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The rate of advancement made in phenomic-assisted breeding methodologies has lagged those of genomic-assisted techniques,
which is now a critical component of mainstream cultivar development pipelines. However, advancements made in phenotyping
technologies have empowered plant scientists with affordable high-dimensional datasets to optimize the operational efficiencies
of breeding programs. Phenomic and seed yield data was collected across six environments for a panel of 292 soybean accessions
with varying genetic improvements. Random forest, a machine learning (ML) algorithm, was used to map complex relationships
between phenomic traits and seed yield and prediction performance assessed using two cross-validation (CV) scenarios consistent
with breeding challenges. To develop a prescriptive sensor package for future high-throughput phenotyping deployment to meet
breeding objectives, feature importance in tandem with a genetic algorithm (GA) technique allowed selection of a subset of
phenotypic traits, specifically optimal wavebands. The results illuminated the capability of fusing ML and optimization techniques
to identify a suite of in-season phenomic traits that will allow breeding programs to decrease the dependence on resource-intensive
end-season phenotyping (e.g., seed yield harvest). While we illustrate with soybean, this study establishes a template for deploying

multitrait phenomic prediction that is easily amendable to any crop species and any breeding objective.

1. Introduction

Soybean [Glycine Max (L.) Merr.] breeding programs have
improved the crop genetic potential, while producers have
modified their agronomic methods to increase seed yield
(SY) [1-5]. While genomic-assisted breeding methods are
now more routinely applied in large resource-rich breeding
organizations, the development of phenomic-assisted breed-
ing methods is in relative infancy and is amendable for cost-
effective deployment [6]. High-throughput phenomics has
been proposed as a solution to lessen the throughput capacity,
mechanical, and resource limitations that exist in plant breed-
ing programs associated with phenotyping [7]. Studies have
shown high correlation between phenomic traits collected
using digital sensors and manually collected measurements
[8, 9] suggesting phenomic data can be acquired on a
wide spatiotemporal scale by leveraging the technological

advancements made in sensor technology with ground and
aerial-based phenotyping platforms [10]. Empowered with
phenomic data that was previously difficult or impossible to
collect across an expansive spatiotemporal scale, scientists
have begun disentangling the genetic architecture of traits
through genomic studies [8, 11, 12], prediction of target trait
performance using genomic [13-16], and phenomic predic-
tion strategies [9, 15, 17-20]. However, increasing soybean
seed yield and on-farm profitability is the primary objective of
soybean breeding programs making seed yield an important
trait to target in both cultivar and germplasm breeding
efforts utilizing phenomics tools that can lead to reduced
environmental and genotype testing.

Research has been conducted across several crop species,
including soybean, demonstrating the use of phenomic tools
to measure traits such as canopy temperature (CT) [16],
canopy area [17], and canopy spectral reflectance [18-21] for
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seed yield prediction. For a phenomic trait to be a useful
predictor of seed yield, it must have the following attributes:
(a) high genetic correlation with seed yield indicating that the
shared additive genetic variation is captured in the phenomic
trait, and (b) must be highly repeatable and heritable [22, 23].
Given the complexity of physiological processes responsible
for seed yield [2-5] it is likely that a myriad of phenomic
traits are required for accurate seed yield prediction across a
wide spatiotemporal scale. Studies including phenomic traits
in multivariate genomic selection (GS), designed to leverage
the shared genetic correlation between traits, have shown
increased prediction accuracy proposing the added advan-
tage of including phenomic traits in evaluating candidate
genotypes over using yield alone to measure breeding value
[14-16]. However, more information is needed on deploying
high-dimensional phenomic information to compare the pre-
dictability of phenomic traits simultaneously for use in seed
yield prediction since breeding programs rely on identifying
elite cultivars through empirical as well as prediction based
approaches [24].

Given the throughput capacity of high-throughput phe-
notyping platforms to collect multiple sensor information
simultaneously, plant scientists are often left with a high-
dimensional phenomic data cube [25]. The ability to handle
large amounts of complex data and to capture complex non-
linear relationships between phenomic predictors and seed
yield makes machine learning (ML) a viable mathematical
tool [9, 26]. Random forest [27] (RF), an ensemble learning
ML method, provides the added benefit of using multiple
decision trees to model complex trait relationships and the
ability to concurrently gauge feature importance to enable
the user to glean insights on how predictions were made. In
addition to predicting seed yield, identifying an informative
subset of predictors is important to reduce data redun-
dancy, minimize sensor cost, and reduce the computational
demand required for processing and analysis [28]. Random
forest approaches provide simpler interpretability, although
advances in deep learning models include explainability of
features used in the models for phenotype and this is a rapidly
advancing field [29]. In addition to prediction, optimization
routine is needed for efficient phenomics based predictors to
minimize cost and temporal requirements of data collection.
Genetic algorithm (GA) is an optimization algorithm that has
been used to identify informative hyperspectral wavebands
for disease classification [9, 26, 28], wheat yield and nitrogen
status prediction [30], and corn pollen shed detection [31].
GA is designed to mimic natural evolutionary processes to
evaluate the performance (fitness) of a group (population)
of predictors (chromosomes) and using selection theory to
“breed” a new generation of individuals of each generation
using a fitness metric to guide the search process so that only
the most elite individuals are recombined until some criteria
are met [32]. The premise of GA imparts it the ability to
select a subset of hyperspectral wavebands to be concurrently
deployed on multisensor payload on aerial based platforms
for SY prediction, identification of useful genetic diversity
[11, 33, 34] (for a more in-depth review on this subject see
[35,36]), and breeding decisions for population advancement
and line selection. While significant strides have been made

Plant Phenomics

in the use of the visible and near-infrared spectrum, exploring
the extent of the spectrum which is currently collectable
remains an elusive target.

