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Development of Orthogonal Linear 
Separation Analysis (OLSA) to 
Decompose Drug Effects into Basic 
Components
Tadahaya Mizuno  1, Setsuo Kinoshita1,2, Takuya Ito1, Shotaro Maedera1 & 

Hiroyuki Kusuhara1

Drugs have multiple, not single, effects. Decomposition of drug effects into basic components helps 
us to understand the pharmacological properties of a drug and contributes to drug discovery. We 
have extended factor analysis and developed a novel profile data analysis method: orthogonal linear 
separation analysis (OLSA). OLSA contracted 11,911 genes to 118 factors from transcriptome data of 
MCF7 cells treated with 318 compounds in a Connectivity Map. Ontology of the main genes constituting 
the factors detected significant enrichment of the ontology in 65 of 118 factors and similar results 
were obtained in two other data sets. In further analysis of the Connectivity Map data set, one factor 
discriminated two Hsp90 inhibitors, geldanamycin and radicicol, while clustering analysis could not. 
Doxorubicin and other topoisomerase inhibitors were estimated to inhibit Na+/K+ ATPase, one of the 

suggested mechanisms of doxorubicin-induced cardiotoxicity. Based on the factor including PI3K/AKT/
mTORC1 inhibition activity, 5 compounds were predicted to be novel inducers of autophagy, and other 
analyses including western blotting revealed that 4 of the 5 actually induced autophagy. These findings 
indicate the potential of OLSA to decompose the effects of a drug and identify its basic components.

�e response to a drug can be a complex of the entire biological responses to the perturbagen and multiple 
responses in living systems. Not all the effects of a drug are fully discovered by researchers or developers. 
�erefore, to separate the complex e�ects of a drug into basic components is a prerequisite for a deep under-
standing of the pharmacological properties of drugs, which contributes to drug screening, drug repositioning, 
prediction of toxicity, and other properties.

Omics has made a great impact on biology since its emergence1. �e comprehensive nature of the method-
ology can translate the biological information of a sample into numeric data, and because of this characteristic, 
omics data are also called a pro�le. �is quality of omics a�ords us mathematical approaches to comprehend the 
sample characteristics and are referred to as pro�le data analysis, or simply pro�ling. A substantial number of 
pro�les have been accumulated and many analysis methods have been devised2,3.

Notably, the Connectivity Map (CMap) project initiated by the Broad Institute greatly contributed to 
the �eld4,5. In the project, dozens of microarray data analysing cells treated with low molecular weight com-
pounds were collected in the same platform. �e concept is simple: a “signature” is simply de�ned by up- and 
down-regulated genes responding to a perturbagen and the signatures can be compared to identify drugs with 
similar e�ects4. One of the essential features of this approach is not focusing on each gene, but on the relationship 
of genes described as a gene pattern, or signature. �ere exist phenotypes that cannot be identi�ed by the analysis 
of each gene6. Another curious characteristic of CMap is that it does not depend on existing knowledge, which 
distinguishes this approach from gene ontology (GO) analysis or pathway analysis7,8. Use of existing knowledge in 
pro�ling is e�ective in reducing noise in pro�le data, while it restricts the capacity of analysis within the known. 
Analyses with CMap even use information unrecognized by researchers and therefore have the potential to reveal 
new discoveries. Many studies using CMap have succeeded in drug repositioning9–11.
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Considering the complex e�ect of a drug, we began to investigate whether it is possible to decompose it into 
basic components described by variable patterns using pro�le data analysis, particularly in an unsupervised way, 
and focused on factor analysis (FA). FA decomposes a data matrix based on standard deviation, is well estab-
lished in various �elds, and is also used in omics data analysis12,13. Many studies accomplish dimension reduction 
and feature extraction of omics data to classify or investigate the similarity of samples with FA12,13. However, to 
our knowledge, there are no studies that employ FA to separate the e�ects of a drug and extract the more basic 
components.

Among the several types of FA, the combination of principal component analysis (PCA) and following 
varimax rotation has been used extensively in the history of FA. �e characteristics are that the new indicators 
(factors in FA) comprising the original variables are mutually orthogonal14. We consider that the e�ect of a per-
turbagen can be described to some degree by a linear combination of more basic e�ects, while the remaining parts 
are non-linearly integrated and not separable15. Notably, linear separation enables us to approach the molecular 
mechanism behind the composition using an omics data matrix in which the new indicators generated are easier 
to comprehend than those obtained by non-linear separation or machine learning16.

A concern of using FA with the principal component method in pro�ling is that the centroid in the novel 
co-ordinate space has no biological meaning and varies among data sets, which means that the obtained factors 
(vectors) in such a situation may not correspond to consistent biological meanings. To address that concern, 
we have extended FA in the following two points: to use response pro�les and to add the mirror data set to the 
original in FA. We call the pro�le data analysis with the simply modi�ed FA orthogonal linear separation analysis 
(OLSA). Here, we report the performance and possibility for OLSA to separate a perturbagen e�ect into basic 
components by analysing transcriptome pro�les.

