
Development of optimal multiscale patterns for digital image
correlation via local grayscale variation

G.F. Bomarito · J.D. Hochhalter · T.J. Ruggles

Abstract In some applications of digital image corre-
lation (DIC), adequately quantifying deformation of a 
material can require identification of local deformations 
which are much smaller than the total field of interest. 
Instead of exhaustively stitching together images taken 
at high magnification, it is more efficient to utilize mul-
tiple magnifications. Unfortunately, it is rare that the 
material naturally has features that are useful for im-
age correlation at multiple magnifications. Therefore, 
an ideal pattern was sought that (1) contains features 
appropriate for the multiple magnifications, (2) need 
not know location of high magnification a priori, and 
(3) can be viewed with standard DIC equipment. An 
optimization framework was developed based on the 
inclusion of local grayscale biases which can produce 
multiscale DIC patterns that satisfy these criteria. Nu-
merical and physical experiments were also performed 
to illustrate the functionality and utility of the designed 
patterns.

Keywords image correlation · pattern optimization · 
multiscale

1 Introduction

In many applications of digital image correlation (DIC), 
it is advantageous to have measurements at multiple
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scales [1–5] in order to adequately quantify deformation
of a material where localized phenomena occur within
a larger field of interest. Although increased magnifi-
cation enables the measurement of local deformation,
the resulting images have a field of view much smaller
than the total field of interest. While such images could
be stitched together to cover the total field of interest,
this would require a complex experimental setup and

a higher computational burden, in addition to any er-
rors introduced by the stitching process. Utilization of
multiple scales of DIC measurements is a more efficient
solution. It allows for the accurate quantification of lo-
calized deformation using high magnification and is able
to put them in the context of the entire field of view
using low magnification.

Occasionally, the specimen of interest is well suited

for multiscale DIC, having a well-textured surface as
visible from many different magnifications, e.g. organic
materials such as wood [3]. However, more frequently it
is the case that the natural texture at one or all of the
length scales of interest is insufficient for adequate DIC
measurements to be made. In these cases, a pattern
must be applied to the specimen at the scales of in-

terest. Unfortunately, most commonly used patterning
methods are not well suited for use at multiple length
scales. The problem lies in the fact that optimal mag-
nification is linked to the average speckle size of the
pattern [6–12] and that most patterning methods offer
a limited range of speckle sizes [9–12].

The issue can be approached in multiple ways. Firstly,
it can be completely circumvented via domain division
[4], where different patterns are used in different regions
of a specimen, but this requires knowledge of the loca-
tions of the features of interest at the different scales a
priori. A second simple solution would be to apply two
patterns of varying speckle sizes to the same specimen;
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however, traditional methods of pattern application in-
terfere with each other. As an example, consider the
use of spray paint and airbrush on the same surface
such that many large and small speckles exist. At the
smaller scale, entire regions of the pattern would be
covered by a single large speckle leaving large areas un-
usable by DIC. Thirdly, other promising methods such

as multi-spectrum DIC [1] aim to combat this cross pat-
tern interference but they are application specific and
generally require specialized equipment. Lastly, the ap-
proach pursued in the current work, is to design a sin-
gle pattern that is well suited for DIC measurements
at multiple length scales. Furthermore, since Bomarito
et al. [13] showed a method in which DIC patterns can
be optimized to produce lower DIC measurement error,
a pattern that is specifically designed to minimize DIC
errors at multiple scales is pursued.

The basis of the method developed herein was il-
lustrated by Bossuyt et al. [14] who showed that mul-
tiscale DIC patterns can be developed by altering the
frequency content of a pattern’s auto-correlation func-
tion to include spikes at distinct length scales. The same
idea, in the spatial domain of the pattern rather than
the frequency domain, is to vary the average grayscale
value of a pattern locally, such that the pattern con-
tains contrasting features at multiple length scales. By
including local grayscale variation within the optimiza-

tion framework setup by Bomarito et al. [13], the cur-
rent work is able to produce patterns which (1) can be
utilized at multiple magnifications for DIC, (2) need not
know location of high magnification a priori, (3) can be
viewed with standard DIC equipment, and (4) are opti-
mally suited for multiscale DIC under these constraints.