This work is motivated by the overall need to explore
soybean genetic diversity for SY, development of phenomic
predictors of SY across growth and development stages
using multiple sensors, and data analytic approaches to glean
informative pieces of information from a large dataset. Addi-
tionally, there is a need to minimize the cost and dedicated
resources required for germplasm breeding efforts and to
increase the operational efficiency. Therefore, the objectives
of this research were (1) to explore and assess the importance
of phenomic traits for SY prediction using a diverse set of
292 soybean accessions, (2) to use machine learning and
optimization methods to develop prediction models enabling
in-season SY prediction and identify informative subset of
hyperspectral wavebands for potential phenomic applications
to improve SY, and (3) to test and validate prediction models
for multiple trait based SY selection. Since most of the
yield prediction studies have relied on vegetation indices
and canopy traits (area and temperature), we looked at an
integrated approach of optimizing the selection of traits and
expanding our search space to include individual wavebands.

We propose a framework that is easily transferable to
different crops species and breeding program that is looking
to fuse ML-based analytics and optimization tools with
high-dimensional phenomics data to develop economical
but scalable sensor solutions to be deployed using modern
phenotyping platforms. These findings present germplasm
breeders with an approach to expand testing capacity while
improving the accuracy of yield estimation, critical to effi-
ciently mine genetic diversity and drive genetic gain.

2. Materials and Methods

2.1. Germplasm. We evaluated 292 diverse soybean acces-
sions from 19 different countries adapted to the maturity
group (MG) late I to early III (Table S1). Accessions were
sourced from the soybean core collection of the USDA
Soybean Germplasm Collection [37] and parents of the
Soybean Nested Association Mapping (SoyNAM) panel [38]
consisting of 260 and 32 accessions, respectively. These acces-
sions were selected to represent the genetic diversity available
to the US soybean breeders and can be classified into three
genetic backgrounds (https://www.soybase.org/SoyNAM/):
(1) elite, (2) diverse, and (3) plant introduction (PI). Elite
cultivars consisted of public breeding lines developed by
breeders across the US, diverse lines were developed through
crossing elite and PI germplasm, and PI germplasm consisted
of publically available lines from the USDA germplasm
collection.

2.2. Experimental Design. The data included in this study was
collected across six locations over two years (2016 and 2017
growing seasons) (Table S2), and these environment-year
combinations are henceforth referred to as environments.
To manage spatial variability, an alpha-lattice design was
created uniquely at each environment and consisted of two
replications with 30 incomplete blocks. Experimental plots
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were established with a GPS enabled ALMACO (Nevada,
IA, USA) cone planter equipped with four row units (76 cm
row spacing) and seeded to a length of 4.6m with 0.9m
alley between plots. Plots were seeded at a rate of 296 K
seeds ha™'. Once seedling emergence was complete, the
number of plants from a Im section from a randomly
selected portion of the middle two rows was recorded for
each plot to determine suboptimal plots for this study. Plots
with low seedling emergence determined by observations
more than two interquartile ranges below the first quartile
were discarded (14 out of 3504 total plots across the six
environments).

2.3. Phenotypic Data Collection and Processing. In each envi-
ronment, plots were phenotyped for physiomorphological
(phenomic) traits at two time points during the growing
season when plots reached the following approximate growth
stages: SI: flowering (R1-R2) and S2: pod set (R3-R4) [39].
The inability and impracticality to collect crop growth stage
specific data per plot motivated us to collect across the
important crop development stages: flowering and pod set.
We selected these two approximate growth stages due to the
important phenological stages that impact final seed yield as
suggested by previous research [2-5]. We ensured that stage
specific data were collected as per the two stages by recording
per genotype growth stage at each environment (from the first
replication) for each set of phenotypic data collected in the
study.

During the 2016 growing season, phenomic traits were
collected manually using appropriate sensors and equipment.
Through a preliminary study (data not presented), it was
determined that four to six hours per sensor per environment
was required to collect data depending on walking speed
and weather conditions. To optimize data collection by
minimizing time required for multiple sensor data collection,
we constructed a mobile phenotyping platform similar to
[15] and deployed during the 2017 growing season. All
physiomorphological traits were collected from the middle
two rows and data were collected by pushing/pulling the
phenotyping buggy up and down passes while simultaneously
collecting data from multiple sensors (canopy temperature,
canopy area, and canopy spectral reflectance).

Canopy temperature (CT) was measured at four envi-
ronments using a FLIR VUE Pro R (FLIR, Goleta, CA,
USA) infrared camera with a 9 mm lens and 640 x 512 pixel
resolution on cloudless days when wind speed was <2.24 m
s”!. The sensor was suspended 2.0 m above the soil surface
in the nadir position and 8-bit JPG image recorded. Plot
CT values were extracted using a custom MATLAB (R2017a)
script to remove soil background values and mean thermal
temperature in degrees Celsius computed for the canopy
area remaining after image thresholding. CT data was then
corrected for changes in ambient temperature by normalizing
by pass which has been shown to increase repeatability [15].

Canopy area (CA) was determined using Canopeo app
[40] in MATLAB to estimate fractional green canopy area
from RGB images. JPG images were acquired using a Canon
T5i camera (Canon U.S.A. Inc., Huntington, NY, USA) with
an 18 to 55 mm lens suspended 2.0 m above the soil surface

and 20° from nadir. One image was recorded per plot with
camera lens zoom fully retracted and camera facing plot so
that a landscape image was taken to capture a long transect
of the middle two rows. To ensure consistent image quality,
images were collected in automatic mode (Program AE) to
automatically control both aperture and shutter speeds to
maintain consistent exposure value.

