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Abstract Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified

viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with

enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been

assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor

efficacy. In this work, we review the use of wild-type viruses in OVTand the strategies for OV genetic modification.

We also review and discuss the combinations of OVT with other immunotherapies.

Keywords immunotherapy; oncolytic virus; genetic modification; immune checkpoint blockade; chimeric antigen receptor T

cell

Introduction

Immunotherapy is an important antitumor therapy that

involves stimulating or enhancing host antitumor immune

response to kill and clear tumor cells [1,2]. Oncolytic

virotherapy (OVT) is a new antitumor immunotherapy that

uses natural or genetically modified viruses to selectively

infect and kill tumor cells [3]. OVT has various advantages

over current antitumor therapies. Oncolytic viruses (OVs)

can selectively replicate in tumor cells with high safety [4]

and carry foreign genes, such as therapeutic and

immunostimulatory genes [5] for specific expression at

tumor sites [6]. Some OVs can cross the blood–brain

barrier (BBB) to kill brain tumor cells, such as reovirus [7]

and parvovirus H-1 (H-1PV) [8], and OVs can turn “cold”

tumors into “hot” tumors, thereby increasing the cellular

sensitivity to other immunotherapies [9,10]. To date, many

OVs, including DNA viruses, such as adenovirus (AdV)

[11,12], vaccinia virus (VACV) [13,14], herpesvirus

[15,16], and parvovirus [17] and RNA viruses, such as

reovirus [18,19], Newcastle disease virus (NDV) [20], and

measles virus (MV) [21] (Table 1) have been evaluated for

cancer treatment (Fig. 1).

In the last century, scientists found that some viruses,

such as NDV [32], MV [33], and parvovirus [34], can

naturally kill tumor cells. However, during this period,

OVs were derived from wild-type or naturally attenuated

virus strains, leaving considerable room for improvement

in their safety and antitumor effects [35,36]. In the 1990s,

the emergence of recombinant DNA technology acceler-

ated the development of OVT. Genetically modified OVs

showed enhanced tumor targeting and killing efficiency

against tumor cells with negligible damage to normal cells.

The first genetically modified OV was herpes simplex

virus (HSV)-1 developed by Martuza et al. in 1991

[37,38]. Oncorine (H101), a genetically modified oncolytic

adenovirus (OAd), was approved by the State Food and

Drug Administration (SFDA, now the National Medical

Products Administration (NMPA)) in 2005 for the

treatment of nasopharyngeal carcinoma in China [39,40].

Talimogene laherparepvec (T-VEC; brand name Imlygic)

was approved by the US Food and Drug Administration

(FDA) and European Medicines Agency (EMA) for the

treatment of advanced melanoma in 2015 [41,42].

Researchers have recently attempted to combine OVT

with other antitumor therapies, including chemotherapy
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[43–45], radiotherapy [46,47], small molecules [48,49],

and other immunotherapies [50,51], to achieve increased

therapeutic effects against tumors. Among these treat-

ments, the combination of OVT with other immunothera-

pies, especially regimens involving immune checkpoint

inhibitors (ICIs) and chimeric antigen receptor-engineered

T cell (CAR-T cell) immunotherapies, has shown promise

as a cancer treatment [51,52]. OVs can “heat up” tumors,

thus enhancing their sensitivity to ICIs [53]. OVs can also

piggyback CAR-T cells in a manner that enables them to

overcome the immunosuppressive tumor microenviron-

ment (TME) and increase their antitumor activity against

solid tumors [54]. Recently, natural OVs have been

continuously identified and widely applied in OVT. The

renewed development of genetically modified OVs with

enhanced tumor-targeting ability, antitumor efficacy, and

safety has further promoted the development of OVT. In

this work, we review the applications of wild-type viruses

and the modifications for improving the tumor-targeting

ability, antitumor efficacy, and safety of OVs. We also

review and discuss the important research directions for

OVT combination with other immunotherapies, including

immune checkpoint blockade (ICB) and CAR-T cell

therapies.

Wild-type OVs in oncolytic virotherapy

Some wild-type OVs have a natural tropism for tumor cells

based on their capacity to recognize highly expressed

receptors on tumor cell surfaces or based on abnormal

pathways or products in tumor cells, such as a defect in the

interferon (IFN) signaling pathway and the activated Ras

pathway. Among them, several representative OVs, such

as coxsackievirus [55], parvovirus [56], and reovirus [57],

have been widely reported.

Coxsackievirus A21 (CVA21) is a promising OV that

depends on highly expressed receptor molecules on the

surface of tumor cells, intercellular adhesion molecule-1

(ICAM-1, also named CD54), and decay-accelerating

factor to preferentially enter, replicate in, and kill tumor

cells. CVA21 exhibited antitumor efficacy in multiple

cancers, including melanoma, prostate cancer, and multiple

myeloma [30]. A CVA21-based OV (CAVATAK®) has

been assessed in clinical trials for the treatment of

malignant melanoma, bladder cancer [58], and uveal

melanoma with liver metastases [59]. The results revealed

that CAVATAK® has a good safety profile and can

stimulate systemic antitumor immunity for the treatment

of patients with melanoma [60]. CAVATAK® can also

Fig. 1 Schematic of some oncolytic viruses for cancer treatment. Many viruses, including double-stranded DNA viruses, such as AdV, herpes

simplex virus (HSV), and VACV; single-stranded DNA viruses, such as parvovirus; negative-sense single-stranded RNA viruses, such as Newcastle

disease virus (NDV), measles virus (MV), and vesicular stomatitis virus (VSV); positive-sense single-stranded RNA viruses, such as poliovirus and

coxsackievirus; and double-stranded RNA viruses, such as reovirus, have been used in cancer treatment. The terms naked/enveloped are used to

describe types of virus; high/moderate/low describes the genomic capacities of OVs.
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induce immune cells to infiltrate the TME, indicating that

its use in combination with other antitumor immunothera-

pies can increase antitumor efficacy.

