Development of novel positron emitters for medical applications: nuclear and radiochemical aspects — Source link

Syed M. Qaim

Published on: 01 Oct 2011 - Radiochimica Acta (Oldenbourg Wissenschaftsverlag GmbH)

Topics: Nuclear data

Related papers:

- The present and future of medical radionuclide production
- Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: Possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron
- Nuclear data for production and medical application of radionuclides: Present status and future needs.
- Charged particle cross section database for medical radioisotope production - Diagnostic radioisotopes and monitor reactions
- Evaluation of excitation functions of 100Mo (p,d+pn) 99Mo and 100Mo (p,2n) 99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc

Share this paper:
View more about this paper here: https://typeset.io/papers/development-of-novel-positron-emitters-for-medical-1yvz21qwsw
Development of novel positron emitters for medical applications:
nuclear and radiochemical aspects

By S. M. Qaim*

Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

(Received December 15, 2010; accepted in revised form May 12, 2011)

Novel positron emitter / Nuclear data / Low and intermediate energy reactions / Targetry / Radiochemical separation / Production yield / Quality control / Radionuclide generator / New generation high power accelerator

Summary. In molecular imaging, the importance of novel longer lived positron emitters, also termed as non-standard or innovative PET radionuclides, has been constantly increasing, especially because they allow studies on slow metabolic processes and in some cases furnish the possibility of quantification of radiation dose in internal radiotherapy. Considerable efforts have been invested worldwide and about 25 positron emitters have been developed. Those efforts relate to interdisciplinary studies dealing with basic nuclear data, high current charged particle irradiation, efficient radiochemical separation and quality control of the desired radionuclide, and recovery of the enriched target material for reuse. In this review all those aspects are briefly discussed, with particular reference to three radionuclides, namely 64Cu, 124I and 88Y, which are presently in great demand. For each radionuclide several nuclear routes were investigated but the (p,n) reaction on an enriched target isotope was found to be the best for use at a small-sized cyclotron. Some other positron emitting radionuclides, such as 89Co, 76Br, 86Zr, 82Rb, 94mTc, 125I, etc., were also produced via the low-energy (p,n), (p,α) or (d,n) reaction. On the other hand, the production of radionuclides 88Fe, 73Se, 83Sr, etc. using intermediate energy (p,xn) or (d,xn) reactions needs special consideration, the nuclear data and chemical processing methods being of key importance. In a few special cases, a high intensity 3He- or α-particle beam could be an added advantage. The production of some potentially interesting positron emitters via generator systems, for example 44Ti/46Sc, 72Se/72As and 148Nd/149Pr is considered. The significance of new generation high power accelerators is briefly discussed.

1. Introduction

Radionuclides find application in many fields. However, their major use is in medicine, both for diagnosis and therapy [cf. 1]. This is manifested by the International Symposium on Radiopharmaceutical Sciences, held biennially in some part of the world. The underlying principle of an in vivo diagnostic application is that the radiation dose to the patient is as low as possible, compatible with the desired quality of imaging. This calls upon the use of very special radionuclides which can be detected efficiently from outside of the body. In general, short-lived γ-ray emitters or positron emitters are commonly used, the former finding application in Single Photon Emission Computed Tomography (SPECT) and the latter in Positron Emission Tomography (PET). In contrast, an internal therapeutic application requires that a certain amount of dose is specifically deposited in a malignant tissue. Thus for internal radiotherapy, radionuclides emitting corpuscular radiation (α- or β^+-particles, conversion and/or Auger electrons) are of interest.

The production of radionuclides for medical applications is carried out using both nuclear reactors and cyclotrons. The most commonly used SPECT radionuclide 99mTc ($T_{1/2}=6.0$ h) is produced using a nuclear reactor. Its widespread use is mainly based on its convenient availability as a 99Mo/99mTc generator. Many of the cyclotron produced γ-ray emitting radionuclides, such as 67Ga ($T_{1/2}=78.3$ h), 111In ($T_{1/2}=2.9$ d), 123I ($T_{1/2}=13.2$ h) and 201Tl ($T_{1/2}=73.1$ h) also find application. They are commercially available. In recent years, however, the positron emitting radionuclides have been gaining more significance because PET has made it possible to quantitatively measure regional activities of a molecule (labelled with a positron emitter) with high sensitivity and a spatial resolution of a few mm. The commonly used short-lived organic positron emitters, viz. 11C ($T_{1/2}=20.3$ min), 15N ($T_{1/2}=10.0$ min), 15O ($T_{1/2}=2.0$ min) and 18F ($T_{1/2}=110$ min), are produced via low-energy nuclear reactions at small-sized cyclotrons [cf. 2]. Besides those four organic positron emitters, two other short-lived positron emitters, namely 64Cu ($T_{1/2}=67.6$ min) and 82Rb (3 min), are produced via generator systems. Their respective long-lived parents 68Ge ($T_{1/2}=271$ d) and 83Sr ($T_{1/2}=25.3$ d) are produced through intermediate energy nuclear reactions. The whole PET technology (consisting of cyclotron, radionuclide production unit, and automated radiosynthesis apparatus) is now commercially available.

Among the therapeutic radionuclides, 131I ($T_{1/2}=8.02$ d) is by far the most important, having an established place in the management of follicular thyroid carcinoma. The other radioiodine, 125I ($T_{1/2}=59.41$ d), is used in Auger electron therapy. Several other reactor produced radionuclides,
for example 32P ($T_{1/2} = 14.3$ d), 80Sr ($T_{1/2} = 50.5$ d), 90Y ($T_{1/2} = 2.7$ d) and 155Sm ($T_{1/2} = 1.9$ d), find application in palliative treatment. In recent years cyclotrons have also been increasingly used to produce some therapeutic radionuclides, in particular those emitting low energy but highly ionising radiation [cf. 3].

Today, research work on radionuclides for nuclear medicine is carried out mainly in two directions:

1. Development of novel longer lived positron emitters.
2. Development of novel low-energy but highly ionising radiation emitters for internal radiotherapy.

This article deals with nuclear and radiochemical aspects of development of novel positron emitters. Those radionuclides can only be produced at cyclotrons (or accelerators). With the increasing significance of PET in diagnostic nuclear medicine, the need for longer lived novel positron emitters, also termed as non-standard or innovative positron emitters, has been increasing, especially for studying slow metabolic processes [cf. 4]. Some aspects of their production have been considered [cf. 5–8]. The present review discusses their production methodologies in more detail.

