal	Coating	
Ntetrato Oten	Spec. Nos.	Type	Silicate	Silicate Pretreatment	Thickness, mil	Thickness, Type mil	Appearance	Application Method
	\$ 380- 385	ĸ	Sodium	None	N.D.	Waterspar N.D.	Transparent film	Sprayed
្រក្ខខ្ល	8412, 416,	Kasil 6	Potassium	Buffed with wire-	- 16-19	clear enamel Waternpur 1.5	Transparent film	Sprayed
5* 5 4	419, 420 \$409, 415,	Kasil 6	Potnasium	wheel Sanded with grit-	- 15-20	clear cnamel Waterspar N.D.	Transparent film	Sprayed
09 4 20	417 8471, 473	Kasil G	Potensium	paper Sanded with grit-	- N.D.	clear enamel Waternpar N.D.	Transparent film	Sprayed
211821	3482	ĸ	Sodium	paper Sanded with grit-		clear enamel Waterspar <1	Transparent film	Sprayed
5 ¹¹ × 2 ¹¹	5483-485	ĸ	Sodium	paper Sanded with grit-		clear enamel Waterspar <1	Transparent film	Sprayed
**************************************	3487-488	 Kanii G	Potensium	paper None	N.D.	olear enanwl DuPont N.D.	Pourly adhered film	n Sprayed
	2401-400	Ndari V				Adiprene L-100 Polyurothano		
2" y ?"	B447, 479	к	Sodium	None	N.D.	DuPont N.D. Adiprone L-100	Poorly adhered film	n Sprayed
31, 45 L	S470, 478	Kamil 6	Potassium	None	32, 19	Polyurethane DuPont ~2 Adiprene 1-100	Transparent film	Drawn
3°° x 2 ⁸	S786	ĸ	Sodium	None	20	Polyurethane DuPont vl	Transparent film	Drawn
1 24		n.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Adiprene L-100 Polyurethune		- .
,	S490	K	Sodium	None	24	DuPont ~14 Adiprene L-100 Polyurethane	Transparent film	Drawn
575 42*	\$492, 496	Kasil 6	Potassium	None	25, 22	DuPont Duco v1.5	Transparent film	Drawn
	5480	ĸ	Sodium	None	45	Polystyrene DuPont Duco N.D.	Transparent film	Drawn
275 - 24	5497-498	ĸ	Sodium	None	N.D.	Polystyrene DuPont Duco N.D.	Transparent film	Drawn
2 ¹¹ - 2 ¹¹	8514	x	Sodium	None	39	Polystyrene DuPont Lucite ~5	Transparent film	Sprayed
5 . De 11	8511	ĸ	Sodium	None	57	140 Dow Styron v6	Transparent; some orazed areas.	Sprayed
2003 (201	3516	ĸ	8ud1 un	None	50	700 Ogneral v4 Electric Lexan	Brittle grey film	Sprayed
⇒** 我 2 样	9475-476	Kasil G	Potassium	None	N.D.	Polycarbonate General ~?.5 Electric	Poorly adhered gre film	y Spatule
2***2**	8489, 491	ĸ	Sodium	None	N,D.	RTV108 Silicone General ~10	Poorly adhered gre	y Spatula
2°° C.Su	9527	Kasil 6	Potassium	400 grit paper sanded lightly	29	RTV108 S111cone Krylon 1302 6	film Transparent film some surface and	Sprayed
1. 18 m ge 61	8528, 532,	Kasil 6	Potessium	400 grit paper	15-64	DuPont Duco 2	bubble distortion. Transparent; a few bubbles.	
21 ³ ×2*	534 8535, 538	Kasil 6	Potassium	sanded flat 400 grit paper	35, 34	Polystyrene Aqua Quard## 3	Developed cracked areas in silicate.	Sprayed
21182	8541, 546	Kasil 6	Potassium	sanded lightly 400 grit paper	24, 30	Krylon 1302** 1	Dovcloped cracked areas in silicate.	Sprayed
2 ¹⁷ -2 ^H	8549, 550	Kesil 6	Potassium	sanded lightly 400 grit paper	33, 35	Owens Corning 1	Crazed soon after	Dipped
2"x2"	8543, 573	Kasil 6	Potassium	sanded lightly 400 grit paper sanded flat	29	650 Glass Resin Hughnon Chemical l Co. Chemglaze	application. Transparent coatir little optical	s; Sprayed
775 X 21	8574, 575	Kasil 6	Polassium		16, 24	Polyurethane DuPont Duco 1 Polystyrene	distortion. Transparent optics distortion free	ally Drawn
an in an an an	8590-594	Kasil 6	Potassium		16-25	Hughson Chemical 1 Co. Chemglaze	coating; a few but Transparent; litt distortion.	
)	× 8595, 596	Kasil 6	Potassium	400 grit paper sanded lightly	22, 23	Polyurethane Hughaon Chemienl 11 Co. Chemglaze	Transparent; litt distortion.	te Sprayed
2" x 2"	8589	Xanil G	Potassium	400 grit paper sanded flat	18	Polyurethane Hughaon Chemical II Co. Chemiclare	Transparent; litt distortion.	le Sprayed
2" x 2 "	A585, 587	Kani) G	Potessium	400 grit paper manded lightly	18, 19	Polyurethane Hughnon Chemiani i Co. Chenglaze	Transparent; litt distortion.	le Sprayed
n 18 31 (# 81	#586	Kapii G	Potassium	400 grit paper sunded lightly	18	Polyurethane Hughson Chemical 0.5 Co. Chemglaze	Transparant; litt diatortion.	le Sprayed
2 ¹¹ # 2 ¹⁵	8586	Kanil G	Potensium	400 grit paper sanded lightly	18	Polyurethane Hughson Chemical «1 Co. Chemglare	Transparent; litt distortion.	le Sprayed
^{⊅41} π≱**	8580-583	Kasil G	i Potassium	400 grit paper sanded flat	N.D.	Polyurethane Hughson Chemical 1 Co. Chenglare Bolyunethane	Transparent; litt distortion.	le Sprayed
3" 16"	8597	Kasil 6	i lotassium		- 19	Polyurethanø DuPont Duco	Transparent; litt distortion.	le Drawn
3" #6"	8598	Kanil G	i Potessium		17	Polyatyrene DuPont Daeo 1 Polyatyrene	Transparent; litt distortion	le Drawn
5″ 5 8 4	8599, 601- 604	Kan11 6	5 Potannium	nanded flat 400 grit paper sanded flat	20-22	Folyntyrene Hughson Chemicul 1 Co. Chemglaze Polyurethane	Transporent; litt distortion.	le Sprayed
					•	• · · · , · · · · · · · · · · · · · · ·		

							ve Coating	
					Silicate	Nominal		Application
Substrate Size	Spec. Nos.	Туре	Silicate	Silicate Pretreatment	Thickness, mil	Type mil	Appearance	Method
2"#2"	8600	Kanil 6	Potassium	400 grit paper sanded flat	13	Hughson Chemical 2 Co. Chemglaze	Transparent; little distortion.	Sprayed
1 3/2x1 1/2	8613	Kasil 6	Fotassium	400 grit paper sanded flat	-	Polyurethane Hughson Chemical N.D Co. Chemglazo	. Transparent; little distortion.	Drawn
1 1/2x1 1/2	\$615	Kasil 6	Potasalum	400 grit paper sanded flat	-	Folyurethane Hughson Chemical N.D Co. Chemglaze	 Transparent; little distortion. 	Dipped
30"x10"	8620	Kasil 6	Potassium	400 grit paper sanded flat	18	Polyurethanc Hughson Chemical 3.0 Co. Chemglaze	Transparent; slight haze.	. Dipped
10"x10"	8623	Kasil 6	Potassium	400 grit paper sanded flat	10	Polyurethane Hughson Chemical 7.0 Co. Chemglaze Polyurethane	Transparent; slight haze.	Dipped
10"x10"	8625	Kas11.6	Potassium	400 grit paper sanded fint	15	Hughson Chemical 0.7 Co. Chemylare Polyurethane	5 Transparent; slight haze.	Dipped
10"x10"	8626	Kan11 6	Potassium	400 grit paper	15	Hughson Chemical 2.5 Co. Chemglaze Polyurethane	Transparent; alight haze.	t Sprayed
10"#10"	8634	Kasil 6	Potassium	400 grit paper sanded flat	20	Hughson Chemical Co. Chemglaze Polyurethane	Transparent; sligh haze.	t Dipped
10" #10"	\$637	Kasil 6	Potassium	400 grit paper	4	DuPont Duco	Transparent; sligh	l Drawn
10"x10"	8657	Kasil 6	Potessium	sanded flat 400 grit paper sanded flat	6	Polystyrene Hughson Chemical (Co. Chemglaze		t Dipped
10"#10"	3658	Kasii G	Potaselum	400 grit paper sanded flat	6	Polyurethane Hughson Chemical Co. Chemglaze Polyurethane	Transparent; loss haze.	Dipped
1 1/2x1 1/2	8641-649	ĸ	Sodium .	400 grit sanded lightly	15-25	Hughson Chemical 2 Co. Chemglase Polyurethane	? Transparont; less haze	Dipped
1 1/2x1 1/2	8650-655 660, 662	Kamil 6	lotassium	400 grit sanded lightly	17-24	Hughaon Chemical Co. Chemglars Folyurethans	Transparent; less hase.	Dipped
10"x10"	8669	ĸ	Sodium	400 grit sanded flat	29	Hughmon Chemical - Co. Chemglaze Polyurethane	10 Transparent; littl hase.	
10" x10"	8670	x	Sodium	400 grit sanded flat	29	Hughson Chemical -: Co. Chemglase Polyurethane	hase.	
10"×10"	8671	ĸ	Sodium	400 grit sanded flat	19	Hughson Chemical - Co. Chemglare Polyurethane	hase.	
10"x10"	8672	K ·	Sodium	400 grit sanded flat	27	Hughson Chemical - Co. Chemglaze Polyurethane	nase.	
10"x10"	8673	Kasil 6	Potassium	400 grit sanded flat	27	DuPont Duco Polystyrene	3 Transparent; some distortion.	Dipped
10"x10"	3664	Kasil 6	Potassium		10	Hughson Chemical ~ Co. Chemglaze Polyurethane	10 Transparent and olear	Dipped
10"x10"	566 6	Kasil 6	Potassium	400 grit sanded flat	12	Hughson Chemical Co. Chemglaze Polyurethane	Transparent and clear	Dipped
10"x10"	8675	Kasil 6	Potassium	400 grit sanded flat	~6	Hughson Chemical Co. Chemglaze Polyurethane	Transparent; unclear	Dipped

Sprayed polyurethane coatings made using a 2 parts toluene--1 part polyurethane by volume mixture. Dipped polyurethane coatings made using as received polyurethane

Thickness after silicate pretreatment

Micro Chemicals, Inc., Dallas, Texas

*** Krylon Inc. Norristown, Ps.

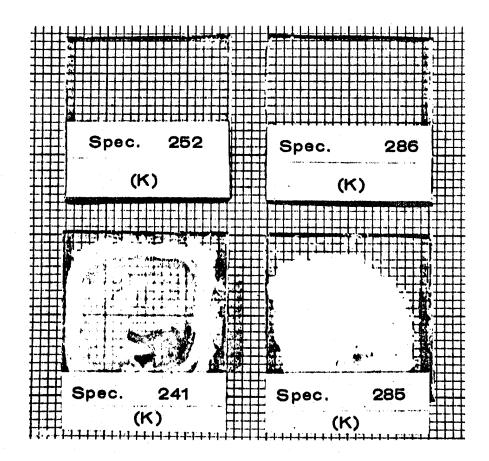
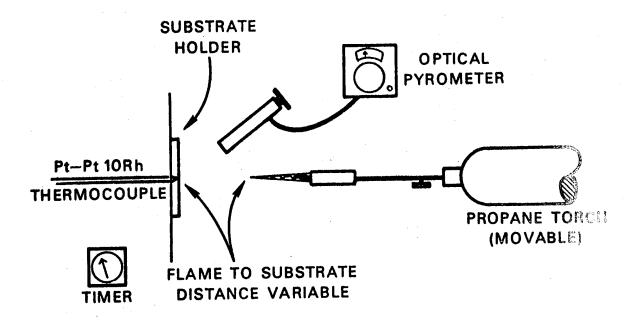
N.D.-Nut Determined

