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Abstract 21 

Accurate thunderstorm frequency (TSF) prediction is of great significance under climate extremes for reducing 22 

potential damages. However, TSF prediction has received little attention because a thunderstorm event is a 23 

combination of intricate and unique weather scenarios with high instability, making it difficult to predict. To 24 

close this gap, we proposed a novel hybrid machine learning model through hybridization of data pre-processing 25 

Ensemble Empirical Mode Decomposition (EEMD) with two state-of-arts models namely artificial neural 26 

network (EEMD-ANN), support vector machine (EEMD-SVM) for TSF prediction at three categories of yearly 27 

frequencies over Bangladesh. We were demarcated the yearly TSF datasets into three categories for the period 28 

1981-2016 recorded at 28 sites; high (March-June), moderate (July-October), and low (November-February) 29 

TSF months. The performance of the proposed EEMD-ANN and EEMD-SVM hybrid models was compared 30 
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with classical ANN, SVM, Autoregressive Integrated Moving Average (ARIMA). EEMD-ANN and EEMD-31 

SVM hybrid models showed 8.02%-22.48% higher performance precision in terms of root mean square error 32 

(RMSE) compared to other models at high, moderate and low-frequency categories. Eleven out of 21 input 33 

parameters were selected based on the Random Forest (RF) variable importance analysis. The sensitivity analysis 34 

results showed that each input parameter was positively contributed to building the best model of each category 35 

and thunderstorm days are the most contributing parameters influencing TSF prediction. The proposed hybrid 36 

models outperformed the conventional models where EEMD-ANN is the most skillful for high TSF prediction, 37 

and EEMD-SVM is for moderate and low TSF prediction. The findings indicate the potential of hybridization 38 

of EEMD with the conventional models for improving prediction precision. The hybrid model developed in this 39 

work can be adopted for TSF prediction in Bangladesh as well as different parts of the world. 40 

Keywords: Thunderstorm; Hybrid model; Ensemble empirical mode decomposition; Sensitivity analysis, 41 

Random Forest, Bangladesh 42 

1. Introduction 43 

Thunderstorms are spectacular mesoscale phenomena that affect the environment and pose a severe threat to life, 44 

economy, agriculture, and infrastructures. A thunderstorm event results from a turbulent convective activity, 45 

which may bring about heavy rainfall, lightning, hail, tornadoes, and thunder (Islam et al., 2020). Thunderstorms 46 

occur in almost every region of the world because of meteorological instability and strong moisture convergence, 47 

which causes serious convections. It usually exists for less than an hour and typically has varying sizes ranging 48 

from a few kilometers to a few hundred kilometers (Saha and Quadir 2016). It is now a well-acknowledged fact 49 

that the climate system is getting warmer, which has implications for thunderstorm occurrences (Allen et al., 50 

2014; Trenberth et al., 2007). Severe thunderstorms frequency is likely to increase in the 21st century due to the 51 

increasing convective instability (Rädler et al., 2019). Therefore, it is essential to predict the number of 52 

thunderstorm events that occur in a particular period under changing meteorological conditions in a given 53 

location. Predicting the number of thunderstorm phenomena could provide insights about future thunderstorm 54 

incidents under the climate change scenario. 55 

Thunderstorm frequency (TSF) can be defined as the number of thunderstorm occurrences in a given location 56 

over a day, month, season, or annum. It is estimated that daily TSF is nearly 45,000 and annually 16 million 57 
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worldwide (Siddiqui and Rashid 2008). Many parts of South Asia experience higher TSF during the summer 58 

months (March-May) when high temperatures prevail at lower levels create a volatile atmosphere. Each year 59 

Bangladesh and its surroundings witness high TSF, especially during the pre-monsoon and early months of the 60 

monsoon season; however, thunderstorms occur in all seasons. Spatially, TSF is highest in the northeastern part 61 

and less in the southeastern and northwestern parts of Bangladesh (Mannan et al., 2016). Before 1981, the 62 

country endured thunderstorm strikes in about nine days in May, which later rose to 12 days. Besides, 63 

thunderstorms associated disasters cause severe damage to agricultural yields and infrastructures and lives on 64 

the ground and in aviation. Due to the exorbitant impact of thunderstorms on human life and the economy, the 65 

Government of Bangladesh declared it a natural disaster on 17 May 2016 (Wahiduzzaman et al., 2020). In 66 

contrast, thunderstorms bring crucial rainfall during the dry season, which benefits the country's crop production 67 

and cleans the air from dust, haze, and pollutants. A TSF prediction model can help prepare and design a more 68 

useful crop calendar adaptive to thunderstorm events. Besides, a TSF prediction model is essential for 69 

policymakers to adopt a mitigation plan for reducing the potential damages of thunderstorm casualties. 70 

Thunderstorm prediction is a challenging task due to its small spatiotemporal extension, and the event is a 71 

combination of very complex and unique weather scenarios, which are highly unstable. Despite the challenges, 72 

many a researcher has attempted to predict thunderstorms worldwide, e.g., Jacovides and Yonetani (1990) in 73 

Cyprus; Mills and Colquhoun (1998) in Australia; Haklander and Delden (2003) in Netherland; Manzato (2007) 74 

in Italy; Zhen-hui et al. (2013) in China; Ali et al. (2011) in Malaysia; Litta et al. (2013) and Meher et al. (2019) 75 

in India; Collins and Tissot (2015) in the USA; Dowdy (2016) in the temperate and tropical regions; Osuri et al. 76 

(2017) in Indian monsoon region; Rädler et al. (2019) in Europe; Chen et al. (2020) in Taiwan; Kulikov et al. 77 

(2020) in Russia; Bouttier and Marchal (2020) in Western Europe; Islam et al. (2020) in Bangladesh. A variety 78 

of approaches have been taken in those studies. For example, Collins and Tissot (2015) used and compared an 79 

ANN and MLR model for thunderstorms prediction within 400 km2 of South Texas; Rädler et al. (2019) used 80 

an ensemble of 14 regional climate models such as AR-CHaMo models, EURO-CORDEX model to assess the 81 

changes in the frequency of thunderstorm. Most of the studies have focused on Numerical Weather Prediction 82 