Results
The concept of OLSA of profile data. �e work�ow and concept of OLSA of a response-pro�le matrix are 
shown in Fig. 1a and Supplementary Fig. S1. Here, we de�ne a “response-pro�le matrix” as a matrix with variables 
(e.g., gene expression change) in rows and samples in columns. An element in a response-pro�le matrix is a value 
representing a change of expression of a factor, such as a log fold change or z score versus control. By converting 
the raw expression values of pro�le data into response values, the origin of the response data space represents the 
control treatment or no stimulation. One of the characteristics of OLSA is the use of a mirror data set (point-sym-
metric to the analysed response-pro�le data). Considering the reversibility of biological responses, the mirror 
data set represents the assumed antagonizing or reverse responses to the original data as a virtual data set. FA of 
the combined data set enables us to approximate mathematically the novel co-ordinate space centroid to the ori-
gin of the original data space, where the variables are biologically relevant. �erefore, we can expect that the gen-
erated factors have consistent biological meanings. By employing OLSA, a response-pro�le matrix is described 
by the product of a response-vector matrix, a response-score matrix, and a total strength matrix, corresponding 
to the eigenvector matrix, the loading matrix, and a diagonal matrix of the L2-norm used for intensity correction 
(Supplementary Fig. S1). In OLSA, each response vector constituting a response-pro�le matrix is composed of 

Figure 1. �e concept of orthogonal linear separation analysis of pro�le data. Illustration of OLSA application 
to response-pro�le data.
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a gene list with values and corresponds to “factor” in conventional FA with the principal component method, 
which describes an array of response-pro�le data with a linear combination of factors summarizing the original 
high-dimensional data and helps us to comprehend the biological information of a pro�le data by investigating 
each separated factor (Supplementary Fig. S1).

We assumed that the factors isolated by OLSA are biologically relevant and the indicators of “basic” biological 
responses that constitute the original complex e�ect of a perturbagen. In the following, we con�rmed that the fac-
tors generated with OLSA are biologically relevant and then investigated whether the application of this method 
contributes to understanding the e�ects of the perturbing drugs.

Confirmation of biological meanings of the generated factors with OLSA. Cellular responses in 
MCF7 cells treated with 370 perturbagens. We started with an analysis of the response-pro�le matrices obtained 
from CMap to verify OLSA. We analysed the pro�le data set investigating the cellular responses of MCF7 cells 
treated with 318 compounds as a training set (Supplementary Fig. S2). We subjected the data to varimax rotation 
and analysed 118 vectors, accounting for 80% of cumulative contribution (Fig. 2a). To obtain insight into the 
biological relevance of the factors, we used GO analysis of the genes that had a large absolute value in a factor and 
that mainly characterised the factor. Genes constituting a factor were sorted by their contribution to the factor 
and the top 1% of genes were subjected to GO analysis. Statistical signi�cance was judged with enrichment anal-
ysis provided by a GO consortium, which conducts Fisher’s exact test between a focusing gene list and a gene list 
constituting a GO. �ere were 65 factors with signi�cant enrichment of GO, and the ratio of such factors (hereaf-
ter termed signi�cant enrichment of GO ratio, SEGR) to the total was 0.551 (65/118) (Fig. 2b).

Given that the generated factors are biologically relevant, the gene patterns are supposed to be conserved 
in another data set and are useful in identifying compounds with a focused cellular response. To verify this 
supposition, we characterized several factors using a detailed literature survey and subsequently calculated the 
Spearman’s correlations between the selected factors and another data set. For the test data set, we employed a 
pro�le set comprising 122 transcriptome data analysing PC3 cells treated with 104 compounds provided by CMap 
(Supplementary Fig. S2).

�e high-scoring compounds in the factor with the 5th highest contribution (herea�er P5 factor) were cardio-
glycosides and all 8 cardioglycosides in the data set were ranked in the top 9 (Fig. 2c, upper panel). Both cardio-
glycosides in the test set, lanatoside C and helveticoside, were ranked in the top 2 of the compound list sorted by 
Spearman’s correlation coe�cients, supporting that the P5 factor as including cardioglycoside e�ects such as Na+/
K+ ATPase inhibition (Fig. 2c, lower panel).

Similarly, several factors were clearly connected to biologically relevant responses and the following are par-
ticularly interesting (Supplementary Fig. S2). Flavonoids with a similar structure dominated the top 4 of the P35 
factor, while the gene pattern exhibited no enriched GO. �e P76 factor was associated with ion modulation 
responses although the factor contribution was quite low (0.3% of the total). �e positive high-scoring com-
pounds in the P7 factor were oestrogens, while the negative-scoring compounds were anti-oestrogens, which was 
consistent with the CMap results and suggests that the signs of the response scores correspond to the direction of 
basic cellular responses4.

Together, these data support that factors separated linearly by OLSA re�ect cellular responses in the CMap 
data set.

Cellular responses in HepG2 cells treated with genotoxic compounds. To investigate whether OLSA is e�ective 
for data sets other than CMap, we applied the method to data obtained from a public transcriptome database. 
Magkoufopoulou et al. investigated the transcriptome pro�les of HepG2 cells treated with 158 genotoxic com-
pounds and obtained 474 transcriptome data17. We employed these data and separated them into two groups: 
the data of 24 h treatment for training and the data of 12 and 48 h for the test (Supplementary Fig. S3). �e 
data in each set were converted into response-pro�le matrices, and the processed training data set was sub-
jected to OLSA. �e analysis generated 29 factors from 186 transcriptome data up to 80% cumulative accumu-
lation (Fig. 3a). GO analysis revealed that 21 of 29 (SEGR; 0.724) factors exhibited signi�cant enrichment of GO 
(Fig. 3b).

In a detailed investigation of individual factors, several factors were clearly connected to biologically rele-
vant responses. For instance, the negative-scoring compounds in the P7 factor were dominated by ascorbic acid 
and phenol, and both of them had antioxidant properties in common (Fig. 3c, upper panel)18. �e test set was 
validated by calculating Spearman’s correlation coe�cients between the gene pattern and the test set. Both com-
pounds exhibited high values regardless of treatment time. Moreover, one of the GOs signi�cantly enriched in 
the factor is “oxidation-reduction process (GO:0055114)”, supporting the consistency of the biological meaning 
of the factors.