2. Fundamental considerations in development of novel positron emitters

The development of a novel positron emitter has to comply with certain constraints with respect to production possibilities (e.g. type of available cyclotron, yield of nuclear reaction to be used, enrichment of the target material, etc.). It calls upon interdisciplinary work comprising nuclear data measurement, high-current targetry, chemical processing, automation of the procedure and quality control of the product. Furthermore, its suitability for imaging, which is related to its decay characteristics, also needs to be demonstrated. A discussion of all those aspects, is given below, furnishing examples from a few recent investigations.

2.1 Nuclear data

2.1.1 Reaction cross section data

In cyclotron production of radionuclides, the reaction cross section data play a very important role [cf. 9, 10]. One needs the full excitation function of the nuclear process under consideration to be able to calculate the expected production yield with a reasonable accuracy. The data are needed mainly for the optimization of the production route, i.e. to maximize the yield of the desired product and to minimize the yields of the radioactive impurities. The calculated yield value of the desired product represents the maximum yield which can be expected from a given nuclear process. It should be pointed out that, whereas the non-isotopic impurities produced can be removed by chemical separations, the level of isotopic impurities can be suppressed only by using an enriched isotope as target material and/or by a careful selection of the particle energy range effective in the target, the latter information being derived from the respective excitation function.

Besides isotopic impurities, isomeric impurities also need to be considered. Several novel medical radionuclides have isomeric states, which are rather disturbing. A few examples are 86mY(86Y), 94mTc(94Tc) and 120qI(120I). The isomeric impurities cannot be controlled through a careful adjustment of the energy window (as mentioned above). Since the isomeric cross section ratio is primarily dependent on the type of reaction involved [cf. 11], it is essential to investigate all the possible production routes and then to choose the reaction and the energy range giving the best results. Obviously, nuclear data play here a very important role. Nuclear reaction cross section measurements performed [12, 13] in connection with the development of the positron emitter 120gI ($T_{1/2} = 1.35$ h) provide a good example of the importance of nuclear data. The results on the 120pTe(p, xn)119,120Te reactions [13] are shown in Fig. 1. The energy range $E_p = 16 \rightarrow 9$ MeV appears to be optimum for the production of 120I. Over this energy range the calculated thick target yield of 120I is high (2.3 GBq/μA h), and the levels of the impurities are: 120I (4.8%) and 119I (4.4%). The impurity 119I is not a problem. Being short-lived ($T_{1/2} = 19.1$ min), it almost completely decays out during the separation of 120I from the irradiated target. The isomeric impurity 120mI ($T_{1/2} = 53$ min) is also shorter lived as compared to 120I; its relative contribution would therefore decrease with the decay time. On the other hand, if the reaction 122Te($p, 3n$)120I is used [12] for the production of 120I, with a calculated thick target yield of 120I of 3.6 GBq/μA h over the energy range of $E_p = 37 \rightarrow 32$ MeV, the contribution of 120mI may amount up to 25%.

Extensive nuclear data studies in connection with the development of innovative positron emitters have been carried out at the Forschungszentrum Jülich over the last 25 years. In most of the cases the low-energy (p, n) reaction on a highly enriched target isotope was found to be ideal. The pertinent examples are: 64Ni(p, n)64Cu [14], 76Se(p, n)75Br [15], 82Kr(p, n)82Rb [16], 88Sr(p, n)88Y [17], 94Mo(p, n)94mTc [18], 120Te(p, n)120I [13] and 122Te(p, n)122I [19]. In the case of 64Cu, 88Y and 124I, the three most prominent novel positron emitters, the suggested (p, n) reaction has become the method of choice for obtaining a high-purity product.

Besides the (p, n) reaction, for several radionuclides other low and intermediate energy reactions, for example,
(p, α), (d, n), (p, xn), (d, xn), (α, xn), and possibly (α, xn), have also been investigated. Furthermore, in several cases, for example 64Cu and 124I, extensive comparisons of various production routes have been presented [cf. 8, 20]. Detailed evaluations of the data using nuclear model calculations and statistical fitting procedures have also been performed for several radionuclides [cf. 21–24]. Thus the nuclear reaction cross section database for the production of innovative positron emitters appears to have considerably improved in recent years.

2.1.2 Decay data

In addition to the production data, some attention also needs to be paid to the radioactive decay data. Those data are of considerable significance in determining the quality of the image and the radiation dose deposited while using that radionuclide. In general, the decay data are fairly well known for the most frequently used positron emitters; however, it is often rather low and not exactly known (e.g. 67Ga, 111In and 201Tl). Occasionally a gas target is also used.

Irradiation of solid material is often carried out in a conventional target system, where the front side consists of a double foil window through which He gas flows for cooling the target material. The back side of the target is cooled by flowing water. The beam impinges on the target orthogonally. Rather commonly employed solid targetry today involves preparation of a relatively thick layer (up to a few hundred μm) of the target material via electrolytic deposition on a metal backing, and irradiations are performed with slanting beams. In other cases, where no elemental material is employed, suitably prepared alloys or intermetallic compounds are also used. Occasionally, the target material is an oxide which is spread on another metal, melted or sintered, and then used as an irradiation target.

A typical solid target system used, e.g. for the production of 58Co and 64Cu via the reactions 58Ni(p, α)55Co and 64Ni(p, n)64Cu, respectively, is shown in Fig. 2 [28]. The corresponding highly enriched nickel isotope is electroplated on an oval shaped gold backing which fits in a target holder designed to be exposed to the charged particle beam at an angle of 20°. The target holder is cooled at the back by a water jet. Beam currents of about 30 μA are commonly used. With a better design of the system, beam currents of up to 300 μA could be put on the target. The same target set up has also been employed in the production of 124I via the 124Te(p, n)-reaction. In this case the target material 124TeO₂ is melted on a Pt backing (rather than electroplating on gold) which is then attached to the target holder for irradiation.

For noble gases as target material, e.g. for the production of 82mKr, 83Rb and 83Sr via the reactions 82Ar(p, n)82mKr, 83Kr(p, 2n)82Rb, 82Kr(p, n)82mRb and 82Kr(3He, 2n)83Sr, respectively, a typical target system used is shown in Fig. 3 [29]. The conical shaped target has a double foil window in front, which is cooled by He gas. The other accessories form a complex system for safe handling of the highly enriched rare noble gas (filling the target, irradiation and its recovery for reuse). Beam currents of about 30 μA are used.