(NWP) modeling or forecasting of a single thunderstorm event on an hourly basis based on the convective 83 

indices. However, studies focused on predicting monthly TSF based on the convective indices and other 84 



 

4 

 

thunderstorm-related parameters are still scarce in the literature (Islam et al., 2020). In the present study, we 85 

have employed machine learning models including Artificial Neural Network (ANN), Support Vector Machine 86 

(SVM), incorporated with Ensemble Empirical Mode Decomposition (EEMD), and Auto-Regressive Integrated 87 

Moving Average (ARIMA) modeling to predict the monthly TSF over Bangladesh. 88 

Among the machine learning models, ANN is a powerful model that can identify complex inherent nonlinear 89 

relationships between responses and predictors. Therefore, ANN models have drawn attention in the 90 

thunderstorm forecasting community (Manzato. 2007; Collins and Tissot, 2015; Litta et al., 2013). SVM is also 91 

a useful prediction technique that was used before in thunderstorm prediction (Qiu et al., 2010; Zhen-hui et al., 92 

2013). The time series model like ARIMA is widely used because it can characterize nonlinear data; this model 93 

was also applied previously in thunderstorm prediction (Islam et al., 2020). Though these models are not always 94 

efficient enough to predict a target dataset accurately. Due to this reason, many researchers have developed 95 

techniques that adjoin several types of methods to obtain more accuracy in their prediction (Chen and Letchford. 96 

2007; Gao and Stensrud. 2014; Solari et al., 2017; Suparta and Putro. 2018; Bouttier and Marchal. 2020; 97 

Kamangir et al., 2020). The hybrid EEMD integrated machine learning models have successfully applied in 98 

different fields of studies, e.g., runoff (Tan et al., 2018); streamflow forecasting (Zhang et al. 2015); rainfall 99 

forecasting (Johny et al. 2020) wind speed forecasting (Yu, 2020); groundwater level (Gong et al., 2018). 100 

However, TSF prediction has received little attention in the existing literature due to its complicated nature and 101 

unique weather feature with high instability, making it difficult to predict. Our work fills this research gap in 102 

literature. Therefore, a hybrid EEMD-ANN and EEMD-SVM models, the combination of an ensemble empirical 103 

mode decomposition (EEMD) with an ANN and SVM model, are proposed as effective methods to predict 104 

monthly TSF. In this study, widely used convective indices and thunderstorm-related variables were used as 105 

input parameters. The EEMD-ANN and EEMD-SVM prediction results were compared with three conventional 106 

prediction methods, e.g., ANN, SVM, and ARIMA, based on five performance evaluation metrics, i.e., 107 

Coefficient of determination (R2), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean 108 

Absolute Percentage Error (MAPE), Index of Agreement (IA) along with the Taylor diagram. Even though 109 

machine learning models can solve prediction problems with reasonable accuracy, their predictive capability 110 

relies significantly on the input data quality. In such a case, sensitivity analysis can help identify which input 111 
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parameter is remarkable in building an ideal model. So, sensitivity analysis is employed in this study to improve 112 

the performance of the models. 113 

This study's primary objective is to predict and evaluate the performance of the monthly TSF based on the 114 

convective and thunderstorm-related indices. Compare to other earlier studies, our work has two novel aspects. 115 

First, we develop hybrid machine learning models to predict monthly TSF at three frequency metrics over 116 

Bangladesh for the first time in literature. Second, this study identifies the most contributing parameters 117 

influencing TSF prediction and select optimal input parameters using Random Forest model. It is hoped that the 118 

novel hybrid model proposed in this work would able to address the challenge of complicated nature of 119 

thunderstorm event due to its high instability and randomness. 120 

2. Study area and data sources 121 

The site selected for this research is Bangladesh, a part of Southeast Asia, geographically located between 20° 122 

34' to 26° 38' North latitude and 88° 01' to 92° 42' East longitude. Bangladesh is the biggest deltaic country in 123 

the world, occupying 147,570 sq. km area. The three vigorous rivers, Padma, Jamuna, and Meghna, and their 124 

tributaries encompass 80% of Bangladesh's floodplains, leaving out the hilly parts. The geographical features of 125 

this narrow flat lowland are very well suited for convection, as the moisture conveyed by the monsoon winds 126 

from the highly elevated regions and the Bay of Bengal causes the development of convection (Ahmed et al., 127 

2017). Here, the monsoon is probably the controlling feature of climatic variability (Islam et al., 2020), portrayed 128 

by pelter-bearing breezes, humbly warm temperatures, and high moisture in the air. As an outcome, 129 

thunderstorms, floods, and tidal floods are regular incidents in this country. There are three prominent seasons 130 

observed in Bangladesh, which are premonsoon, monsoon, and post-monsoon. 131 

In this study, monthly TSF and TSD data were collected from 28 stations (Fig. 1) of the Bangladesh 132 

Meteorological Department (BMD) ranged from 1981 to 2016. There are more meteorological stations in 133 

Bangladesh, but those stations do not have long term records of thunderstorms, and few stations have excessive 134 

missing data. Therefore, we have excluded those stations. Although some of the selected stations have few 135 

missing data, we have filled them by obtaining the nearest station's value. Table S1 contains the missing data 136 

information. Thunderstorm frequencies are recorded eight times per day in each station of BMD with a three-137 

hour interval according to the World Meteorological Organization (WMO) standard hour. The number of TSF 138 
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observations recorded per day is regarded as the daily TSF. From the daily observations, monthly TSF is 139 

computed for each station. Description of the 28 meteorological stations of BMD and an overview of the annual 140 

TSF data are given in Table 1. The number of days with thunderstorm observations in a month is regarded as 141 

monthly TSD. Daily precipitation data was also collected from the same 28 stations of the BMD from 1981 to 142 

2016. We then converted the daily precipitation into monthly average data and used them as predictors for the 143 

model building. 144 

Single point data of Dew/Frost Point at 2 meters (DP), Relative Humidity at 2 meters (RH), Wind Speed range 145 

at 50 meters (WS50), and Earth Skin Temperature (ST) data were used as a predictor in building TSF prediction 146 

model. These parameters were obtained for the specific latitude and longitude of the selected 28 stations from 147 

the NASA Langley Research Center Atmospheric Science Data Center Surface Meteorological and Solar Energy 148 