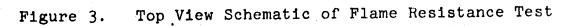
Table II

HUMIDITY RESISTANCE OF SILLCATE COATINGS

Appearance	Cł.		an stated to the set there are a set and the set		Transperent film; no haze	11181 DC	5	No change	No change or	ccating tatted atong suges and years ed; test terminated	surfac	Transparent, glassy film; no surface have	Transparent, glassy film; no surface	Transparent, glassy film; no surface	hare	No change	recting; white areas and cracks; test		Transparent, glassy film V	ac crange Ko rierte	No charge	A few cracks and white areas	change	No change; test terminated	rransyerent, outoting codities		Cloudy along edges; very soft; coat-		Transparent glassy tile Ko obsere	No charge	charge	Small white spot; specimen ok	No change rostan foiled: reserve pround edges		TILI TESS	shed · · · · · · · · · · · · · · · · · · ·	Transparent glassy illu; no naze No rhenre	No change	No charge Mo charge converse	erminated	Transparent, glassy film Cloudy haze over surface; some loss	of coating adhesion; coating removed	Cloudy have over surface; some loss of coating adhesion; coating removed	Cloudy haze over surface; some loss of coating athesion; coating removed
Percent Meight Change, S	0	ŝ	1 = 		+0.36	14-14	7T-1+	+1.27	+1.90	•	0	0.1+	+1.25	41.0ž		+1.13	-				54.14	+1.43	+1.68	+2.05	5	27.04 4	+1.03		0	ဂပ	+1.1	+1.43	+1.92	' c:	-1.04	, ,	+1.83	+2.15	+2.52	T0-74	+1.11		8	
Relative Hunddity	!	!	1	80	5 00 5 05	e Ch	96	5	80.0	98	98	8 6	. 86	98	· · ·	86	5 C	1	96 96		00	80	66	98	1	1	! !	•	ማ	ካ ወ	` D	. 01	o (סת	1 50 h 61			86			9 8 8 8	n	1	1
		!	1) ()) () { ()	8	100	23	CO:	100	100	100	100	100		001			100		70	100	100	100		1			001	9 00 F	1001	100	201		1001		100	38	001.	001	001 1		ľ	
	0	р у ст.)	0 (4~	*) C 1	5	2	۳ 4	ß	1	181	0	19	26		•.	5	04	•	o		2.2	វិត	23	1001	c)	65 L 1 1 1	0 4	,	с ;	51 K	4 44	21	19	70T	101	1	52	, <u>c</u>	67	187	00	, t	26	ም 47
Frotective Coating Type	None	None	None	0000	erch .	Nore	None	None	None	None	None	None	None	None		None	NOJe Kote		Acrylic Lacquer ^E	Acrylic Lacquer	Acrylic Lacquer	Acrylic Lacquer	Acrylic Lacquer	Acrylic Lacquer	None	9101 1	None		None	None	acca acca	None	None		Acrylic Lacquer		Acrylic Lacquer ^e	Acrylic Lacquer	Acrylic Lacquer	Acrylic Lacquer	Mone	auca	None	None
0 33 00 74 74 74 83	Sodium	1 D	i po	1	Entbox			Ę	Ipo	1po	50,11,15	Sodium	Sodium	Sodi un	ł	뒿	Hitpos	1011010	Totassium	2	۲	POCASSSILE		5 8	ці 0-	0135	Potassium Dotossium	ż	Sodium	Sodium		Entron Sociation	Sodium	Souther	E TOO		g	Sodium Sociement	38	zr. ; poS	Potassium	Potass1um	Potassium	Potassium
<u>ə</u> 2[:	м	M	ы	м	M N	d N	4 he	: M	•	м	h	4 14	ы	M	d	м	M	4									Tart 6		ы	м,	4	4 14	N	N 1 1	ht N	4	×	M N	: 5:	≽:	Kasil 6		Kasil 5	Kas11 6
Spec. Xc.	10	2	tu.		in in Na t Na t	u (*	4 6 1	. (\	114	S233	- 0	1112	5241	- fi		- 14	1425	v	5252	5252	\$252	5252	00.70		S256A	52554	-C -	ACCAS	ŝ	an e	1) (I N (n er N er	103	10	(1) (1) (1) (1) (1) (1) (1) (1)	נו ע	14	5236	4 (1)	÷ v	5230	(N	3295	2290

fourty avera addresses course thandstate


Figure 2. Appearance of Silicate Coatings After 187 Hour Exposure to High Humidity Environment

Flame Resistance. To determine the flame resistance с. of the alkali-silicate coatings on site, a test was devised for exposing the samples to an1800°-2000°F propane combustion flame in A schematic of the setup is shown in Figure 3. eir. The test involved establishing the temperature of the flame with a Pt-Pt10Rh thermocouple and an optical pyrometer as a function of the distance from the substrate surface to the tip of the flame. Then by varying the substrate to flame distance, a preselected firing temperature could be achieved, and the burn-through time recorded. Using this procedure, flame tests were made to determine the flame protection properties of silicate-coated polycarbonate as a function of coating thickness. The specimens were evaluated by observing the time required for the flame to: (1) penetrate the silicate; (2) ignite the urethane and/or polycarbonate; and (3) penetrate the polycarbonate panel. Figure 4 shows two of the silicate specimens after the flame test. It is realized that this best is less severe than a comparable test in a pure oxygen atmo-However, because the silicate is noncombustible, it seems sphere. reasonable to assume that comparable silicate burn-through or failure times would be achieved, provided the temperatures were comparable. The results of flame tests performed on site are shown in Figure 5 and listed in Table X. As expected, the results show that the silicate burn-through time is increased as the coating thickness is increased.

The flame resistance standard set by NASA(Houston) called for the coating to withstand a direct flame of 1800°F for 45 seconds. As can be seen in Figure 5 this standard has been realized and surpassed by the silicate coatings developed in this laboratory. The best results on site were obtained on a 55 mil, Type K, sodium silicate coating which withstood 1800°F for ~150 seconds. The best result reported, on test samples sent to NASA(Houston) from this laboratory, indicates that a 25 mil silicate coating withstood 1800°F in a 6.2 psi oxygen atmosphere for 80 seconds without failing completely. These results are quite promising as they indicate that alkali silicate coatings can be produced which offer good flame resistance for polycarbonate substrates.

d. Optical Uniformity and Distortion. Federal Test Method 3041 was used for determining the optical uniformity and visual distortion of selected silicate-coated polycarbonate samples. According to this procedure, the optical characteristics of the samples are determined using a slide projector, with a transparent slide having two fine block lines (at right angles) ruled on it. The projector is placed 25 feet from a 5-foot square screen with a centered cross consisting of seven horizontal and seven vertical 1/16" lines intersecting at right angles in the center of the screen. With this setup, optical distortion is determined by placing the specimen close to and parallel with the screen, followed by

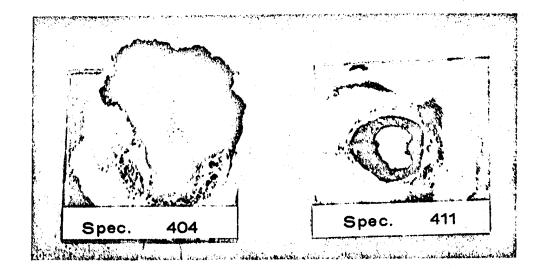


Figure 4. Appearance of Silicate Coatings After Exposure to 1800°F-2000°F Combustion Flame

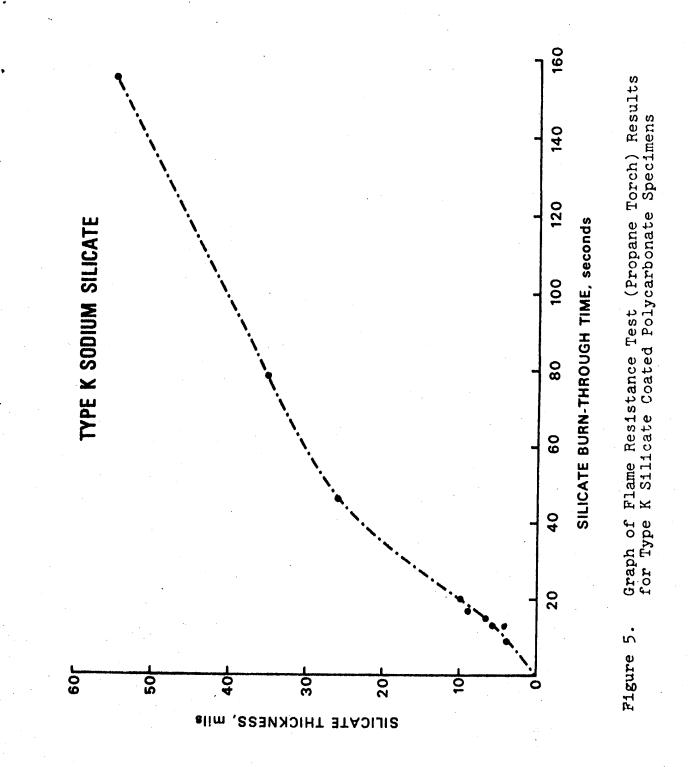


Table X

EFFECT OF A PROPANE TORCH FLAME ON SILICATE-COATED POLYCARBONATE^a

Polycarbonate	Burn Through Time, sec.	~105	2 93	562	062	~105	062	200 ·	242 2	v365
	Urethane Ignition Time, sec.	∿20	~20	~23	~25	~ 25	~ 25	~70	001~	∿200
Silicate Burn	Through Time, sec.	6~	~1 3	21 3	~1 5	~17	20	\$46	~78	~1 50
	Specimen Size, in ²	2 x 2	2 x 2	2 X 2	2 x 2	2 X 2	2 x 2	2 x 2	2 x 2	2 x 2
Coating	Thickness, mils	3.9	т. . 2	5.7	6.6	9.1	6.6	26.	35.	55.
	<u>illicate Coating</u> <u>ype</u> <u>Silicate</u>	Soditum	Sodiun	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium
	Silica	(૧) ^X	м	К	м	К	м	м	м	К
	Spec. No.	s355	s356	· S357	s358	s359	s360	s396	540#	TINS

^aFlame temperature at point of impingement on test specimens was 1800-2000°F as determined via 90% Flatinum - 10% Rhodium - Platinum thermocouple. ^bPhiladelphia Quartz Company

Note - All polycarbonate substrates were coated with Dupont adiprene L-100 urethane prior to silicate deposition.

movement of the specimen toward the projector. When light and dark shadows first appear in the shadow the distance from the screen is measured and recorded. This distance is indirectly proportional to the distortion caused by the specimen.

Optical uniformity is determined by placing the sample 12 inches from the front lens of the projector and parallel to the transparent slide (previously positioned and focused so that the sharply defined cross is coincident with the center cross ruled on the screen). While moving the specimen within its plane, the screen is observed for movement of the projected image of the cross. The specimen is rotated through 90° in its own plane and the test repeated. The maximum amount and nature or frequency of movement of the image is recorded.

By using the above-described procedures, a quantitative value for the optical uniformity and the optical distortion was assigned to selected polycarbonate samples. The resulting data are included in Table XI. Initial values (Part A) were obtained to establish upper and lower limits for comparison with later data. The results show a value of 8" for an optically perfect polycarbonate plate, while poor quality samples show readings near 0. Urethane-coated polycarbonate shows a drop in the optical distortion values to approximately 2 1/2". Therefore, as long as a urethane coating is used as the adhesive layer, the best distortion values will be in the 2"-3" range. For comparison with this range of values, further measurements were made (Part B). The results (show quite a few samples with the optimum distortion values) provided a rough indication of the quality of samples producible.

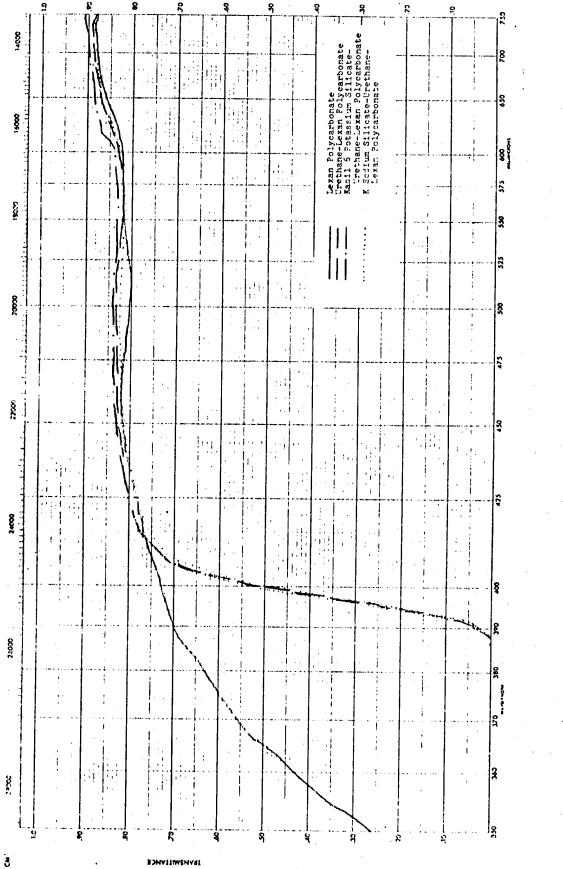
The optical uniformity values do not seem to provide any meaningful information which can be correlated with the coatings. As a result, this portion of the test method was not considered beyond the preliminary readings (shown in Table XI, Part C).

e. Light Transmittance. Tests were made to determine the light transmittance data, between 350 and 750 millimicrons, for polycarbonate/urethane/alkali silicate/protective polymer systems (PUSP systems). The data were obtained from a Perkin-Elmer Model 450 recording spectrophotometer. Figure 6 shows the data for uncoated polycarbonate, urethane-coated polycarbonate, and silicate/urethane/polycarbonate samples. Little effect is observed in the visible range, but the urethane film acts as a filter in the ultraviolet range. These data indicate that the alkali silicate transmits essentially 100% of the light energy. Figure 7 shows the light transmittance data as a function of wavelength for each of the PUSP specimens (polyurethane protective coating) listed. These samples show a range of transmittance