Wild-type H-1PV exhibits tumor selectivity, mainly

depending on tumor-specific abnormal replication and

transcription factors and the defective type I IFN-mediated

antiviral pathway in tumor cells [17]. H-1PV nonstructural

protein 1 (NS1) is important for promoting tumor cell

death. Preclinical studies suggested that H-1PV can

effectively kill various tumor cells [56], including

pancreatic ductal adenocarcinoma cells and glioma cells

[61]. In particular, ParvOryx (wild-type H-1PV) showed an

excellent safety profile in phase I/IIa clinical trials [8].

Wild-type reovirus can also selectively replicate in tumor

cells in association with the abnormally activated Ras

pathway in tumor cells [62]. Reovirus can cross the BBB to

kill brain tumor cells through intravenous administration

[7]. Reolysin® (pelareorep) is a formulation of the reovirus

serotype 3 Dearing strain and is being assessed in clinical

trials for the treatment of multiple myeloma [63],

pancreatic adenocarcinoma [64], and melanoma [65].

Reolysin® has received an orphan drug designation from

the US FDA and EMA for the treatment of gastric and

pancreatic cancers [31]. In the treatment of multiple

myeloma, the single use of Reolysin® did not show

obvious antitumor activity [66]. However, when Reoly-

sin® was combined with chemotherapy, such as carbopla-

tin and paclitaxel, it exhibited improved therapeutic

efficacy with an objective response rate (ORR) of up to

21% in the treatment of malignant melanoma [19].

Many alphaviruses, such as Semliki Forest virus (SFV)

[67,68], Sindbis virus (SINV) [69], and M1, exhibit

antitumor activity. M1 is a recently identified Getah-like

alphavirus from culicine mosquitoes [70,71]. M1 has

tumor selectivity related to zinc-finger antiviral protein

(ZAP) deficiency in tumor cells and therefore can

selectively replicate in tumor cells and induce apoptosis

of the infected tumor cells by inducing irreversible

endoplasmic reticulum (ER) stress [72]. M1 showed high

tumor cell selectivity and tumor-killing activity during

in vitro and in vivo experiments [73]. Moreover, its

antitumor activity can be considerably increased by

targeted inhibitors, such as valosin-containing protein

(VCP) inhibitor and DNA-dependent kinase (DNA-PK)

inhibitor [74,75], suggesting that combining M1 with these

inhibitors is an important strategy.

Genetic modifications of OVs

Genetic modification has accelerated the development of

OVT [76]. In 1991, the first study reported on a genetically

engineered OV, that is, an HSV with thymidine kinase

(TK) deletion [38]. Many genetically modified OVs have

been evaluated in clinical trials, as shown in Table 2; such

OVs include AdV, VACV, and HSV. OVs mainly

genetically modified through the deletion of virulence

genes to improve the safety and insertion of foreign genes

and improve antitumor efficacy or tumor targeting ability

of OVs [77]. The genetic modifications of OVs can be

Table 1 Characteristics of DNA virus- and RNA virus-derived OVs

Virus type Virus Family
Natural

host
Receptor Replication site

Common used virus

strain or type
References

DNA virus Adenovirus Adenoviridae Human CAR, integrin Nucleus,

cytoplasm

Ad5 [22]

Vaccinia virus Poxviridae Human Unknown Cytoplasm Lister, Wyeth, WR [23]

Herpesvirus Herpesviridae Human HVEM,

nectin

Nucleus,

cytoplasm

HSV-1 [24]

Parvovirus Parvoviridae Rat SARs Nucleus,

cytoplasm

H1-PV [25]

RNA virus Measles virus Paramyxoviridae Human CD46, SLAM Cytoplasm Edmonston vaccine

strain

[26]

Newcastle

disease virus

Paramyxoviridae Chicken Unknown Cytoplasm HUJ, MTH-68/H [27]

Vesicular

stomatitis

virus

Rhabdoviridae Pigs, cattle,

horses

LDLR Cytoplasm Recombinant Indiana

strain

[28]

Poliovirus Picornaviridae Human CD155 Cytoplasm Sabin vaccine strain [29]

Coxsackievirus Picornaviridae Human ICAM-1,

DAF

Cytoplasm CVA21, CVB3 [30]

Reovirus Reoviridae Human Unknown Cytoplasm Reovirus-serotype 3 [31]

CAR, coxsackie adenovirus receptor; HVEM, herpesvirus entry mediator; SARs, sialic acid residues; SLAM, signaling lymphocytic activation molecule;
LDLR, low-density lipoprotein receptor; ICAM-1, intercellular adhesion molecule 1; DAF, decay accelerating factor.
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classified into four categories according to purpose:

(1) enhancing tumor targeting, (2) improving the safety

of OVs, (3) increasing antitumor efficacy, and

(4) monitoring replication status of OVs in vivo [78]

(Fig. 2).

Enhancing tumor targeting

The tumor tropism of OVs is an important feature to ensure

that they selectively replicate in and specifically kill tumor

cells [79]. Wild-type OVs generally depend on tumor-

specific cellular receptors or abnormal intracellular path-

ways and products to enter and selectively replicate in

tumor cells and therefore can be optimized through genetic

modifications to enhance their tumor targeting. Many

genetically engineered OVs with enhanced tumor cell

targeting ability have been developed on the basis of the

tumor-specific high expression of certain receptors and the

abnormal intracellular signaling pathways and metabolic

status [80].