(SSE) web portal supported by the NASA LaRC POWER Project (https://power.larc.nasa.gov/data-access-149 

viewer/), which has a 0.5˚×0.5˚ gridded global dataset. Moreover, the monthly averaged CAPE, Convective Rain 150 

Rate (CRR), Convective Precipitation (CPRCP), K Index (KI), and Total Totals (TT) were obtained from 151 

Climate Data Store (CDS) of Copernicus Climate Change Service (https://cds-dev.copernicus-152 

climate.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview). We have calculated 153 

the average of 28 stations for all the data and then used them as country average because this approach helps the 154 

future assumption of thunderstorm frequency within a large area. Table 2 corresponds to the descriptions of the 155 

datasets used in this study. 156 

For convenience in predicting monthly TSF accurately, we have classified all the data in three categories of time-157 

series, e.g., HTSF (High Thunderstorm Frequency; containing high-frequency months of March, April, May, 158 

June), MTSF (Moderate Thunderstorm Frequency; containing moderate-frequency months of July, August, 159 

September, October), and LTSF months (Low Thunderstorm Frequency; having low-frequency months of 160 

November, December, January, February). This classification helps differentiate the months with high, 161 

moderate, and low TSF, and thus, it reduces abrupt fluctuations in the time-series, which increases the prediction 162 

accuracy.  163 

3. Methods used 164 

3.1 Parameter Selection 165 

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://cds-dev.copernicus-climate.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
https://cds-dev.copernicus-climate.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview
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The input parameters were selected based on a Random Forest (RF) relative importance technique performed in 166 

Salford Predictive Modeler 8.2. The RF algorithm is a popular and highly flexible supervised artificial 167 

intelligence applied to measure the importance of various contributing factors (Rahman et al., 2020). The RF 168 

method details can be found in the literature (Rahman and Islam, 2019; Salam and Islam, 2020). We have initially 169 

considered 21 input parameters and tested different combinations among them, but some of the parameters were 170 

not suitable enough to efficiently predict TSF (Fig. S1). We have excluded 10 of the initially considered 171 

parameters affecting the model performances and finalize 11 input parameters (Table 2) for model building. The 172 

excluded parameters were Lifted Index (LI), maximum temperature (MaxT), precipitable water (PRW), diurnal 173 

temperature (DT), specific humidity (SH), wind speed range at 10 meters (WS10), minimum temperature 174 

(MinT), V component of wind (VCW), U component of wind (UCW), and surface pressure (SP). CAPE, CPRCP, 175 

CRR, DP, KI, PRCP, RH, ST, TSD, TT, and WS50 were the selected parameters for constructing prediction 176 

models. These parameters also have a high correlation with TSF (Fig. S2). Among the selected input parameters, 177 

CAPE, KI, and TT are well known for their potentiality in predicting thunderstorm events (Vujovic et al., 2015; 178 

Islam et al., 2020).  179 

3.2 Artificial Neural Network (ANN) 180 

Artificial Neural Network (ANN) is one of the most employed techniques for modeling accurate predictions to 181 

solve complex and nonlinear problems (Phuong et al., 2017; Alizadeh et al., 2018, Pham et al., 2019). ANNs are 182 

data processing systems that exploit learning algorithms to imitate knowledge and save this knowledge in 183 

weighted connections, similar to a human brain (Pradhan and Lee, 2010; Boateng et al., 2019). An ANN has 184 

numerous processing components called neurons (Boateng et al., 2019). The data are processed by the neurons 185 

and then feed-forwarded to the subsequent layer. Corresponding links between layers connect these neurons. On 186 

each connecting link, there is a numeric weight. An ANN structure consists of three main layers, e.g., input 187 

layers, hidden layers, and output layers. The input layer contains the variables used for model construction; the 188 

hidden layers analyze the interconnection between the input and the output parameters based on algorithms, and 189 

the output layer represents the predicted variables. 190 

Unlike statistical models, ANNs can automatically synthesize their weights to elevate their attitude. 191 

(Boussabaine, 1996). ANN is like a 'black box' which lacks self-explanation. As a result, both ANNs and 192 
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statistical approaches can be ensembled into a robust and potent methodological platform despite their 193 

differences (Karlaftis and Vlahogianni, 2011). At first, an ANN model has to be trained with an acquainted 194 

dataset called the 'training' dataset. The model will then 'learn' by synthesizing the neurons' numerical weights 195 

regarding the errors between the predicted output values and the target output values through the training process. 196 

After the training period, the neural network delivers a model that can predict a target value from a specificity 197 

input value. This research has used a backpropagation based neural network regression approach to predict 198 

thunderstorm frequency. Here, we have used 11 variables as input parameters and two layers in the hidden unit—199 

the 1st hidden layer composed of 4 neurons and the 2nd layer consisting of 2 neurons (Fig. 2). We have set the 200 

learning rate to 0.1 while using the sigmoid function as the activation function. A neural network model can be 201 

expressed in mathematical form as Eq. 202 

𝑦(𝑥) = 𝐾 (∑ 𝑤𝑗(𝑝)𝑛
𝑗=1 . 𝑥𝑗(𝑝) + 𝑐)                                                                                                        (1) 203 

Where, 204 𝑥𝑗(𝑝) = Input variable in discrete-time t 205 𝑦(𝑥) = Predicted thunderstorm frequency 206 𝑛 = Hidden neuron by trial 207 𝑤𝑗(𝑝) = Weight that connects the ith neuron in the input layer 208 𝑐 = Neuronal bias 209 𝐾(. ) = Hidden transfer function 210 

3.3 Support Vector Machine (SVM) 211 

SVM, one of the most successful forecasting methods in recent years, was first proposed by Vapnik (1995). It is 212 

remarkably capable of handling small-sized datasets and nonlinear problems (Liu and Wang, 2016; Ghimire et 213 

al., 2019). So, it has been widely applied in regression modeling. It is one of the most effective predicting tools 214 

often used as an alternative approach to ANN. The SVM approximates structural risk minimization based on 215 

statistical learning theory (Meng et al., 2019) rather than empirical risk minimization (Huang et., 2014). The 216 