The remainder of the current work is organized as

follows. Section 2 reviews the fundamental information
on DIC and pattern optimization that is necessary for
the proposed method of multiscale pattern creation.
The proposed method is outlined in Section 3. Patterns
are presented and analyzed with numerical deforma-
tion tests in Section 4, and are utilized in a physical
multiscale experiment in Section 5. The outcomes are

summarized and discussed in Section 6.

2 Background

The basis of DIC is the matching of features between
two images, so that relative deformations occurring be-
tween the two images can be inferred [17]. Because
the matching of the grayscale values of individual pix-
els would have non-uniqueness issues, subsets of size
(2M+1) pixels by (2M+1) pixels are utilized for track-
ing of features. As a consequence of using subsets, a

criterion must be chosen to evaluate the similarity of

subsets between images. This is commonly referred to

as a correlation criterion and several are present in the
DIC literature [15–17]. The correlation criterion cho-
sen for the current work is the zero-normalized cross-
correlation (ZNCC) coefficient:

C =
M∑

i=−M

M∑
j=−M

[
(f(xi,yj)−f̄(M))(g(x′

i,y
′

j)−ḡ(M))
∆f∆g

]

(1)

with
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1
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M∑
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(
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)
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√√√√
M∑

i=−M

M∑

j=−M

(
g(x′

i, y
′
j)− ḡ(M)
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(2)

In this definition f(xi, yj) is the grayscale value of a
pixel at location (xi, yj) in the reference image and
g(x′

i, y
′
j) is the grayscale value at location (x′

i, y
′
j) in the

deformed image. f̄ (M) and ḡ(M) are the subset averaged

grayscale values in the reference and deformed images,
respectively. ∆f and ∆g are the standard deviations
of the subset grayscale values in the reference and de-
formed images, respectively. While the values of f and
g at pixel locations in an image are discrete and depend
on the bit depth of the image, they will be referred to
as normalized grayscale values ranging from 0.0 (black)

to 1.0 (white) throughout the current work. Mapping
functions, ξ, from (xi, yj) to (x′

i, y
′
j) which are com-

monly referred to as subset shape functions, account
for the displacement and distortion of the subset. It is
defined formally as (x′

i, y
′
j) = ξ(xi, yj). In cases where

(x′
i, y

′
j) are non-integer values it is also necessary to de-

fine an interpolation method to evaluate g(x′
i, y

′
j) based

on pixel image data. This interpolation function η is de-
fined formally with g(x′

i, y
′
j) = η(g). DIC Displacements

are found at location x, y through the optimization of
(x′, y′) so that correlation is maximized, i.e.:

u, v = x̂, ŷ − x, y (3)

where

x̂, ŷ = argmin
x′,y′

C(x, y, x′, y′, f, g,M, ξ, η) (4)

given the other components of the correlation criterion
f , g,M , ξ, and η. A large effort in the DIC literature has
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been to evaluate these components of correlation crite-

ria to quantify the contribution of each to overall DIC

measurement error. Specifically, the subset size M [6,

7,18,19], shape function choice ξ [17,20–23], and inter-

polation function choice η [17,24,25] have been widely

studied.

2.1 Pattern quality metrics

In addition to the above components, a critical factor

in the accuracy of DIC measurements is the image con-

tent itself, i.e., f and g. While this can generally cover

a multitude of factors such a lighting and camera noise,

attention here is restricted to the image patterns them-

selves which should be responsible for the majority of

the information content of the image. The study of the

effect of patterns on DIC measurement error has tra-

ditionally been focused on quantifying the suitability

of a pattern for use with DIC; hence, many pattern

quality metrics have been derived [6,12,14,17–19,25–
29]. These metrics have been invaluable in the assess-
ment of psuedo-randomly generated patterns, such as

airbrush and spray paint patterns, and offer practical

means of decision between patterning options. An ex-

ample of a commonly used pattern quality metric is

the sum of square of subset intensity gradients (SS-

SIG), which was developed based on the susceptibility

of an image to Gaussian noise [17,19,25]. In the current

work, the following two dimensional definition of SSSIG

(denoted S) is used:

S(x, y, f) =

M∑

i=−M

M∑

j=−M

|▽f(xi, yj)|
2

(5)

where |▽f(xi, yj)| =
√
fx(xi, yj)2 + fy(xi, yj)2. Note

that the definition is an extension of the original one

dimensional SSSIG definition to two-dimensions in a

manner similar to Pan et al. [27]. Implementation of S

throughout the current work uses finite difference es-
timates of the derivatives such that fx(x, y) = f(x +

1, y)− f(x, y). Any derivatives involving pixels outside

the subset (i.e., fx(xM , yj) and fy(xi, yM )) are ignored

during the summation; this ensures that S is a function

of only the pixels within the subset (and not influenced

by the surrounding region).