Canopy spectral reflectance was measured using a Field-
Spec® 4 Hi-Res (ASD Inc., Boulder, CO, USA) spectrora-
diometer which measures 2150 spectral wavebands from 350
to 2500 nm. Data was collected by positioning the fiber-optic
cable 1m above the canopy in the nadir position and two
reflectance measurements were recorded from each of the
middle two rows on cloudless days +2h of solar noon and
calibrated every 20 minutes during data collection by normal-
izing to a white reference panel (Specralon®, Labsphere Inc.,
North Dutton, NH, USA).

We processed the data as follows:

Data Processing Step 1: calculated average reflectance for
each plot by averaging the two observations.

Data Processing Step 2: computed repeatability for indi-
vidual wavebands across all locations using the following
equation [24]:

0,2
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Where oy is the genotypic variance, og, is the variance

attributed to genotype environment interaction, o is the
residual variance,  is the number of replications, and e is the
number of environments.

Data Processing Step 3: removed wavebands with H* <
0.3.

Data Processing Step 4: calculated vegetative indices
(VI) previously characterized to be associated with different
physiological traits (Table S3).

Data Processing Step 5: computed the mean reflectance
across blocks of 10 nm regions (R) across the 1780 wavebands
to produce 178 averaged wavebands. We chose to average
every 10nm to reduce multicollinearity between adjacent
wavebands and to identify spectral regions with resolu-
tion consistent with customizable miniaturized multispectral
cameras currently publicly available for research and breed-
ing applications.

Seed yield (SY, kg ha™') was measured from the mid-
dle two rows of four row plot by machine harvest using
ALMACO SPC20 combine after plots had reached physiolog-
ical maturity (R8). Seed moisture was measured of harvested
plots to adjust plot SY values to 13% moisture. Preharvest
shattering was scored for each plot on 1 (no shattering) and
5 (more than 50% of plants had more than 50% of seed loss)
scale and yield observations with preharvest shattering score
of >4 were removed from further analysis (27 out of 3504 total
plots across the six environments).

2.4. Statistical Model. A mixed linear model was fit to the
alpha-lattice design to test model effects and obtain genotypic
best linear unbiased predictions (BLUPs) of studied traits



using the R package Ime4. A mixed linear model was fit with
the form:

Vi =+ Ei + Rj+ By + G+ EX Gy + g0 (2)

where y is a vector of observed phenotypes, y is the grand
mean, E; is the effect of the ith environment, R; is the effect
of the jth replicate, By; is the effect of the kth incomplete
block nested within the jth replicate, G, is the effect of
the Ith genotype, E x Gy is the effect of G x E, and ¢
is the residual error and is assumed to be normally and
independently distributed, with mean zero and variance 0.
Assumptions of ANOVA were tested using Shapiro Wilk
test and Bartlett’s test using base functions in R. Residuals
were normally distributed with homogenous variance. To
identify inconsistencies in the data, outliers were removed by
calculating studentized residuals for each observation of each
trait and outliers excluded from the analysis with values +3.

Analysis of variance (ANOVA) for seed yield was con-
ducted to evaluate the effect of genotype, termed as fixed,
and all remaining termed as random using a mixed linear
model with the same as that for (2). Additionally, a two-way
ANOVA Dunnett’s test was used to compare PI and diverse
accessions with elite genotypes as the control and adjusted
P-values computed for comparison between each genotype
and the control (elite genotypes). Accessions with statistically
similar seed yield were defined as P > 0.05.

To deal with missing data at some locations and unbal-
anced sample size of phenomic information among acces-
sions due to weather or logistical constraints during pheno-
typing (Table S4), genotype BLUPs were computed using two
methods (also see Cross-Validation Section below):

Method 1: from four out of six environments, by-
environment BLUPs, were computed as they had complete
datasets.

Method 2: across-environment BLUPs were computed for
all six environments.

These preprocessing steps of BLUP computation were
motivated with the intention to compare phenomic pre-
diction model accuracy when a complete training set is
assembled across all environments versus a scenario where
environments have sparse phenomic information. Both these
scenarios are endemic to germplasm and cultivar develop-
ment programs conducting multiple environment testing.
Method 1 BLUPs were computed by removing all terms
associated with environment, while Method 2 BLUPs were
computed using (2) with all terms considered random.

2.5. Genetic Correlation and SNP-Based Heritability. Genetic
correlations (r,) between seed yield and phenomic traits were
computed using multivariate mixed models [13]. SNP-based
heritability (héNp) [41] was calculated using a mixed linear

model with the form:
y=p+Zu+@& (3)

Where y is a vector of BLUP phenotypic values computed
from method 2 for the trait of interest, y is a scalar intercept,
Z is an incidence matrix for the random genotype term, u is
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a vector of random effects corresponding to genotypes [g ~
(0, Aoﬁ)] [g ~ 0,Acg2], where A is the additive genomic
relationship matrix [42], and & is a vector of residuals.
Genotypic data for all 292 genotypes was obtained from
the publicly available Illumina Infinijum SoySNP50K Bead-
Chip database (https://soybase.org/snps/). Single nucleotide
polymorphism (SNP) markers with missing rate >10% were
removed from the analyses and the remaining missing SNPs
imputed using BEAGLE version 3.3.1 with default settings in
synbreed package [43]. After imputation, SNPs with minor
allele frequency (MAF) <5% were removed leaving 35,512
SNPs. Unlike conventional estimates of heritability, A is used
to calculate marker-based genetic variance (0;) associated

with genotypes and kg, computed using:

0,2

2o g
SNP —(o; N Uez) (4)

where af is the residual variance (for a more in-depth review
see [13, 42, 44]). The R package sommer [45] was used to
compute the A matrix, genetic correlation, and hzy, using
the built-in pin function and standard error estimates were
computed simultaneously.