SVM description is avoided in this paper because many documents and books have described SVM theory in 217 
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detail (Vapnik, 1998; Carrier et al., 2013; Ch et al., 2013; Chiogna et al., 2018; Meng et al., 2019). SVM's basic 218 

idea is using the maximum margin algorithm (Pham et al., 2019), which searches for a hyperplane with the 219 

largest separating margin between the observed data. SVM can simplify an intricate problem by mapping the 220 

complicated nonlinear problem input factors into high-dimension space with kernel functions, transforming the 221 

complicated nonlinear problem into a linear problem. This process can find the optical function to fit the 222 

observations while avoiding overfitting to maintain the model generality. The useful and popular SVM kernel 223 

functions are linear, polynomial, sigmoid, Radial Basis Function (RBF), and so on. This research employs SVM 224 

as a regression technique that uses RBF: 225 

𝐿(𝑚, 𝑚𝑗) = exp (− ‖𝑚 − 𝑚𝑗‖22𝜑2 )                                                                                                   (2) 226 

where 𝜑 represents the Gaussian noise level of standard deviation. 227 

3.4 Autoregressive Integrated Moving Average (ARIMA) 228 

ARIMA models are widely employed statistical prediction techniques because of their ability to handle 229 

nonstationary series efficiently. ARIMA modeling's basic idea is, here, the examined time series is linear and 230 

follows a particular normal distribution (Box and Jenkins, 1970). In a traditional ARIMA (p, d, q) model, p is 231 

autoregressive (AR), d is the number of differences from the actual time-series data to make it stationary, and q 232 

is moving average (MA). The standard equation for ARIMA models is as follows: 233 

 𝑑𝑡 = ∑ 𝑓𝑖𝑝
𝑖=1 𝑑𝑡−1 + ∑ 𝜃𝑗𝑞

𝑗=1 𝑒𝑡−𝑗 + 𝜏𝑡 

 

(7) 

where 𝑑𝑡 is the observed value at time t, 𝑓𝑖 is the ith number of autoregressive parameter, 𝜃𝑗 is the jth number of 234 

moving average parameter and 𝜏𝑡 is the error at time t. In this study, the Box–Jenkins methodology is used to 235 

formulate the ARIMA (1,1,1) (1,0,0) models for fitting TSF. This methodology comprises model identification, 236 

parameter estimation, and testing residual and forecast. A detailed description of the ARIMA model can be found 237 

in the literature (Contreras et al., 2003; Shadab et al., 2020). 238 

3.5 Ensemble Empirical Mode Decomposition (EEMD) 239 

Based on Hilbert-Huang Transform (HHT), Huang et al. (1998) first proposed Empirical Mode Decomposition 240 

(EMD), which has been employed effectively throughout the decades. This is because of the following 241 
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advantages: 1. EMD is a highly efficient and adaptive method for nonlinear and non-stable signals (Chen et al., 242 

2021). 2. HHT is fully adaptive by initially introducing the intrinsic mode functions (IMFs), which is unlike the 243 

Wavelet Transform or Fourier Transform that needs a pre-determined basis. The brief mathematical process of 244 

the EMD can be found in the literature (Zhou et al., 2014; Wang et al., 2015; Fan et al., 2020). However, few of 245 

these IMFs may contain dramatic oscillations of different scales called "mode mixing" (Chen et al., 2021). This 246 

inconvenience can make these IMFs lose their physical signification and make the EMD algorithm less robust 247 

(Chen et al., 2021). The Ensemble Empirical Mode Decomposition (EEMD) was subsequently proposed by Wu 248 

and Huang (2009) to vanquish these shortcomings, adding a Gaussian white noise into the raw data series. It 249 

enables EEMD to automatically attribute signals with different time scales to the precise reference scales. In 250 

consequence, the correlation between the resultant IMFs and the raw series significantly improved. The 251 

processes of EEMD are as follows: 252 

1. Add the normally distributed Gaussian white noise 𝜔(𝑡) to the target series 𝑓(𝑡) to get a new signal 253 𝐹(𝑡): 𝐹(𝑡)  =  𝑓(𝑡)  +  𝜔(𝑡); 254 

2. Decompose 𝐹(𝑡) using EMD method. Obtain IMFs 𝐶𝑖(𝑡) and the residual 𝑟(𝑡):  255 

𝐹(𝑡) = ∑ 𝐶𝑖(𝑡) + 𝑟(𝑡);𝑛
𝑖=1  256 

3. Adding different white noise sequence to the same raw series and repeat the above steps; 257 

4. Since the mean value of Gaussian white noise is equal to zero, the IMFs obtained are integrated and averaged 258 

as the final result: 259 

𝐼𝑀𝐹̅̅ ̅̅ ̅̅ = 1𝑁 ∑ 𝐶𝑗,𝑚𝑁
𝑚=1  260 

where 𝐶𝑗,𝑚 represents the 𝑗𝑡ℎ IMFs from the 𝑚𝑡ℎ time, 𝑁 denotes the number of the added white noise 261 

sequences. Resolved by the above process, we have obtained six IMFs in total from the raw data series. 262 

3.6 Hybrid Model building 263 

In weather prediction, predicting thunderstorms is one of the most challenging tasks because of the implicit 264 

nonlinearity of thunderstorms' physics and dynamics (Litta et al., 2013). A problem with ANN, SVM, and other 265 

linear and nonlinear prediction models is that they cannot accurately handle nonstationary data. To solve the 266 
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nonstationary problem, we have built an EEMD-ANN and an EEMD-SVM hybrid model. In our cases, EEMD 267 

decomposes the monthly TSF data of HTSF, MTSF, and LTSF into six IMFs and one residual, presented in Fig. 268 

3(a–c). In each category's case, we have selected the first three IMFs as predictors of the hybrid models with the 269 

other meteorological predictors. The value of IMF1, IMF2, and IMF3 are more relevant to the original series, 270 

and they are the most nonlinear components of their respective series. On the contrary, the value of IMF4, IMF5, 271 

and IMF6 is minimal. The residuals' value is not entirely relevant, so that their contributions are lesser to fit the 272 

model, indicating difficulty in predicting the TSF more accurately. Besides, the correlation analysis (Table 3) 273 

suggested that the first three IMFs are the essential variables in predicting monthly TSF. Therefore, using these 274 

sub-series in building the models might enhance the performances by giving useful information on several 275 

resolution levels. Fig. (4) demonstrates the methodological procedures of the EEMD-ANN and EEMD SVM 276 

prediction models. As seen in Fig. (4), the main steps of the presented EEMD-ANN or EEMD-SVM prediction 277 

can be summarized as follows: 278 

Step 1: Decompose the original time series into a finite set of IMFs and a residue using EEMD. 279 