As more modern means of DIC pattern application
such as micro stamping [30,31], lithography [32,33], and

water transfer printing [34] are becoming easier and

more efficient to use, designer DIC patterns are becom-

ing more practical. Designer DIC patterns allow for the

precise design and arrangement of pattern features. As

shown by Bomarito et al. [13], this allows for the design

of a pattern in which expected DIC error is minimized.

The pattern optimization framework presented in ref-

erence [13] is modified in the current work to produce

multiscale DIC patterns; for more details beyond the

fundamentals of that framework (covered in the pro-

ceeding paragraphs) the reader is referred to reference

[13].

The framework is based on the fact that most pat-

tern quality metrics are ill-suited for individual use in

pattern optimization, i.e., their utility degrades when

approaching best values. For example, a simple checker-

board pattern achieves the best possible value of SSSIG,

but is ill-suited for DIC because of its non-uniqueness

problems. Bomarito et al. [13] proposed a multi-metric

optimization procedure that is able to circumvent this

issue. It is based on the use of a combined quality met-
ric:

Q(x, y, f) = Ŝ + w1(Â2)
n1 (6)

where the primary term is the normalized SSSIG Ŝ =

1− S
8M2+4M and the secondary term, based on Â2, acts

as a uniqueness constraint. The constants w1 and n1

allow for the adjustment of the importance and sever-

ity of the constraint. Â2 is a uniqueness measure based
on the autocorrelation function; the auto-correlation

function A is a correlation of an image with itself, or

more precisely: A(u, v, x, y, f) = C, where g = f and

x′, y′ = x+u, y+v (C is the correlation criterion defined

at the start of Section 2). Â2 is defined as the height of
the largest secondary autocorrelation peak:

Â2(x, y, f) = max
u,v 6∈W

A(u, v, x, y, f) (7)

where W is the watershed of the primary autocorre-
lation peak located at u, v = 0, 0. Hence, a value of

Â2 = 1 corresponds to a perfect match of a subset with

another nearby subset. It is assumed in the current work

that two regions separated by more than 2M are inde-

pendent of each other; thus, the auto-correlation range

−(2M + 1) ≤ u, v ≤ 2M + 1 is used.

2.2 Pattern optimization

As a step in the pattern optimization process, the pat-

tern must be parameterized. This parameterization could

be chosen in many different ways, for example as the

number, size, and locations of circular speckles. In the

current work, as in Bomarito et al. [13], the target ap-

plication is one where the resolution of the patterning

method is higher than the desired magnification of the

smallest scale of interest. For this reason a bitmap im-

age wherein each pixel is represented by a Boolean pa-

rameter is chosen for the parameterization of the pat-

tern. Note that the proceeding objective function and
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optimization methodology are independent of this pa-
rameterization.

Relying on the relative independence of spatially
separated regions, Bomarito et al. [13] broke down the
optimization of a pattern into many sequential sub-
optimizations of individual (non-overlapping) sub-regions

of the pattern. The goal of each of the sub-optimizations
was the minimization of the mean Q value of all the
subsets centered at pixels within that sub-region, i.e.,

fopt(x, y) = argmin
f(x,y)

Q̄(N)(x, y, f) (8)

with

Q̄(N)(x, y, f) =
1

N2

N∑

i

N∑

j

Q(xi, yj , f) (9)

where N is the size of the sub-region and Q(xi, yj) is
the value of Q of the subset centered at (xi, yj) within

the sub-region. Sub-regions near the boundary of the
pattern are padded assuming a periodic placement of
the pattern.