Engineered tumor tropism targeting specific tumor surface

receptors

The nonspecificity, low affinity, or low expression of

natural viral receptors on tumor cells can limit the

application of wild-type OVs. Thus, OVs should be

genetically modified to increase their binding affinity to

specifically expressed receptors on tumor cells and

increase their efficiency in entering and targeting tumor

cells.

Inserting targeting peptides can improve the entry

efficiency of OVs [81]. For example, adenovirus type 5

(Ad5) is a widely used OV vector, but its receptor,

coxsackie adenovirus receptor (CAR), is not highly

expressed in many tumor cells [22]; this phenomenon

leads to the low entry efficiency of OAd. Through genetic

engineering, an arginine–glycine–aspartic acid (RGD)

motif was inserted into the fiber knob domain of Ad5 to

generate a newly modified virus, which no longer depends

on CAR to enter tumor cells and instead relies on integrins

that are highly expressed on tumor cells, to enter tumor

cells [82]. Other studies inserted the fiber knob domain

derived from adenovirus type 3 (Ad3) into the backbone of

Ad5 (also named serotype switching) to allow its entrance

to the tumor cells by utilizing the highly expressed Ad3

receptor (desmoglein 2 as the primary receptor) on tumor

cells to enter the tumor cells [79]. A similar modification

involves inserting the fiber knob domain of adenovirus

type 35 (Ad35) into the backbone of Ad5, allowing the

OVs to utilize the Ad35 receptor (CD46 as the primary

receptor) to enter tumor cells [81].

Some envelope glycoproteins (G) from other virus

families can be inserted to improve tumor cell targeting.

Betancourt et al. [83] reported replacing the G protein of

vesicular stomatitis virus (VSV) with human immunode-

ficiency virus type 1 (HIV-1) gp160 to generate a new OV

(VSV-gp160G); this method abandons the natural tissue

tropism of VSV and specifically targets the new receptor,

CD4. VSV-gp160G does not damage normal CD4 T cells;

however, it exhibits potent killing activity against CD4-

expressing tumor cells, such as adult T cell leukemia/

lymphoma cell lines, in association with defective antiviral

immune pathways in these tumor cells. A gene encoding a

single-chain antibody (scAb) targeting human epidermal

growth factor receptor 2 (HER2) was incorporated into

HSV-1, making it fully targeted to tumor cells expressing

HER2, and HER2-negative cells were left unharmed [84–

86]. This modification also enhanced safety. Insertions of

scAb targeting tumor-surface antigens, such as epithelial

cell adhesion molecule (EpCAM) [87] and human

carcinoembryonic antigen (CEA) [88], have been reported

to improve the tumor targeting of OVs. Shibata et al. [87]

reported the insertion of the scAb targeting EpCAM

(scEpCAM) into the HSV-1 genome. The engineered virus

is highly specific to the EpCAM expressed on the surface

of tumor cells to enter tumor cells; it can efficiently and

specifically kill tumor cells expressing EpCAM. This

strategy can improve the tumor targeting of OVs.

However, these OVs have not yet entered clinical trials,

and their clinical efficacy needs to be further confirmed.

Engineered tumor tropism targeting the intracellular

abnormalities of tumor cells

The various signaling pathways and the metabolic status of

tumor cells are altered compared with those of normal cells

[89]. Many features of tumor cells can be utilized by OVs

to generate tumor selectivity [90]; such features include

defective antiviral pathways, such as a defective type I IFN

signaling pathway [91]; the loss of expression of tumor

suppressor genes, such as loss of the retinoblastoma gene

[92]; and elevated signaling pathways, such as a

transformed Ras pathway [93]. Therefore, targeting these

abnormal pathways or products in tumor cells, deleted

virulence factors and inserted tumor-specific promoters or

microRNA-targeting sequences (miRNA-TSs) of OVs can

regulate OVs specifically replicating in tumor cells

[94,95]. Deletion of virulence factors can improve the

safety of OVs, which is discussed in the next section on the

safety of genetically modified OVs. This section intro-

duces the strategies for inserting tumor-specific promoters

or miRNA-TSs to improve the tumor targeting of OVs.

Insertion of tumor-specific promoters, such as the

human telomerase reverse transcriptase (hTERT) promoter

[96] and the prostate-specific antigen (PSA) promoter [97],

can improve the tumor selectivity of OVs [3], which will,

in turn, drive the expression of viral genes in tumor cells

Qiaoshuai Lan et al. 163



Fig. 2 Genetic modifications of OVs. (A) Genetic modifications for improving tumor targeting of OVs. Entry targeting: serotype switching and

insertion of a tumor-targeting peptide, glycoproteins from other viruses, and single-chain antibodies (scAb) targeting tumor-associated antigens can

allow OVs to target tumor surface molecules and enter tumor cells. Post-entry targeting: insertion of tumor-specific promotors can promote virus

replication in tumor cells, while insertion of miRNA target sequences can restrict virus replication in normal cells. (B) Genetic modifications that

enhance OV safety. Deletion of virulence genes can reduce the risk of OV infections of normal cells and enhance safety. (C) Genetic modifications to

augment the antitumor efficacy of OVs. Antitumor efficacy can be augmented by inserting foreign genes, such as genes encoding immunostimulatory

molecules/cytokines, suicide genes (pro-apoptotic proteins and prodrug-activating enzymes), extracellular matrix (ECM)-degrading enzymes, and

anti-vasculature molecules. (D) Genetic modifications to monitor OV replication. Reporter genes, such as green fluorescent protein (GFP), Renilla

luciferase (Rluc), sodium–iodide symporter (NIS), and human norepinephrine transporter (NET), can be inserted to monitor OV replication.
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but not in normal cells. As an example, hTERT is highly

expressed in most tumor cells but absent in normal cells

[98]; hence, the inserted hTERT promoter in OVs can

initiate viral gene expression and replication in tumor cells

with high hTERT expression [99]. OBP-301, an OAd with

an inserted hTERT promoter, can replicate in tumor cells

specifically, such as renal cell carcinoma cells and prostate

cancer cells [100].