Similarly, the P15, P28, and P29 factors were suggested to include P450 modulation, aryl hydrocarbon recep-
tor stimulation, and interferon I stimulation e�ects, respectively (Supplementary Fig. S3)19,20. �ese results indi-
cate that OLSA application is not restricted to well-aligned data sets such as those provided by CMap.

In�ammatory responses in macrophages. We investigated the capacity of OLSA in a response-pro�le matrix com-
posed of relatively few data. Raza et al. investigated transcriptional networks in murine macrophages treated with 
several in�ammatory stimulants at various time points by analysing the transcriptome data set composed of 60 
data with 30 perturbagens (2 biological replicates each)21. We separated the data set into training and test sets: the 
data of bone marrow derived macrophages (BMDM) from BALB/c mice for the training and BMDM from C57/
BL6 mice for the test (Supplementary Fig. S4). �e training data set was processed to obtain a response-pro�le 
matrix and subjected to OLSA. We obtained 15 factors and the SEGR was 0.33 (5/15) (Supplementary Fig. S4).
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Lipopolysaccharide (LPS), a well-known endotoxin, exhibits various properties as an in�ammatory stimulant 
by binding to toll-like receptor 4 and the e�ect varies from one hour to another in macrophages22. Both repli-
cates of LPS-24-h and 2-h treatment were ranked in the top 2 of the perturbagens list sorted by the P5 and P6 

Figure 2. Analysis of cellular responses in MCF7 cells treated with 370 perturbagens. (a) �e cumulative 
contribution curve of the factors contracting the training data set. �e contribution of each factor to the 
total deviation was calculated and arranged in descending order. �e cumulative contribution was calculated 
from the top and plotted. (b) Plot of the factors whose main constituents exhibit signi�cant enrichment 
of gene ontology. Genes constituting a response vector were sorted by the square of each value. �e top 
1% of genes were subjected to GO (biological process) analysis using the Enrichment analysis of the Gene 
Ontology Consortium. Factors annotated with signi�cant enrichment of GO a�er multiple-testing corrections 
(Benjamini–Hochberg method, α < 0.05) are depicted in yellow-�lled squares. SEGR, signi�cant enrichment 
of GO. (c) Analysis of P5 factor. P5 factor (the factor with the 5th highest contribution) scores and rho (ρ) 
of all compounds are arranged in descending order and plotted on the “Score Distribution” graph and “ρ 
Distribution” in each data set, respectively (upper, training; lower, test). Green or light salmon in the graph 
indicates a “cardiac glycoside”. �e rank, name, dose, and score of the top 5 compounds are shown.
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factors, respectively, and the conservation of the gene patterns in another data set was con�rmed (Fig. 4a,b and 
Supplementary Fig. S4). Notably, the scores of the two factors exhibited clear inverse correlation with regard to 
time points (Fig. 4c,d), which supports that OLSA succeeded in extracting time-dependent responses of LPS as 
reported22,23. It should be noted that LPS treatment for 1 h did not correlate with the P6 factor in the test data set 
although the treatment was “short”. One explanation is that an hour is too short to activate the transcriptional 
network constituting the P6 factor.

Figure 3. Analysis of cellular responses in HepG2 cells treated with 62 genotoxic compounds. (a) �e 
cumulative contribution curve of the factors comprising the training data set. �e contribution of each 
factor to the total deviation was calculated and arranged in descending order. �e cumulative contribution 
was calculated from the top and plotted. (b) Plot of the factors whose main constituents exhibit signi�cant 
enrichment of gene ontology. Genes constituting a response vector were sorted by the square of each value. 
�e top 1% of genes were subjected to GO (biological process) analysis using the Enrichment analysis of Gene 
Ontology Consortium. Factors annotated with signi�cant enrichment of GO a�er multiple-testing corrections 
(Benjamini–Hochberg method, α < 0.05) are depicted in yellow-�lled squares. SEGR, signi�cant enrichment 
of GO. (c) Analysis of P7 factor. P7 factor scores and rho (ρ) of all compounds are arranged in descending 
order and plotted on the “Score Distribution” graph and “ρ Distribution” in each data set, respectively (upper, 
training; lower, test). Green in the graph indicates ascorbic acid and light salmon indicates phenol. �e rank, 
name, dose, and score of the top 10 compounds are shown. “–” and “#” indicate not investigated in the literature 
survey and the number of biological replicates, respectively.
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�e responses to interferon β and γ treatment for 24 h seemed to be included in the P10 and P15 factors, 
respectively, although we were not able to validate the responses in another data set because of a lack of data 
(Supplementary Fig. S4). �ese results indicate that OLSA works in the analysis of a response-pro�le matrix 
composed of relatively small transcriptome data.

Figure 4. Analysis of in�ammatory responses in macrophages. (a) Analysis of the P5 factor. P5 factor scores 
and rho (ρ) of all compounds are arranged in descending order and plotted on the “Score Distribution” graph 
and “ρ Distribution” in each data set, respectively (upper, training; lower, test). Green or light salmon in the 
graph indicates 24-h LPS treatment. �e rank, name, dose, and score of the top 10 treatments are shown. “–”, 
“#”, and “5 ng-” indicate without 24-h LPS treatment, the sample number of biological replicates, and 5 ng/mL 
treatment, respectively. (b) Analysis of the P6 factor using the method described in a. Green or light salmon in 
the graph indicates 2-h LPS treatment. �e rank, name, dose, and score of the top 10 treatments are shown. “–” 
indicates no 2-h LPS treatment. (c) Heatmap comparing the scores of P5 and P6 factors. 1 h, …, 24 h and #1, 
#2 indicate 1 h-, …, 24 h treatment and the number of biological replicates, respectively. (d) Scatter plot of the 
scores of P5 and P6 factors. �e blue line and area indicate the regression line and the 95% con�dence interval. 
R2, the coe�cient of determination.
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Application of OLSA in understanding the effects of drugs. Decomposition of Hsp90-inhibitor 
e�ect. Next, we investigated whether OLSA contributes to an understanding of the e�ects of drugs by analysing 
the CMap data set.