2.6. Phenomic Prediction Pipeline. In this study, we developed
an analytical pipeline using RF algorithm for prediction of
SY (response variable) using phenomic traits (predictor vari-
ables). Predictive ability of phenomic traits for SY prediction
was determined by partitioning predictor traits into three
cohorts: (1) canopy (CA and CT), (2) VI, and (3) wave-
bands. For each cohort, predictor variables were independent
factors. Models were trained using (a) canopy alone, (b)
VI alone, (c) canopy and VI together, and (4) wavebands
alone (see Data Processing Step 5 above). Essentially, sensor
combinations that can be easily deployed onto payloads were
the key driver in exploring prediction performance for these
combinations of sensors. The caret package [46] implemented
in R was used for model training and hyperparameters tuned
using the tunelength function. To gauge model performance
during training, repeated (n=>5) 10-fold cross-validation was
used and the coefficient of determination (R?) and root
mean square error (RMSE) for out-of-bag (OOB) samples
are reported. Predictions were then projected onto an inde-
pendent dataset (see Cross Validation section below) not
included in model training and consisting of only phenomic
traits. Variable importance was computed using the varlmp
function and mean importance is reported.

2.7. Cross-Validation (CV). To evaluate model performance,
we used two cross-validation (CV) scenarios to emulate
phenomic prediction in plant breeding programs (Figure 1):

CV1: from all environments, 80% of accessions (n=234)
were included in model training set and 20% (n=58) were
kept in the testing set.

CV2: this was used for per environment prediction
cross-validation and the four environments with complete
datasets were included. For each of these four environments,
80% of accessions from the other three environments were
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FIGURE L: Cross-validation scenarios (CV1and CV2) and preprocessing methods (Methods 1and 2) used to assess phenomic prediction model
performance. Method 1 and Method 2 differ in BLUP computation, while CV1 and 2 depict two plant breeding scenarios for prediction
in multienvironment tests. These CV scenarios represent a combination of different preprocessing (to handle missing data) methods and
prediction challenges native to plant breeding practices. In Method 1, for both CV scenarios, individual environment BLUPs are computed
and subsequently used in model training and testing the model. In Method 2, combined environment BLUPs are computed and subsequently
used in training the model, while individual environment BLUPs are used in testing the model.

used for model training, while 20% of accession for that
environment was used for testing; i.e., for Environment#2,
model training was done on 80% of random accessions from
Environments# 1, 3, and 4, and testing was done on 20% of
remaining accession from Environment#2. For CV1and CV2,
the training and testing procedures were repeated 10 times
and the mean accuracy for each CV-Method combination is
reported. Training and testing sets were compiled for each CV
iteration and training data used to parameterize model and
prediction made onto the test set following model training.

Two preprocessing methods were used to parameterize
RF prediction models (see Statistical Model section), and we
then tested two CV scenarios to emulate prediction chal-
lenges faced by breeders in field trials with unbalanced data.
From a practical application viewpoint, the CV1 strategy is a
scenario where phenomic data is collected on all genotypes
while yield is collected on a subset of lines and breeders may
wish to estimate the rank performance of untested genotypes
not phenotyped for yield but with available physiological
trait data. The CV2 strategy is deployable where breeders
are interested in predicting rank performance of untested
accessions (no seed yield data) and untested environments
(unseen environment) with no seed yield but with phenomic
traits. The CV2 strategy is an improvement to leave-one-
environment-out [47] situation as we excluded test genotypes
from model training.

Model prediction accuracy is reported using Spearman
rank correlation coeflicient between observed values and
predicted values of the test set computed by recording the
mean values across all 10 training-testing iterations and all

folds of CV. Cross-validation schemes were developed in R
using in-house script.

2.8. Predictor Optimization. To identify spectral reflectance
wavebands and validate previous findings, we used a genetic
algorithm (GA) optimization approach with RF-based pre-
dictor as the underlying function evaluator to identify a
subset of wavebands capable of being deployed using a
multispectral camera. The objective was to identify four
wavebands common across the two growth stages (S1and S2)
that maximized seed yield rank correlation while deploying
one multispectral camera; therefore our search space spanned
the set of 356 wavebands (178 wavebands per growth stage)
while ultimately picking the four most optimal wavebands.
We chose to identify four wavebands as this is consistent
with the current offering of third-party vendors providing
customizable cameras that can be used as a selection tool
for phenomic-assisted breeding selection processes. Details
of the GA process are outlined in Table S5. As GA is a
computationally intensive process and prior results showed
higher prediction accuracy using Method 1 BLUPs, we limited
future analyses to this subset and therefore only Method 1
results are presented. Furthermore, the GA approach was
not used in Method 2 (for developing a regression model)
due to insufficient dataset size. Using the same training
and testing data in the aforementioned phenomic predic-
tion section and once terminal conditions were met, a RF
model was retrained and prediction performance assessed
by predicting seed yield on the complete testing set using
the four selected wavebands and Spearman rank correlation



was computed. To supplement wavebands, we selected the
VI with the highest r, in the respective CV scenario and
canopy (temperature and area) traits for each CV scenario.
In addition to reporting Spearman rank correlation for the
test set, we measured breeding success outcome given a
hypothetical selection intensity of 20% through a confusion
matrix: true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). From these values, classification
metrics relevant to plant breeding were computed from the
confusion matrix output:

TP/ (TP + EN)

Balanced Accuracy (BAC) = TN/ (TN + FP) ()
2TP
F F. =
Score(FS) = Grpv rpr vy ©
B TN
Specificty (SPE) = s 7

Spearman rank correlation and confusion matrix results are
reported from a study of the effect of training population
size using variable training set size: 80% (234 genotypes),
60% (175 genotypes), 40% (117 genotypes), and 20% (58
genotypes) for the optimized RF prediction model in the two
CV procedures. Mean predictive performance was assessed
for each training population size.