Different from the mechanisms of action of inserted

tumor-specific promoters, inserted miRNA-TSs can lead to

the viral RNA degradation through miRNAs in normal

tissues; therefore, engineered OVs can specifically repli-

cate in tumor cells with low miRNA expression [101,102].

For example, targeting downregulated miRNA-7 in

glioblastoma multiforme (GBM), researchers constructed

a miRNA-7-sensitive oncolytic MV that specifically

infects glioma cells without damaging normal cells [103].

Improving the safety of OVs

The safety of OVs is important for their clinical use. Some

natural viruses have the potential to kill tumor cells but can

also damage normal cells. Numerous studies have

suggested that the deletion of some genes necessary for

viral replication in normal cells or virulence genes can

improve OV safety in normal cells and maintain their

oncolytic capacities; such genes include TK in oncolytic

VACV [104,105] and ICP34.5 in oncolytic HSV-1

[106,107].

The viral products encoded by such genes are required

for the replication of some OVs in normal cells, and they

are abundant in tumor cells. Therefore, OVs can utilize

tumor cell products to selectively replicate, but they cannot

replicate in normal cells because relevant products are

lacking. For example, TK, an important enzyme for

nucleotide synthesis, is highly expressed in tumor cells

[108] but only expressed at a low level in normal cells. TK

encoded by VACV is essential for viral replication in

normal cells. The deletion of the TK gene is an important

genetic modification of oncolytic VACV [109,110] to

improve its safety. Oncolytic VACV with TK deletion can

replicate in tumor cells but not in normal cells. Therefore,

TK deletion can increase the safety of oncolytic VACV.

Some oncolytic VACVs, such as GL-ONC1 and Pexa-Vec

(JX-594), currently being assessed in clinical trials have

TK deletions. GL-ONC1 has been assessed in clinical trials

for the treatment of patients with peritoneal carcinomatosis

(phase I/II) or cancer of the head and neck (phase I). Phase

I clinical trial of GL-ONC1 for the treatment of peritoneal

carcinomatosis [13,111] showed its improved safety but

also the emergence of minor adverse events. Phase II

clinical trial results for Pexa-Vec showed that it could

improve the survival of patients with liver cancer [14];

thus, this OV has now entered phase III clinical trials for

the treatment of hepatocellular carcinoma.

Wild-type HSV-1 can cause latent infections in normal

neurons, but the deletion of its neurovirulence factor

(ICP34.5) can enhance its safety [112]. ICP34.5 antag-

onizes protein kinase R (PKR)-mediated immune response

and is essential for infecting neurons. Oncolytic HSV with

ICP34.5 deletion cannot replicate in neurons [24]. Given

that PKR is usually downregulated in tumor cells, the virus

can replicate normally in these tumor cells. HSV-1716,

G207, and T-VEC are oncolytic HSVs with ICP34.5

deletions. T-VEC has been approved by the US FDA for

the treatment of melanoma [113]. In a recent study, the

ORR among patients with in-transit melanoma metastasis

treated with T-VEC was 40.7% [114].

Zika virus (ZIKV) was recently found to have oncolytic

properties [115], but ZIKV infections in children can cause

serious consequences [116,117]. Wild-type ZIKV could

infect glioblastoma stem cells (GSCs; an important target

for glioblastoma treatment) and slow down the growth of

tumors, but wild-type ZIKValso attacks normal nerve cells

[115]; hence, its safety should be further improved. A live-

attenuated ZIKV vaccine (ZIKV-LAV) candidate [118]

with 10 nucleotide deletions in the 3′ untranslated region in

the ZIKV genome can maintain its oncolytic activity with

increased safety and gene stability [119,120]. In preclinical

research, ZIKV-LAVeffectively inhibited GSC growth and

improved the survival of experimental animals compared

with the mock control group. The median survival time of

mice transplanted with 387 GSC cells was extended from

30 days to 48 days, while the median survival time of mice

transplanted with 4121 GSC cells increased from 31 days

to 53 days [119].

Augmenting antitumor efficacy

OVs can kill tumor cells through the following mechan-

isms: selectively replicating in tumor cells and causing the

oncolysis of tumor cells [121]; inducing the immunogenic

cell death of tumor cells, thereby releasing damage-

associated molecular pattern molecules, tumor-associated

antigens, and pathogen-associated molecule patterns that

stimulate antitumor immunity to kill other tumor cells [91];

and destroying tumor vasculature to indirectly kill tumor

cells [122,123]. Insertion of genes coding for immunos-

timulatory molecules/cytokines, suicide genes, ECM-

degrading enzymes, and anti-vasculature molecules can

improve the antitumor efficacy of OVs [76,124,125].

Immunostimulatory molecules/cytokines

OVs induce systemic antitumor immunity, and many

cytokines, such as granulocyte-macrophage colony-stimu-

lating factor (GM-CSF) and interleukin (IL)-12 can

increase the antitumor immunity. Thus, many OVs have

been armed with immunostimulatory cytokines to improve
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their therapeutic efficacy [126]. For example, GM-CSF can

recruit antigen-presenting cells (APCs) and promote the

presentation of tumor antigens [78]. Various OVs armed

with GM-CSF, including T-VEC (HSV-1), Pexa-Vec

(VACV), and CG0070 (AdV), have been evaluated in

clinical trials. IL-12 can stimulate IFN-g production,

enhance the effect of T cells, and promote antitumor

activity [127]. M032 is an oncolytic HSVexpressing IL-12

[128] and is being assessed in the clinical trial for the

treatment of GBM (the results of which have not yet been

reported). Other cytokines, such as IL-2 [129] and IL-15

[130], can also be inserted to improve antitumor efficiency.