Hsp90 inhibitors are potent anti-cancer reagents in development24. �e �rst compound identi�ed in this class 
of inhibitor is geldanamycin, as found in Streptomyces hygroscopicus24, followed by the synthesis of tanespimycin 
and alvespimycin via lead optimization25. Monorden was found from Pochonia chlamydosporia and is structurally 
distinct from geldanamycin (Fig. 5a)25.

In the OLSA result, these Hsp90 inhibitors (geldanamycin, tanespimycin, alvespimycin, and monorden) 
exhibited high scores in the P22 factor, which suggests that this factor includes an Hsp90 inhibition effect 
(Supplementary Fig. S5). Interestingly, there also exists a di�erence among them: geldanamycin and tanespimy-
cin exhibited high scores in the P14 factor, while those of alvespimycin and monorden were not high and almost 

Figure 5. Decomposition of Hsp90-inhibitor e�ect. (a) Structures and response scores of Hsp90 inhibitors. 
Structures were obtained from MolView (http://molview.org/). Response scores are plotted as a bar chart in 
polar co-ordinates with heatmap. (b) Analysis of the P14 factor. P14 factor scores of all compounds are arranged 
in descending order and plotted on the “Score Distribution” graph. Green with an arrow in the graph indicates 
geldanamycin-type inhibitors and light salmon with an arrow indicates monorden. �e rank, name, dose, and 
score are shown. (c) Clustering analysis of MCF7 cells data set of CMap. �e MCF7 cells data set of CMap was 
subjected to clustering analysis with the Ward method. An arrow indicates the cluster where Hsp90 inhibitors 
belong. �e numbers following the compound names indicate the ordinal numbers from the le�.

https://doi.org/10.1038/s41598-019-38528-4
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zero, respectively (Fig. 5b and Supplementary Fig. S5). �e compounds that ranked high in the P14 factor score 
list were cyclosporin (a calcineurin inhibitor), thapsigargin (an ER calcium depleter), and ionomycin (a calcium 
ionophore), and they indicate that the factor includes calcium signalling inhibition. �erefore, based on the P14 
score, geldanamycin and tanespimycin are considered to have a high inhibitory e�ect of calcium signalling while 
the e�ect of alvespimycin and monorden is predicted to be mild and low, respectively. Indeed, Chang et al. eluci-
dated the di�erence between geldanamycin and monorden and reported that only the former possesses the cal-
cium depletion e�ect26. Alvespimycin is reported to have lower toxicity than its lead compounds, geldanamycin 
and tanespimycin24. �ese are consistent with the above consideration based on the P14 factor score. Notably, 
all four Hsp90 inhibitors are located in quite near positions by clustering analysis27, which supports the utility of 
OLSA in understanding Hsp90 inhibitor characteristics (Fig. 5c).

Decomposition of topoisomerase-inhibitor e�ect. Topoisomerase inhibitors have been employed as anti-cancer 
drugs and are highly active against many types of neoplastic diseases28. However, the anti-cancer compounds, 
particularly anthracyclines among them, o�en exhibit cardiotoxicity, which restricts the application of that type 
of anti-neoplastic agent29.

�e OLSA results of anthracyclines (doxorubicin, daunomycin, and mitoxantrone) revealed that the P5, P15, 
P16, and P17 factor scores were commonly high in topoisomerase inhibitors including non-drug compounds 
and the P17 factor stood out among them (Supplementary Fig. S6). In addition to topoisomerase inhibitors, 
GW-8510 (a CDK2 inhibitor) and staurosporine (a multiple kinase inhibitor) exhibited high scores in the P17 
factor. �erefore, the P17 factor is estimated to be one of the main e�ects of topoisomerase inhibitors and includes 
G1/S arrest22,30,31. Indeed, H-7 (a multiple kinase inhibitor with topoisomerase inhibition activity), GW-8510, and 
alsterpaullone (a multiple CDK inhibitor) exhibited high Spearman’s correlation coe�cients with the P17 factor 
in the test data set (Supplementary Fig. S6).

�e P15 and P16 factor constituting genes exhibited signi�cant enrichment of GO. However, we were not 
able to detect the commonality of the compounds in those factors other than topoisomerase inhibitors, and 
not able clearly to determine the cellular responses of the factors although P15 constituting genes seem to be 
associated with mitochondria (Supplementary Fig. S6). By contrast, the P5 factor was annotated with Na+/K+ 
ATPase inhibition in Fig. 2. Several studies reported Na+/K+ ATPase inhibition by doxorubicin32. Notably, one 
of the mechanisms explaining the cardiotoxicity induced with topoisomerase inhibitors is the inhibition of Na+/
K+ ATPase33. �is hypothesis is consistent with the relatively high scores for the P5 factor that topoisomerase 
inhibitors exhibited (Fig. 6b).

�ese results indicate that it is possible to decompose the e�ect of a drug with OLSA and imply that OLSA can 
detect not only the main e�ect of a drug, but also other e�ects that may be the cause of toxicity.