3 Methods

The task of extending the work of Bomarito et al. [13] to
multiscale patterns via local grayscale variation is rela-

tively straight forward. A modification of the objective
function is introduced at the sub-region level of the op-
timization procedure. Namely, Equation 8 is modified
to include a term for the average grayscale value of the
sub-region:

fopt(x, y) = argmin
f(x,y)

Q̄(N)(x, y, f) +Qf (x, y, f) (10)

with

Qf (x, y, f) =

(
f∗ − f̄ (N)

w2

)n2

f̄ (N) =
1

N2

N∑

i

N∑

j

f(xi, yj)

(11)

where f∗ is the target average grayscale for the sub-
region. Essentially, the optimization problem seeks min-
imization of Ŝ, while imposing constraints on both unique-
ness and local average grayscale value. The parameters
w2 and n2, which act in a similar manner to w1 and
n1, are used to adjust the range and intensity of the
graysale constraint. For instance, the values n2 = ∞
and w1 = 0.05 ensure that the average grayscale value
of the sub-region will be within 0.05 of f∗ and that Qf

is uniformly 0 within that range. For all optimizations
performed herein, the values of n2 = 6 and w2 = 0.15

are used, which less strictly impose the constraint on
f̄ (N) and allow for deviations from f∗ if they are ac-
companied by sufficient improvements in Q̄(N).

The intended use of the above equations for mul-
tiscale pattern generation is that the value of f∗ can
be spatially varied, thus inducing local grayscale biases.
For example, Figure 1(a) is the result of an optimization
performed with f∗ values for each sub-region shown in
the table in Figure 1(b). The optimization parameters
used in this and all subsequent optimizations are shown
in Table 1 except for f∗ which is varied to produce spe-
cific patterns. In this same manner, the spatial modu-
lation of f∗ according to a macro-scale mask would be
able to produce a macro-scale pattern with micro-scale
features throughout.

(a)

0.8 0.2 0.7 0.3

0.2 0.7 0.3 0.6

0.7 0.3 0.6 0.4

0.3 0.6 0.4 0.5

(b)

Fig. 1: A 40 pixel by 40 pixel example of a multiscale
pattern with local variations in average grayscale value
(a) and target f∗ values taken from map (b). Note that
each element in map (b) was used for blocks of four sub

regions with N = 5 resulting in 10 pixel by 10 pixel
blocks.
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2M + 1 N w1 n1 w2 n2

5 5 2
9

12 0.15 6

Table 1: Values of parameters used in all optimizations.

Figure 1 illustrates that, within the bounds inves-

tigated, the magnitude of the variation of f∗ between
neighboring sub-regions of the pattern correlates to the

degree of contrast between larger-scale features. The

top left of the pattern has the highest large-scale con-

trast, decreasing in the downward and rightward di-

rections. Because of the importance of S (which quan-
tifies pattern contrast) in the determination of pat-

tern quality, large-scale DIC accuracy is expected to
be directly related to this large-scale contrast. How-
ever, higher large-scale contrast requires more biased

grayscale values (f∗ deviating further from 0.5) at the

smaller-scale.

Table 2 contains a summary of a test which inves-

tigated the effect of grayscale bias at the small-scale.

In this test, thirteen 100 pixel by 100 pixel patterns

were generated using various, spatially-uniform values

of f∗. The pattern-averaged grayscale values (f̄), the

patterned-averaged Q (denoted Q̄), and the pattern-
averaged SSSIG (S̄) are shown along with a 10 pixel by

30 pixel section of each pattern in Table 2. Values were

calculated using the parameters listed in Table 1. From

the table, it can be seen that the best pattern quality

(minimum Q̄) is achieved with an f̄ value of approxi-
mately 0.5. Furthermore, imposition of a grayscale bias

causes the pattern quality to degrade. This is in agree-
ment with Mazzoleni et al. [35], who found that the
optimal cover factor is 40%-70%. These results indicate

that the use of more biased small-scale patterns has

the dual effect of decreasing small-scale quality and in-

creasing larger-scale contrast. Therefore, the generation

of multiscale patterns by modulation of local grayscale

bias must balance these two effects based on the end

use of the pattern.