3. Results

3.1. Seed Yield Performance. A significant effect of genotype,
environment, and their interaction was observed (Table S6).
Mean SY of 2113kg ha™' was observed across the 292 acces-
sions with elite germplasm (4008 kg ha™') having superior
SY followed by diverse (3570 kg ha™!) and PI (1968 kg ha™).
The extent of seed yield performance was extensive: 566-
3537 kg ha™' within the PI cohort, 2979-3991kg ha™" within
diverse accessions, and 3335-4542kg ha™! within the elite
accessions. Three diverse accessions were not significantly
different compared to the mean performance of the elite
accessions. While the most extensive trait variation was
observed for PI, there was an overlap in performance of the
three groups (Figure 2). P1597482 (from South Korea) had the
highest SY (3537 kg ha™') within the cohort.

3.2. Genetic Correlation and SNP-Based Heritability. The
genetic correlation (r,) among SY and independent variables
(canopy traits, VI, and wavebands) in both growth stages
had a large range: -0.80 to 0.60 in Sl (flowering) and -
0.75 to 0.59 in S2 (pod set) (Table S7, Figure 3(a)). Among
canopy traits and VI, Vogelmann Red Edge Index 2 (VREI2)
had the strongest r, with seed yield of -0.77 and -0.75 in
S1 and S2, respectively. Other VIs identified with strong
r, were Normalized Water Index (NWI) (SI: -0.58, S2: -
0.59), Ratio Analysis of Reflectance Spectra Chlorophyll b
(RARSD) (S1: 0.59, S2: 0.50), and Ratio Analysis of Reflectance
Spectra Chlorophyll ¢ (RARSc) (SI: 0.60, S2: 0.43). The
1, of SY canopy traits were 0.33 (S1) and 0.25 (S2) with
CA, and -0.44 (S2) with CT. VI NMDI exhibited a strong
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FIGURE 2: Machine harvested seed yield (kg ha™) of 292 genotypes
grouped as elite (n=13), diverse (n=10), and PI (n=269). Tests were
grown across two years in six environments across central Iowa. Seed
yield was computed from combined environment BLUP.

dependency of growth stage on r, resulting in a 180%
change from S1 (0.03) compared to S2 (0.59). The T between
canopy spectral reflectance wavebands and SY was highly
variable (-0.82 to 0.32) across the electromagnetic spectrum
but followed a consistent trend for both collected growth
stages (Figure 3(a)). Two regions across the electromagnetic
spectrum were identified with strong r, in the visible to near-
infrared region (700-850 nm) and in the shortwave infrared
regions (2030-2119nm). Strong T between SY and waveband
reflectance was observed with 705nm waveband (average
wavelength in nm) across both growth stages (S1: —0.67, S2:
—0.56) while the maximum absolute ry was observed for
2065 nm (S1: —0.82, S2: —0.52).

Consistent with 7, SNP-based heritability (hayp) analysis
revealed a wide range from 0.07 to 0.77 in S1 and 0.19 to 0.73
in S2 for phenomic traits (Table S7, Figure 3(b)). SY thP
was 0.32. VIs had higher h%,, in S2 (0.54) when compared
to S1 (0.30). VI NDVI had the highest hgy, in S2 (0.51)
while VREI2 had the highest /gy, across both growth stages
(SL: 0.51, S2: 0.65). The hgy,p for CA was higher in S1 (0.50)
compared to S2 (0.38) while CT, measured at S2, was 0.29.
Waveband 53y, ranged from 0.15 to 0.77 in S1 and 0.19 to
0.31 in S2 and revealed a similar decreasing trend across the
spectrum and maximum thP (0.77) was observed in Sl in
the visible region (Figure 3(b)).

3.3. Phenomic-Enabled Yield Prediction. Overall, we observed
the following trends: (1) phenomic data collected at two
growth stages during the growing season was predictive of
SY rank at maturity, (2) the use of by-environment BLUPs
had improved prediction accuracy compared to using across-
environment BLUPs for predicting seed yield, (3) RF model
had improved prediction accuracy when training data was
included from the same environment in which the test
genotypes were evaluated, and (4) a wide range in prediction
accuracy was observed among predictor cohorts demon-
strating the need for identification of the best predictors to
optimize sensor deployment (Figure 4).
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FIGURE 3: Analysis of hyperspectral canopy reflectance wavebands (average reflectance per 10 nm) and relationship with seed yield using
292 soybean genotypes grown in six environments (replication per environment = 2). (a) Genetic correlation (rg) between seed yield and

waveband, (b) SNP-based heritability (thP) across waveband, and (c) feature importance for predictor variables (i.e., waveband) for SY
estimation using the random forest algorithm. Hyperspectral canopy reflectance data were collected in six environments across central Iowa
by recording two measurements by positioning the sensor 1 m above the canopy in the nadir position.

Higher rank correlation in CV1 was observed when
compared to CV2, and higher rank correlation in Method
1 was observed in comparison to Method 2. The four-
way classification of Method (1 and 2) and CV (1 and 2)
showed that there was an increase in rank correlation from
canopy (0.35) < waveband (0.49) < VI (0.67) < canopy +
VI (0.68) (Figure 4). Canopy rank correlation increased by
62% with the addition of VIs (canopy + VI) and minimal
change was observed between canopy + VI and VI (<1%

difference). Method 1 (training set using by-environment
BLUPs) had 18% higher rank correlation than Method 2
(across-environment BLUPs). CV1 (unknown accessions)
had 22% higher rank correlation when compared to CV2
(unknown accession in unknown environment). Maximum
rank correlation was observed for canopy + VI in Method
1 (0.76) and Method 2 (0.68). Moderate rank correlation
(0.49) was observed using 178 raw reflectance wavebands per
growth stage. When wavebands were considered, higher rank
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FIGURE 4: Spearman rank correlation obtained after random forest model prediction (seed yield = dependent variable) performance of
predictors trained with remotely sensed phenomic traits (canopy traits, waveband, vegetation indices, and combination) in 292 soybean
genotypes grown at six environments and data collected at two growth stages in each environment. Error bars represent standard deviation

around the mean.

correlation was observed in Method 1 compared to Method 2
and CV1 compared to CV2 (34% higher in each).