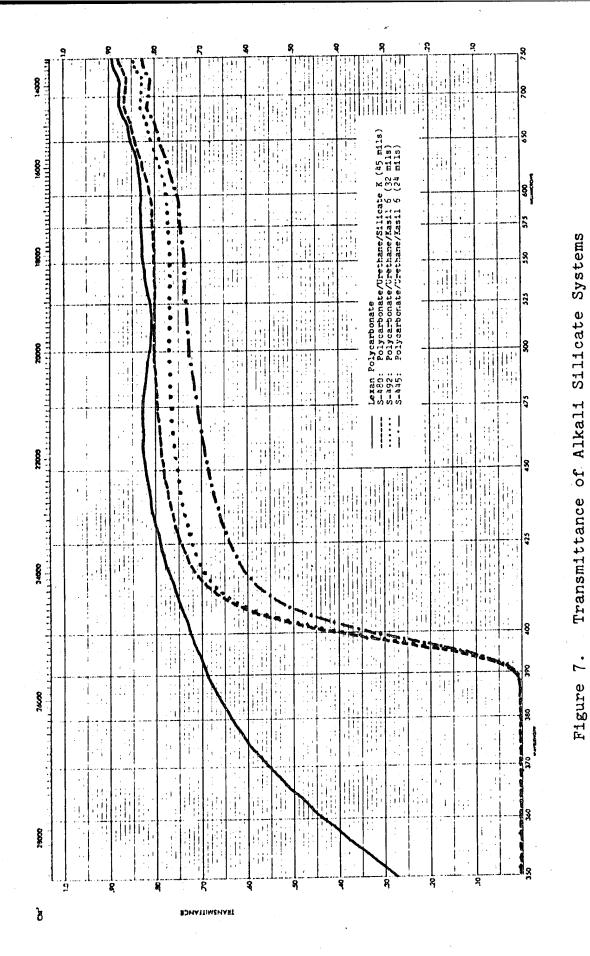
Table XI

<u>Part A</u>

	OPTICAL DISTORTION VALUES FRO	M FEDERAL TEST MET	HOD 3041
Spec. <u>No.</u>	_Sample_		<u>Distance</u>
S-235 S-284 K S-243 K S-242 K S-256 K S-275 K S-287 K S-296 K S-257 K	Lexan circular plate Lexan plate (commercial) Urethane coated Lexan 1 Urethane coated Lexan 2 Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated	polycarbonate polycarbonate polycarbonate polycarbonate polycarbonate polycarbonate polycarbonate	8" 7 1/2" 2 1/4" 2 1/4" 1 5/8" 1 1/4" 1 1/4" 1 1/4" 1" 7/8" 9/16" 7/16" 1/4"
	Part B		
S-309 Kr S-312 Kr S-314 Kr S-310 Kr S-311 Kr S-313 Kr S-304 K S-305 K	 Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated Silicate/Urethane-coated 	polycarbonate polycarbonate polycarbonate polycarbonate polycarbonate polycarbonate polycarbonate	1" 1 1/8" 2 1/4" 3/4" < 1/2" < 1/2" 7/8" 2" 2"
S-307 K S-394 K S-395 K S-397 K	Silicate/Urethane-coated	polycarbonate polycarbonate polycarbonate	1 1/2" 2 1/2" 1 3/4"


5-391	N#0	STITCALE/ OLE CHAUG-COACEC	polycaroonauc	- 37
S-398	K .	Silicate/Urethane-coated	polycarbonate	2"
S- 399	к	Silicate/Urethane-coated	polycarbonate	1 3/4"
S-400	К	Silicate/Urethane-coated		2"
S-401	K#6	Silicate/Urethane-coated		3"
S-402	K#6	Silicate/Urethane-coated		3"
S- 405	K#6	Silicate/Urethane-coated		1 1/2"
S-406	K#6	Silicate/Urethane-coated		2"
S-411	K .	Silicate/Urethane-coated	polycarbonate	. 3"

Part C


OPTICAL UNIFORMITY VALUES FROM FEDERAL TEST METHOD 3041

	Lexan circular plate	1/8" 1/16"
	Lexan plate (commercial)	
S-284	Silicate-coated polycarbonate	1/16"
S-275	Silicate-coated polycarbonate	N.O.#
S-296	Silicate-coated polycarbonate	1/4"
8-235	Silicate-coated polycarbonate	3/4"

Not observable

Silicate - Urethane - Polycarbonate Systems Light Transmittance of Figure 6.

values, in the visible wavelength region, from approximately 50% to 88%. Optically, these coatings are quite satisfactory, but the protective coating tends to slightly reduce the transmitted light in the visible region. This conclusion is evident from a comparison of the curves for the silicate samples in Figures 6 and 7. This effect can be reduced by using the thinnest possible functional protective coating. Protective coatings of 1-3 mils have proved to be quite acceptable.

Vacuum Stability. In order to observe the effect f. of a high vacuum environment, selected alkali silicate film were exposed to a vacuum in the 10^{-5} torr range at room temperature for various periods. The details of these tests are included in Both the acrylic enamel-coated and unprotected silicate Table XII. coatings showed a tendency to craze after three hours at room Small cracks developed in the polyurethane-coated temperature. silicate specimen but the transparency of the sample was not appreciably affected. Polystyrene-coated silicate specimens showed little vacuum degradation even after 24 hours. Two samples (S-507 and S-510 in Table XII) remained in a vacuum of 6×10^{-5} torr for 24 hours. Initially these coatings showed no deviation, but, after a short time, the edges of the coating began to develop small cracks. Later, these cracks enlarged somewhat but did not traverse the sample, and hence did not constitute a failure of the coating. Some bubbles developed in the coating during the test, but the mechanism of bubble formation is not known for certain. In any case, these test results indicate that alkali silicate coatings will stand a hard vacuum for some time without complete failure.

g. Flexural Strength. The flexural properties of alkali silicate coatings were measured, according to ASTM Method D790, with a four point loading system. The flexural measurements were conducted on an Instron testing machine of 10,000 pounds capacity at a rate of 0.05 inches per minute. Results of these tests are contained in Table XIII. The tests were conducted in an environment of 73°F and 50% relative humidity.

The four-point loading was used to prevent localized compressive failure of the coating so that a valid measurement of the flexural strength and modulus of the specimen could be made. The shear strength between the coating and the polycarbonate was therefore determined by "flexural" tests in which the beam length is short compared to the thickness of the beam, and the coating is the outer fiber of the flexural beam. The shear strength of the bond between the coating and the polycarbonate can be determined by such a test, providing the shear strength is less than the tensile strength of the coating itself. Table XII

VACUUM STABILITY OF ALKALI SILICATE SYSTEMS

	Spec.	()	Silicate	Protective Coating Type	Vacuu Pressure, Torr	m Time, hr.	Appearance
	No.	Тура	STITCALE	COACTIN 1900		1110	
	\$414, 418	Kasil 6	Potassium	None	2 x 10 ⁻⁵	0	Transparent film.
	S 414, 418	Kaail 6	Potasaium	None	2×10^{-5}	3	Several crazed areas.
	\$414, 418	Kasil 6	Potassium	None	2 x 10 ⁻⁵	12	Coatings entirely crazed
				•			and spalled; coatings removed.
	8416	Kas11 6	Potassium	None	2×10^{-5}	0	Transparent film.
	8416	Kas11 6	Potassium	None	2×10^{-5}	1/6	No change.
	8416	Kasil 6	Potassium	None	2×10^{-5}	3	Crazed and translucent areas; coating removed.
	\$412, 415	Kasil 6	Potassium	Waterspar Acrylic enamel	2×10^{-5}	0	Transparent films.
	S 412, 415	Kasil 6	Potassium	Waterspar Acrylic enamel	2 x 10 ⁻⁵	1/6	No change.
	8412, 415	Kasil 6	Potassium	Waterspar Acrylic enamel	2×10^{-5}	3	Crazed and translucent areas; coatings removed.
	8444	Kasil 6	Potassium	Dupont Adiprene L-100 Polyurethane	2 x 10 ⁻⁵	0	Transparent film.
	8444	Kasil 6	Potassium	Dupont Adiprene L-100 Polyurethane	2 x 10 ⁻⁵	1/4	No change.
	3444	Kan11 6	Potassium	Dupont Adiprene L-100 Polyurethane	2 x 10 ⁻⁵	3	Small crack near center; transparency unaffected; coating removed.
	8410	Кавіі б	Potassium	Dupont Adiprene L-100 Polyurethane	2×10^{-5}	0	Transparent film.
	9410	Kanji 6	Potassium	Dupont Adiprene L-100 Polyurethane	2 x 10 ⁻⁵	4	A few small cracks; transparency still good.
	8410	Kasil 6	Potassium	Dupont Adiprene L-100 Polyurethane	2 x 10 ⁻⁵	20	Many fine cracks; good transparency.
	8 497-498	к	Sodium	Dupont Duco Polystyrene	2×10^{-5}	0	Transparent film; a few bubbles in the styrene protective coating.
					•		
	S497-498	к	Sodium	Dupont Duco Polystyrene	2 x 10 ⁻⁵	Ľ	No change.
	5497-498	к	Sodium	Dupont Duco Polystyrene	2 x 10 ⁻⁵	24	A few bubbles appear entanged; good trans- parency.
•	S507	ĸ	Sodium	Dupont Duco Polystyrene	6 x 10 ⁻⁵	24	Some edge cracks; a few bubbles.
	\$510	K	Sodium	Krylon 1302 Acrylic	6×10^{-5}	24	Some edge cracks; a few bubbles.

Table XIII

FOUR POINT LOAD FLEXURAL STRENGTH OF ALKALI SILICATE COATINGS

	Modulus of Elasticity, psi x 10 ⁶	
	Total Fracture	00. 13 13 10 10 10
Costing Defi	Crack Total Initiation Fracture	Юдаааа 000000
	5% Yield Strength, psi	7360 6800 7190 6910 6910 6870
gth	Minor Span	78 78 778 778 778
Len	Major Span	
	Width, mils	0.500 0.500 0.500 0.500 0.515 0.515
	Thickness, mils	8389059 8389059
	Spl. No.	888 99 99 99 99 99 99 99 99 99

The data obtained in the test described above were used to calculate the modulus of elasticity, according to the equation below:

$$E_{b} = \frac{L^{3}m}{4bd^{3}} [3(a/L) - 4(a/L)^{3}]$$

 E_{b} = Modulus of elasticity

m = Slope of tangent to initial straight line portion
 of the load deflection curve

L = Support span

a = Distance from support to adhacent load point

The modulus of elasticity data in Table XIII, for the alkali silicate coatings, are comparable with the modulus values for uncoated polycarbonate. Because the modulus of elasticity values for the coating and the polycarbonate are similar, a bond failure would not be expected to occur under low stress conditions. Under high stress conditions, however, the silicate coating cracks.

h. Stability of Coatings After Ultraviolet Exposure. An Atlas weather-ometer was used to test the stability of alkali silicate coatings when exposed to an intense ultraviolet light source. The test involves mounting the silicate-coated polycarbonate samples vertically and rotating the sample holder in a circular path (30" diameter) around twin, glass-enclosed (protective glass dome) carbon arcs. The test chamber temperature rose to 155°F during the 22 hour exposure of these samples to the intense ultraviolet source. Table XIV indicates the spectral distribution of the Atlas enclosed violet carbon arc lamp (Ref. 4). The effects of this test on various PUSP systems are detailed in Table XV.

Table XIV

SPECTRAL DISTRIBUTION OF ATLAS ENCLOSED VIOLET CARBON ARC LAMP (Ref. 4)

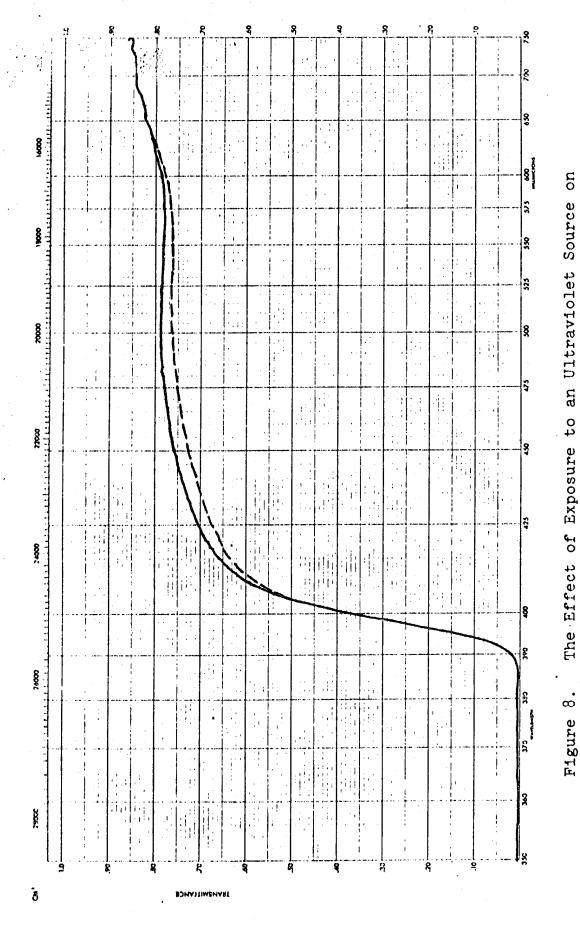
Spectral Range <u>Nanometers (10⁻⁹ meters)</u>	Noon Summer Sunlight (Microwatts per Sg	
Below 340 nm 340 - 400 nm 400 - 750 nm 750 - above nm	1,040 5,250 59,800 75,700	112 10,000 20,900 28,500
TOTAL	141,800	59,512