4 Numerical experiments

Two sets of numerical experiments were performed in
order to show the relationship between grayscale bias

and expected DIC error at both the large- and small-
scale. The numerical experiments generally consisted of
the application of numerical deformations to a pattern

while simulating other factors such as noise and light-

ing. The numerical experiments were meant to act as

a surrogate to physical DIC experiments, modeling as

many factors of realistic conditions as possible. Numer-

ical experiments were chosen because they have a useful

f∗ f̄ Q̄ S̄

Pattern
(10x30 pixel

section)

0.80 0.760 0.522 19.20

0.75 0.720 0.444 22.40

0.70 0.648 0.331 28.17

0.65 0.600 0.292 30.97

0.60 0.560 0.279 32.72

0.55 0.522 0.263 33.69

0.50 0.501 0.264 33.93

0.45 0.477 0.271 33.65

0.40 0.440 0.272 32.55

0.35 0.400 0.298 30.98

0.30 0.353 0.328 28.26

0.25 0.280 0.444 22.40

0.20 0.240 0.522 19.20

Table 2: The effect of grayscale bias on the pattern-

averaged Q and pattern-averaged SSSIG (S̄). Each pat-

tern is also included for reference.

advantage over physical experiments: the true applied

displacement field is known and can be directly com-

pared to the DIC computed displacement field, allowing

exact computation of displacement error.

The description of the procedure of the numerical

experiment involves the following terminology which

are distinguished here for clarity. A pattern bitmap is

the parameterized pattern which contains a Boolean

bitmap corresponding to black or white speckles. A sur-

face model is a model of a specimen’s surface on which

the pattern has been printed. DIC images are simulated

images taken of the surface model. All of these terms

define images with varying degrees of pixel resolution.
They are described further in the procedure below.
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Given a pattern in bitmap form, the procedure of
the numerical experiments is as follows:

1. The desired magnification of the DIC images,

ρmag, is chosen. ρmag defines the DIC-image pix-
els to pattern-bitmap pixels ratio. For example, ρmag =
5 would correspond to a magnification of 5-by-5 DIC
image pixels for every pattern bitmap pixel. This
allows for separate investigation of patterns under
simulated high or low magnification.

2. The desired resolution of the surface model,

ρmod, is chosen. ρmod defines the surface-model
pixels to DIC-image pixels ratio. For all tests ρmod =
10 is used, meaning 10-by-10 surface model pixels
correspond to a single DIC image pixel.

3. The pattern bitmap is enlarged (scaled up)

by ρtot to produce the surface model, where
ρtot = ρmodρmag. This step is taken as the first step

in a super-sampling method for applying deforma-
tions. In general, a super-sampling method scales
up an image, then deforms it, and finally coarsens
the image back to the desired size. Multiple types of
numerical deformations have been used in the liter-
ature such as FFT shifts [10,11,23,24,26,27], poly-
nomial interpolation [9,26,36], and super-sampling
[35] including some comparative studies [37,38]. The
super-sampling method is chosen here because its
binning method bears resemblance to a charge-coupled
device (CCD) sensor and because deformation meth-
ods between the scaling operations were observed to
have little effect on results.

4. The contrast of the surface model is reduced,
simulating imperfect lighting conditions: i.e., the
grayscale values are changed from 0.0 and 1.0 to
0.25 and 0.75, respectively.

5. The surface model is blurred using a Gaus-

sian filter with standard deviation σ = 0.1ρtot.

This blurring is meant to simulate the imperfect ap-
plication of the pattern, i.e, the edges will not be
perfectly crisp and are blurred with standard devi-
ation of 10% of the pattern speckle size.

6. 49 numerical deformations are applied to the

surface model using cubic polynomial inter-

polation. Deformations of various order and mag-
nitude are applied in the x-direction where Ux(x, y) =
axb. The following values of a and b are utilized:

b = 0 : a =(0, 5, 10, ..., 100)x10−2

b = 1 : a =(1, 2, 3, ..., 10, 15, 20, ..., 50)x10−3

b = 2 : a =(1, 2, 3, 4, 5)x10−5

b = 3 : a =(2, 4, 6, 8, 10)x10−8

7. The surface model images are coarsened to

produce the DIC images with the desired mag-

nification. The coarsening is performed by taking

the mean of ρmod pixel by ρmod pixel bins.
8. Zero-mean Gaussian white noise with stan-

dard deviation σ = 0.02 is added to the im-

ages to simulate random error in the imaging pro-
cess. The value of 2% noise is chosen based on the
estimation of imaging noise in the work of Zhou et
al. [39].