Variable importance analysis revealed CA and VREI2
were most important for models trained using canopy and
VIs, respectively (Table S8). Wavebands in the visible to
near-infrared region were most important overall and were
consistent across CV scenarios and preprocessing methods
(Figure 3(c)). Wavebands collected at S2 growth stage had
higher importance than those collected in S1. Waveband
715 nm was identified as the most important across all growth
stages. In Method 1, wavebands in the shortwave infrared
region were also important to model prediction.

3.4. Phenomic Predictor Optimization and Its Application.
The majority of selected wavebands GA step were in the
visible region: 405 nm, 435 nm, 705 nm, 715 nm, two in near-
infrared region: 795 nm, 815nm, and one in the shortwave
infrared region: 2255 nm. The most predictive bands for CV
1 were 435 nm, 705 nm, 815 nm, 2255 nm, while for CV2 were
405nm, 705nm, 715nm, 795nm. Based on our results on

r, and feature importance analysis, and the ease of deploy-
ment of different sensors, VREI2, CA, and CT were chosen
along with most predictive wavebands for testing their SY
prediction performance (Figure 5). Prediction performance
(Spearman correlation) of CV1 and CV2 was 0.74 and 0.33,
respectively. A slight increase in rank performance was
noticed in CV1 when GA generated bands were used (rank
correlation increased by 0.03) and a slight decrease observed
in CV2 (rank correlation decreased by 0.11). High specificity
(SPE) was observed among all models ranging from 0.81 to
0.94 and was slightly higher for models trained in CV1(0.92)
compared to CV2 (0.87). Similarly, moderate to high F score
(FS) and balanced accuracy (BAC) was observed for all CV-
model combinations with higher values for CV1 compared to
CV2.

As the amount of training data was reduced from 80%
to 20%, models including wavebands + VI + canopy have
consistently higher performance for rank correlation (28%
higher) and classification metrics (18% higher). Spearman
rank correlation decreased slightly for both models trained
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FIGURE 5: Spearman rank correlation and classification metrics (specificity=SPE, balanced accuracy=BAC, F score=FS) of random forest
model test prediction using only optimized wavebands (blue line) and selected canopy traits (red line). Applicability of using phenomic
prediction in plant breeding operations was tested using four training/testing splits (80/20, 60/40, 40/60, 20/80) and performance metrics
were computed for each split. Seed yield and phenomic predictor trait data were collected from 292 genotypes grown in six environments

and data collected at two growth stages in each environment.

in CV1 (waveband + VI + canopy: 0.04 reduction, wavebands
alone: 0.07 reduction) when comparing prediction perfor-
mance trained using 80% of the data when compared to using
just 20%. Minimal decrease in SPE was observed with just
an average decrease in performance of 0.01 when using the
minimum amount of training data, compared to using 80%.
The largest change was observed for BAC and FS with an
average reduction of 0.03 and 0.06, respectively. The largest
change was observed when wavebands alone were used for
model training in CV2 resulting in a 10% and 26% reduction
in BAC and FC, respectively.

4. Discussion

Breeders and geneticists aim to utilize previously unused
genetic accessions in cultivar development, and phenomic-
assisted breeding approaches have the potential to enhance
the integration of genetic diversity in most mainstream
programs [36]. Phenomic-assisted approaches can allow
breeders to manipulate the genetic gain equation, particularly
genetic variation and selection intensity. For improving SY
using diverse accession, as a first step, there is a need to estab-
lish the relationship between phenomic traits with SY using

high-throughput phenotyping techniques and advanced data
analytics including machine learning [9]. These approaches
need to work in conjunction with in-season SY prediction,
but more importantly performance ranking that is the crux
of trait selection in plant breeding programs.

We identified a cohort of PI accessions with high
yield, further demonstrating the wealth of genetic diversity
available to soybean breeders in the germplasm collection.
These results are consistent with a broader body of research
demonstrating the utility of germplasm collection for mod-
ern breeding efforts for biotic [48-50] and abiotic [51-53]
resistance and performance traits [33, 54-56]. The presence
of genetic variation for SY makes this panel of 292 accessions
relevant for study objectives as it covers a broader range of
performance and background.

4.1. Phenomic-Enabled Yield Prediction. Moderate to high
hiyp for all traits suggest that phenomic trait measure-
ments are repeatable making them useful in plant breeding
pipelines. Spearman-rank correlation coefficient was used to
assess model test performance as plant breeders are generally
focused on correctly identifying top performers in early to
mid-stages of testing pipeline instead of predicting actual
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SY [23]. The identification of best predictors for phenomic-
enabled rank correlation is important to maximize predic-
tion accuracy thereby maximizing the detection of useful
germplasm for use in cultivar development and also for selec-
tion of pure lines in breeding families from multienvironment
tests.