Identi�cation of autophagy regulators. Finally, we explored the possibility of OLSA for drug repositioning. �e 
analysis of CMap-derived data suggested that the P2 factor includes a basic e�ect responding to PI3K/AKT/
mTOR signalling inhibition (Supplementary Fig. S7). �e mammalian target of rapamycin complex (mTORC) I 
is a critical regulator of autophagy and its inhibition a�ects essential cellular phenomena34. We noticed that many 
compounds in the top 10% (37) of the list sorted by P2 factor scores were reported to be associated with auto-
phagy (Supplementary Fig. S7). By contrast, there was no information regarding any autophagy relationship in 
8 compounds on the list: 0297317-0002B, thonzonium bromide, benzethonium chloride (BC), methylbenzetho-
nium chloride, phenazopyridine (PP), benzamil (BEN), methiothepin (MTP), and metixene (MTX). �erefore, 
we hypothesized that those compounds were related to autophagy regulation and tested the hypothesis. Among 
them, 0297417-0002B, thonzonium bromide, and methylbenzethonium chloride were excluded from the test 
compounds because the former was not easily available and the latter two were the same type of cationic detergent 
as BC. �e remaining compounds, BC, BEN, MTP, MEX, and PP were subjected to in vitro analysis (Fig. 7a–c). 
Interestingly, those 5 compounds were not clustered with typical autophagy regulators such as sirolimus and 
wortmannin by clustering analysis (Supplementary Fig. S7). HeLa cells, a human cervical cancer-derived cell 
line, were treated with the tested compounds and loperamide (LOP), as a positive control35 and the conversion 
of LC3-I to LC3-II was analysed with western blotting. We employed LOP because it exhibited similar scores to 
those tested compounds and was reported as an autophagy inducer in more than two independent reports35,36. 
�e conversion, one of the indicators of autophagy induction37, was clearly increased by 4 of 5 compounds (BC, 
BEN, MTP, and MTX), while PP had almost no e�ect (Fig. 7d).

GFP-LC3-RFP-LC3∆G, an autophagic flux probe, is cleaved into equimolar amounts of GFP-LC3 and 
RFP-LC3∆G by endogenous ATG4. �e former is degraded in lysosome via autophagosome while the latter 
remains in the cytosol and works as an internal control. �us, calculation of the GFP/RFP �uorescence ratio 
enables the precise estimation of autophagic �ux38. GFP-LC3-RFP-LC3∆G-expressing HeLa cells were treated 
with BC, BEN, MTP, and MTX and the GFP/RFP �uorescence ratio was measured. All 4 compounds reduced 
the ratio, which suggests they are autophagy inducers (Fig. 7e). GFP-LC3 puncta were clearly observed under the 
same condition (Fig. 7f). All of the results indicate that BC, BEN, MTP, and MTX are autophagy inducers. Four of 
�ve compounds predicted to be autophagy regulators by OLSA actually induced autophagy, which supports one 
of the utilities of this method in drug repositioning.

Discussion
Drug discovery with drug repositioning has been a successful approach39–41. �e approach mostly depends on 
serendipity in the beginning, but the various methodologies based on scienti�c evidence have been established, 
which contribute to the development of the approach42–44. �e success of drug repositioning implies that the e�ect 
of a drug is complex and comprises multiple basic components. �erefore, here we attempted to separate the 
complex e�ect of a drug into basic e�ects to understand the pharmacological properties of drugs. To achieve such 
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separation, we focused on pro�le data analysis. An important characteristic of omics is the comprehensive con-
version of the biological information of a sample into numeric values, which enables mathematical approaches 
to the analysis of biological samples. However, in general, raw omics data are multiple variables, complex, and 
o�en di�cult to comprehend because of the curse of dimensionality45. Analytical methods setting a new layer that 
appropriately contracts the degrees of freedom are indispensable for extracting information from the data and 
many methods have been devised46,47. �e factors generated with OLSA may be such new indicators constituting 
a novel layer and may compress biological information.

Figure 6. Decomposition of topoisomerase-inhibitor e�ect. (a) Structures and polar charts of response scores 
of topoisomerase inhibitors: daunorubicin, doxorubicin, and mitoxantrone. For daunorubicin, 7 µM-dose data 
were employed considering the higher e�ect on the transcriptional network than that of 1 µM. Structures were 
obtained from MolView (http://molview.org/). Response scores are plotted as a bar chart in polar co-ordinates 
with heatmap. (b) Analysis of the P5 factor. P5 factor scores of all compounds are arranged in descending order 
and plotted on the “Score Distribution” graph. Green in the graph indicates topoisomerase inhibitors. �e rank, 
name, dose, and score are shown.