Step 2: Eliminate the irrelevant or redundant IMFs and residue and select the IMFs with the highest frequency 280 

bands and a more significant correlation with the original series. 281 

Step 3: Combine the selected IMF with other input parameters and then apply the ANN or SVM model to 282 

construct a prediction model for predicting TSF. 283 

Step: 4 Obtain the predicted output by the models.  284 

3.7 Model performance evaluation 285 

The performance of each prediction model is evaluated using the following metrics. By letting 𝛿𝑡 represent the 286 

reference values, 𝛿𝑡 represents the predicted values at time 𝑡, and 𝛿̅ denotes the mean of the reference values. 287 

Coefficient of determination (𝑹𝟐) 288 𝑅2 is the Coefficient of determination, which is a number between 0 and +1. It measures the degree of alignment 289 

between two parameters; in our case, the reference data (𝛿𝑡) and the predicted data (𝛿𝑡). It quantifies how well 290 

future outcomes are likely to be predicted by the model. The Coefficient of determination is calculated according 291 

to the formula as follows: 292 
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 𝑅2 = 1 − ∑ (𝛿𝑡 − 𝛿𝑡)2 𝑁𝑖=1∑ (𝛿𝑡 − 𝛿̅)2 𝑁𝑖=1  
 

where 𝛿̅ represents the average of the reference values. 293 

Root Mean Square Error (RMSE) 294 

The second statistical metric 𝑅𝑀𝑆𝐸 is defined as follows: 295 

 𝑅𝑀𝑆𝐸 = √1𝑁 ∑(𝛿𝑖 − 𝛿̂𝑖)2𝑁
𝑖=1  

 

where 𝑁 is the number of points in the test dataset. 296 

Mean Absolute Error (MAE.) 297 

The third statistical metric, namely, the MAE, can be defined as follows: 298 

 𝑀𝐴𝐸 = 1𝑁 ∑ |𝛿𝑖𝑁
𝑖=1 − 𝛿𝑖| 

According to Eq. (), the 𝑀𝐴𝐸 is the average of the absolute error between 𝛿𝑖 and 𝛿𝑖 (𝑖 =  1,2, ⋯ , 𝑛). 299 

Mean Absolute Percentage Error (MAPE) 300 

The fourth criterion is 𝑀𝐴𝑃𝐸, which is used to compute the relative error between |𝛿𝑖 − 𝛿𝑖| and |𝛿𝑖| (𝑖 =301  1,2, ⋯ , 𝑛), which is defined as 302 

 𝑀𝐴𝑃𝐸 = 1𝑁 ∑ |𝛿𝑖 − 𝛿𝑖| |𝛿𝑖| 𝑁
𝑖=1 × 100% 

 

 303 

Index of Agreement (IA.) 304 

The 𝐼𝐴 is used in this study and is defined as follows: 305 

 𝐼𝐴 = 1 − ∑ (𝛿𝑖 − 𝛿𝑖)2𝑁𝑖=1∑ (|𝛿𝑖 − 𝛿̅|𝑁𝑖=1 + |𝛿𝑖 − 𝛿̅|)2 

The 𝐼𝐴 is a dimensionless metric used in comparing different models. The outcome value of 𝐼𝐴 is always between 306 

0 and 1. For a "perfect" model, the R2 and 𝐼𝐴 are equivalent to 1, and the 𝑀𝐴𝐸, 𝑀𝐴𝑃𝐸, and 𝑅𝑀𝑆𝐸 are equal to 307 
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0. The three commonly used metrics, i.e., 𝑀𝐴𝐸, 𝑀𝐴𝑃𝐸, and 𝑅𝑀𝑆𝐸, all quantify the differences between the 308 

predicted and observed concentrations. However, the 𝑅𝑀𝑆𝐸 is more sensitive to extreme values, and the MAPE 309 

is sensitive to small values because of the power term. 𝐼𝐴 summarizes the similarity between the predicted and 310 

observed propensities. 311 

Taylor Diagram 312 

Another model performance evaluation technique, "Taylor diagram," is used in this study. This technique is 313 

widely used to compare model data and tracking changes in model performances. The mathematical theory to 314 

construct the diagram can be found in the literature (Taylor, 2001; Pakalidou and Karacosta, 2018). The diagram 315 

provides the degree of similarity between the observed point and the test point. The closest the test point to the 316 

observed point, the highest the accuracy of the model. 317 

3.8 Sensitivity Analysis 318 

In this section, the sensitivity analysis of the input parameters was measured for the best performing model of 319 

each season using the following equation: 320 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅2 − 𝑅̅2𝑅2 × 100 321 

 322 

where 𝑅2 is the square of the correlation coefficient of the best prediction model and 𝑅̅2 is the square of the 323 

correlation coefficient of the predicted model when a specific parameter is excluded from the model.  324 

4. Results 325 

4.1 Comparative analysis 326 

In this section, the prediction results are presented along with a comparison of model performance metrics 327 

among the predicted outputs from different models. 328 

Fig. (5a) depicts the prediction results of HTSF using ANN, SVM, EEMD–ANN, EEMD-SVM, and 329 

ARIMA models of the testing dataset. In general, the hydrograph illustrates that all the models except for 330 

ARIMA have an excellent performance for simulating the monthly TSF. Moreover, Fig. (5b) shows the 331 

scatter plots of prediction by these models, which indicates that the EEMD-ANN and EEMD-SVM model 332 

have the best performance for predicting the monthly TSF. Here, for EEMD-ANN and EEMD-SVM, the 333 
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least square fitting line is slightly closest to the best possible 45-degree fitting line than ANN, SVM, and 334 

ARIMA. From Fig (5a) and Fig (5b), it is not clear which model performs better between EEMD-ANN and 335 

EEMD-SVM, as both are very close. 336 

It is evident from Fig. (5c) that EEMD-ANN generated the highest value of CC and lowered centered RMS 337 

difference, while the other hybrid model EEMD-SVM was approximately equal in this regard. Comparing 338 

the models' standard deviation suggests that the EEMD-ANN and EEMD-SVM models were more in 339 

agreement and closer to observed values than the conventional ANN and SVM. It can also be seen in Fig. 340 