However, some secreted cytokines have systemic toxicity

[131]. Liu et al. [132] have developed a new strategy to

solve the side effects of the systemic administration of

cytokines. They used membrane-bound IL-2, instead of

secretory IL-2, to construct an oncolytic VACV that

expresses membrane-bound IL-2 (named vvDD-IL-2-RG).

Compared with the oncolytic VACV- expressing secretory

IL-2, vvDD-IL-2-RG did not compromise antitumor

activity and its toxicity was remarkably reduced.

Inserting other immunostimulatory molecules, such as

the costimulatory molecules CD40 ligand (CD40L) and 4-

1BB ligand (4-1BBL), has also enhanced the antitumor

effects of OVs [133,134]. CD40 and 4-1BB belong to the

tumor necrosis factor receptor (TNFR) superfamily. CD40

and 4-1BBL expressed on the surface of APCs and other

cells can recognize and bind CD40L and 4-1BB on the

surface of T cells, respectively, enhancing the ability of

APCs to present antigens and promote T cell activation

[135]. The recombinant adenovirus LOAd703 simulta-

neously expresses the immunostimulatory molecules

CD40L and 4-1BBL [136], resulting in the effective

activation of T cells through the CD40 and 4-1BB

signaling pathways, respectively; as such, they can

enhance antitumor immunity. LOAd703 has entered

clinical trials for the treatment of pancreatic cancer [137]

but the results have not yet been reported.

Suicide gene

Suicide gene therapy includes two strategies: expressing

pro-apoptotic proteins or toxin proteins to kill tumor cells

directly and using prodrug-activating systems to kill tumor

cells indirectly [138]. Engineered OVs can express pro-

apoptotic proteins or toxin proteins to directly kill tumor

cells, such as tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL) [139,140] and apoptin [141].

TRAIL can induce the apoptosis of tumor cells but does

not damage normal cells [142]. Zhu et al. constructed a

TRAIL-expressing OAd, which can efficiently kill triple-

negative breast cancer cell lines in vitro without damaging

normal cells and efficiently inhibit the growth of tumors in

animal experiments [139]. Similarly, apoptin can induce

the apoptosis of tumor cells but not that of normal cells,

and apoptin-expressing OAd can effectively inhibit the

growth of gastric carcinoma cells [143].

Conventional chemotherapies lack tumor selectivity and

can cause damage to normal cells [144]. By contrast, virus-

directed enzyme prodrug therapy is an ideal choice as it

involves prodrug-activating enzymes expressed by recom-

binant OVs to turn nontoxic prodrugs into toxic drugs to

specifically kill tumor cells [145]. TK and cytosine

deaminase (CD) are widely used prodrug convertases.

Chalikonda et al. [146] reported on the oncolytic VACV

with an inserted CD gene; CD converts the nontoxic

prodrug 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU)

in the tumor sites, substantially enhancing the therapeutic

effect owing to the presence of active drugs at the tumor

sites. However, some tumor cells are resistant to 5-FU,

reducing its therapeutic efficiency [147]. TG6002 is an

oncolytic VACV expressing the suicide gene FCU1 [148].

FCU1 is a bifunctional gene comprising FCY1 and FUR1.

FCY1 can convert 5-FC into 5-FU, and FUR1 can convert

5-FU into the more potent 5-fluorouracil-monophosphate

[149], exerting a strong antitumor effect. The results of

clinical trials on TG6002 have yet to be reported.

ECM-degrading enzymes

ECM in tumor tissues can inhibit the intratumoral spread of

OVs and limit their antitumor efficacy [150]. Many studies

have explored the effects of ECM-degrading enzymes,

such as relaxin [151], matrix metalloproteinase (MMP)-9

[152], chondroitinase ABC [153], and PH20 hyaluronidase

[154]; those ECM-degrading enzymes can increase the

intratumoral spread of OVs and improve the antitumor

activity of OVs through degrading ECM components.

Therefore, expressing ECM-degrading enzymes is a

feasible strategy to increase the antitumor activity of

modified OVs. For example, GLV-1h255, an oncolytic

VACV, can express MMP-9 to promote collagen IV

degradation [152] and increase the intratumoral spread and

antitumor efficacy of OV. VCN-01 is an OAd expressing

PH20 hyaluronidase[155], PH20 hyaluronidase can pro-

mote the spread of OVs between tumor cells by degrading

the ECM. VCN-01 has now entered clinical trials for the

treatment of pancreatic adenocarcinoma and retinoblas-

toma [156].

Anti-vasculature molecules

Tumor vasculature can transport nutrients and oxygen to

tumor cells and is crucial to the growth of tumor cells and

an ideal target for antitumor therapy [157]. Previous

studies have found that anti-angiogenesis factors expressed

by OVs can effectively inhibit tumor angiogenesis and
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enhance the antitumor efficiency of OVs. Vascular

endothelial growth factor (VEGF) can promote angiogen-

esis, which is an important target of cancer treatment [158].

Alexa et al. constructed an oncolytic VACV expressing

scAb-targeting VEGF, and its antitumor efficiency was

significantly improved [159]. In addition to targeting

VEGF, OVs can express other anti-angiogenic factors,

such as endostatin [160,161] and thrombospondin-1 (TSP-

1), to destroy tumor blood vessels [162]. Endostatin can

inhibit tumor angiogenesis by preventing endothelial cell

migration; oncolytic HSV expressing endostatin (HSV-

Endo) effectively inhibited tumor angiogenesis and growth

in the lung cancer model [160]. TSP-1 can inhibit tumor

angiogenesis by inducing apoptosis and can improve the

antitumor efficiency of OV; T-TSP-1 is an oncolytic HSV

expressing TSP-1 that significantly inhibited the growth of

gastric cancer in vivo [162].