![Fig. 2. Typical solid target system used for the production of 58Co, 64Cu or 124I via the nuclear reactions 58Ni(p, α)55Co, 64Ni(p, n)64Cu and 124Te(p, n)124I, respectively. In the first two cases, the highly enriched target material is electrolytically deposited on oval shaped gold backing; in the latter case 124TeO₂ is melted on a Pt backing. The target fits in a target holder which is exposed to the proton beam at an angle of 20° and is cooled at the back by a water jet (after Ref. [28]).](image-url)
After irradiation, at first the enriched target gas is recovered. The product alkali or alkaline earth metal activity remains adsorbed on the inner walls of the target. For its removal, superheated steam (at 500°C) is introduced in the target. On cooling, the condensed water is forced out by a stream of nitrogen and is efficiently collected in a trap. The process is repeated seven times so that > 90% of the activity is accumulated in about 2.5 mL of water.

2.3 Chemical processing

There are two major aims of chemical processing:
1. to isolate the desired radionuclide in pure form,
2. to recover the enriched material for reuse.

In production of novel positron emitters, both dry and wet chemical separation methods have been applied [cf. 3]. The dry method involves distillation and thermochromatography. The best example of the dry distillation technique is furnished by separation of the increasingly important radioisotopes, especially \(^{120}\)I and \(^{121}\)I, from irradiated \(^{120}\)TeO\(_2\) and \(^{121}\)TeO\(_2\) targets, respectively, at 755°C [cf. 30]. Radiodine is collected almost quantitatively and the target is regenerated (without much loss) for the next production run. Thermochromatography, on the other hand, involves the formation of a chemical species of the radioactive product which leads to its removal from the irradiated target but the vapour pressure of which is not high enough to allow its transport to large distances. The activity gets deposited in the cooler part of the thermochromatographic tube from where it is generally recovered by rinsing. The method has been successfully employed in the separation of \(^{73}\)Se [31, 32], \(^{75}\)Br [33], \(^{76}\)Br [34] and \(^{94m}\)Tc [35]. The thermochromatographic behaviour of a proton-irradiated Cu\(_3\)As-target in an oxygen atmosphere is shown in Fig. 4 [32]. The major radioactive products formed are \(^{73}\)Se, \(^{74}\)As and \(^{65}\)Zn through the nuclear reactions \(^{75}\)As(p, 3n)\(^{73}\)Se, \(^{75}\)As(p, pn)\(^{74}\)As and \(^{65}\)Cu(p, n)\(^{65}\)Zn, respectively. The removal of \(^{74}\)As[As\(_2\)O\(_5\)] is carried out at about 660°C and that of radioelenium at about 1100°C, while \(^{65}\)Zn remains in the quartz tube within the oven area. It should, however, be mentioned that thermochromatography only serves to concentrate the desired activity at one point. It does not necessarily give a pure product. For a cleaner separation, a subsequent wet chemical step is often necessary. On the other hand, the recovery of the enriched target material is relatively easy while using distillation or thermochromatography for the separation of the desired radioactive product.

In many production processes a wet chemical procedure is absolutely necessary. Preferentially solvent extraction and ion-exchange techniques are used but occasionally a prior concentration of the radionuclide is achieved through co-precipitation, adsorption, etc. Several of the emerging radionuclides are separated using these methods. In the production of \(^{64}\)Cu via the \(^{64}\)Ni(p, n)-reaction, for example, anion-exchange chromatography was applied [cf. 14]. In the production of \(^{40}\)Y via the \(^{80}\)Sr(p, n)-reaction the separation proceeds in two steps [36]. The irradiated enriched \(^{80}\)SrCO\(_3\) is dissolved in a small volume of conc. HCl and no-carrier-added \(^{40}\)Y is coprecipitated with La(OH)\(_3\) by addition of NH\(_4\)OH solution. The precipitate is centrifuged off and taken up in a few drops of HCl. The separation of radioyttrium from inactive La is then effected through ion-exchange chromatography by elution with \(\alpha\)-hydroxyisobutyric acid,
either by normal pressure [36] or in combination with high performance liquid chromatography [37]. Fig. 5 shows the elution profile of radioyttrium. The activity amounting to several GBq is collected in only 150 µL solution. The separation of 55Mn, 52Fe, 51Co, 90Zr, etc. is also carried out via ion-exchange chromatography.

2.4 Remote handling

In a real production run the aim is to achieve the maximum batch yield of the radionuclide (with the minimum level of the radionuclidic impurities). The amount of radioactivity involved is rather high (often up to 100 GBq). All the unit operations, such as removal of the irradiated target from the beamline, its transfer to the radiochemistry laboratory, and finally the chemical processing, need to be handled remotely in order to decrease the radiation dose to the researcher. Some of those operations even demand automated methods to avoid human errors. Many of the novel positron emitters are still at the experimental stage of production for local use. On the other hand, a few of them have passed that stage; their large scale production now appears necessary and useful. The examples are: 64Cu, 86Y and 124I. In those cases the need for development of remotely controlled or even automated methods of production is imminent.

2.5 Quality control of the product

An important step in a chain of operations for the production of a novel radionuclide consists of quality assurance of the obtained product. In general, four characteristics need to be considered. These are radionuclidic purity, radiochemical purity, chemical purity and specific activity. A brief discussion of each item is given below.

The radionuclidic purity means the absence of any other radionuclide. This is achieved via the choice of a suitable nuclear process and energy range, combined with a clean chemical separation. The radionuclide 124I, for example can be produced via a large number of reactions [cf. 20]. However, its production is carried out today mainly using the 124Te(p, n)-reaction on a highly enriched 124TeO$_2$ target over the energy range of $E_p = 14 - 9$ MeV. Although the yield of this process is not very high, the resulting product is very pure (124I impurity < 0.1%).

The radiochemical purity means that the radiochemically separated product is in the form of one major chemical species. In the case of a solid target the separated radionuclide is generally brought into a desired radiochemical form through oxidation/reduction cycles. The radiochemical purity is generally tested by radiochromatographic methods, such as thin layer chromatography (TLC), e.g. in production of 52Fe [35], high performance liquid chromatography (HPLC), e.g. in production of 124I and 125I [cf. 30], and ion-exchange chromatography, e.g. in production of 86Y [cf. 36, 37]. A typical example relevant to 94mTc production [35] is shown in Fig. 6. The radiochromatographically separated fraction was dissolved in a small volume of 10⁻⁴ M NaOH and the solution subjected to TLC analysis. Two species were detected (Fig. 6a), one representing TcO_4^- ($R_f = 0.95$) and amounting to 80–90%, and the other a radiochemical impurity ($R_f \approx 0$) with the contribution of 5–10%. When the solution was passed through a small alumina column, it was purified; the technetium then occurred almost 100% in the chemical form of pertechnetate (Fig. 6b).
2. Emission of γ-rays accompanying the positron.