Table XV

ULTRAVIOLET STABILITY OF ALKALI SILICATE COATINGS

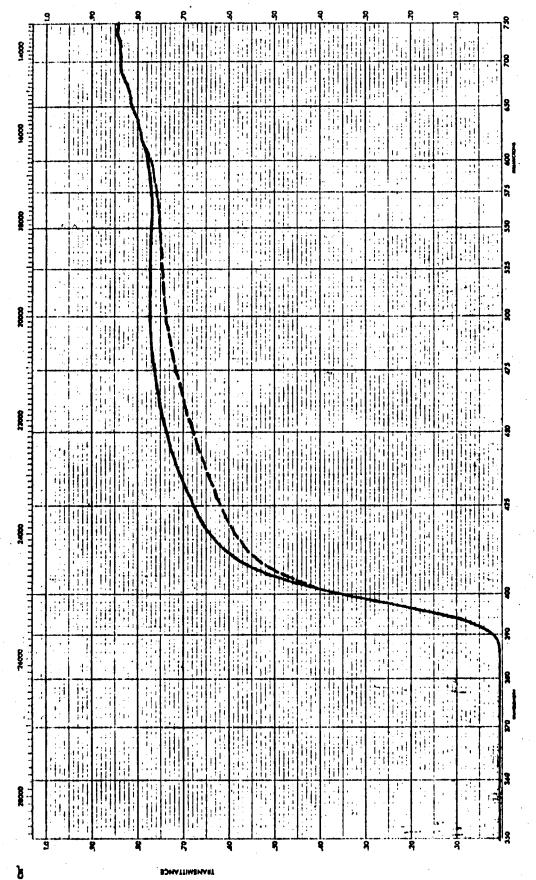
													ted			
	Appearance After	Transparent light green cast.	Transparent dark Ereen cast.	Transparent; green cast.	Transparent; green cast.	Transparent; light green cast.	Transparent; 11ght green cast.	Transparent; light green cast.	Transparent; light green cast.	Transparent; 11ght green cast.	Transparent; light green cast.	Transparent; light green cast.	Essentially unaffected	Transparent; light green cast.	Transparent: light green cast.	Transparent; light green cast.
SS	Test Time, hr.	22	55	22	22	22	22	22	22	22	22	22	22	22	54	24
SILICATE COATIN	Test Temperature, or	155	155	155	155	155	155	155	155	155	155	155	155	155	155	155
IT OF ALKALL S	e Coating Thickness, mils	ч	7	et :	N	ed.	<u>ا</u> م	म	म्	Ч	N ·	2	1	- 1	-1	-
ULTRAVIOLET STABILITY OF ALKALI SILICATE COATINGS	Protective Type	Dupont Ducc Polystyrene	Dupont Duco Polystyrene	Dupont Duco Polystyrene	Kry lon	Clear Enamel	Bupont Duco Polystyrene	Krylon 1302	Krylon 1302	Krylon 1302	Dupont Duco Polystyrene	Dupont Duco Polystyrene	Krylon 1302	Krylon 1302	Hughson Chemglaze Polyureth ane	Hughson Chemglaze Polyurethane
ULTRU	e Coating Thickness, mils	23	32	91	17	17	64	23	37	38	20	15	54	30	58	36
	Silicate Type	Kasil 6	Kasil 6	M	Kasil 6	Kasil 6	X	K	Xasil 6	Kasii 6	Kasil 6	Kasil 6	Kas11 6	Kas11 6	×	ж
	Spec. Xo.	£64S	e 6t S	S 299	S500	s505	S512	S515	S523	S526	S532	S534	S541	S546	S642	3649

After the test, the samples appear transparent with a slight greenish color. This change in the visual properties of the test samples can best be illustrated by comparing the spectrophotometer graphs recorded both before and after the ultraviolet exposure. These data, recorded on a Perkin-Elmer Model 450 spectrophotometer, are shown in Figures 8 - 13.


The obvious conclusion to be gathered from these graphs is that the light transmission of these PUSP systems is lowered by exposure to the ultraviolet source. The protective coating on the silicate is affected by the ultraviolet source and causes a reduction in the light transmission of the samples. This was determined by peeling off the protective coating and noting the greenish discoloration of the film after exposure. The data indicate that the ultraviolet exposure has the greatest effect on polyurethane-coated samples and the least effect on polystyrene-coated samples.

1. Effect of Water Content on Silicate Properties. The percent water content of silicate coatings, after various stages of drying was determined. Assuming that only a negligible amount of water remains in a silicate coating after oven drying at 225°F, the silicate water content (immediately after application) was found to be 50.5%. The percent water content after oven drying at 100° , 125° , 150° , 175° , 200° and 225° F is shown in Table XVI. The hardness of the coatings varied from <6B pencil hardness (immediately after application) to a hardness (after 1 hour of 225° F) approaching that of SiO_2 . It should be possible to predict the coating hardness if the percent of water is known. Also an optimum water content can be found which will yield coatings that are more resistant to cracking and wrinkling.

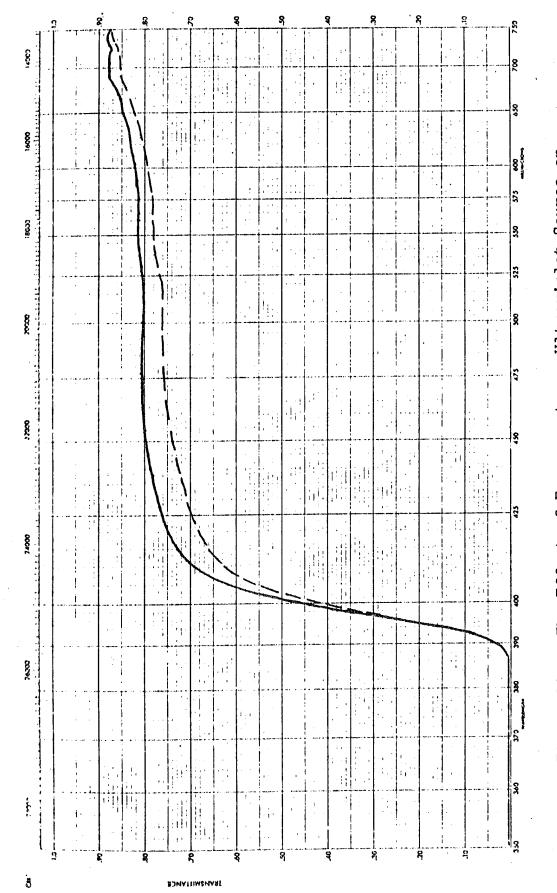
Impact Strength of the PUSP System. Impact tests 1. were conducted using a Rhiehle pendulum impact tester. Both K sodium silicate and K psi 16 potassium silicate were selected as nonflammable protective layers. All specimens were made using α polyurethane bond coat over the polycarbonate, a silicate layer, and a polyure thane water repellent protective coating. The coatings were tested by impacting the specimens (having a 1 inch radius surface) at energies ranging from 15 to 45 ft-lbs. In addition, nine uncoated polycarbonate coatings were subjected to parallel tests. Initially a 45 ft-lb energy was employed. The results were determined on the basis of visual appearance and indentation diameter. The 1.5" x 1.5" coatings were mounted in a special fixture which allowed support over the entire area of the specimen. Normally on this device, the impact specimens are mounted so that they are supported only along the edges. However, the primary objective in this test was to determine the difference in impact strength between polycarbonate-urethane-silicate-protective (PUSP) coating systems and the original uncoated polycarbonate. A summary of test results is given in Table XVII.


In contrast, both is the PUSP specimens (K and Kasil 6 silicate) cracked through the polycarbonate at 45 and 30 ft-lbs. At less than 30 ft-lbs, only the silicate was shattered. The indentation diameter was less than that observed with uncoated polycarbonate at similar impact energies. The results appear to indicate a change in polycarbonate properties that is probably due to the 200°F cure cycle of the polyurethane bond coating applied to the polycarbonate. This can be rectified by using a lower temperature cure cycle (150°F) for a longer period of time.

The test results can also be explained by realizing the effect of the brittle silicate coating. Normally, the polycarbonate would absorb the impact energy by expanding via plastic deformation. However, the brittle silicate layer will absorb little energy and will tend to constrain the polycarbonate and not allow deformation resulting in the cracking of the polycarbonate.

The Effect of Exposure to an Ultraviolet Source on the Light Transmission of Sample 532. Light Transmission Before Exposure

Light Transmission After Exposure



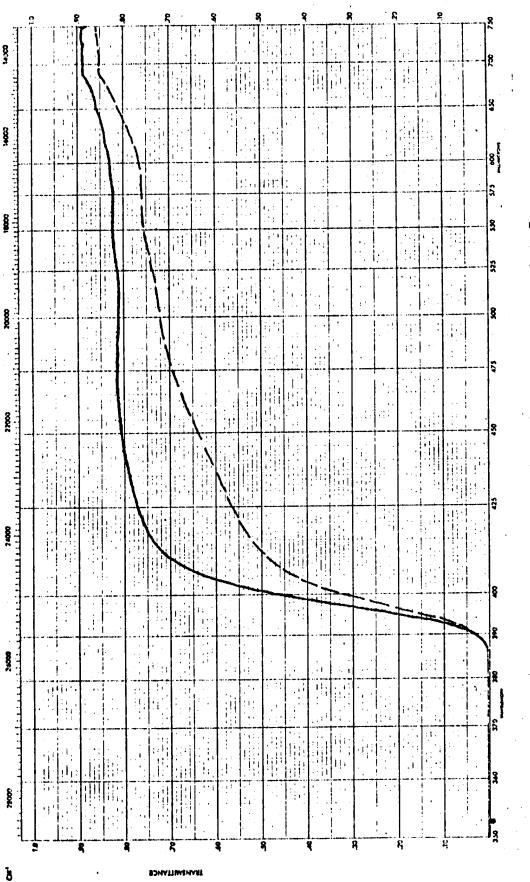
an Ultraviolet Source on Sample 534. Light Transmission Before Exposure The Effect of Exposure to the Light Transmission of

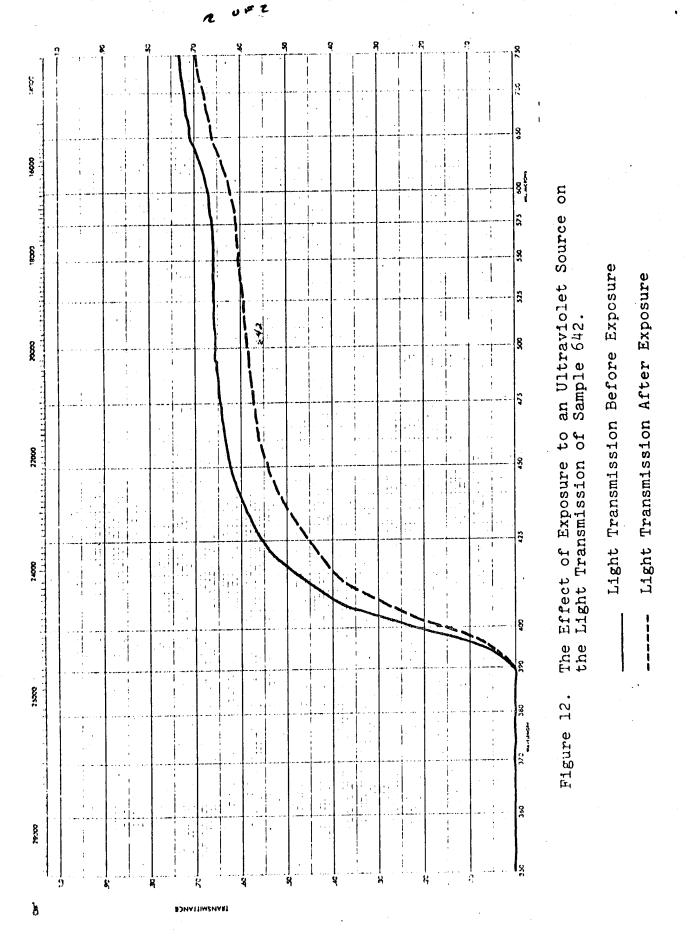
Light Transmission After Exposure

Figure 9.

BOMATIMBMART

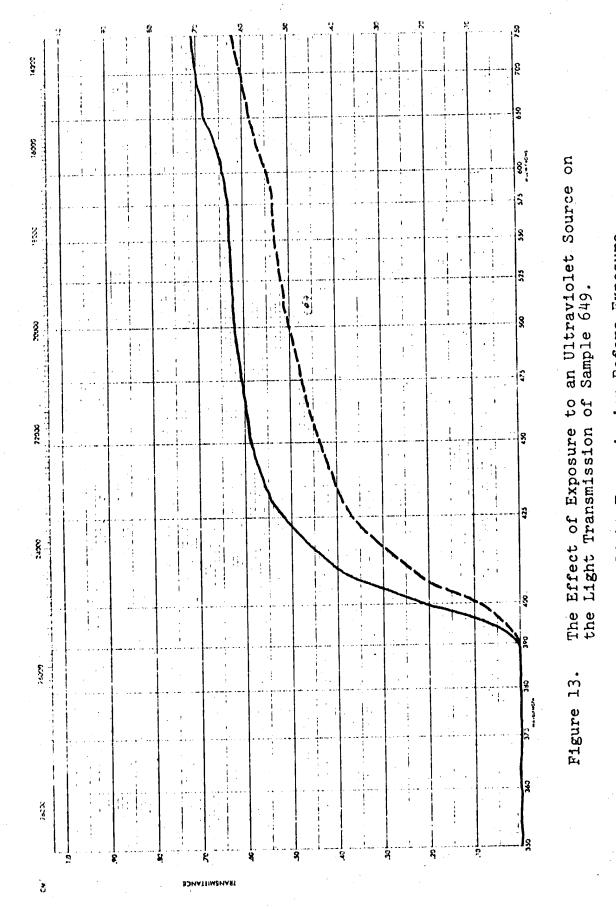
an Ultraviolet Source on Sample 541. Light Transmission Before Exposure The Effect of Exposure to the Light Transmission of Figure 10.