(5c) that the EEMD-ANN has the standard deviation relative to the observed, but the traditional ANN has 341 

a standard deviation less than the observed. It shows that the hybrid EEMD-ANN outperforms classic ANN. 342 

Here also, the ARIMA model has the furthest distance from the reference data. 343 

It can be observed from Table 4 that the EEMD-SVM model has a decent performance, acquiring good R2, 344 

training, and testing RMSE, MAE, MAPE, and IA values of 0.978, 1.364, 1.367, 1.095, 8.475, and 0.994, 345 

respectively. The ANN and SVM models have also acquired a good R2, training RMSE, testing RMSE, 346 

MAE, MAPE, and IA of 0.973 and 0.964, 1.478, and 1.67, 1.562 and 1.777, 1.099 and 1.446, 6.049 and 347 

9.481, 0.992 and 0.99, respectively. ARIMA model has the worst performance compared with the other 348 

models, as observed in Table 4. The EEMD-ANN model has acquired the best score in all the validation 349 

metrics, gaining the best R2, training, and testing RMSE, MAE, MAPE, and IA values of 0.982, 1.177, 350 

1.241, 0.917, 5.738, and 0.995, respectively. It increases the R2 and IA by 1% and 0.3% and reduces the 351 

training RMSE, testing RMSE, MAE, and MAPE by 20.34%, 20.58%, 16.52%, and 0.31%, respectively, 352 

compared to the conventional ANN. 353 

The hydrograph of the MTSF prediction results of the testing dataset is presented in Fig. (6a). Again, the 354 

hydrograph demonstrates that all the approaches except ARIMA have a decent performance in predicting 355 

the monthly MTSF. The scatterplot of the predicted outputs suggests that the EEMD-ANN and EEMD-356 

SVM approaches have the closest least-square fitting line to the 45-degree line (Fig. 6b). 357 

The Taylor diagram (Fig. 6c) suggests that the EEMD-ANN and EEMD-SVM have performed better than 358 

conventional ANN, SVM, and ARIMA. For the hybrid models, the correlation coefficient is >0.95, while 359 
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for the conventional models, it is <0.95. The lower centered RMS difference also confirms that the hybrid 360 

models are more in agreement than the conventional models. It is immensely challenging to find out the 361 

better model between the hybrid models as both the models have performed almost equally. 362 

The validation metrics from Table 4 confirms that conventional ANN and SVM are remarkably inferior to 363 

the hybrid approaches; the R2, training RMSE, testing RMSE, MAE, MAPE and IA are 0.839 and 0.881, 364 

1.306 and 1.644, 1.45 and 1.184, 1.161 and 0.93, 8.485 and 6.852, 0.952 and 0.967 respectively. Moreover, 365 

the ARIMA model performs worse than the other approaches. Both the EEMD-ANN and EEMD-SVM 366 

have superior scores in predicting MTSF. The EEMD-ANN has gained a substantial R2, training RMSE, 367 

testing RMSE, MAE, MAPE, and IA of 0.923, 1.271, 1.124, 0.889, 6.133, and 0.971, respectively, which 368 

increases the R2 and IA by 10.012% and 1.995% and reduces the training RMSE by 2.68%, testing RMSE 369 

by 22.482%, MAE by 23.428% and MAPE by 2.352% compared to the conventional ANN. The EEMD-370 

SVM has also acquired a significant R2, training RMSE, testing RMSE, MAE, MAPE, and IA of 0.924, 371 

1.412, 1.089, 0.909, 6.323, and 0.973, respectively, which improves the R2 and IA by 4.881% and 0.62% 372 

and minimizes the training RMSE by 14.112%, testing RMSE by 8.024%, MAE by 2.258% and MAPE by 373 

0.529% while comparing with the conventional SVM. 374 

Fig. (7a) exhibits the predicted outcomes of the testing dataset of the LTSF using ANN, SVM, EEMD-375 

ANN, EEMD-SVM, and ARIMA models. The hydrograph suggests that these models' predicted values, 376 

except for the ARIMA model, agree well with the observations of LTSF. However, several points exhibit 377 

a clear difference between the predicted and observed values. These differences often occur during the 378 

month of abrupt changes of TSF (e.g., 2012, 2014-2016). The scatterplot (Fig. 7b) indicates that the least-379 

square fit for the EEMD-SVM prediction is closest to the perfect 45-degree fit, closely followed by the 380 

EEMD-ANN, SVM, and ANN approaches. However, there is a massive difference between the perfect fit 381 

and the least-square fit for the ARIMA model prediction. 382 

EEMD-SVM approach has performed better than all the models (Table 4) in almost every validation 383 

metrics, which is coherent with the scatterplot (Fig. 7b) and the Taylor diagram (Fig. 7c) results. It is the 384 

best among the LTSF prediction models used in this study, gaining an impressive R2 of 0. 0.886, training 385 
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RMSE of 0.291, testing RMSE of 0.398, MAE of 0.325, MAPE of 17.925, and IA of 0.966. However, the 386 

EEMD-ANN has a better performance in acquiring the lower training RMSE (0.23) than EEMD-SVM, but 387 

it was not consistent in gaining better R2 value (0.864), testing RMSE (0.439), MAE (0.352), MAPE 388 

(21.929), and IA (0.956). The conventional ANN, SVM, and ARIMA models were remarkably inferior to 389 

the hybrid approaches predicting the LTSF. Compared to the traditional SVM, the EEMD-SVM raises the 390 

R2, IA and lessens the training RMSE, testing RMSE, MAE, MAPE by 4.03%, 1.90% and 10.39%, 14.83%, 391 

11.79%, 32.07%, which is remarkable. 392 

4.2 Sensitivity assessment  393 

The sensitivity analysis result of the best HTSF prediction model, EEMD-ANN, is shown in Fig. (8a). The 394 

rankings of the three most sensitive parameters are TSD, IMF1, and IMF2. Apart from these, all the 395 

parameters positively contribute to achieving better performance during the TSF prediction of the high-396 

frequency months. TT, CPRCP, CAPE, and PRCP also played a pivotal role in constructing the EEMD-397 