These may cause reduction of spatial resolution and blurring of the image. PET phantom measurements are therefore needed to demonstrate the suitability of a novel positron emitter for imaging purposes [cf. 38–44]. The high positron end-point energies of 66Ga, 82Br and 125I (in each case around 4 MeV), for example, limit the use of those radionuclides. Similarly the large number of γ-rays associated with several radionuclides, e.g. 82Br and 90Y, cause considerable distortion of images. However, with the development of efficient algorithms these effects can be often efficiently corrected [cf. 38–44]. Thus, prior to application, the correction factor needs to be determined individually for each novel positron emitter through PET phantom measurements.

3. Production of novel positron emitters

Several types of accelerators and nuclear reactions have been used for the production of novel radionuclides. A discussion is given below.

3.1 Production using low-energy reactions

Most of the novel positron emitters have been developed at laboratories where standard positron emission tomography facilities already existed. Since at PET centres generally only a small-sized cyclotron is available (with $E < 20$ MeV), almost all of the development work has been carried out using those cyclotrons. A brief overview of the production routes using low-energy reactions is given in Table 1 [cf. 13–19, 28–30, 34–37, 45–50, 53–92]. In each case, except for 45Ti, 55Mn, 72As, 89Zr and 90Nb, highly enriched target material was used. The suitable energy range, the thick target yield calculated from the excitation function, the expected radionuclidic impurities and the relevant references are given. For production, in general, solid target was used, except for the 38Ar($p,n)^{38}$K, 78Kr($p,\alpha)^{75}$Br, 78Kr($d,\alpha)^{75}$Br and 82Kr($p,n)^{82}$Rb reactions where gas target was employed. Technical development work has been performed in many institutes around the world but several of the radionuclides have been investigated only in one or two laboratories, with limited application. Radionuclides of more general interest are 55Co, 61Cu, 72As, 83Br, 89Zr, 94mTc and 125I. Their production methods have been well worked out [cf. 14, 34, 35, 68–70, 81–89] and radionuclidically pure products are available for medical development work. On the other hand, three novel positron emitters, namely 64Cu, 90Y and 125I, have become of wide interest and are now in great demand. Their production is discussed in some detail below.

The radionuclide 64Cu emits low-energy positrons, has no disturbing γ-ray and has a suitable half-life to study slow metabolic processes. The production route 64Ni($p,n)^{64}$Cu, originally suggested by the Jülich group [14], has been further developed in several other laboratories [cf. 45–50]. In a recent work sophisticated targetty calculations have been done [50]. Batches of about 40 GBq are now routinely produced. Several intermediate energy reactions have also been investigated for the production of 64Cu [for review cf. 8, 21], but the levels of impurities are higher.

2.6 Suitability of novel positron emitters for PET imaging

In contrast to standard positron emitters, PET imaging with novel or non-standard positron emitters is often associated with two major problems:

1. High end-point energy of the positron,
Table 1. Novel PET radionuclides produced at low-energy cyclotrons (E < 20 MeV).

<table>
<thead>
<tr>
<th>Radio-</th>
<th>Decay data*</th>
<th>Production data*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclide</td>
<td>$T_{1/2}$</td>
<td>I_{p} [%] E_{γ} [keV]</td>
</tr>
<tr>
<td>60Co</td>
<td>17.6 h 75.0</td>
<td>1498</td>
</tr>
<tr>
<td>65Cu</td>
<td>3.3 h 61.0</td>
<td>1215</td>
</tr>
<tr>
<td>66Cu</td>
<td>9.7 min 97.4</td>
<td>2926</td>
</tr>
<tr>
<td>64Ga</td>
<td>9.5 h 56²</td>
<td>4153</td>
</tr>
<tr>
<td>72As</td>
<td>26.0 h 87.8</td>
<td>3334</td>
</tr>
<tr>
<td>78Br</td>
<td>1.6 h 73.2</td>
<td>2008</td>
</tr>
<tr>
<td>86Br</td>
<td>16.2 h 58.2</td>
<td>3941</td>
</tr>
<tr>
<td>85Kr</td>
<td>4.6 h 27²</td>
<td>1026</td>
</tr>
<tr>
<td>82mRb</td>
<td>6.5 h 21¹</td>
<td>899</td>
</tr>
<tr>
<td>86Y</td>
<td>14.7 h 33²</td>
<td>2019</td>
</tr>
<tr>
<td>90Zr</td>
<td>78.4 h 22.3</td>
<td>897</td>
</tr>
<tr>
<td>96Nb</td>
<td>14.6 h 51.2</td>
<td>1500</td>
</tr>
<tr>
<td>94mTc</td>
<td>52 min 72.0</td>
<td>2470</td>
</tr>
<tr>
<td>120I</td>
<td>1.3 h 56.0</td>
<td>4593</td>
</tr>
<tr>
<td>125I</td>
<td>4.18 d 22.0</td>
<td>2137</td>
</tr>
</tbody>
</table>

Small amounts of 64Cu can also be produced using the deuteron induced reactions on 64Zn and 64Zn [cf., 51, 52]. Due to extensive demand for this radionuclide for radioimmunotherapy, attempts are underway to commercialize its production.

The radionuclide 124I is both a diagnostic and a therapeutic agent. It was originally produced via the 124Te(d, 2n)124I reaction [53]; accurate cross section data were measured later [54]. Several other reactions have also been investigated [cf., 20–24]. However, due to the high level of the 122I ($T_{1/2} = 60.0$ d) impurity associated with those processes, the method 122Te(p, n)123I suggested by our group [19], was found to be more suitable. With this process the 122I impurity level is < 0.1%. Today almost all the laboratories use this method [cf., 55–58]. It involves irradiation of a 122TeO$_2$ target and removal of radioiodine by a dry distillation process [cf., 30]. The yield is rather low and the product is somewhat expensive. Nonetheless, due to increasing demands for this radionuclide, efforts are underway to produce this radionuclide in larger quantities.