Light Transmission After Exposure


lif,

-- Light Transmission After Exposure

Light Transmission Before Exposure


Effect of Exposure to an Ultraviolet Source on Light Transmission of Sample 5^46 . The Figure 11.

48

中世界に

Light Transmission After Exposure

Light Transmission Before Exposure

Table XVI

EFFECT OF WATER CONTENT ON APPEARANCE OF SILICATE COATINGS

Appearance		Transparent film <6B hardness	Transparent film <6B hardness	No change	No change	A few bubbles	A few bubbles	8H pencil hardness; more bubbles	8H pencil hardness; more bubbles	Larger bubbles >9H pencil hardness	Larger bubbles; >9H pencil hardness	Larger bubbles; wrinkling	Larger bubbles; wrinkling	No change	No change
% Water Content			50.5	1	26.2	1	16.3	1	11.3	ŧ	5.02	1	2.05	ı	02
Weight, g			8.6905	ß	5.817		5.1324		4.8447		4.5240	1	4.3887	, t	3.2966
Temp°C		R.T.	В.Т.	100	100	105	1 1 1 1			175	175	200	200	225	225
Time. hr.	4	С	0	ר ה	ית. ייי	\ 	1 ~	4 r-	4 r ~	10		1	{		11
Sher NO.		4_530	5-140 S-140	0 L L O			0 0 1 0 1 0 1 0	nμ	ገ ሆ	ህ ፖ	ገ ሆ	אר	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	าช	S-540

	Appearance	Cracked the glass, shartered the polycarbonate.	Cracked the glass, split PC.	PC slightly dented, coating had two cracks.	No visable damage due to striking edge.	Slight dent.	Cne crack in coating.	One crack in coating.	Shattered, coating and PC.	PC split, coating had few cracks.	Two cracks in coating.	Cracked and lifted some pieces from surface.	Cracking in coating (some burst).		Four cracks in coating.	Two cracks in coating.				All specimens dented.	Increased in depth of dent with increase of force.				
	Diameter of Indentation	.5 In.	.5 In.	• u • • •	•	.3 In.	.375 In.	.4 17.	1	.35 in.	.3 in.	.5 în.	1	.2 in.	.35 in.	.4 In.	.t in.	.h in.	.45 In.	.45 in.	.5 in.	.5 In. (small split)	.65 ln.	.65 In.	.65 in.
TEST RESULTS	Impact Energy, ft-lbs.	30 ft-lbs.	kg [t-]bs.	20 ft-lbs.	15 ft-lbs.	15 ft-lbs.	20 ft-lbs.	20 ft-lbs.	45 ft-lbs.	20 ft-lbs.	15 ft-lbs.	30 ft-lbs.	15 ft-lbs.	20 ft-lbs.	20 ft-lbs.	20 ft-1bs.	15 ft-lbs.	15 ft-lbs.	20 ft-lbs.	20 ft-lbs.	30 ft-lbs.	30 ft-1bs.	45 ft-lbs.	45 ft-lbs.	45 ft-168.
LIDYARI	Overall Specimen Thickness, mils	148	147	145	140	147	145	147	147	747	. 153	154	155	151	150	151		•	I	•	1	1		ı	
·	Silicate Thickness, mils	50	IG	4 1	15	17	17	đ	t. et	15	20	22	O' rt	51	20	17	1	I	8	ı	ı	•	•	•	· 1
•	Silicate	×	×	M	M	м	M	К	Xasil 6	Xasil 6	Kasil 6	Kasil 6	Kas11 6	Kasil 6	Kasil 6	Kes11 5	None	None	None	None	None	None	None	None	None
	Sample No.	641	623	449	6 4 5	. 646	647	648	. 650	651	652	653	654	655	660	662	Uncoated PC	Uncoated PC	Uncoated PC	Uncoated PC	Uncoated PC	Uncoated PC	Uncoated PC	Uncoated PC	Uncoated PC

Table XVII

B. Non-Alkali Silicates and Silica Coatings

1. <u>Consideration of Approaches</u>. Another approach to the fabrication of a water-insoluble, nonflammable, transparent coating on polycarbonate involved the use of non-alkali silicates and silica coatings. While insolubilization of the silicates is possible with the solution of salts containing di- and trivalent cations, the products found tended to be nontransparent. Silica coatings are both transparent and water insoluble.

The possible approaches to silica coatings that were considered are summarized below:

- <u>Glass resins</u>: These commercially-available resins are modified organic silicas.
- Hydrolyzed Ethyl Silicate: Slightly polymeric ethyl silicates such as ethyl silicate 40 can be hydrolyzed to a clear silica film.
 - Acidified Potassium Silicate: Potassium silicate can be acidified and converted to polysilica acid that can plug to a clear silica casting. A weak acid can also be used to cause *in situ* conversion of silicate to silica coating as demonstrated by work at Goddard Space Flight Center.
 - Silica Gel: Incorporation of a small amount of organic thickening agent in a commercially available silica gel allows film formation without precipitation of the silica as a powder.

The principle problems anticipated were differences in the expansion coefficient between polycarbonate and silica, shrinkage cracks in the inorganic layer found during water removal, and the difficulty of removing entrapped water from within a relatively thick silica film. The use of elastomeric urethane and multiple applications of silica was expected to alleviate this problem.

2. <u>Modified Silica Coatings for Flame Retardation</u>. Modified organic silica coatings appeared from screening tests to be significantly less effective than alkali-silicate coatings in preventing flame damage to a polycarbonate sheet (Table XVIII). In the screening test, a propane torch flame was impinged horizontally on the broad side of a specimen supported by a clamp on one side. The flame temperature was approximately 2000°F at the point of impingement.

These limited data indicated that the barrier coating on polycarbonate should preferably serve as an oxygen barrier (to prevent oxidation of the polycarbonate) and as a thermal insulator (to

Table IVIII

EFFECT OF A PROPANE TORCH FLAME ON UNCOATED AND COATED POLYCARBONATE SHEET

Code	Costing	Polycarbonate Pretreatment	Coating Thickness, mil	Steclmen Size, Inches	Coating Time, sec	Coating Failure Time, Mode sec Mode	rolycaroonate Softening Time, sec	rolycaroonauc Melting Time, Sec
62309-3	None	None		1 x 3	ł		•	32
52330-k	None	None	ł	1 x 3	ł		¢5	25
62330-6 None	None	None	:	1 x 3	1	ł	ŝ	35
5229 8	None	None	¦	2 x 2	ł	· •	2	04
62304-1 Glass	Glass	None ^b	35	1 x 3	н	Shattered		35
62302-2 Glass	Glass	Noneb	35	1 x 3	Ч	Cracked		60
62324-3	Glass	Дс	35	1 x 3	8	Cracked ^k	55	70
62303	Glass Resin 650 ^d	Planede	හ	1 x 3	20	Cracked	ł	35
52330-5	Glass Resin 650 ^d	Flaned ^e	æ	1 x 3	N	Peeled	¢5	35
62309-±	Glass Resin 650 ^d	Flamed ^e	σ	1 x 3	ł		0.4	717
62309-2	Glass Resin 650 ^d	Flamed ^e	lo	×1 x 3	m	Peeled	30	60 f
62309-6	Glass Resin 6508	Planed ^e	10	1 x 3	 -		30	1 O
62330-2	Glass Resin 6508	lıc	7	1 x 3	2	Flaked	20	46#
2330-3	6233C-3 Glass Resin 6508	Uc	7	1 x 3	4	Plaked	35	2 #
2-2182	52312-2 Potassium Silicate ¹	цc	20	2 x 2	36	Burned Through	*75	~ 75
2314-1	62314-1 Potassium Silicate ⁵	Lic C	30	2 x 2	37	Burned Through	×75	× 75

Soft glass microscope slide clamped over polycarbonate

Polyurethane adhesive layer from Adiprene 1-100 isocyanate-terminated prepolymer and 4,4'-methylene bis(2-chloroaniline) (XOCA), less than 5 mil thick ; ;

Product of Owens-Illinois

Cleaned by passage through propane gas flame •

Melting and sagging retarded by polymer outside of heated area on this specimen ċ

Glass resin on reverse side of polycarbonate away from flame **ы**́

Glass resin remained intact and helped prevent softened polycarbonate from dripping onto bench £

Philadelphia Quartz, "X"; ambient temperature cured (Specimen #230) ...

(Specimen #186) Philadelphia Quartz, Kasil 6, cured through 16 hours at 198°C .

Urethane melted

. ×

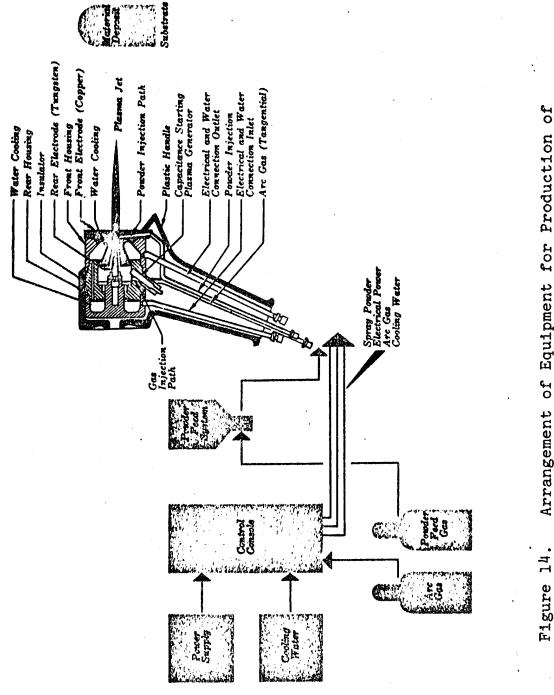
retard melting and collapse of the polycarbonate). The alkalisilicate coatings serve both functions. They intumesced to form an inorganic foam that retarded heat transfer sufficiently to allow a coated specimen to withstand burning-through or excessive softening for more than 75 seconds. In contrast, silica or glass coatings served as oxygen barriers but did not greatly retard melting of the polycarbonate.

An uncoated piece of polycarbonate $(1" \times 3" \times 0.131")$ started to burn within five seconds in propane flame but was self-extinguishing upon removal from the flame. The sample also started to soften and warp away from the flame within a few seconds. The polymer melted and flowed in the hottest area, and the whole piece melted and dropped to the bench in 25-35 seconds. A slightly larger piece (2" x 2") showed similar melting characteristics, but retained sufficient rigidity to avoid catastrophic melting failure slightly longer (40

A 36-mil thick piece of soft glass attached to the polycarbonate retarded melting of the polymer for approximately another 30 seconds. Melting did occur within 60-70 seconds under the screening test conditions. The glass cracked in all cases, but if the pieces were held in their original position, no sign of charring of the polycarbonate occurred. When a polyurethane adhesive layer was used between the glass and polycarbonate, it was decomposed vigorously by the intense heat; and the gases evolved burned around the edges of the strip. In a separate experiment, the urethane lost all adhesive characteristics as it became fluid within 15 seconds when heated under ~ 60 mil thick silica slide. The silica did not crack and the transmission of heat through the silica was still relatively fast.

The Glass Resin 650 generally showed poor adhesion to the polycarbonate. Under the stresses imposed by rapid heating, the 650 resin generally cracked quickly or peeled away from the substrate. Even when an intermediate polyurethane adhesive layer was used, the 650 resin popped off almost immediately upon contact of the flame with the coating. The adhesion of thick sections (8-10 mils) prior to heating was marginal on flame-cleaned polycarbonate. Over a polyurethane adhesive prime coating, the 650 resin was slightly cracked after room temperature drying, but adhesion was reasonably satisfactory. Although the 650 resin did not burn, heat transfer across a thin coating of 650 resin would be expected to be rapid. This product did not look attractive for further development.

The different initial softening data for the uncoated and 650 resin-coated polycarbonate are relatively insignificant and measure our inability to observe precisely the softening characteristics under the test method more than any significant difference in properties. Some slight shielding of the polycarbonate from direct flame infringement may have slightly delayed the apparent softening of the coated samples.


Although several routes to silica coatings were apparent, it was concluded that the alkali-silicate route was the most promising. The water sensitivity of these coatings may be most satisfactorily minimized by overcoating with a very thin water repellant coating such as an alkyl silane.

C. Pla-sma-Spra-yed Coatings

Through the use of refined arc-plasma spraying techniques, extensive studies have been carried out in an effort to produce a nonflammable transparent coating on polycarbonate. Refined plasma spraying methods are necessary to avoid undesirable degradation of the polycarbonate.