9. The 49 DIC images are analyzed with DIC.

The image with no deformation (a = b = 0) is used
as the reference image. The commercial DIC soft-
ware VIC2D v2009.1.0 by Correlated Solutions [40]
is used to analyze the images. The zero-normalized
squared difference correlation criterion (equivalent

to ZNCC [27]) is utilized. Subset size of 25 pixels,
step size of 5 pixels, optimized 4-tap interpolation,
and Gaussian subset weights are also used.

10. The DIC error in the loading direction is cal-

culated: ǫx = Ũx − Ux.
11. Pattern error metrics Ebias, Estd, and Erms are

calculated. These measures are aggregate measures

of the error in the queried points within all 48 de-
formed images. Ebias represents the tendency of the
pattern to produce bias measurements and is equal
to the mean of all ǫx. Estd represents the pattern’s
susceptibility to random error and is equal to the
standard deviation of all ǫx. Finally, as in references
[21,35], Erms is used as an indicator of total error

effectively combining bias and random errors into a
single measure. It is defined as the root mean square
of all ǫx.

In summary, given a pattern bitmap, the procedure
above evaluates the DIC error metrics Ebias, Estd, and
Erms, which are based on many numerical deformations
of the pattern.

4.1 Small-scale test

The first test investigates the effect of average grayscale
bias on DIC error at the small-scale (high magnifica-
tion), in which all pattern bitmap elements are clearly
visible in the images. In this test a relatively high mag-
nification is used of ρmag = 5, meaning 5 by 5 DIC
image pixels correspond to each pattern bitmap pixel.
An example of a pattern bitmap and one of its gener-
ated DIC images is shown in Figure 2.

The 13 patterns from Section 3 (shown in Table 2)
which were optimized using various spatially uniform
values of f∗ are again used in this test. Each of these 100
pixel by 100 pixel patterns were subjected to the pro-
cedure outlined above to produce values of Ebias, Estd,

and Erms. The values of all these error metrics are plot-
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(a)

(b)

Fig. 2: A section of the 100 pixel by 100 pixel opti-

mized pattern bitmap with f∗ = 0.65 (a) and a section

of its numerically generated DIC reference image with

ρmag = 5 (b). The red box in (a) illustrates the portion

of pattern bitmap that is seen in (b).

ted with respect to the target grayscale values of their

patterns in Figure 3. In this figure it can be seen that

bias errors (Ebias) are 3 to 4 times smaller than random

errors (Estd). Furthermore, it seems that no clear trend

exists between grayscale bias and error bias, and that

Ebias remains relatively constant despite changes in f∗.

However, there is a clear bowl-type trend between Estd

and f∗ indicating that the lowest random error is ex-

pected in the region near f∗ = 0.5, with increasing val-
ues of random errors as f∗ deviates from 0.5. Because

Estd is much greater than Ebias in this test, Erms is

dominated by the random errors and shows essentially

the same bowl-type curve. Qualitatively, these trends

are consistent with what might be expected based on

the S̄ values of the patterns detailed in Table 2.

4.2 Large-scale test

The second test investigates the effect of average grayscale

bias on DIC error at the large-scale (low magnification),

in which multiple pattern bitmap features are coars-

ened into a single image pixel. For this test ρmag = 0.2
meaning 5 by 5 pattern bitmap pixels correspond to

a single DIC image pixel. The variation of the average
grayscale bias is what creates contrasting regions at the
large-scale. This is illustrated in Figure 4 which shows

an example of a pattern bitmap and its generated DIC

image for the current test.

Five patterns are created for the large-scale test in

the following manner. First, two contrasting pattern

templates are chosen from the previously generated 100

by 100 pixel pattern bitmaps. The template patterns

were chosen to give varying levels of contrast with re-

spect to each other; the five sets of light and dark f∗

pairs are (0.8, 0.2); (0.75 0.25); (0.7, 0.3); (0.65, 0.35);

and (0.6, 0.4). Next, the template patterns are tiled 25

0.2 0.4 0.6 0.8

f∗

0.000

0.005

0.010

0.015

0.020

N
u
m
er
ic
al

ex
p
er
im

en
t
er
ro
r
m
ea
su
re

(p
ix
el
s)

Ebias

Estd

Erms

Fig. 3: Results of small-scale numerical experiment.
Error metrics from a suite of numerical deformation

tests are shown with respect to variations in average
grayscale bias.
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(a)

(b)