Monitoring OV replication

Understanding the distribution and replication status of

OVs in vivo helps in assessing the efficacy and safety of

OVs [163]. OV replication can be monitored by incorpor-

ating them with reporter genes, such GFP and Rluc

(usually used for optical imaging), NIS, and human

norepinephrine transporter (NET) (usually used for deep

tissue imaging) [164]. GFP insertion is widely used in

OVT, and multiple OVs expressing GFP have been

developed, such as MV-GFP (MV) [165], JX-GFP

(VACV) [104], and rFMW/GFP (NDV) [166]. With the

expression of GFP, fluorescence imaging can be used to

directly observe the localization of OVs. However,

monitoring OVs or tumors in deep tissues via GFP and

Rluc is difficult, whereas NIS or NET can be used to

monitor OV replication in deep tissues [164]. NIS is a

membrane ion channel that mediates iodine transport.

After NIS expressed by OVs takes up the iodide isotope,

OV localization can be monitored using single-photon

emission computed tomography or positron emission

tomography [26,167]. MV-NIS is an oncolytic MV

expressing NIS, and it has entered clinical trials for the

treatment of multiple myeloma [21].

In addition to the insertion of reporter genes, the

replication status of OV in vivo can be reflected by the

expression of soluble markers [168], such as CEA. MV-

CEA is an oncolytic MVexpressing CEA; the serum CEA

level can reflect the replication status of MV in vivo [169],

but it cannot be used for localization.

Combination of OVT and other
immunotherapies

When OVs are used as monotherapy, their antitumor

efficacy can be limited by many factors [186]. Pre-existing

antiviral immunity in human bodies could clear OVs

rapidly [187]; the heterogeneity of tumor cells might result

in the low efficient replication and spread of OVs [187];

the expression of immune checkpoint molecules might

limit the antitumor activity of immune cells, which were

attracted into the TME by OVs [51]. Researchers have

begun to combine OVT with other antitumor therapies,

particularly immunotherapies, including ICB (pro-

grammed cell death protein 1 (PD-1)/programmed death

ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4) signaling pathway blockade), and

CAR-T cell therapies, to further improve the antitumor

efficacy of OVs.

Combinations of OVs and ICB

ICB involves using ICIs to bind to immune checkpoint

receptors or ligands and block immune inhibitory signals

to treat cancer [188,189]. The PD-1/PD-L1 and CTLA-4

pathways are two important immune inhibitory pathways.

Several monoclonal antibodies blocking these two path-

ways have been approved by the US FDA. The treatment

of some tumor types by using ICB is successful [190,191],

but many factors that induce resistance of tumor cells to

ICB, such as CD8 T cell deficiency in tumor tissues and

low expression of immune signal molecules (such as PD-

L1), have restricted the antitumor efficacy of ICB

[192,193]; many patients also did not benefit from immune

checkpoint therapy. Therefore, combinations of OVs with

ICB have been widely explored in antitumor research to

achieve better outcomes, and some combination therapies

have been evaluated in clinical trials (Table 3). The

combination of OVs and ICB can exert a synergistic effect.

OVs can attract CD8 T cells and natural killer (NK) cells

into the TME. This phenomenon addresses the lack of

immune cells in the TME and consequent inability of

antibodies targeting the PD-1/PD-L1 and CTLA-4 path-

ways. Anti-PD-1/PD-L1 antibodies can block the PD-L1

induced by OVs (Fig. 3A), and anti-CTLA-4 antibodies

can block the corresponding inhibitory signaling pathway

and enhance the antitumor activity of immune cells

attracted by OVs.

Combinations of OVs and PD-1/PD-L1 blockade

To date, six monoclonal antibodies targeting the PD-1/PD-

L1 pathway have been approved by the US FDA for

clinical use; among such antibodies, pembrolizumab,

nivolumab, and cemiplimab are anti-PD-1 antibodies

[209,210], whereas durvalumab, atezolizumab, and avelu-

mab are anti-PD-L1 antibodies [211]. Tumeh et al. [212]

analyzed samples from patients with melanoma in the

phase I clinical trials of pembrolizumab and found that the

CD8 T cell density at the tumor site was significantly lower

in patients who did not respond to pembrolizumab
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compared with that of patients who responded to

pembrolizumab. CD8 T cell deficiency in the TME is an

important factor underlying the low efficacy of anti-PD-1

treatment. Studies have reported that OVs can increase the

number of CD8 T cells in the TME and peripheral blood

[28,213,214], which is helpful in improving the therapeutic

effect of PD-1/PD-L1 blockade [189]. OV infections can

upregulate PD-L1 expression on the surface of tumor cells

[7,194,196,200], while PD-1/PD-L1 blocking antibodies

can block the PD-1/PD-L1 signaling pathway. Therefore,

combining OVs with PD-1/PD-L1 blockade has synergis-

tic roles in increasing antitumor effects.

Chen et al. reported that combining oncolytic HSV-1716

with PD-1 blockade has a pronounced antitumor effect in

murine rhabdomyosarcoma models compared with onco-

lytic HSV-1716 or anti-PD-1 antibody monotherapy; this

improvement is associated with an increase in local

antitumor T cell immune response [195]. Liu et al.

combined oncolytic VACV with PD-L1 blocking antibody,

which effectively inhibited tumor growth and improved the

survival of experimental mice ( > 40% experimental mice

were cured) [194] in colon cancer and ovarian cancer

models. Fend et al. reported that combining the WR strain

of VACV with ICB effectively improved the survival of

experimental animals with MCA205 sarcoma [199].