In the arc-plasma generator, an inert or nonoxidizing gas (usually argon, helium, or nitrogen) is passed through a high-energy dc arc producing a very high-temperature, continuous plasma stream. The high-energy stream issues from the front nozzle of the generator, resembling an open welding flame. Powders may be injected into the plasma jet for controlled melting and deposition of a coating on the selected substrate. The construction of a plasma spray torch and the arrangement of the supporting equipment for production of plasma-sprayed coatings is shown in Figure 14. Using this equipment, various studies have been carried out in this laboratory involving a wide range of conventional and special metallic, ceramic, composite, and polymeric materials for numerous different applications. The development of a coating for polycarbonate by the arc-plasma process therefore seemed a logical extension of the technology based on preliminary plasma-sprayed particle studies.

Screening of Candidate Materials. The initial screening 1. of materials emphasized the testing and evaluation of rather basic chemical compounds exhibiting a cubic crystal structure and/or desirable melt characteristics. The initial candidate materials included: Y₂O₃.ThO₂ (GE. Yttralox), MgO.Al₂O₃ (spinel), MgO (periclase), CaO, CaF₂(fluorite), SiO (quartz), LiF, Al₂O₃ (corundum), B_2O_3 and sodium borosilicate glass. These candidate spray powders were exposed to 100% relative humidity conditions at 36° F for 21.5 hours. With the exception of Al_2O_3 , CaO, and sodium borosilicate glass, most of the materials showed reasonably good resistance to this environment as indicated by their practically nil weight gain. However, Al₂O₃, CaO, and sodium borosilicate glass showed significant weight increases of 3.1, 7.4, and 10.2%, respectively. Secondly, the candidate materials were evaluated by routine particle impact studies. In this procedure, the plasma torch is passed rapidly across a series of microscope slides mounted at various distances from the torch nozzle. A rudimentary diagram of this test is shown in Figure 15. Various torch/electrode/nozzle combinations are studied

Arrangement of Equipment for Production of Plasma-Sprayed Coatings, showing Details of the Plasma Spray Torch with Standard Argon Electrodes.

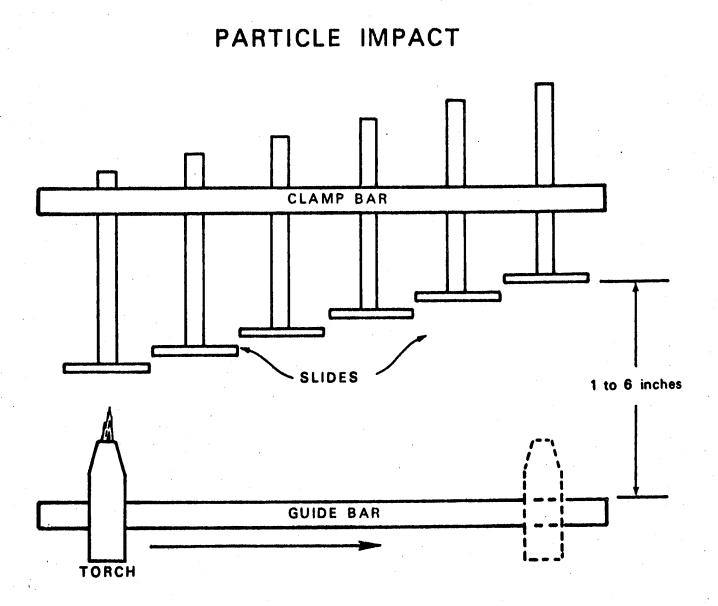


Figure 15. Schematic Arrangement of Equipment for Observing Melting Characteristics of Spray Powders at Various Torch Conditions

with selected arc gas types or mixtures. Microscopic examination of each glass slide indicates the degree of melt and flow for each material at one set of conditions. Evaluation of a whole range of conditions establishes base plasma spraying conditions for each material. The general appearance of these particle impact slides, using different materials, is shown in Figure 16. The results of these particle impact studies are contained in Table XIX.

Survey of Glass-Forming Systems. After the initial 2. screening of various chemical compounds showed limited promise, the experimental approach was redirected to find several glass compositions that would permit the coating of polycarbonate by arc plasma techniques. In order to achieve this goal, it was necessary to find a glass composition with the appropriate physical characteristics, i.e., transparency, colorless, chemical stability, and low viscosity at the liquidus temperature. It was necessary therefore, to evaluate several glassy systems and their modifications to obtain the required properties. Preliminary information indicated that soda-borate and soda-lime-silica glasses might meet the necessary conditions. Soda-borate glass, however, showed no promise due to its very poor chemical stability and optics. Figure 17 (Ref. 5) shows the phase equilibrium relations in the portion of the system Na₂O-CaO-SiO₂ that is of interest to glass Glasses along the devitrite (Na₂0·3CaO·6SiO₂)-sodium technology. disilicate (Na₂0.2SiO₂) boundary curve are much too viscous for plasma spraying. Emphasis, therefore, was shifted to compositions in the devitrite field with liquidus temperature between 900°C and 1050°C. Optically, the soda-lime-silica glasses are excellent but they tend to be very viscous causing the retention of bubbles and inhibiting complete mixing. Experimental work was conducted to prepare a soda-lime-silica glass with better flow characteristics. The replacement of Na20 by CaO results in considerable improvement in chemical durability, reduction of thermal expansion coefficient, and an increase in the melt viscosity. Rawson (Ref. 6) states that higher CaO and lower SiO2 decreases the melt viscosity. However, too much CaO gives a glass that is difficult to melt and sure to devitrify. Too little lime yields a glass with poor chemical durability but with a low melting point. Also, the addition of small amounts of B_2O_3 to promising compositions in the soda-lime-silica systems was considered (Ref. 7). Such a modification was incorporated in a series of experimental glasses which fall basically in the alkal1-B203-S102 system. Several glasses in the system Ba0-Al203- B_2O_3 , and modifications made therefrom, were evaluated. The basic ternary compositions were taken from the work of Hirayama (Ref. 9). Their general location in the ternary diagram is shown in Figure 18. Because of the refractive index and flux properties of cryolite (Na₃AlF₆), a series of samples was prepared based on the cryoliterefractory oxide system with some additives to enhance the melt characteristics. Other more specialized glass compositions were

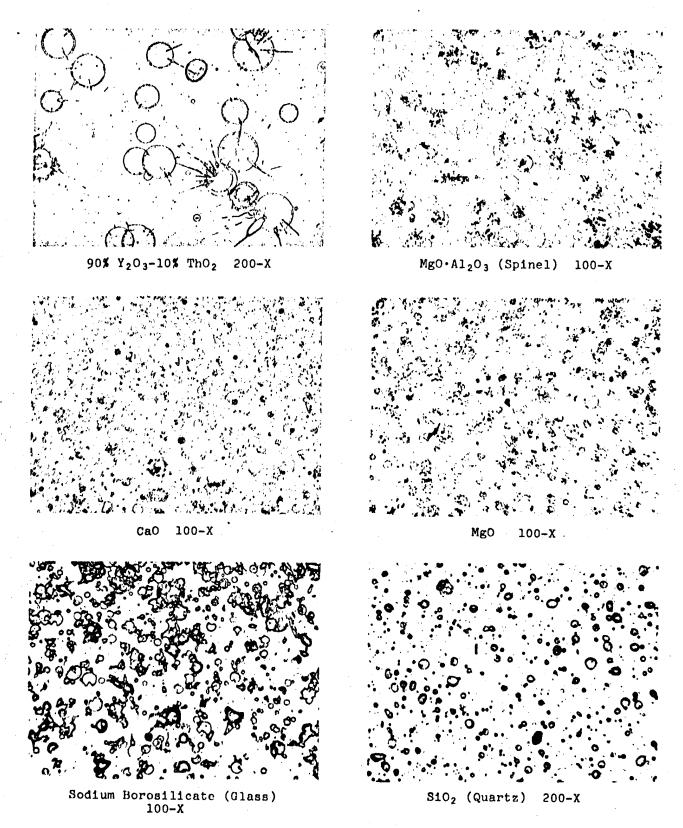


Figure 16. Plasma-Sprayed Transparent Particles

PARTICLE IMPACT STUDIES OF INITIAL CANDIDATE MATERIALS

Прис. 	Sprayed Material	Supplier	Meeli Hire	Commente
11-12	Quart #	General Electric	-400	Transparent particles; limited flow
P-13-24	Quartz	General Electric	-400	Improved flow
P-25-36	Quartz	General Electric	-400	Transparent; partially flowed particles
P37-48	Quartz	General Electric	-400	Transparent; partially flowed particles
P49-60	Quartz	General Electric	-325 . +400	Transparent; partially flowed particles
P63-98	Quartz	General Electric	-325 +400	Transparent; partially flowed particles
P99-125	Quartz	General Electric	-400	Transparent; partially flowed particles
P126-152	CaO	Baker & Adamson	as rocuived	Transparent; flowed particles
P153-155	CBO	Baker & Adamson	as received	Transparent; flowed particles
P479-526	CaO	Baker & Adamson	-400	Transparent; flowed particles
P156-182	MEO	Cerao 1281	-325	Transparent; flowed particles
P183-209	MgO	Cerac 1281	-325	Transparent; flowed particles
P212-239	MgO·Al ₂ O ₃ (spinel)	Cerac 1118	-325	Transparent; flowed particles
P431-478	MgO·Al ₂ O ₃ (spinel)	Cerac 1118	-325	Transparent; flowed particles
P240-243	Sodium Silicate	Fischer Scientific	-100 +250	Transparent; flowed particles
P244-249	Sodium Borosilicate	Fischer Scientific	-325	Transpareņt; limited flow
P250-252	Sodium Borosilicate 10% CaO	Fischer Scientific	-325	Transparent; limited flow
P527-574	CaF ₂	J. T. Baker	-400	Many unmelted particle:
P575-622	CaF ₂	J. T. Baker	-400	Many upmelted particles
¥623-670	B203	Matheson	-400	Transparent; some coa- lesced particles
1671-718	B203	Matheson	-400	Increased coalescence
1258-281	A1203	Du Pont Colloidhl	as received	Transparent; flowed particles
P282-305	A1,0,	Du Pont Colloidal	an received	Transparent; flowed particles
P 308-355	Na 2 B407	Mallinckrodt	unsized	Transparent; flowed particles
1360-383	Na , B4 O ,	Mallinekrodt	unsized	Transparent; flowed particles

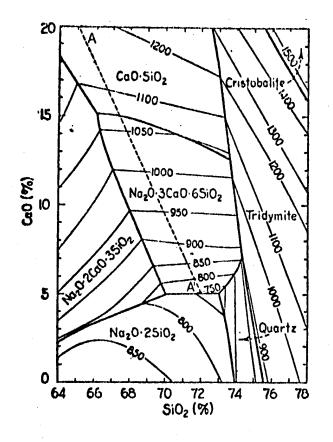


Figure 17. The portion of the ternary system Na₂O-CaO-SiO₂ of interest to glass technology, according to Morey (1930); weight percent of Na₂O obtained by subtracting sum of CaO plus SiO₂ from 100.

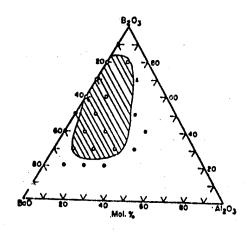


Figure 18. Glass-forming portion of the System BaO-Al₂O₃-B₂O₃.

- o clear glass
- devitrified
- ▲ immiscible

obtained from published papers (i.e., Ref. 10), abstracts, and patents (i.e., Ref. 11). Beyond the evaluation and modification of experimental glasses, the materials available on the commercial market were scanned. Several glaze and enamel frit compositions with promising properties, were chosen from those available for testing by arc plasma methods.

3. Plasma Spraying of Glass Compositions.

a. Preparation and Appearance of Coatings. Generally, the experimental glasses studied were located in one of the following systems: alkali- B_2O_3 -SiO₂, soda-lime-silica, $BaO-Al_2O_3-B_2O_3$, cryolite-based glass, and several specialty glasses (i.e., Refs. 10 and 11). The detailed compositions of the thirty glasses evaluated during this program are shown in Table XX. Each of the compositions was prepared in small batches (10 grams) for observation of the melt properties and optical qualities. Then the promising compositions were prepared in 400 gram batches for evaluation by particle impact studies. Glasses 8, 16, and 20 were prepared in large batches, and their particle impact data are shown in Table XXI.

In addition to the experimental glasses, five commercial glasses were selected for particle impact studies because of their low fusion points. The results of these particle impact studies are contained in Table XXII. Using the optimum conditions determined in the particle impact studies, coatings (ranging in thickness from 2-10 mils) of glasses 16 and 20, Pemco 1729 and 1730, and Al_2O_3 (conditions determined previously) were applied directly onto 2" x 2" Lexan polycarbonate as follows:

٩.

samples	(2123-2131)	of	A1,0,	
samples	(2132-2139)	of	Gláss	20
samples	(2140 - 2143)	of	Glass	16
samples	(2144 - 2149)	of	Pemco	1730
samples	(2150-2155)	oſ	Pemco	1729
	samples samples samples	samples (2132-2139) samples (2140-2143) samples (2144-2149)	samples (2132-2139) of samples (2140-2143) of samples (2144-2149) of	samples $(2123-2131)$ of $A1_2O_3$ samples $(2132-2139)$ of Glass samples $(2140-2143)$ of Glass samples $(2144-2149)$ of Pemco samples $(2150-2155)$ of Pemco

The coatings were uniform and well-bonded to the polycarbonate, except for the small areas where glass globules were deposited or where spalling occurred.