ANN model, followed by CRR, IMF3, WS50, RH, ST, DP, and KI (Fig. 8a). A similar result is observed 398 

in the three most sensitive parameters (Fig. 8b) for the EEMD-SVM model while predicting MTSF. In 399 

building this EEMD-SVM model, TT, CAPE, IMF3 are the next ranked sensitive parameters, respectively, 400 

which are followed by CPRCP, CRR, WS50, DP, PRCP, RH, KI, and ST. Fig. (8c) depicts the sensitivity 401 

analysis of the best LTSF prediction model, which is EEMD-SVM. TSD, IMF1, IMF3 are the top three 402 

sensitive parameters for predicting LTSF using the EEMD-SVM model. IMF2, CAPE, CPRCP, CRR, TT, 403 

PRCP also play a vital role in constructing the model for predicting LTSF. Although the parameters like 404 

DP, KI, RH, ST, and WS50 have low sensitivity value, they help achieve better prediction accuracy. 405 

5. Discussion and conclusion 406 

Due to increasing computational abilities, machine learning algorithms in modeling severe weather events are 407 

becoming progressively popular in current atmospheric studies. It is because of robust prospects from its use in 408 

operational prediction (McGovern et al., 2017; Czernecki et al., 2016; Kamangir et al., 2020) and the generating 409 

of severe weather events that add forthcoming changes in their frequencies (Allen et al., 2015; Lee et al., 2020). 410 

It is a fact that most current machine learning models have superiority over conventional statistical models 411 
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(Gagne et al., 2017). Furthermore, some machine learning models like random forest permit studying variable 412 

importance, making it likely to obtain a better insight into the factors influencing physics behind such studied 413 

processes. 414 

In this research, we assessed the use of machine learning algorithms in modeling high, moderate, and low 415 

frequencies thunderstorm events on a monthly scale. This analysis was based on the observed TSF dataset, and 416 

convective parameters come from ERA5 reanalysis datasets. In the case of HTSF, the hybrid EEMD-ANN 417 

outperformed other models based on the evaluation criteria. For MTSF and LTSF, the hybrid EEMD-SVM 418 

model has superior performance than other standalone models. Theoretically, the three sub-series with various 419 

thunderstorm frequencies were used instead of thunderstorm events because it has physical meaning. TSF 420 

analysis can be used operationally to help human policy-making by lessening the cognitive associated with 421 

thunderstorm event identification. 422 

Uncertainty increases in low TSF months (winter) because of the low SST and northeast wind flow from the 423 

BoB and lowers vapor flux availability. We anticipate that due to low surface temperature and soil moisture, the 424 

winter season (November to February) is the least favorable for forming TSF. However, this outcome is not 425 

surprising, and it can be underlined by analyzing the TSF pattern of three categories. This work proposed a 426 

prediction strategy for TSF prediction circumventing the probable precision reduction triggering from calibrating 427 

the decomposition method during implementing and accepting the application of operational research reported 428 

in several previous works (Napolitano et al., 2011; Zhang et al., 2015; Johny et al., 2020). 429 

The outcomes obtained in this research indicate that EEMD can efficiently increase prediction accuracy, and the 430 

proposed EEMD-ANN model can achieve notable improvement over the conventional ANN method in the high, 431 

medium, and low TSF monthly time-series predictions. The EEMD-ANN is more successful in capturing the 432 

HTSF monthly, showing remarkable precision than the SVM-EEMD model. Our finding is similar to the other 433 

hydrological time-series studies (Wang et al., 2015). One probable reason for the improved performance of 434 

EEMD-ANN can be the method's capability to solve complex and nonlinear problems (Phuong et al., 2017).  435 

In predicting MTSF, the Taylor diagram suggests EEMD-ANN is slightly more accurate than the EEMD-SVM. 436 

But the validation metrics suggest otherwise. We have selected the EEMD-SVM as the best model for MTSF 437 

prediction because the difference between the models is very narrow in the Taylor diagram, and it has performed 438 
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better in most of the validation metrics. Besides, the EEMD-SVM has gained a substantial improvement in 439 

testing RMSE than EEMD-ANN, which indicates better model fitting for EEMD-SVM. The difference in the 440 

Taylor diagram and validation metrics results is probably due to the diagram's algorithm based on root mean 441 

square difference, standard deviation, and correlation coefficient. The standard deviation of the observed and 442 

predicted datasets might create this result difference. Also, the EEMD-SVM is more accurate in predicting the 443 

LTSF monthly. This is because SVM has been incredibly robust and efficient in nonlinear noise mixed data 444 

(Devak et al., 2015). Besides, the potential of decomposition might be more prominent in predicting the TSF 445 

dataset in the EEMD-ANN or EEMD-SVM model than the standalone model because the hybrid model can 446 

overcome the shortcomings of the standalone model to produce a synergetic impact on prediction. The hybrid 447 

EEMD-SVM can help avoid the overfitting or underfitting problem of the SVM model caused by the input 448 

parameters' improper determination. This also implies that the EEMD tool is applicable for decomposing 449 

monthly TSF time series and the idea of "decomposition and ensemble" is suitable. The findings in this work 450 

agree well with those obtained from the studies (Hawinkel et al., 2015; Wang et al., 2015; Czernecki et al., 2016). 451 

Previous studies have found that hybrid EEMD-ANN and EEMD-SVM models outperformed the classical 452 

models, which apply original datasets in other fields of studies, e.g., runoff (Tan et al., 2018); streamflow 453 

forecasting (Zhang et al. 2015); rainfall forecasting (Johny et al. 2020) wind speed forecasting (Yu, 2020); 454 

groundwater level (Gong et al., 2018). The hybrid model is robust, theoretically justified, and more realistic 455 

compared to other standalone models. It can be said that the proposed methodology can not only predict the 456 

complicated thunderstorm frequency over Bangladesh rationally well, but it can also attain extreme climatic 457 

events.  458 

Topographical differences, wind regimes, and the inland distance far from the coastal and hilly regions may 459 

differ sensitivity results in these categories. Based on the sensitivity assessment, TSD, IMF1, and IMF2 460 

generated the highest score, similar to other thunderstorm-associated parameters in India by Umakanth et al. 461 