Fig. 4: A section of a multiscale optimized pattern
bitmap with local grayscale bias varying between f∗ =
0.3 and f∗ = 0.7 (a) and its numerically generated DIC
reference image with ρmag = 0.2 (b). The red box in
(b) illustrates the portion of the DIC image that corre-
sponds to (a).

times (25 is the chosen ratio of large- to small-scale)
resulting in two 2,500 by 2,500 pixel template patterns.
Finally, the f∗ = 0.5 pattern is used as a large-scale
mask by which blocks of 25 by 25 pixels from the dark
and light templates are chosen (see Figure 4(a)). This
same large-scale mask is used for all 5 patterns so that
the results of this test rely solely on the contrast be-

tween template patterns.

It should be noted that the patterns for this test
could have been constructed through an optimization

using the f∗ = 0.5 pattern as a template for local vari-
ation in f∗; however, the above template-based method
is chosen for convenience. The main difference is that

the borders between neighboring dark and light regions
have not been explicitly optimized in the template-
based method. In the objective function for any given
sub-region / sub-optimization only the Â2 term de-
pends on neighboring regions. This term, which is based
on the most highly correlated neighboring region, is
not likely to be controlled by neighboring regions with
greatly different f∗ values. Thus, in cases where the ra-
tio between large- and small-scale is high (correspond-
ing to low density of border regions) or largely differ-
ing templates are chosen, the use of a template-based
method is justified.

Figure 5 shows the results of subjecting the 5 pat-
terns to the suite of numerical deformation tests above.
Similar to the small-scale tests, Ebias is relatively low in
all cases. Because Ebias is small relative to Estd, Erms

nearly coincides with Estd. Estd shows a clear trend
with the changes in template patterns. The templates
with similar values of f∗ (lower contrast) correspond
to higher errors. Ergo, with respect to large-scale DIC,
the templates with larger variation in f∗ are preferable
because they consist of more highly contrasting large-
scale features.

4.3 Choice of pattern

In the above two experiments it was shown that grayscale
bias away from f∗ = 0.5 has the dual effect of increas-
ing DIC error at the small-scale and decreasing DIC er-
ror at the large-scale. Thus, any choice of the grayscale
bias in a multiscale pattern must take both of these ef-
fects into consideration. A simple means of doing this
is to plot the data from Figures 3 and 5 simultaneously
(see Figure 6) so that a simple cost-benefit analysis can
be performed. Figure 6 illustrates the expected level of
precision at both the large- and small-scales given the
choice of grayscale bias for the constituent parts of the
pattern. Since these estimated values are derived under

consistent conditions the relative accuracy of the two



Development of optimal multiscale patterns for digital image correlation via local grayscale variation 9

0.2
0.8

0.25
0.75

0.3
0.7

0.35
0.65

0.4
0.6

f∗ (
low
high

)

-0.050

0.000

0.050

0.100

0.150

N
u
m
er
ic
al

ex
p
er
im

en
t
er
ro
r
m
ea
su
re

(p
ix
el
s)

Ebias

Estd

Erms

Fig. 5: Results of large-scale numerical experiments. Er-

ror metrics from a suite of numerical deformation tests

are shown with respect to variations in dark and light

template patterns.

scales is assumed to be consistent despite any inaccu-

racies of the numerical model compared to reality. Fur-

thermore, it should be noted that adjustment of DIC

parameters at one scale (e.g., subset size [18,19,12] and
pre-filtering methods [35,41,39]) can effectively reduce

the error at that scale while leaving the other scale un-

affected.

The application drives the choice of pattern. For
instance, if high levels of precision are required at the

small-scale and less is needed at the large-scale, grayscale

biases of f∗ = 0.4, 0.6 may provide the best results.

Because no single pattern is best suited for all appli-

cations, a script for the creation of multiscale patterns

in the manner described above is included in the sup-

plementary material of the current work to allow pat-

tern creation suitable for a variety of applications. In

the next section, the multiscale pattern with values of

f∗ = 0.3, 0.7 is chosen because it offers a good balance

of precision at both scales.