Optically, the coatings were translucent-to-opaque, varying with the glass type and the coating thickness. Figure 19 illustrates the optical character of the samples in transmitting a pattern and light, as compared with uncoated Lexan polycarbonates. The light source is below the samples and grid. All of the samples show some definition of the grid pattern in transmitted light. The clarity depends upon the thickness and quality of the coatings. Figure 20 illustrates the optical character of the samples in

Table XX

EXPERIMENTAL BLASS COMPOSITIONS

5	Sample	Composi	tion	Comments
Ċ	lass 1	\$102 B203 K2C03 BaO Na2C03	4.0 2.5 1.5 1.5	Soft by 800°C, but not fluid at 950°C. Resultant glass is greenish but trans- parent.
G	llass 2	B ₂ O ₃ SIO ₂ K ₂ CO ₃ BaO	5.0 2.0 1.5 1.5	Soft by 800°C, pourable at $950°C$. Resultant glass is bluish. Even with its high B_2O_3 content this glass is stable and warrants further modifi- cation.
G	lans 3	H ₂ O ₃ S1O ₂ Na ₂ CO ₃ K ₂ CO ₃ BaO	4.0 1.0 2.0 1.5 1.5	Fluid by 750°C, pourable at 800°C. Transparent glass, but greenish. The fluid nature is excellent but chemical stability is very poor.
C)]aon 4	РЬО ВэОу А1703 ZnO	6.837 1.428 0.204 1.531	Composition from British Patent #1,041,945. Very fluid, but yellow opaque. No Further interest
0)1m86 5	B203 B107 Na2C03 K2C03 BaO	3.0 1.0 2.0 2.0 2.0	Pournble at 950°C. Transparent glass but greenish-brown hue. Chemical stability is poor.
	lass 6	S102 CaCO3 Na2CO3	7.3 1.338 3.33	Not completely melted after 8 hrs 8 1000°C. Optically clear, but viscous. Foor mixing due to the viscosity.
C	llans 7	S10 ₂ CaCO ₃ Na ₂ CO ₃	6.92 0.894 4.408	Melted pretty good after 8 hrs é 1000°C. Optically clear, but viscous.
C	llass 8	B ₂ O ₃ SiO ₂ K ₂ CO ₃ BaO	4.0 3.0 2.2 1.5	Excellent properties, clear and pour- able after 4 hrs ℓ 950°C. So good that 400 g batch was prepared for particle impact study.
, C	lass 9	B ₂ O ₃ S1O ₂ K ₂ CO ₃ BaO	3.0 4.0 1.5	Very viscous, not pournble. Bluish color after 4 hrs @ 950°C.
Ċ	liana 10	B203 S102 CaC03 Na2C03	0.136 6.826 0.88 4.349	Clear glass, but vory viacous, not pourable after 4 hrs @ 950°C. The componition taken from G. W. Morey (1932).
	1000 J1	B203 B102 CaC03 Na2C03	1.0 5.0 2.677	Not pourable after 6 hrs 8 1000°C. Bluish color, foor optical properties.
()1888 12	B203 B102 CaC03 Na2C03	2.0 4.0 3.569 3.419	Good optical and physical properties. Fourable after 6 hrs # 1000°C. Greenish color, but transparent.
	3]aos 13	B ₂ O ₁ B1O ₂ CaCU ₃ K ₂ CO ₃	1.0 5.0 2.677 3.66	Poor glass. Not pourable and opaque.
. (Diass 14	B ₂ O ₃ S1O ₂ CaCO3 K ₂ CO3	2.0 4.0 3.569	Poor glass. Not pourable and opaque.
C	31an# 15	H ₂ O ₃ A1 ₂ O ₃ BaO	8.0 1.0 1.0	Bubbled up at 700° C; Mostly melted by 850°C, but still some unmelted material at 1000°C. White, opaque, and not pourable, so no further interest.
	lant 16	В203 А1203 Вно	4.0 1.0 5.0	No bubbling observed; All melted by 1000°C. Clear and readily pourable, as may be feasible for plauma spray- ing.
c]]HAR]7	B203 A1203 F205 S102 NB2C03 L12C03	0,72 2,05 4,45 0,13 3,897 0,916	Shown good multing propertion; Very fluid at %950°C, but melted below 700°C. Looks promising for plasma apraying.
	11n88 18	B203 A1203 Ba0 Na2003	3.5 1.0 4.5 1.709	Some bubbling. Good melting proper- tica; Very fluid at ~950°C. Appear- ance not optimum because of a slight greenish color.
C	31ams 19	B ₂ O ₃ A1 ₂ O ₃ Ba0 Nn ₂ CO ₃	4.0 0.8 4.4 0.8	Less hubbling than Glass 18. Good melting properties; very fluid at .950°C. Good sppearance; clear and coloriess. Looks promising for planma spraying.
Ċ	11ann 20	H ₂ 03 A1203 Bh0 K2C03	3.5 1.0 4.5 1.466	Evidence of molting at \$700°C. Colorlean and pourable at 950°C; clear. Looks promining for planma spraying.

Cont'd of Table XX

Samplo	Composition	Comments
Olass 21	B ₂ O ₃ 4.0 A1 ₂ O ₃ 0.8 BuO 4.4 K ₂ CO ₃ 1.173	Evidence of melting at ~800°C. Essentially colorless and pourable at 950°C; clear. Fritled sample slightly more whitish. Might be promising for plasma spraying.
Olass 22	B ₂ O ₃ 3.5 Al ₂ O ₃ 1.0 BaO 4.0 PbO 1.0 Na ₂ CO ₃ 0.855	Evidence of melting at ~800°C. Essentially colorless and pourable at 950°C. Looks promising for plasma spraying.
Olass 23	B ₂ O ₃ 3.0 Al ₂ O ₃ 0.7 BaO 3.6 FbO 2.0 Na ₂ CO ₃ J.196	Evidence of melting at ~700°C. Higher lead; yellowith color, but atill essentially clear. Fourable at 950°C. Plasma spraying could be tried if others fail.
Olans 24	B ₂ O ₃ 3.5 A ₁₂ O ₃ 1.0 BaO 4.0 PbO 1.0 K ₂ CO ₃ 0.733	Evidence of melting at ~800°C. Colorless and pourable at 950°C. Looks promising for plasma spraying.
Olass 25	S10; 9.0 Na;AlF; 1.0	No molting by 1000°C.
Glass 26	Al ₇ 0; 9.0 Na;AlF ₆ 1.0	No melting by 1000°C.
Olass 27	CaCO, 15.89 Na;AlF ₆ 1.1	No molting by 1000°C.
Glass 28	BaO 6.684 Al ₂ O ₃ 0.888 B ₂ O ₃ 2.428	Shows good properties. Melted at 950°C and quite fluid; readily pourable. Colorless.
Olass 29	810, 7.978 NajAlF ₆ 2.795	Evidence of sintering, but no melting by 1000°C.
Glass 30	8102 6.0 NagAlF, 2.0 B203 1.0 NagC03 1.0709	Melted by 1000°C, but still rather viscous. Colorless and white regions observed due to lack of mixing.

Table XXI

PARTICLE IMPACT STUDIES OF EXPERIM

		PARTICLE	IMPACT STU	DIES OF EXPER	IMPACT STUDIES OF EXPERIMENTAL GLASS COMPOSITIONS
Glass	Sample	Arc Gas Flow	Current	Electrodes	<u>General Appearance</u>
сў Чh	1688-1735	0.5-2.0	200-800	SG-3	Rounded and irregular transparent particles; some unmelted. Limited adherence and flow.
≇8 -(-400)-	1736-1730	0.5-2.5	200-800	SG-1B(M)*	Small rounded or irregular, transparent particles. Limited adherence and flow.
91#	1897-1923	1.5-2.5	200-600	SG-IB(M)	Rounded and irregular, clear particles. Some adherence and coalescence. Limited film formation.
#16	1924-1950	1.5-2.5	200-600	SG-1B(C)##	Multi-sized, rounded, clear particles. Pretty good melting with some flow and coalescence in several.
9T#	2020-2046	1.5-2.5	200-600	SG-3	Multi-sized, round, clear particles. Little adherence and no flow.
#20	1958-1984	1.5-2.5	200-600	SG-1B(C)	Multi-sized, round and irregular, clear particles. Limited flow, coalescence, and adherence.
#20	1991-2017	1.5-2.5	200-600	SG-3	Multi-sized, round and irregular, transparent or translucent particles. Limited adherence and flow, with little coalescence

(M) = Metals Nozzle (C) = Ceramics Nozzle

Table XXII

PARTICLE IMPACT STUDIES OF COMMERCIAL GLASS COMPOSITIONS

		a calculation of the Stationary Station			
01868	Samp le	Aro Gan Flow	Current	Electrodes	General Appenrance
Pemco H-5456	843-869	1.5-2.5	200-600	SG-18(M)*	Discrete, irregular, rounded, transparent particles. Poor adherence. No coalescence.
Pemco Pb-63	780-806	1.5-2.5	200-600	SG-18(M)	Transparent particles; some unmelted. Poor adherence. No coalescence but some flow.
Pemco Pb-63	807-842	1.5-2.5	200-600	SG-1B(C)##	Rounded or stringy, transparent particles. Poor adherence and generally no coalescence. Some samples at higher power show good melt- ing and limited coalescence.
Pemeo Pb-63	870-881	1.5-2.5	400-600	SG-1B(C)	Transparent, irregular masses. Limited ad- herence but some coalescence.
Pomeo Pb 545	909-926	1.5-2.5	400-600	S0-1B(M)	Few particles. Yellowed film with no adherence.
Pemco Pb 545	930-956	1.5-2.5	200-600	SQ-1B(C)	Rounded or irregular, transparent particles. Poor adherence and no coalescence. Tendency to turn yellow.
FERRO 3819 (-100)	1216-1263	0.5-2.0	200-800	SG-3	Multi-sized, transparent particles; rounded and irregular. No adherence or coalescence.
FERRO 3819 (-325)	1264-1311	0.5-2.0	200-800	SO-3	Rounded, transparent particles with white film (unmelted). No adherence or coalescence.
Pemco 1729 (-100)	1313-1360	0.5-2.0	200-800	SG-3	Clear, rounded particles with increased power. Some flow therefore adherence and coalescence observed.
Pemco 1729 (-325)	1361-1420	0.5-2.0	200-800	SG-3	Mainly small, rounded, transparent particles. Some adherence. Yellowed film forms at higher power.
Pemco 1729 (-325)	1421-1456	0.5-2.0	200-600	SG-1B(M)	Small, rounded, transparent particles. Limited flow, coalescence, and adherence.
Pemco 1729 (-325)	1457-1459	0.5-2.0	200-600	SO-1B(M) Shr-N ₂	Round and iregular, transparent particles. Some flow, coalescence, and adherence.
Pemao 1730 (-100)	1502-1546	0.5-2.5	200-600	SG-18(M)	Multi-sized, clear, rounded particles. Some flow, coalescence, and adherence.
Pemco 1730 (-325)	1547-1591	0.5-2.5	200-000	SG-18(M)	Clear, round, transparent particles. Limited adherence and flow.
Pomco 1730 (-100)	1595-1639	1.0-2.0	200-800	SU-3	Multi-sized, round and irregular, transparent particles. Some adherence but limited flow.
Pemco 1730 (-325)	1640-1687	0.5-2.0	200-800	SQ-3	Round, transparent particles. Some adherence but limited flow.

∈ (M) ∞ Metals Nozzlę ## (C) ∞ Ceramics Nozzle

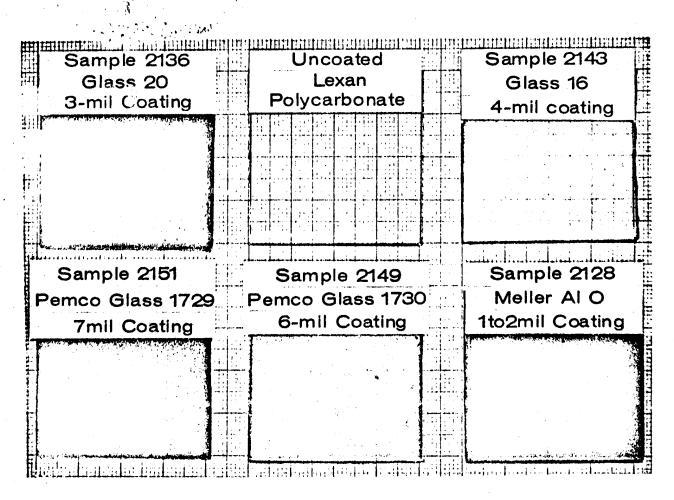
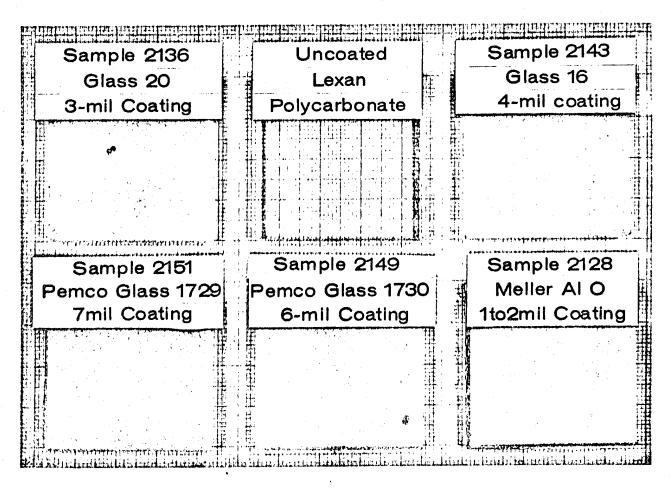


Figure 19.