(2020). TSD is very high in sensitivity analysis due to an enhanced number of TSF causing moist air circulated 462 

from the Bay of Bengal (BoB). When passing the equatorial belt, the southeastern air masses go into the 463 

southwest monsoon due to Ferrell's law, which brings a large amount of thunderstorm in the country. Generally, 464 

the high TSD in May and June is observed in the northeast region, close to Cherapunji, where the cloud formation 465 
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is high, and hill ranges generate a tremendous amount of water vapor flex and precipitation. In recent times, 466 

more vigorous and more continuous moist is derived from the BoB because of elevated sea surface temperature. 467 

The high sea surface temperature triggered a rise in CAPE in most parts of Bangladesh (Wahiduzzaman et al., 468 

2020; Sahu et al., 2020). These findings support the outcomes of Glazer et al. (2020), who assessed the variations 469 

in TSD in Bangladesh due to global climate change and revealed an increase in TSD in many regions of the 470 

country. An increase in CAPE and higher moisture content in the BoB may play a vital role in enhancing TSD. 471 

Thus, the sensitivity assessment gives a physical means to capture the non-overlapping TSD that would 472 

otherwise trigger the concern of multicollinearity. This is obvious from the improvement in the model 473 

performance for high TSF identification reported in earlier works (Siddiqui and Rashid, 2008; Gagne et al., 474 

2017). Generally, the problem of over-prediction is a familiar matter for predicting a severe extreme event that 475 

can be lessened using current machine learning methods (Czernecki et al., 2019), particularly if various data 476 

sources are coupled. All the other convective parameters, e.g., TT, CPRCP, CRR, KI, and the meteorological 477 

parameters, e.g., PRCP, RH, ST, WS50, have positively contributed to the best model building. This is because 478 

all these input parameters are positively associated with a high correlation with thunderstorm occurrences. 479 

Employing these hybrid ensemble models to predict monthly TSF is crucial for further studies. There are some 480 

advantages to the proposed hybrid models. First, the basic principle of the EEMD is elementary, can still give a 481 

thorough understanding of the monthly TSF time series dataset. Second, it is suitable and adequate to couple the 482 

EEMD with ANN, ARIMA, SVM to predict the nonstationary and nonlinear TSF. Third, the EEMD-ANN and 483 

EEMD-SVM models' prediction outcomes are more precise when applying the TSF time series decomposition. 484 

Fourth, the developed hybrid models do not need complex policy-making about each specific case study's 485 

obvious form. Thus, developing these hybrid prediction models by integrating EEMD may lead to more robust 486 

and better prediction outcomes. It may also be useful in further studies focused on extreme events prediction for 487 

various problems related to effective disaster management. The application of machine learning algorithms in a 488 

thunderstorm prediction brings with a new promise for forthcoming studies concerning both operational 489 

predictors and meteorological research that intend to examine observed and future variations in frequencies of 490 

severe extreme events (Yasen et al., 2017; Taszarek et al., 2019).  491 
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It is worth mentioning that the limitation of this research lies in two perspectives. First, although monthly TSF 492 

data were taken from 28 stations, future studies using datasets from different regions may be needed to strengthen 493 

these valid conclusions because the performance of data-driven models is data-based and case reports explicit. 494 

Second, the coupling preprocessing technique with a machine learning algorithm, a division of the training and 495 

testing datasets, and model selection criteria are a vital factor affecting the overall performance of the hybrid 496 

models. Thus, future works are solicited, which may shed much light on this concern. Our future work includes 497 

the case-study concept of generating a seasonal TSF forecasting on a continental scale that can provide deep 498 

insight into the severe weather event's current knowledge. Also, testing our hybrid model is to forecast 499 

thunderstorm frequency for other similar climatic regions globally. The ERA5 based parameters can be used in 500 

the RF model that is yet more reliable than any sole parameters used in operational models (Gagne et al., 2017). 501 

In addition to this, good tuning of generated machine learning is feasible if it is more robustly fitted on a 502 

considerable number of datasets or adding new parameters from satellite datasets. Hence, with computational 503 

interests in modeling tools, machine learning models play a pivotal role in examining thunderstorm events' 504 

climatological perspective and improving operational prediction. 505 
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Figures

Figure 1

Geographical location of the study area, red delta signs represent the selected meteorological stations of
BMD. Note: The designations employed and the presentation of the material on this map do not imply the
expression of any opinion whatsoever on the part of Research Square concerning the legal status of any
country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or
boundaries. This map has been provided by the authors.



Figure 2

Architecture of the arti�cial neural network (ANN) model with an input layer, two hidden layers, and an
output layer used for predicting monthly thunderstorm frequency.



Figure 3

The decomposed sub-series of the original TSF data for high-frequency months (a), moderate-frequency
months (b), and low-frequency months series (c) using EEMD.



Figure 4

Flow diagram of the methodological processes.



Figure 5

Observed and predicted output of the testing dataset of the high TSF series (a); scatterplot �tting of the
prediction models (b); and Taylor Diagram of prediction by EEMD-ANN, EEMD-SVM, ANN, SVM, and
ARIMA models (c). The deep cyan contours represent the Pearson correlation coe�cient, green contours
represent centered RMS error in the simulated �eld, and violet contours represent the Standard Deviation
of the simulated pattern.



Figure 6

Observed and predicted output of the testing dataset of the moderate TSF series (a); scatterplot �tting of
the prediction models (b); and Taylor Diagram of prediction by EEMD-ANN, EEMD-SVM, ANN, SVM, and
ARIMA models (c). The deep cyan contours represent the Pearson correlation coe�cient, green contours
represent centered RMS error in the simulated �eld, and violet contours represent the Standard Deviation
of the simulated pattern.



Figure 7

Observed and predicted output of the testing dataset of the low TSF series (a); scatterplot �tting of the
prediction models (b); and Taylor Diagram of prediction by EEMD-ANN, EEMD-SVM, ANN, SVM, and
ARIMA models (c). The deep cyan contours represent the Pearson correlation coe�cient, green contours
represent centered RMS error in the simulated �eld, and violet contours represent the Standard Deviation
of the simulated pattern.



Figure 8

Sensitivity of the input parameters in building the best models in predicting high TSF (a), moderate TSF
(b), and low TSF (c).