The production of 86Y was also investigated in detail at Jülich and the reaction 86Sr(p, n)86Y was found to be the most suitable [17, 36, 37]. The irradiated 86SrCO$_3$ target was dissolved in a small volume of conc. HCl and the separation of radioiodium was carried out, as mentioned above, by coprecipitation followed by ion-exchange [36]; later in combination with HPLC [37]. Four other methods of separation have also been applied: one involves electrolysis [59, 90, 91], the other one multiple column chromatography [60], the third one solvent extraction [cf., 61], and the fourth one a simple precipitation of the target material [62, 92]. The electrolytic method appears to be more promising. The radionuclide 86Y obtained has a purity of about 99%. The target material 86Sr is recovered easily and, since the suggested proton energy of 14 MeV is below the threshold of the 86Sr(p, n)86Y reaction, the recovered target material is

a: Decay data were mostly taken from ENSDF. For 64Cu, 78Br, 120I and 125I the I_{p} values were adopted from Refs. [25, 26].
b: Using highly enriched isotope as target material, unless monoisotopic or denoted otherwise.
c: I_{p} value has rather large uncertainty.
d: Experimental value.
free of any radioactive impurity. In contrast, the intermediate energy reactions used for the production of 86Y, e.g. 87Sr$(p, 2n)^{86}$Y and 88Sr$(p, 3n)^{86}$Y reactions, lead to high 87Y impurity (see below).

The radionuclide 86Y has become the most suitable positron emitter for quantification of radiation dosimetry of 86Y-labelled therapeuticals. The demand for this radionuclide is also increasing and so its large scale production is being planned at several centres.

3.2 Production using intermediate energy reactions

Despite the above discussed capability of low-energy nuclear reactions on highly enriched target isotopes to produce many novel positron emitters there are some radionuclides which can be produced exclusively or alternatively using intermediate-energy reactions. A list of those radionuclides is given in Table 2 [cf. 93–122]. Some of the examples are: 56Fe$(p, 2n)^{54}$Co, 56Se$(p, 2n)^{54}$Br, 111Cd$(p, 2n)^{109}$In, 125Te$(p, 2n)^{123}$I, 44Ar$(p, 3n)^{41}$K, 73As$(p, 3n)^{70}$Se, 73Br$(p, 3n)^{70}$Kr, 89Rb$(p, 3n)^{86}$Sr, 122Te$(p, 3n)^{119}$I, 53Mn$(p, 4n)^{50}$Fe and 69Zn$(p, an)^{66}$Cu. The $(p, 2n)$ reaction can generally be performed at a 30 MeV cyclotron. For other reactions, higher proton energies, in some cases up to 100 MeV, are needed. With the emission of a large number of nucleons, the nuclear data work becomes rather extensive. As a typical example, the excitation functions of several measured reactions in the interaction of protons with 85Rb [123] are shown in Fig. 7. Evidently, for the production of a desired radionuclide, a narrow energy window has to be chosen. In the example given above, the suitable energy range for the production of the novel positron emitter 85Sr amounts to $E_p = 38 \rightarrow 30$ MeV. Similarly, the radionuclide 82Sr (the parent nuclide used in the preparation of the standard 82Sr/85Rb generator system) is advantageously produced over the energy range of $E_p = 70 \rightarrow 50$ MeV.

Although in the intermediate energy regime mostly protons are available and are also preferably used, other charged particles like deuterons, 3He- and 6Li-particles may also induce a few useful reactions. For example, the intermediate energy deuterons could be useful in the production of 64Cu via the 64Zn(d, x)-process [100, 101] and 73Se via the 73As($d, 4n$)-reaction [102]. Similarly, 75Br and 76Br are still produced via the 75As(3He, $3n$)72Br and 75As(6He, 2n)76Br reactions, respectively, because of the difficulty in target construction while using enriched 76Se.

In some other cases, e.g. 52Fe, 77Kr, 83Sr, 86Y and 94mTc, the use of the 3He-particle beam is optional, the yield being lower than that using the corresponding (p, xn) reaction. As far as the 6Li-particle beam is concerned, to date the radionuclides 30P and 38K have been exclusively produced in GBq amounts by an (a, n) reaction [cf. 124, 125]. In case of non-availability of 40 MeV protons, the utility of the 30Ge(a, n)30Al reaction in the production of 73Se in GBq amounts has been also demonstrated [31]. The use of the 64Cu(a, x)62Ga and 64Sr(a, x)62Zr reactions to produce 64Ga and 62Zr is again optional [115, 133], since the yields of the commonly used 64Zn$(p, n)^{64}$Ga and 89Y$(p, n)^{89}$Zr processes are much higher. The possibility of production of 82Sr via the 82Kr$(a, 4n)^{82}$Sr reaction has also been investigated [126]. Though less effective, it could be an alternative method to the 85Rb$(p, 4n)^{82}$Sr process if the available proton energy is below 70 MeV. Very recently the 123Sb$(a, 3n)^{120}$I reaction was carefully studied [122] and it was concluded that irradiation of 123Sb with 45 MeV 6Li-particles, especially in a parasitic position, could lead to appreciable quantities of the radionuclide 123I.

The above discussion shows that intermediate energy cyclotrons have great potential for production of novel positron emitters. For most of the listed radionuclides, sufficient quantities for medical applications have been produced. However, a critical look at the various processes is necessary. The radionuclides 90P and 90K are short-lived and can only be locally used. The radionuclides 52Mn, 55Co, 64Cu, 76Br, 86Y, 94mTc and 122I produced via intermediate energy reactions (cf. Table 2 and also Refs. [127–130]) often contain larger radionuclidic impurities than in the case of low-energy production reactions, so that their preferred routes are those given in Table 1. This has been clearly demonstrated in the case of 55Co, 86Y and 122I. Whereas the 54Fe$(p, 2n)^{52}$Co [98], 88Sr$(p, 3n)^{86}$Y [116] and 122Te$(p, 3n)^{120}$I [12] reactions give much higher yields of the products than the low-energy
Table 2. Novel PET radionuclides produced using intermediate energy cyclotrons.