Plant breeders often rely on multienvironment trials
to evaluate cultivar performance in a target environment,
quantify GxE interaction, and/or determine cultivar stabil-
ity [57]. On average, we observed 18% higher prediction
accuracy when training data consisted of BLUPs generated
on a by-environment basis when compared to using across-
environment BLUPs. The use of mixed models for computing
BLUPs is a staple in plant breeding statistical analyses and a
main feature of the method is its ability to handle missing or
unbalanced data, a common occurrence in multienvironment
trials (MET) [24]. When complete data is generated in all
environments, a single stage analysis [58] is preferred to
preserve the environmental effect in the data. Nonetheless,
assembling complete data in all environments is often not
the case and therefore relying on the properties of the BLUP
method is necessary to remove the experimental design effect
from the estimates and simultaneously taking advantage of
the amendable variance-covariance structure for genotype-
by-environment (GxE) interactions [24]. Additionally, there
is a setting off of prediction based selection and resource
optimization which are popularizing experimental designs
such as partial replication design in plant breeding programs
[59]. The RF model accuracy was 22% higher when prediction
was made in locations included in model training. We
observed that RF models had higher prediction accuracy
when by-environment BLUPs were used in model training;
moderate accuracy levels were still attainable even when envi-
ronments with sparse data were included in model training
indicating the reaction norm across locations for phenomic
trait relationships with SY was somewhat consistent in each
environment. These findings demonstrate the impact that
environment has on genotype performance and is evidence
of the importance for having training data in environments
reflective of the target breeding area.

The variation in prediction accuracy among predictor
cohorts across the two preprocessing methods and two CV
scenarios suggests that multiple trait information can help
gain operational efficiencies. We observed moderate r,, (SL:
0.33, S2: 0.25) between CA and SY is lower than previ-
ous studies [17] although the trait genetic correlation was
observed in a biparental population. CT exhibited negative
ry (-0.44) with yield and shows congruence with previous
studies [16, 53, 54]. We observed dissimilarity between some
phenomic traits with previously reported [5, 17] canopy traits
(CA and CT) produced only modest prediction accuracies.
We observed a significant improvement when VIs were
included in the model. Among VIs, VREI2 had the largest
r, in magnitude (S1: -0.77, S2: -0.75) and is associated with
chlorophyll concentration, water content, and canopy leaf
area [60] and lends support to the utility of VREI2 as a
yield predictor VI [11] since gain in genetic yield potential
in soybean has been associated with an increase in canopy
chlorophyll concentration [2, 4, 61]. Moreover, we report
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moderate to high r; in the shortwave infrared region, a region
associated with plant water potential [62]. Research in wheat
[63, 64] and corn [18, 65] using VIs associated with plant
water content in shortwave infrared waveband regions has
shown good correlation with yield; however, similar reports
in soybean are lacking warranting additional investigation to
associate shortwave infrared canopy spectral reflectance with
yield especially to develop water deficit tolerant cultivars.
Since majority of 292 accessions belonged to PI accessions, it
was not surprising to see the value of chlorophyll based VI as
an important predictor. For cultivar development programs,
the role of chlorophyll based VI needs to be investigated prior
to implementation in breeding selection.

The combination of high repeatability and genetic cor-
relation makes phenomic traits useful in indirect selection
for SY. Additionally, our results reveal that canopy spectral
reflectance wavebands can be useful for yield prediction as
reported by [19] and suggest that informative wavebands
may be identified to design a multispectral camera for
use in extremely high-throughput aerial-based phenotyping.
Phenomic prediction has the potential to disrupt conven-
tional breeding testing pipelines by integrating information
on important biological processes across a spatiotemporal
scale to enable in-season yield assessment and optimizing
plant breeding operation efficiencies [7] and requires an
interdisciplinary approach.

4.2. Phenomic Predictor Optimization and Its Application.
Optimizing the deployment of phenomic sensors specific to
the breeding target is an important objective to maximize
prediction accuracy while reducing the operational costs
associated with data collection. However, there remains a gap
in the current understanding of the utility of a multisensor
approach for SY prediction to identify the optimal sensors for
use in soybean germplasm breeding efforts.

Our results show the utility of canopy spectral reflectance
for use in SY rank prediction using wavebands and VIs
and are consistent with previous research findings made in
soybean [11, 20, 21, 66] and other crop species [19, 30, 67,
68] for trait prediction; however, the utility of waveband
reflectance as a predictor has not been extensively studied.
Therefore, we chose to identify four wavebands which can
allow the design of multispectral camera consistent with the
current options available from industry providers offering
customizable waveband selection of multispectral cameras.
To do this, a genetic algorithm (GA) approach was used
to identify wavebands for SY prediction. GA has been used
for a wide variety of objectives in agriculture for variable
and waveband selection [28, 32, 69, 70] but limited work
has been done for use in prediction of SY. Research has
shown good prediction performance of models using all
measured wavebands in wheat [19], but our results suggest
that a subset can be used to achieve comparable prediction
performance (Figure 4). This finding is likely due in part to
the multicollinearity associated with neighboring wavebands
allowing a subset of wavebands to capture the variation in
entire electromagnetic spectrum [30, 71]. While previously
the waveband regions we report have been shown to be
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correlated in the visible and near-infrared regions of the elec-
tromagnetic spectrum [11, 21, 66], GA methodology enabled
us to identify specific wavebands for SY prediction. The
observation of wavebands in the shortwave infrared region
important for yield prediction warrants additional research
to explore this portion of the electromagnetic spectrum
along with the need for future research to determine the
physiological basis of wavebands and their prediction. The
next step in SY prediction deployment in a breeding pipeline
is the motivation to increase model prediction accuracy by
combining multiple sensors as well as resolving challenges
on spectral reconstruction from images [72, 73]. While
selected hyperspectral wavebands can be deployed on high-
throughput phenotyping platforms using multispectral cam-
eras, a multisensor approach needs to be tested to determine
if it can maximize model prediction accuracy.