Samson et al. combined oncolytic reovirus with ICB to

treat brain tumors and found that sequential treatment with

oncolytic reovirus and PD-1/PD-L1 blocking antibody

effectively improved the survival of experimental mice

with glioma [7]. Marie-Claude et al. also reported that

oncolytic Maraba virus can induce long-term antitumor

immunity and improve the immunosuppressive status of

the TME, enhancing the sensitivity of TNBC to ICB [10].

In the treatment of non-solid tumors, such as acute myeloid

leukemia (AML), the combination of OVand PD-1/PD-L1

blockade also produced promising outcomes. Shen et al.

reported that oncolytic VSV (VSV-IFNβ-NIS) combined

with anti-PD-L1 antibodies effectively killed murine AML

cells and significantly improved the survival of AML-

bearing mice [197].

Combinations of OVs and anti-PD-1/PD-L1 antibodies

have been assessed in clinical trials. Ribas et al. reported

the results of a phase Ib clinical trial of intratumoral T-VEC

injection combined with pembrolizumab for the treatment

of patients with advanced melanoma [200]. T-VEC

enhanced the infiltration of CD4 and CD8 T cells and

promoted the PD-L1 expression in tumor tissues, thereby

improving the efficacy of pembrolizumab that led to an

overall response rate of 62% and a complete response rate

of 33%. This combination therapy did not increase toxicity

compared with pembrolizumab monotherapy. Sun et al.

reported the results of a clinical trial of T-VEC combined

Fig. 3 Combinations of oncolytic viruses with immune checkpoint inhibitors and CAR-T cell therapy. (A) Mechanisms of OVs combined with ICIs

targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway. OVs can attract CD8 T cells and NK cells

into the TME. The expression of PD-L1 on tumor cells is upregulated by OV infection. Anti-PD-1/PD-L1 antibodies block the PD-1/PD-L1 pathway

and stop the immune inhibitory signal. (B) OVs in combination with CAR-T cells in the treatment of solid tumors. Modified OVs can express

cytokines that attract CAR-T cells into the TME and enhance their antitumor activities; BiTE-armed OVs express BiTEs that bridge CAR-T cells with

tumor cells to prevent the immune evasion of tumor cells; OVs armed with anti-PD1/PD-L1 mini-antibody (mini-body) express anti-PD-1/PD-L1

mini-body blocking the immune inhibitory signal and enhancing the antitumor efficacy of CAR-T cells.
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with anti-PD-1 antibody for unresectable stage III–IV

melanoma treatment, leading to an overall response rate

(on-target lesions) of 90% (9/10) [201].

Combinations of OVs and CTLA-4 blockade

Zamarin et al. studied the combination of NDVand CTLA-

4 blockade in the syngeneic mouse model [9]. The

combination generated a synergistic effect, inhibiting the

growth of local tumors. In addition, lymphocyte infiltration

induced by NDV increased the sensitivity of distal tumor

cells (where no OV was injected) to CTLA-4 blockade.

Among the CTLA-4 blocking antibodies, ipilimumab has

been approved by the US FDA for the treatment of

melanoma [215]. In 2018, the results of the phase II

clinical trial of T-VEC combined with ipilimumab for

melanoma treatment were reported [203], and phase Ib trial

results were reported previously [202]. The combination of

the two therapies increased antitumor efficacy compared

with ipilimumab alone [203] (ORR: 39% versus 18%) with

no reduction in safety.

Comprehensive combination regimens have been used

for some tumors with a highly immunosuppressed TME.

GBM is one of the most lethal tumors, and its TME is

highly immunosuppressed. A standalone ICI may not

overcome the immunosuppressive state. Saha et al.

combined anti-PD-1 antibody, anti-CTLA-4 antibody,

and oncolytic HSV expressing IL-12 (G47-mIL-12) for

GBM treatment [198]. Compared with dual therapy using

anti-PD-1 and anti-CTLA-4 antibodies, triple therapy,

including anti-PD-1 antibody, anti-CTLA-4 antibody, and

G47-mIL-12, cured most experimental mice with 005 GSC

GBM and significantly improved the survival of the CT-2A

implanted mice. The median survival of CT-2A implanted

mice was 66.5, 20, and 19 days for the triple therapy, mock

treatment, and dual antibody therapy, respectively. Triple

therapy can effectively trigger immune memory and

prevent tumor recurrence compared with dual therapy.

Combinations of OVs and CAR-T cell therapies

CAR-T cell therapy show considerable promise in cancer

treatment. This therapy involves CAR-T cells derived from

patients’ Tcells with an additional insertion of the chimeric

antigen receptor (CAR) gene to enhance tumor cell

recognition [216]. CAR-T cells targeting CD19 is the

first CAR-T cell therapy approved by the US FDA for the

treatment of B cell lymphoma [217]. CAR consists of an

extracellular antigen recognition domain, a transmembrane

region, and an intracellular signal domain [218]. The

antigen recognition domain is an antibody fragment that

recognizes targeted antigens. The intracellular signaling

domain stimulates T cell activation and proliferation to kill

target cells [219]. CAR-T cell therapies are successful in

the treatment of several hematopoietic malignancies

[220,221] but not in the treatment of solid tumors [222];

the immunosuppressive TME is a major obstacle to the role

of CAR-T cells [223]. Given the many types of immune-

suppressive cells, such as regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs) in the TME

[224], and the lack of chemokines to attract tumor-specific

T cells, the therapeutic efficacy of CAR-T cell therapy in

solid tumors is limited [222].

Combining CAR-T cell therapy with genetically mod-

ified OVs can significantly increase CAR-T cell infiltration

into the TME and enhance the therapeutic effect of CAR-T

cells in solid tumors, as shown in Fig. 3B. Those modified

OVs can attract CAR-T cells to the TME via cytokine

expression. Nishio et al. inserted the genes encoding a

chemokine (RANTES) and a cytokine (IL-15) into OAd to

create Ad5D24.RANTES.IL-15. The intratumoral injec-

tion of Ad5D24.RANTES.IL-15 increased the infiltration

of CAR-T cells targeting the tumor antigen GD2 (GD2.