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>T1/2 [h]</th>
<th>Iy [%]</th>
<th>Eγ [keV]</th>
<th>Eβ [keV (%)]</th>
<th>Common production route</th>
<th>Energy range [MeV]</th>
<th>Calculated yield [MBq/μA h]</th>
<th>Radionuclidic impurity (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>58P</td>
<td>2.5 min</td>
<td>99.9</td>
<td>3245</td>
<td>2235 (0.06)</td>
<td>27Al(α, n)</td>
<td>28 → 10</td>
<td>740 –</td>
<td>82Cl(γ)</td>
<td>[93]</td>
</tr>
<tr>
<td>59K</td>
<td>7.6 min</td>
<td>99.4</td>
<td>2724</td>
<td>2168 (99.9)</td>
<td>82Cl(γ)</td>
<td>22 → 7</td>
<td>270 –</td>
<td>40Ar(α, 3n)</td>
<td>[94]</td>
</tr>
<tr>
<td>52Mn</td>
<td>5.6 d</td>
<td>29.6</td>
<td>576</td>
<td>1434 (100)</td>
<td>52Cr(He, t)</td>
<td>36 → 10</td>
<td>5.6</td>
<td>58Mn (0.8)</td>
<td>[96]</td>
</tr>
<tr>
<td>53Co</td>
<td>8.3 h</td>
<td>55.5</td>
<td>806</td>
<td>169 (99.2)</td>
<td>53Mn(γ, 4n)</td>
<td>100 → 60</td>
<td>22 – [53Fe (< 2)]</td>
<td>–</td>
<td>[97]</td>
</tr>
<tr>
<td>55Fe</td>
<td>17.6 h</td>
<td>76.0</td>
<td>1498</td>
<td>931 (75)</td>
<td>55Fe(He, 3n)</td>
<td>36 → 17</td>
<td>1.3 – [55Fe (< 0.01)]</td>
<td>–</td>
<td>[96]</td>
</tr>
<tr>
<td>54Cu</td>
<td>12.7 h</td>
<td>17.8</td>
<td>653</td>
<td>1346 (0.33)</td>
<td>54Fe(γ, 2n)</td>
<td>32 → 18</td>
<td>130 –</td>
<td>54Co (2)</td>
<td>[98]</td>
</tr>
<tr>
<td>60Ga</td>
<td>9.5 h</td>
<td>56'</td>
<td>4153</td>
<td>1039 (38)</td>
<td>60Zn(γ, an)</td>
<td>30 → 21</td>
<td>116 –</td>
<td>67Cu (< 0.1)</td>
<td>[99]</td>
</tr>
<tr>
<td>71Se</td>
<td>7.1 h</td>
<td>65.4</td>
<td>1651</td>
<td>67 (70)</td>
<td>71As(γ, 3n)</td>
<td>40 → 30</td>
<td>1.4 × 10^5 – [72,73]Se (< 0.2)</td>
<td>[102]</td>
<td></td>
</tr>
<tr>
<td>71Br</td>
<td>1.6 h</td>
<td>73</td>
<td>2008</td>
<td>286 (92)</td>
<td>71As(γ, 3n)</td>
<td>40 → 30</td>
<td>650 –</td>
<td>[73,74]Se (< 0.3)</td>
<td>[102]</td>
</tr>
<tr>
<td>76Br</td>
<td>16.0 h</td>
<td>58.2</td>
<td>3941</td>
<td>559 (74)</td>
<td>76Ga(γ, 2n)</td>
<td>36 → 10</td>
<td>37 – [76Zr (< 0.2)]</td>
<td>[73,74]Se (1.0)</td>
<td>[103]</td>
</tr>
<tr>
<td>81Kr</td>
<td>1.2 h</td>
<td>84</td>
<td>2041</td>
<td>157 (5.9)</td>
<td>81Kr(γ, 3n)</td>
<td>36 → 15</td>
<td>425 –</td>
<td>[81Kr (< 2)]</td>
<td>[110]</td>
</tr>
<tr>
<td>85Rb</td>
<td>4.6 h</td>
<td>27'</td>
<td>1026</td>
<td>190 (64.3)</td>
<td>85Rb(γ, 3n)</td>
<td>40 → 30</td>
<td>7.4 × 10^5</td>
<td>[82Rb (7)]</td>
<td>[111]</td>
</tr>
<tr>
<td>83Sr</td>
<td>32.4 h</td>
<td>26'</td>
<td>1254</td>
<td>763 (30)</td>
<td>83Sr(γ, 3n)</td>
<td>37 → 30</td>
<td>160 –</td>
<td>[82Sr (0.2)]</td>
<td>[112]</td>
</tr>
<tr>
<td>86Y</td>
<td>14.7 h</td>
<td>33'</td>
<td>2019</td>
<td>1077 (85.2)</td>
<td>86Kr(γ, 3n)</td>
<td>18 → 10</td>
<td>5 – [82Sr (0.2)]</td>
<td>[113]</td>
<td></td>
</tr>
<tr>
<td>109Zr</td>
<td>78.4 h</td>
<td>22.3</td>
<td>897</td>
<td>909 (100)</td>
<td>109Zr(γ, 3n)</td>
<td>24 → 12</td>
<td>190 –</td>
<td>87Y (12)</td>
<td>[117]</td>
</tr>
<tr>
<td>115mTe</td>
<td>52 min</td>
<td>72.0</td>
<td>2470</td>
<td>871 (94.2)</td>
<td>115mTe(γ, 2n)</td>
<td>36 → 25</td>
<td>81 – [115mTe (< 0.8)]</td>
<td>[119]</td>
<td></td>
</tr>
<tr>
<td>115In</td>
<td>1.1 h</td>
<td>62'</td>
<td>2300</td>
<td>658 (98)</td>
<td>115In(γ, 2n)</td>
<td>23 → 16</td>
<td>6 × 10^5 – [115In (0.3)]</td>
<td>[119]</td>
<td></td>
</tr>
<tr>
<td>120I</td>
<td>1.3 h</td>
<td>56.0</td>
<td>4593</td>
<td>560 (73)</td>
<td>120I(γ, 3n)</td>
<td>37 → 32</td>
<td>3.6 × 10^5 – [120I (0.2)]</td>
<td>[120]</td>
<td></td>
</tr>
<tr>
<td>125I</td>
<td>4.18 d</td>
<td>22.0</td>
<td>2137</td>
<td>1691 (10.4)</td>
<td>125Te(γ, 2n)</td>
<td>22 → 15</td>
<td>93 – [125I (0.7)]</td>
<td>[121]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>723 (10.0)</td>
<td></td>
<td>125I(γ, 3n)</td>
<td>45 → 30</td>
<td>16 – [125I (2.5)]</td>
<td>[122]</td>
<td></td>
</tr>
</tbody>
</table>

a: Decay data were mostly taken from ENDF/B. For 60Cu, 76Br, 120I and 125I the Iy values were adopted from Refs. 25, 26.
b: Using highly enriched isotope as target material.
c: Iy value has rather large uncertainty.

3.3 Production of novel parent generator radionuclides

Two standard positron emitters, namely 68Ga (T1/2 = 68 min) and 82Rb (T1/2 = 1.3 min) are routinely available via the generator systems 68Ge(271 d)/68Ga and 82Rb(253.3 d)/82Rb (see Introduction). For production of the parent radionuclide, a high intensity intermediate energy accelerator is needed. Presently the supply of both 68Ga and 82Sr appears to be adequate. However, due to enhancing interest in 68Ga-radiopharmaceuticals, more efforts related to 68Ga production and an efficient generator column preparation may soon be called for. Furthermore, since the half-life of 68Ga is not very short, its direct pro-
Table 3. Production of novel positron emitters via generator systems.