5 Physical experiment

A physical experiment was performed to illustrate the

utility and functionality of the generated multiscale pat-

terns. In the experiment, the previously designed pat-

tern with local grayscale bias varying between f∗ = 0.3

and f∗ = 0.7 is used (shown in Figure 4(a)). The pat-

tern was applied to an aluminum plate via the water

transfer method [34]. Two stereo DIC systems with dif-
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Fig. 6: Tradeoff between large-scale DIC precision and

small-scale DIC precision based on choice of local values

of f∗

fering levels of magnification were used to image the

specimen. The difference in magnification between the

two was roughly 16x. Both systems were appropriately
calibrated using standard calibration procedures [40].
To illustrate that the pattern performs well at both
scales regardless of location, a hole was drilled in the

specimen in an arbitrarily located position. The loca-

tion of both imaging systems was set to include the re-

gion near the hole. Figures 7(a) and (b) show examples

of the images taken with each DIC system.

The specimen was then loaded in uniaxial tension

in a direction just off the vertical y-axis in Figures 7(a)

and (b). A higher amount of localized deformation is
expected near the hole in the vertical direction. Images

were taken before and during loading and DIC was per-
formed to measure displacements. The DIC parameters
utilized in step 9 of the numerical experiments in Sec-
tion 4 are again used here with the exception of subset

size. For consistency in the DIC algorithm, a subset size

of 99 was used in analysis of both magnification levels;

this subset size is shown relative to the patterns as red

boxes in Figures 7(a) and (b).

In Figure 7(c), the measured DIC displacements are

compared for the two magnifications along the 4 cross-

sectional lines which are illustrated in Figures 7(a) and

(b). It is seen that the high magnification DIC mea-

surements are able to resolve the localized deformation

around the hole much better than with low magnifi-

cation. The low magnification tends to smear the de-

formation over a larger area. Especially in cases where

strains (spatial derivatives of the displacements mea-
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Fig. 7: Physical experiment showing (a) one of the Reference DIC images taken at low magnification, (b) one of
the reference images taken at high magnification, and (c) cross-sections of the DIC displacement fields under load.

The colored lines in (a) and (b) indicate the locations of the correspondingly colored cross-sections in (c). Dotted
lines are used for the low magnification and solid lines are used for the high magnification. The red squares in (a)
and (b) illustrate the subset size used in the DIC analysis.
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surements) are important, the high magnification using

the small pattern features is preferred. In these cases

the large-scale strains may not even capture local strain

features at all. Figure 7 also shows that as the distance

between measurement location and the hole increases,

the measurements at the two scales become more sim-

ilar to each other. This illustrates that both scales can

measure the same displacement in a relatively uniform
displacement field. Further, by overlaying the displace-
ment fields of the high magnification on the low mag-

nification fields in Figure 8, good agreement is seen at

the border of the regions.

As a demonstration of the utility of the pattern in

practical multiscale DIC, the strains fields of the two

regions are shown in 9. The smoothed strain fields were

calculated with 13 by 13 Gausian weighting. Under high

magnification the strain concentration associated with

the hole can also be seen. Qualitatively, the magnitude

of the strains at the border between the high and low

magnifications match relatively well when discounting

some edge-effects due to the smoothing process on the

high magnification field.

6 Discussion

It has been shown in the current work that multiscale

patterns can be created through a modification of the

framework of Bomarito et al.[13] by the introduction of

a constraint on local average grayscale. This constraint

was shown to locally push the pattern away from the op-

timal DIC pattern as the grayscale bias deviated from

f∗ = 0.5. However, this local bias allows for the res-
olution of contrasting regions at lower magnifications.

Thus, local grayscale biasing has the dual effect of in-

creasing DIC error at high magnification and decreasing

DIC error at low magnification. A simple way of viewing

this outcome is by noting that the intensity variation of

the pattern must encode all pattern information, and

since the same intensity variation is used for both scales,

they must share that information content. Nonetheless,

an appropriate pattern can be designed by weighing the

advantages of higher precision at each of the scales of

interest in the specific application of choice. A script

which generates a multiscale pattern of the type dis-

cussed in Section 4.2 is included in the supplementary

material of this article, so that patterns may be specif-

ically tailored to an application of interest.

A physical experiment was performed using a pre-

cisely designed multiscale pattern which showed that it

(1) could be utilized at multiple magnifications for DIC,

(2) did not need to know location of high magnification

a priori, (3) could be imaged with standard DIC equip-

ment, and (4) was optimally suited for multiscale DIC

given these constraints.
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