Past studies have established the use of single sensor-
based prediction methods in plant breeding activities [14,
16, 18-20, 65, 74, 75] and multisensor based prediction in
wheat [15]; however, there is little information on the use of
multisensor based prediction in soybean. Thus, we selected
VI VREI2, CA, and CT as these traits can be collected in
tandem with a multispectral camera and have demonstrated
strong r, and/or moderate to high feature importance to SY.
Thus, we observed maximum prediction accuracy when a
multisensor based model was used for prediction of SY. Thus,
we propose this framework to deploy a multisensor based
approach by relying on feature importance parameters and
optimization procedures to maximize target trait prediction
accuracy.

To determine the value of these approaches for use
in plant breeding operations we varied the training/testing
split and used a hypothetic selection intensity of 20%; both
operational decisions breeding programs attempt to optimize
[23]. These findings indicate that, when training data is
collected from the same environments in which testing is
done, phenomic prediction can be effective to correctly rank
genotypes for SY. Moreover, high SPE (ability of the model to
correctly identify accessions that did not meet our imposed
selection criteria according to ground-truth yield data) was
achieved regardless of both the CV scenario and the amount
of training data used. While only slightly lower performance
was observed for other classification metrics (BAC and FS),
our results continue to suggest the efficacy of such phenomic
prediction methodologies for breeding decision making. We
anticipate that phenotyping and data analytics operability
difficulties may need to be resolved for multiple sensor
payload and balancing with area coverage of aerial systems
and real-time of quick-turn around analytics and remain an
area of research interest.

In order for phenomic traits to be informative predic-
tors of target traits high genetic correlation among target-
predictor traits (r,) and high predictor trait heritability

(thP) [23] are needed. Continued work is needed to provide
insight into the attribution of phenomic traits for phenomic
predictive ability and establishing the biological and physio-
logical association between target traits with predictor traits.
Future research is warranted to determine program and trait

1

specific predictors, and such research requires larger datasets.
As the hardware and analytics pipelines advance through
continued improvement in high-throughput phenotyping,
larger datasets will be achievable.

As a selection tool, our approach permits SY rank pre-
diction and will allow the evaluation of specific trait efficien-
cies to identify useful germplasm on a per-trait basis and
design future crossing combinations that assemble desirable
traits together. This is a keystone concept in the process
of physiological trait based breeding [76, 77]. Overall, our
findings suggest that a customized suite of phenomic sensors
can advance germplasm and cultivar breeding efforts while
reducing the cost and resource requirements and advance the
integration of phenomic-assisted breeding approaches. The
approach we propose can be utilized in breeding programs
to identify informative waveband combinations tailored to
the specific breeding objective for the design of customizable
multispectral sensors. Our approach can be utilized as stan-
dalone but does not preclude the use of wavebands that have
been traditionally used to compute various VIs.

While GS and other modern tools will remain an attrac-
tive arsenal in a breeder toolbox, the cost of GS assisted
breeding can be out of reach for majority of programs in
minor crops and in non-GM crops [7] and therefore cost
affordable phenomic-assisted breeding approaches present
exciting avenues for trait improvement including a multiob-
jective optimization scenario [78].
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Supplementary Materials

Table SI: description of accessions, country of origin, and
genetic background included in this study. 292 accessions
were selected from the USDA Soybean Core Collection from
MGI-III. Table S2: description of testing environment loca-
tions, planting date, seed yield (SY) performance, and climac-
tic summary statistics. Soybean accessions were phenotyped
in these environments for use in downstream phenomic
prediction. Table S3: description of vegetation indices (VI)
computed from canopy hyperspectral reflectance. Obser-
vations consisted of two measurements recorded within 2
hours of solar noon and mean reflectance averaged. VIs
were used alongside other phenomic information for in-
season seed yield prediction [79-85]. Table S4: description
of phenotypic traits and instruments used for phenotypic
characterization of a diverse panel of soybean evaluated in
six environments. Table S5: details of genetic algorithm (GA)
procedure used for selection of hyperspectral wavebands
for identifying the most informative wavebands to allow
intelligent design of a miniaturized hyperspectral camera
for deployment on high-throughput phenotyping platforms.
Table S6: ANOVA results of fixed effects for mixed linear
model where seed yield (SY) was the response variable. SY
was collected from 292 genotypes grown in six environments
across central Iowa and measured by combine harvest. Table
S§7: genetic correlation (r,) and SNP-based heritability of
phenomic traits and seed yield and phenomic trait, respec-
tively. Phenomic information was collected from 292 diverse
soybean accessions grown in six environments across central
Iowa and data collected during the growing seasons at two
approximate growth stages. Table S8: phenomic traits feature
importance computed from random forest model using two
cross-validation scenarios while seed yield was used as the
response variables. Phenomic traits were collected at two
approximate growth stages and used to predict seed yield
during the growing season to enable in-season selection.
Feature importance was used to select the most informative
vegetation indices and to identify other useful predictors of
seed yield. Table S9: Spearman rank correlation obtained
after random forest model prediction (seed yield = dependent
variable) performance of predictors trained with remotely
sensed phenomic traits (canopy traits, waveband, vegetation
indices, and combination) in 292 soybean genotypes grown at
six environments and data collected at two growth stages in
each environment. Tabular data correspond to Figure 4. Table
S10: Spearman rank correlation and classification metrics of
random forest model test prediction using only optimized
wavebands and selected canopy traits. Applicability of using
phenomic prediction in plant breeding operations was tested
using four training/testing splits (80/20, 60/40, 40/60, and
20/80) and performance metrics were computed for each
split. Seed yield and phenomic predictor trait data were
collected from 292 genotypes grown in six environments and
data collected at two growth stages in each environment. Tab-
ular data correspond to Figure 5. (Supplementary Materials)
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