Illustration of Transmitted Light Properties of Plasma-Sprayed Glass Coatings. (Light Source is Below the Samples and Grid.)



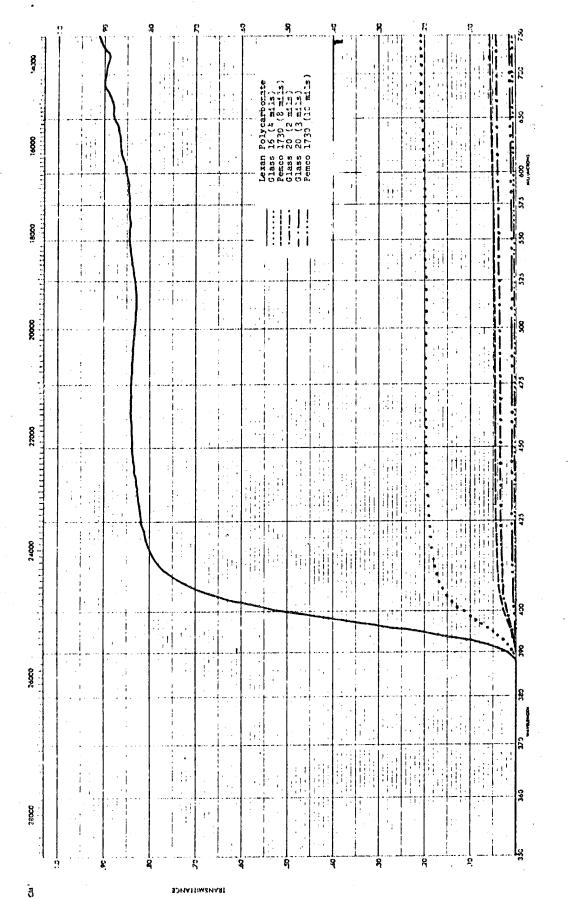

Figure 20.

Illustration of Reflected Light Properties of Plasma-Sprayed Glass Coatings. (Light Source is Above the Samples and Grid.) reflected light; the light source is above the samples and grid. Sample 2143, Glass 16, 4-mil coating, is the only coating, showing definition of the grid. The other coatings are more whitish and opaque, and do not permit penetration of reflected light.

Light Transmittance. Using a Perkin-Elmer Model 450 b. ultraviolet, visible and near-infrared spectrophotometer, light transmittance data were obtained for several plasma-sprayed glass coatings on polycarbonate. The results shown in Figure 21. compare the transmittance of glass-coated polycarbonate with uncoated Lexan polycarbonate. These data experimentally confirm the visual observations; the glass coatings show translucent-to-opaque optical properties. As expected, the film thickness affects the transmittance as shown by the Pemco 1730 sample. The 8-mil coating has up to 5% transmittance, but the 10-mil coating shows 1% or less transmittance. In addition, the chemical composition of the glass appears to be a factor. Glasses 16 and 20 are both basically barium aluminum borate compositions, but glass 20 has potassium carbonate added. The transmittance data show glass 16 has up to 20% light transmission, but glass 20, with thinner coatings, shows no better than 2-4% light transmission. Light transmission properties depend upon the thickness and chemical composition of the coating.

Flame Propagation Studies. Using the flame test с. equipment described in Section 2C, plasma-sprayed coatings of alumina and Pemco glass were tested at 1000°C. The results indicate that such coatings offer only limited thermal resistance to an impinging flame. In the case of the alumina, after exposure to the flame, the coating cracks in ~ 10 seconds, and the polycarbonate burns through after ~ 65 seconds. This cracking (due to thermal shock) of the coating results in a drastic loss in flame resistance as the polycarbonate is then exposed to the direct flame. In the case of the Pemco glasses, the coating melts in ~ 10 seconds, and the polycarbonate burns through after 30 seconds. The performance of these glasses is indicative of the problem in formulating a glass for plasma spraying that offers flame resistance. In order to plasma spray a transparent glass coating on polycarbonate, the glass must be very low melting and have a very fluid melt. As shown by the translucent Pemco glass coatings (which melted in the flame test), even if a transparent glass coating is prepared by formulating a very low melting, fluid composition, the flame resistance of such a coating would probably be extremely limited.

4. Selective Melting of Plasma-Sprayed Glass Coatings by Laser. An attempt was made to optimize the optical quality of these plasma-sprayed glass coatings on polycarbonate by selective melting with a CO_2 laser. It was hoped that the glass coating would absorb enough energy to melt with the polycarbonate remaining transparent to the laser energy. This was not the case, however, because

Transmittance of Plasma-Sprayed Glass Coatings on Polycarbonate Figure 21.

enough heat apparently was absorbed and retained in the coating to cause heat-up and deterioration of the polycarbonate substrate. Rather than melting uniformly to produce a transparent, grain boundary-free film, the surface charred and the coating spalled.

D. RF Sputtered Coatings

An RF sputtering capability (diode arrangement) was developed in the last months of this contract. The research was aimed toward establishing the procedures for depositing and actually preparing transparent coatings on polycarbonate. An overall view of the RF sputtering-vacuum system utilized in this work is shown in Figure 22. Figure 23 shows the various components of the sputtering module including: the baseplate-collar, with feedthroughs; moveable, water-cooled anode; Pirani gauge; pyrex spacer; and moveable RF tuning network.

In order to establish the operational procedure for the sputtering module, a metallic target was used initially because a metal coating facilitates observation of the coating process. The target chosen for the preliminary runs was tantalum, because it easily deposits a uniform, mirror-like coating which simplifies the coating thickness determination with an interferometer (thallium light source). One portion of the substrate being coated is maskedoff to provide a step for the thickness measurement. In this way, the coating thickness can be correlated with the power settings and deposition time, permitting experimental curves to be drawn for reproducibility of the coating thickness. Tantalum was deposited with no special problems on glass, alumina, ferrite, stainless steel, and polycarbonate.

Transparent Pyrex has been successfully deposited on glass, stainless steel, and polycarbonate. The pyrex on polycarbonate samples required some experimentation to reduce the heating effects on the polycarbonate. Initially, when sputtering under the same conditions used to deposit tantalum on polycarbonate, the deposition of pyrex on polycarbonate resulted in wrinkling and bubbling of the polycarbonate surface due to overheating. This overheating problem was solved by manipulation of the inherent sputtering variables. Similar techniques should be usable for any other transparent, dielectric material to be deposited directly on polycarbonate.

Although transparent coatings of pyrex were deposited on polycarbonate without any physical deformation of the substrate, a light brown discoloration of the substrate occurred. Even though the power level for these runs was set at a minimum, the substrate still discolored. These results indicate that the discoloration of

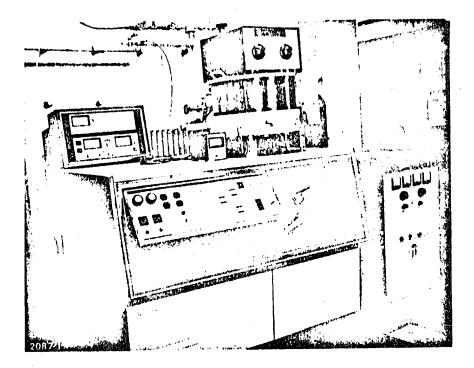


Figure 22. An Overall View of the RF Sputtering Module (SM-8500) Mounted on a Veeco 775 Vacuum System

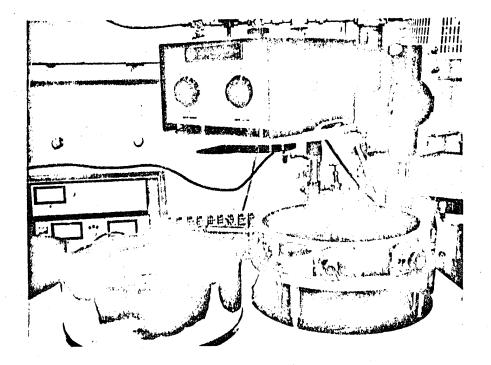


Figure 23. Individual Component of the RF Sputtering Module (SM-8500)

polycarbonate is an inherent problem due to the heat generated in our sputtering module. This slight discoloration of the polycarbonate does not, however, constitute a complete failure of the sample because the sample remains wholly transparent. It is believed that this discoloration problem could be overcome by utilizing radial sputtering. The use of the radial sputtering procedure for the deposition of alumina directly on polycarbonate is more feasible because it is a much lower temperature process.

Attempts to deposit alumina on a silicate-coated polycarbonate resulted in severe bubbling and cracking of the silicate coating upon exposure to the sputtering media for only a few seconds. Slight changes in the sputtering procedure could not sufficiently quell the overheating problem. Initial efforts to deposit alumina directly on polycarbonate were not successful due to the adsorbed water in the target and the resultant outgassing. Heat treatment of the alumina target is underway to remedy this situation.

CONCLUSIONS

A. Alkali and Nonalkali Silicate Coatings

Polynrothane coatings perform satisfactorily as hard coatings on polycarbonate for improving the adhesion of alkali silicates.

Contings made from type K sodium silicate and Kasil 6 potassium silicate were superior to other silicate types. Of the two, Kasil 6 potassium silicate appeared to have superior physical propcenter such as resistance to cracking and wrinkling. In all cases, bidd wer, a protective outer film is necessary to prevent silicate degradation.

Both polyurethane and polystyrene were found to produce transparent distortion free protective films provided the silicate surface had been properly ground to eliminate silicate surface irregularities.

The polycarbonate-urethane-silicate-protective (PUSP) coating system performed satisfactorily when evaluated on the basis of thermal shock stability, flame resistance, flame propagation humidity resistance, light transmittance, flexural strength and impact strength. However, long term stability of physical properties how not been determined beyond several months. Some darkening of the protective film was encountered in ultraviolet stability tests indicating a degradation of the polymer. The PUSP systems appear to be relatively unaffected by vacuum down to 10⁻⁵ torr for 24 hours. However, the effect of lower pressures has not been determined.

B. Plasma-Sprayed Glasses

The particulate nature of the arc-plasma deposition process is the basic reason for degradation of the optical properties of these glass coatings. The plasma torch emits molten particles which solidify on the substrate as distinct units having grain boundaries, causing refraction and reflection of light and resulting in the translucent or opaque appearance of the coating. The original idea that a transparent ceramic or glass coating could be applied by plasma technology was based on preliminary particle impact studies which showed clear, well-melted particles. However, as a coating huilt up (thickened) with the present materials, the particulate nature of the coating has an increasingly detrimental effect on the optics of the system. It is likely that a transparent, plasmationayed glass coating could be developed, but, in so doing, there would be some sacrifice of thermal protection because the starting composition must be very low melting in order to enhance the fludity of the molten glass and thereby permit better coalescence to minimize

1.1.24

grain blue any formation. It is possible that a polymer + glass plasma-sprayed coating would permit optimization of the optics of these systems, but the extent of the thermal protection to be offered by such a coating is not known. Although the plasma sprayed coatings prepared in this program did not possess the optical qualities necessary for instrument dials, such coatings might be of interest for other components where coatings that are abrasion-resistant, impact-resistant, etc., are required.

S. . .

SECTION V. REFERENCES

- Mahler, Joseph, "Hard Surface Treatment for Plastics," V.S. 2,925,622, February 23, 1960.
- Horikawa, N. R., Lanje, K. R., Schleyer, W. L., "Drying and Water Resistance of Silicate Films," Adhesives Age, July, 1967.
- 3. Private communication, Sauers, D. to Willson, M. C., NASA Manned Spacecraft Center, Houston Texas, November 1, 1968.
- 4. Atlas Fadometer and Weather-ometer, page 8.
- 5. Levin, E. M., et al, "Phase Diagrams for Ceramists," Amer. Ceram. Soc., Columbus, Ohio, 601 (1964).
- 6. Rawson, H., "Inorganic Glass-Forming Systems," Academic Press, New York, 317 (1967).
- 7. Morey, G. W., "The Effect of Boric Oxide on the Devitrification of the Soda-Lime-Glasses. The Quaternary System Na₂O-CaO-B₂O₃-SiO₂," J. Am. Ceram. Soc., <u>15</u>, 457-475 (1932).
- 8. Morey, G. W., "The Properties of Glass," Am. Chem. Soc. Monograph No. 77, Reinhold Publ. Corp., New York, 561 (1938).
- 9. Hirayama, C., "Properties of Aluminoborate Glasses of Group II Metal Oxides: I, Glass Formation and Thermal Expansion," J. Am. Cer. Soc., <u>44</u>, (12), 602-606, (1961).
- 10. Dale, A. E., and J. E. Stanworth, "The Development of Some Very Soft Glasses," J. Soc. Glass Tech., <u>33</u>, 167-175, (1949).
- 11. Ikeda, K., et al, "A Low Melting Point Glass," British Patent 1,041,945, September 7, 1966.