CAR-T cells) into the TME, thereby enhancing their

tumor-killing ability [206]. Watanabe et al. constructed an

AdV expressing TNF-α and IL-2 (OAd-TNFa-IL2) and

proved that it could enhance the function of CAR-T cells

[205].

Bispecific T cell engager (BiTE) is a fusion protein

composed of two scAb fragments; one targets specific

molecules on the surface of tumor cells, and the other binds

to CD3e on the surface of T cells [225]. BiTE can bridge T

cells and tumor cells, thereby promoting Tcell activation to

kill tumor cells [226]. Blinatumomab (BiTE targeting

CD19) has been approved by the US FDA for the treatment

of B cell acute lymphoblastic leukemia [227]. The

combination of OV expressing BiTE with CAR-T cells

can also produce potent antitumor activity [228]. Folate

receptor α (FR-α), highly expressed in ovarian, breast, and

lung tumor cells, is an important target for antitumor

therapy [229]. However, small partial tumor cells remain

with low or even no expression of FR-α in those tumor

lesions that can lead to immune escape. Wing et al. [204]

constructed an OAd armed with BiTE targeting epidermal

growth factor receptor (OAd-BiTE). In the combination of

OAd-BiTE and anti-FR-α CAR-T cells, EGFR-targeting

BiTE expressed by OAd bridged the EGFR-overexpres-

sing tumor cells and CAR-T cells to promote CAR-T cell

activation and proliferation, and their ability to kill tumor

cells was enhanced; as such, the survival of experimental

mice was prolonged. All mice treated with CAR-T cells

plus OAd-BiTE survived up to the experimental endpoint

of 41 days, whereas the median survival of OAd-BiTE-

only mice was 20 days and that of CAR-T cells-only mice

was 38 days.

Immune inhibitory molecules on the surface of cancer

cells also affect the efficiency of CAR-T cell therapy. The

transduction of immune checkpoint signals may decrease

the therapeutic efficiency of CAR-T cells [230,231], while

combinations of ICIs and CAR-T cells can increase the
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antitumor effects of CAR-T cells [232,233]. Tanoue et al.

used an OAd expressing anti-PD-L1 mini-antibody (CAd-

VECPDL1) to block the transduction of the PD-1/PD-L1

inhibitory signaling pathway and improve the antitumor

effect of CAR-T cells; the median survival of mice treated

with CAd-VECPDL1 and HER2.CAR-T cells was 110

days, which is twofold longer than that of mice treated with

single agent of OAd or CAR-T cells [208]. Compared with

the systemic injection of anti-PD-L1 antibody, the anti-PD-

L1 mini-antibody (mini-body) produced by OVs mainly

localized in the tumor tissue with fewer adverse events

[234]. Shaw et al. constructed an OAd expressing anti-PD-

L1 mini-body and cytokine IL-12p70 (CAd12_PDL1)

[207]. IL-12p70 expression could further promote CAR

expression and enhance the tumor-killing effect. In the

head and neck squamous cell carcinoma (HNSCC)

xenograft model, combining CAd12_PDL1 and CAR-T

cell therapy improved the median survival time of

experimental animals by > 100 days in the CAd12_PDL1

+ CAR-T group versus 21 or 24 days in the untreated

group. At present, combinations of OVs and CAR-T cells

for cancer treatment are still at the preclinical stage and

have not yet entered clinical trials (Table 3).

Conclusions and future prospects

With its development for more than 100 years, OVT has

become highly efficient for cancer treatment [3]. OVs can

specifically infect and kill tumor cells, remodel the

immunosuppressive TME, and stimulate the systemic

antitumor response. New viruses with oncolytic potential,

such as M1 [75] and ZIKV [115,119], have been

continuously discovered, thus further enriching OVT.

Genetic modification can improve the safety and antitumor

efficacy of OVs, which can be designed to carry different

foreign genes to kill different kinds of tumor cells. T-VEC

has been approved by the US FDA and EMA for the

treatment of melanoma [41]. Some OVs, such as Pexa-Vec

and Reolysin®, are being assessed in phase III clinical

trials.

The combination of OVT with ICB or CAR-T cell

therapies can have synergistic effects, which might play an

important role in clinical cancer treatment in the future.

OVs can be also combined with other immunotherapies,

such as tumor-infiltrating lymphocyte (TIL) therapies

[235]. In TIL therapies, patients usually need to be injected

with IL-2 to promote TIL proliferation, which might cause

many adverse events [236]. The toxicity caused by

systematic injections of high-dose IL-2 can be avoided

by the intratumoral injection of OAd expressing IL-2

[237]. OVs combined with tumor-targeted monoclonal

antibodies, such as trastuzumab [238] and bevacizumab

[239] and some small-molecule antitumor compounds,

such as trametinib [240] and NU7441 [75], can generate

synergistic effects and thus have broad applications in

cancer treatment.

However, some shortcomings or problems still confound

the full use of OVT. For example, the small genomic

capacities of some OVs, such as coxsackievirus and

reovirus, limit their ability to accommodate large foreign

genes that can optimize their antitumor efficacy [79].

Genetic modification by deleting virulence genes to

improve the safety of OVs also reduces the antitumor

efficacy of OVs [241]. Although encouraging results and

broad applications have been achieved with the combina-

tion of OVT and other antitumor immunotherapies, further

studies on the combination therapy schedules, including

dosages, injection routes, and times, should be conducted

to obtain the best antitumor efficiency.
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