https://doi.org/10.1038/s41598-019-38528-4
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Figure 7. Identi�cation of autophagy regulators. (a) Analysis of the P2 factor. P2 factor scores of all compounds 
are arranged in descending order and plotted on the “Score Distribution” graph. Green in the graph indicates the 
compounds with a high P2 score, but without reports about autophagy. �e rank, name, dose, and score are shown. 
(b) Structures of the compounds tested in this study. Structures were obtained from MolView (http://molview.
org/). (c) Polar charts of response scores of the compounds tested. Response scores are plotted as a bar chart in 
polar co-ordinates with heatmap. (d) Western blotting analysis of HeLa cells treated with the compounds tested. 
HeLa cells were treated with the compounds tested at the indicated concentration for 24 h. �e whole-cell lysate 
was analysed by western blotting using anti-LC3 antibody. *LC3-I, **LC3-II. Full-length blots are presented in 
Supplementary Fig. S7d. (e) Autophagy �ux evaluation of GFP-LC3-RFP-LC3∆G-HeLa cells treated with the 
compounds tested. HeLa cells expressing GFP-LC3-RFP-LC3∆G were treated with the compounds tested using 
the method described in D. GFP and RFP signals were quanti�ed with a Tecan In�nite M200 plate reader and the 
GFP/RFP ratio was calculated. Each bar represents the mean ± SE, n = 6. Signi�cance test was conducted with the 
Turkey–Kramer method and only signi�cant di�erences between DMSO and the tested compounds are shown: 
***P < 0.001. (f) Imaging analysis of GFP-LC3-RFP-LC3∆G-HeLa cells treated with the compounds tested. HeLa 
cells expressing GFP-LC3-RFP-LC3∆G were treated with the compounds tested using the method described in D, 
�xed with 4% paraformaldehyde, stained with TO-Pro-3 iodide, and the �uorescence signals were detected with a 
TCS SP5 confocal microscope. Green signals indicate GFP (LC3) and blue signals the TO-Pro-3 iodide (nucleus). 
Scale bars correspond to 50 µm. In (d–f), a representative result of at least two independent experiments is shown.
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We should estimate the biological meanings of the new indicators cautiously, because contracting pro�le 
data with OLSA is conducted in an unsupervised manner and interpretation depends on the analysts. We have 
attempted to estimate meanings using two approaches: the �rst is to analyse the variables mainly constituting a 
factor and another is to utilize the similarity of the high-ranked samples in the list sorted by the response-score 
ranking of the focusing factor. When transcriptome pro�le data were subjected to OLSA, the variables were 
genes. To obtain insight into whether a factor has consistent biological meanings or not, we used statistical sig-
ni�cance in a GO analysis of the main genes constituting the focused factor and evaluated the correspondence to 
the existing bodies of knowledge as a requirement. Interestingly, the ratio of the factors with signi�cant enrich-
ment of GO varied between the data sets and SEGR was 0.551, 0.724, and 0.333 in CMap, HepG2, and BMDM 
response-pro�le matrices, respectively (Figs 2b, 3b, and Supplementary Fig. S4). An explanation of the di�erences 
is the possibility that the contribution ratio of biologically relevant factors is di�erent between the data sets. In 
the data sets with relatively low SEGR (CMap and BMDM set), the factors annotated with GO tended to contrib-
ute highly to the total deviation and the signi�cance of the enrichment was supported by the results of Fisher’s 
exact tests (Supplementary Fig. S8). Moreover, in some of the factors with a high contribution ratio, but without 
GO annotation, for instance the P26 and P35 factors, structurally similar compounds dominate the top of the 
score ranking, which implies the association with some cellular responses (Supplementary Fig. S2). OLSA is a 
matrix-decomposition method based on FA; therefore, a factor with a high contribution ratio means that the 
factor includes a response with large variance. As GO is a classi�cation method based on existing knowledge, 
the relationship between factor contribution and annotation with GO in our results is consistent with our daily 
experience: a phenomenon with strong phenotype is easily detected, while a weak phenotype is o�en missed.

�e factors can be classi�ed into 4 types based on where the contracted deviation is derived from: (1) a biolog-
ical response characterized well, (2) a biological response not characterized or identi�ed, (3) biological responses 
that are non-linear and cannot be separated, and (4) noise. �e former two are biologically relevant and, in 
particular, analysing the second type may lead to new biological �ndings. However, it is di�cult to distinguish 
between noise, uncharacterized, and the unseparated factors. Mathematical considerations focusing on the con-
tribution ratio may be useful for setting the criteria to distinguish between the biologically relevant factors and 
not relevant ones, although we have applied the generally used threshold in PCA and analysed the cumulative 
contribution ratio of factors in the present study14. �e relationship between factor contribution and biological 
relevance is an important point of OLSA and its analysis is an essential future task.

We consider that OLSA is a research tool for assessing the purity of the e�ects of a candidate compound group, 
thereby facilitating the lead optimization process for drug discovery48,49. OLSA provides scores of the common 
factors in the group and compound-speci�c factors among cellular responses to the candidate compounds. It 
may be possible to prioritize the candidates according to the purity of their e�ects based on the scores of common 
e�ects. Selecting the candidates with high purity is expected to be useful for avoiding toxicity speci�c to that 
particular candidate, nevertheless, it is o�en di�cult to discriminate such response. �e common factors are 
expected to include the e�ects based on the mode of action of the candidates—so-called “class e�ects”—leading to 
a deeper understanding of their structure–activity relationships and the rational design of potential drugs. �us, 
OLSA has the potential to be useful for determining the biochemical assays necessary for the next step in the lead 
optimization process of drug discovery.

In the present study, we tested whether the factors obtained by OLSA could be used for drug repositioning, 
focusing on the P2 factor in CMap data; a factor expected to include PI3K/AKT/mTOR inhibition and to be asso-
ciated with autophagy via mTORC1 modulation. Western blotting and the following analysis revealed that 4 of 5 
tested compounds actually induced autophagy, while this prediction was not achieved by conventional clustering 
analysis (Supplementary Fig. S7). �e results support the potency of the drug e�ect separation strategy. However, 
we should carefully discuss why PP did not induce autophagy, contrary to the prediction. One of the reasons 
is considered to be the discrepancy between the wanted cellular response for repositioning and the estimated 
response, particularly in cases where the cellular response is regulated by several factors. For instance, LY294002 
and wortmannin are listed as P2V high score compounds and reported to inhibit mTORC1 activity as predicted, 
but do not induce autophagy because they are pan-inhibitors of PI3K50,51. �e PI3K family is divided into three 
classes52. Class I PI3K activates mTOR via PI3K/AKT/mTOR signalling and reduces autophagy, while Class III 
PI3K increases phagophore formation and promotes autophagy. Because of this two-sided e�ect, pan-PI3K inhib-
itors do inhibit mTORC1, but do not induce autophagy50,51. We con�rmed that PP decreased phosphorylation of 
S6K, an mTORC1 substrate and an mTORC1 activation marker, which indicates that PP does have an mTORC1 
inhibitory e�ect as predicted (Supplementary Fig. S7). �us, OLSA actually contributed to the understanding of 
a perturbagen e�ect by separating it, whereas the wanted cellular response for drug repositioning does not always 
correspond directly to the estimated response. It may be helpful for a drug repositioning strategy using OLSA to 
consider the relationship between the factors using topological techniques such as graphical modelling53.