<table>
<thead>
<tr>
<th>Parent nuclide $(T_{1/2})$</th>
<th>Nuclide</th>
<th>Decay data of daughter</th>
<th>Production method of parent</th>
<th>Energy range [MeV]</th>
<th>Theor. yield of parent [MBq/µA h]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>44Ti (60.4 a)</td>
<td>44Sc</td>
<td>$T_{1/2}$: 3.9 h; I_β^+: [94.3; 1474; 1157 (99.9)]</td>
<td>45Sc(p, 2n)</td>
<td>E_{γ}: E_{β^+}: 32 → 18</td>
<td>$\sim 3 \times 10^3$</td>
<td>[141]</td>
</tr>
<tr>
<td>62Fe (8.3 h)</td>
<td>52mMn</td>
<td>$T_{1/2}$: 21 min; I_β^+: [95.0; 2633; 1434 (98.2)]</td>
<td>55Mn(p, 4n)</td>
<td>E_{γ}: E_{β^+}: 100 → 60</td>
<td>22</td>
<td>[97]</td>
</tr>
<tr>
<td>62Zn (9.1 h)</td>
<td>62Cu</td>
<td>$T_{1/2}$: 9.7 min; I_β^+: [97.4; 2926; 1173 (0.34)]</td>
<td>65Cu(p, xn)</td>
<td>E_{γ}: E_{β^+}: 30 → 18</td>
<td>230</td>
<td>[133]</td>
</tr>
<tr>
<td>72Sc (8.5 d)</td>
<td>72As</td>
<td>$T_{1/2}$: 26.0 h; I_β^+: [87.8; 3334; 834 (79.5)]</td>
<td>75As(p, 4n)</td>
<td>E_{γ}: E_{β^+}: 45 → 35</td>
<td>8</td>
<td>[102]</td>
</tr>
<tr>
<td>122Xe (20.1 h)</td>
<td>123I</td>
<td>$T_{1/2}$: 3.6 min; I_β^+: [77.0; 3100; 564 (18)]</td>
<td>127I(p, 6n)</td>
<td>E_{γ}: E_{β^+}: 65 → 43</td>
<td>230</td>
<td>[135]</td>
</tr>
<tr>
<td>148Nd (3.4 d)</td>
<td>148Pr</td>
<td>$T_{1/2}$: 3.4 min; I_β^+: [51.0; 2366; 1596 (0.5)]</td>
<td>151Pr(p, 2n)</td>
<td>E_{γ}: E_{β^+}: 30 → 15</td>
<td>210</td>
<td>[139]</td>
</tr>
</tbody>
</table>

a: The production process was investigated only up to 45 MeV.

Production via the 65Zn(p, n)-reaction is also gaining some importance.

Some other generator systems have also been proposed (for a review of production routes cf. [131, 132]). A few interesting systems for furnishing some novel positron emitters are listed in Table 3. They are discussed in some detail below. The systems 52Fe/52mMn, 62Zn/62Cu and 122Xe/123I were proposed rather long time ago. Out of those, more detailed studies have been carried out only on the system 62Zn/62Cu. In general not much progress has been reported regarding their further applications. This is mainly due to the short half-lives of the parents, combined with the difficulties in their production. Although the 62Zn parent nuclide can be produced with 30 MeV protons [cf. 133], the production of 52Fe and 122Xe demands higher energies [97, 135, 136]. Another reason for the limited use of those systems is the relatively short half-life of the daughter positron emitter.

The generator systems 72Sc/72As and 148Nd/148Pr have great potential, the former for studying the biological behaviour of arsenic and the latter as an in vivo generator, if the Auger electron emitter 148Nd is used in endoradiotherapy. The yield of the parent radionuclide 72Sc is rather low [cf. 102, 103]. Nonetheless two generator systems for obtaining the daughter 72As, one based on distillation [137] and the other one on solid phase extraction [138] have been developed. With regard to 148Nd, the (p, 2n) and (3He, xn) reactions on 141Pr and 60Ce, respectively, have been investigated in detail [cf. 139]. As expected, the former reaction leads to a much higher yield. A generator system based on physico-chemical transitions in 148Pr complexes has also been described [cf. 140].

The generator system 45Ti/45Sc has received some attention in recent years. Due to the long half-life of 60.4 years of the parent, it is rather difficult to produce. Furthermore, there may be some regulatory problems in the introduction of this very long-lived system. Nonetheless, from the scientific and application point of view (see below), it appears worthwhile to develop it further. The suggested production reaction is 45Sc(p, 2n)44Ti and the excitation function, recently measured [141], is reproduced in Fig. 8. Evidently the cross section is not very high, which is qualitatively understandable, because the emission of two neutrons in the interaction of a proton with a relatively light mass nucleus, such as 45Sc, is not very favoured. For comparison the excitation function of the 68Ga(p, xn)64Ge used to induce the parent activities for preparation of the radionuclide generator systems 45Ti/45Sc and 45Ga/64Ga. The data for the former reaction are reproduced from Ref. [141] and those for the latter from Ref. [142].
article; therefore, only the three major areas of application are briefly mentioned.

1. Study of slow metabolic processes, e.g. protein synthesis, cell proliferation, etc.
2. Quantification of SPECT-radiopharmaceuticals.
3. Quantification of targeted therapy.

Some of the important positron emitters under the first category are 52Fe ($T_{1/2} = 8.3 \text{ h}$), 58Co ($T_{1/2} = 17.6 \text{ h}$), 72As ($T_{1/2} = 56.0 \text{ h}$), 75Se ($T_{1/2} = 7.1 \text{ h}$), and 124I ($T_{1/2} = 4.18 \text{ d}$). When attached to proper organic compounds, they could be used for detection of tumor, neuronal damage or organ functional deficiency. The slow uptake kinetics by an organ can be conveniently and quantitatively followed using a longer lived positron emitter and positron emission tomography.

With regard to quantification of SPECT-radiopharmaceuticals, an analogue approach is needed, which involves the use of a positron emitting nuclide of the chemical element of the SPECT radionuclide. Thus for quantification of a 99mTc-radiopharmaceutical, labelling can be done using the positron emitting radionuclide 99mTc ($T_{1/2} = 52 \text{ min}$) followed by a PET measurement. This way the 99mTc-based SPECT flow agent terboroxime (CardioTec) was labelled with 99mTc for quantitative PET investigation [cf. 146]. Similarly, 99mTc has been applied in studies related to changes in dopamine transporter concentrations (e.g. with TRODAT-1) [146].

A very significant application of non-standard longer lived positron emitters is in therapy planning. Since dosimetry in endotherpy with purely β^- emitting radionuclides like 89Y ($T_{1/2} = 2.7 \text{ d}$) has a rather large uncertainty, a mixture of the β^+ emitter 86Y ($T_{1/2} = 14.7 \text{ h}$) and the therapeutic radionuclide 99mY was used [147]. The uptake kinetics were determined by PET imaging of 99mY, and the results were used in an accurate dosimetric calculation. This concept is now finding increasing application. Another radionuclide investigated is 83Sr ($T_{1/2} = 32.2 \text{ h}$) which can be combined with the purely β^- emitting therapeutic radionuclide 89Sr ($T_{1/2} = 50.0 \text{ d}$). The dosimetry in the case of the most commonly used therapeutic radionuclide 131I ($T_{1/2} = 8.0 \text{ d}$) is fairly well established. However, if a PET study using 124I precedes the use of 131I, the dosimetric calculations can be done even more precisely. A further advantage of 124I is that it could itself be used as a therapeutic agent. Because of the combination of PET and endoradiotherapy, allowing precise dosimetry, this radionuclide is superior to the commonly used reactor radionuclide 131I. The cost of 124I, however, is higher than that of 131I.

In recent years, the importance of metallic positron emitters in quantification of radioimmunotherapy has been increasing. Radionuclides such as 64Cu ($T_{1/2} = 2.6 \text{ d}$), 68Ga ($T_{1/2} = 2.7 \text{ d}$) and 11In ($T_{1/2} = 2.8 \text{ d}$) can be attached to monoclonal antibodies (mAB) leading to therapeutic effects through interactions of β^+ particles or Auger electrons with the tissue. The use of the respective positron emitting radionuclides 64Cu ($T_{1/2} = 12.7 \text{ h}$), 68Ga ($T_{1/2} = 67.6 \text{ min}$) and 11In ($T_{1/2} = 1.1 \text{ h}$) allows PET imaging for quantification purposes. In particular, the radionuclide 64Cu (with multiple decay mode) has proved to be very suitable for combining PET imaging and targeted therapy [cf. 148].

5. Conclusions and perspectives

Radionuclide production technology at cyclotrons has been well developed, especially for short-lived organic positron emitters. In this regard, all components of the technology, i.e., special purpose cyclotron, high current irradiation target and automated or remotely controlled chemical processing unit can now be commercially purchased. Furthermore, two radionuclide generator systems providing short-lived positron emitters (68Ga and 82Rb) are supplied by several companies, though the parent nuclides are produced through intermediate energy nuclear reactions only at a few large research centres.

In contrast to the commonly used positron emitters, a few other longer lived positron emitting radionuclides, having passed the stage of laboratory scale production and clinical evaluation, are now in great demand, but are not easily available. A few examples are 64Cu, 86Y and 124I. They are produced using highly enriched target material but low energy cyclotrons, whereby the radionuclidic purity is high but the yield is low. Efforts are therefore underway in commercially oriented laboratories to increase the production yields of those radionuclides and thus to ensure their availability on a broader scale.

The number of positron emitters potentially interesting for medical applications is relatively large. They are research type radionuclides and the development work needed is rather heavy, calling for investigations in many directions, starting from nuclear data measurements, proceeding through high current target construction and chemical processing, and leading up to quality control of the final product. Similar to the three novel positron emitters mentioned above, in many cases a combination of isotopically enriched target material and a small-sized cyclotron may be sufficient for production. However, for production of many new nuclides high intensity intermediate energy cyclotrons have great potential. This appears to be particularly true for metallic positron emitters used in combination with a longer lived β^+ emitter or Auger electron emitter for radioimmunotherapy. The four pairs, namely 64Sc/65Sc, 64Cu/65Cu, 68Ga/68Ga and 111In/112In, could be developed further with the availability of a new generation high power accelerator having proton energies up to 100 MeV. In general it is concluded that the field of cyclotron production of medical radionuclides is flourishing and that many new impulses are expected within the next few years, especially with regard to the use of novel positron emitters and therapeutic radionuclides.

Acknowledgment. This article summarizes research and development work on novel positron emitters carried out over many years. The author is grateful to his research group for painstaking efforts as well as to Prof. G. Stöcklin and Prof. H. H. Coenen, the former and present directors of the Institute of Nuclear Chemistry of the Research Centre Jülich, for their continuous support and encouragement.

References

2. Quaim, S. M., Clark, J. C., Crouzel, C., Guillaume, M., Helmeke, H. J., Nebeling, B., Pike, V. W., Stöcklin, G.: PET radionuclide production. In: Radiopharmaceuticals for Positron Emission To-

Development of novel positron emitters for medical applications: nuclear and radiochemical aspects

91. Hohn, A., Coenen, H. H., Qaim, S. M.: Excitation functions of 120Te($d, x\alpha$)117,119mI reactions from threshold up to 13.5 MeV: Comparative studies on the production of 117I. Appl. Radiat. Isot. 52, 523–529 (2000).

95. Nagatsu, K., Kobodera, A., Suzuki, K.: Excitation function measurements of 40Ar($p, 3n\alpha$)36K. 40Ar($p, 2p\alpha$)38Cl and 40Ar($p, 2p\alpha$)38Cl reactions. Appl. Radiat. Isot. 50, 389–396 (1999).

104. Fülöps, M., Novgorodov, A. F., Rösch, F., Qaim, S. M.: Excitation functions of 110mHe($p, x\alpha$)106mSe and 110mHe($p, x\alpha$)106mSe processes from threshold up to 35 MeV: possibility of production of 106mTe in high radioactive purity using a thermochromatographic separation technique. Radiochim. Acta 65, 215–221 (1994).

106. Rösch, F., Qaim, S. M., Novgorodov, A. F., Tsai, Y.-M.: Production of positron-emitting 110mIn via the 110mCd($He, 3n$)110mSn \rightarrow 110mIn process. Appl. Radiat. Isot. 48, 19–26 (1997).

Bereitgestellt von | Forschungszentrum Jülich
Angemeldet
Heruntergeladen am | 24.04.18 15:25
Development of novel positron emitters for medical applications: nuclear and radiochemical aspects