Here we highlight the potential of OLSA to dissect a drug e�ect and extract its basic components by analysing 
transcriptome data. Because OLSA does not require existing knowledge or biological meaning of the variables in pro-
�les, this method can be applied to the data such as the spots in two-dimensional electrophoresis and features in phe-
notyping screening54. Moreover, as shown in Fig. 4, perturbagens are not limited to drugs and any pro�le change from 
the control (response pro�le) can be subjected to OLSA. �ese attributes suggest wide application of this method. We 
expect that OLSA will contribute to drug repositioning, lead optimization, and other approaches in drug discovery.

Methods
Data pre-processing for OLSA input. �e expression data matrix was prepared as variables in rows and 
samples in columns. Here, we describe the procedures considering transcriptome data, although the methodol-
ogy can be applied to other types of omics data. Data from each sample were converted into a non-parametric 
rank-ordered list of all genes in the transcriptome data based on the expression values (expression rank matrix). 
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To obtain di�erential expression values to the controls, we employed a robust z-scoring procedure and the di�er-
ential expression value gene x to the control in the ith sample was computed as:

z
x median Y

NIQR

( )
,i

i=
−

where x and Y are the vectors of gene x ranks across all samples and the control samples in the expression rank 
matrix, respectively, and NIQR is the normalized interquartile range of the control sample values. We de�ne a 
response-pro�le matrix D as:

=D z z z( ),N1 2 

where zi is the column vector consisting of z-scores of the ith sample and N is the number of the samples in the 
data set.

OLSA. OLSA consists of the following procedures. �e concept and work�ow are shown in Supplementary 
Fig. S1.

Data selection for mirror data set. To exclude the samples that are considered to lose reversibility, the outlier 
samples with extremely large di�erential expression values are removed from the response-pro�le matrix. �e 
L2-norm of ith sample is calculated as:

∑=
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where zik is a robust z score of genes of ith sample and n is the number of genes in the sample. L2-norms of all 
samples are subjected to the Smirnov–Grubbs test, and response pro�les without an extremely large L2-norm are 
selected to prepare the mirror data set. Pre-mirror data matrix P is de�ned as:

P z z z( ),m1 2= 

where zi is the column vector consisting of z-scores of the ith sample among the selected pro�les and m is the 
number of the selected samples. We call the diagonal matrix consisting of L2-norm “total strength” and the matrix 
T is de�ned as:

=
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Normalization. Each response pro�le in the response-pro�le matrix D and the selected matrix P is normalized 
by corresponding L2-norm and the normalized response-pro�le matrix is de�ned as D′ and P′, respectively. �is 
procedure makes it possible to compare each variable between samples and to analyse the relationship between 
samples in a manner independent of the strength of the stimulation.

Mirror data preparation. A point-symmetric data set M to the selected normalized data set P′ is generated as:

M P= − ′.

�en, we concatenate the normalized data set D′ and this mirror data set M in a row, which makes the centroid 
of this combined data set zero. We de�ne the concatenated matrix as DM.

Principal component analysis. �e concatenated data set DM is subjected to principal component analysis with 
the Scikit-learn library of Python 3 to contract the gene expression changes with their co-ordination, which gen-
erates a matrix consisting of the obtained components, C.

Varimax rotation. To reduce the genes contributing to each contracting vector retaining the orthogonality 
of the vectors, varimax rotation is applied to C. We describe the python code for this process as “rotateV” in 
Supplementary Data. In this work, the vectors are sorted by contribution ratio, and those from the top to the vec-
tor whose cumulative contribution ratio exceeds 0.8 (CMap and Magkoufopoulou’s data) or 0.9 (Raza’s data) are 
subjected to varimax rotation considering calculation time. Here, “contribution ratio” and “cumulative contribu-
tion” indicate the ratio of the variance of a factor to the total variance and the sum of variances from the top to the 
focusing factor in the contribution ratio list sorted in descending order, respectively. We de�ne the rotated vectors 
as “response vectors” (“factors”) and call a matrix consisting of response vectors the “response-vector matrix”, R.

Generation of the response-score matrix. Employing the response-vector matrix R, the scores of the samples for each 
factor are calculated as inner products. We label a matrix consisting of the scores the “response-score matrix” S as:
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= ⋅ ′.S R D

GO analysis of genes mainly constituting the response vector. Genes constituting a response vector 
were sorted by each corresponding absolute value. �e top 1% of genes were subjected to GO (biological pro-
cess) analysis using the Enrichment analysis of Gene Ontology Consortium (http://www.geneontology.org/). �e 
gene lists subjected to GO analysis and the results are provided in each corresponding Supplementary Data as a 
book named “Gene_List_forGO” and “GO_Result”, respectively. �e obtained p-values were processed using the 
Benjamini–Hochberg method for multiple-testing corrections among factors (α < 0.05). �e results are provided 
in each corresponding Supplementary Data as a book named “Summary.”

Validation of biological meaning of response vector. We validated the estimated biological response 
of a response vector annotated with GO, the treatment similarity, or the results of a literature survey by investi-
gating Spearman’s correlations (described as rho or ρ) between the factor constituents and the samples in another 
data set. First, the contribution of each gene constituting a response vector was calculated as the ratio of the 
square of each gene value to the summation of those values and then sorted by the ratio. Genes from the top to 
the gene whose cumulative contribution ratio exceeded 0.9 in the list were selected and employed as the signature 
representing the factor to calculate Spearman’s correlation.

Materials. Benzethonium chloride (025–11662), loperamide hydrochloride (129–05721), and phenazo-
pyridine hydrochloride (162–14441) were purchased from Wako Pure Chemical Industries (Osaka, Japan). 
Methiothepin hydrochloride (sc-253005) and anti-β-Actin (sc-47778) were purchased from Santa Cruz 
Biotechnology (Dallas, TX). Benzamil (3380) was purchased from Tocris Bioscience (Bristol, UK). Metixene 
hydrochloride (M1808000) and ba�lomycin A1 from Streptomyces griseus (B1793) were purchased from Merck 
(Darmstadt, Germany). Rabbit anti-p70 S6 kinase (9202) and mouse anti-phospho-p70 S6 kinase (9206) were 
purchased from Cell Signaling Technology (Beverly, MA). Rabbit anti-LC3 (PM036) was purchased from Medical 
and Biological Laboratories (Nagoya, Japan). All other chemicals were of analytical grade.

Cell culture. GFP-LC3-RFP-LC3∆G-expressing HeLa cells were cultured in Dulbecco’s modi�ed Eagle’s 
medium (DMEM) (D6546, Merck) supplemented with 10% fetal bovine serum (FBS) and 2 mM l-glutamine 
(G7513, Merck). HeLa cells (CCL-2, ATCC) were cultured in DMEM (10313–021, Life Technologies, Carlsbad, 
CA) with 10% FBS and 1% MEM non-essential amino acids (11140–050, Life Technologies). All cells were main-
tained at 37 °C under 5% CO2.

Western blotting analysis. Western blotting analysis was conducted as previously described55. Specimens 
were separated with sodium dodecyl sulfate polyacrylamide gel electrophoresis on a 13.5% polyacrylamide gel 
with a 3.75% stacking gel at 140 V for 90 min. �e molecular weight was determined using Precision Plus Protein 
Standards (1610373, Bio-Rad, Richmond, CA). Proteins were transferred electrophoretically to a poly(vinylidene 
di�uoride) (PVDF) membrane (Pall, NY) using a blotter (Bio-Rad) at 100 V for 60 min. Non-speci�c binding sites 
on the membrane were blocked with PVDF Blocking Reagent for Can Get Signal (Toyobo, Osaka, Japan) at room 
temperature for 60 min. A�er blocking, the PVDF membrane was incubated with primary antibodies diluted with 
Can Get Signal solution 1 (Toyobo) at 4 °C for 24 h. Primary antibodies were used in the following conditions: 
anti-β-actin (1/2,000), anti-p70 S6 kinase (1/2,000), anti-phospho-p70 S6 kinase (1/2,000), and anti-LC3 (1/2,000). 
A�er the reaction with primary antibodies, the membrane was incubated with horseradish peroxidase-conjugated 
anti-rabbit or anti-mouse IgG antibody (Amersham Biosciences, Piscataway, NJ) diluted to 1/10,000 in Tris-bu�ered 
saline containing 0.05% Tween 20 at room temperature for 60 min. Immunoreactivity was detected with a Fusion 
Solo S (Vilber Lourmat, Marne-la-Vallée, France) and Westar ETA C Ultra 2.0 (Cyanagen, Bologna, Italy). �e band 
intensity indicating each protein was quanti�ed by Multi Gauge so�ware (Fuji�lm, Tokyo, Japan).

Evaluation of autophagic flux with GFP-LC3-RFP-LC3∆G-expressing HeLa cells. Autophagic 
�ux a�er drug treatment was determined essentially as described previously35. GFP-LC3-RFP-LC3∆G-expressing 
HeLa cells were seeded in black/clear bottom 96-well plates (353948, Corning, NY) at 1.5 × 104 cells/well and 
maintained for 72 h. A�er drug treatment for 6 h, cells were washed with PBS (+), �xed with 4% paraform-
aldehyde solution (163–20145, Wako) for 10 min, and washed with PBS (+). Measurement of GFP and RFP 
�uorescence was performed using a microplate reader (In�nite M200 microplate reader; Tecan, Mannedorf, 
Switzerland) with excitation/emission at 480/510 nm and 580/610 nm, respectively.

GFP-LC3 imaging. Fluorescence microscopy was conducted as described previously56. GFP-LC3-RFP-LC3∆G- 
expressing HeLa cells were seeded on glass coverslips (Matsunami Glass, Osaka, Japan) in 12-well plates at 
1.5 × 104 cells/well and maintained for 72 h. A�er drug treatment for 24 h, cells were washed twice with PBS, 
�xed with 4% paraformaldehyde solution for 10 min, permeabilized with 0.1% saponin in PBS for 10 min, and 
blocked with 3% bovine serum albumin (BSA) in PBS for 30 min. A�er blocking, cells were incubated with 
TO-Pro-3 iodide (Life Technologies, Carlsbad, CA) diluted to 1/2,500 by 2% BSA in PBS for 60 min. Coverslips 
were mounted with H-1000 Vectashield mounting medium (Vector Laboratories, Burlingame, CA) and analysed 
with a TCS SP5 confocal microscope (Leica, Solms, Germany). Images were processed with LAS AF (Leica).

Statistical analysis. Student’s two-tailed unpaired t test and one-way analysis of variance followed by 
Tukey’s post hoc multiple comparison test were used to identify signi�cant di�erences among groups, where 
appropriate. �e data were analysed using Prism so�ware (GraphPad So�ware, La Jolla, CA) and Scikit-learn 
library of Python 3.
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Data Availability
�e computer code produced in this study is available in Supplementary Code and in the following database: • 
OLSA python scripts: GitHub (https://github.com/tadahaya222/OLSApy).
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