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Abstract

PARP inhibitors drive increased DNA damage, particularly
in tumors with existing defects in DNA repair. This damage
not only promotes immune priming through a range of
molecular mechanisms, but also leads to adaptive upregula-
tion of programmed death ligand 1 (PD-L1) expression. In
this context, PARP inhibition and programmed cell death 1

(PD-1)/PD-L1–targeting antibodies represent a rationale com-
bination. In this review, we detail the basic and translational
science underpinning this promising new combination, sum-
marize available clinical data, and discuss the key questions
that remain to be addressed during future development. Cancer
Res; 78(24); 6717–25. �2018 AACR.

Introduction
PARP inhibitors and antibodies that inhibit immune check-

points, such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and
programmed cell-death 1 (PD-1), are two classes of drugs that
have transformed the treatment of multiple cancers in recent
years. Here, we detail the biology of DNA damage repair (DDR)
and antitumor immunity that underpin these important antican-
cer therapies and review the intrinsic links between DNA damage,
inflammation, and the immune response, which together support
the rational combination of PARP inhibition and immune-check-
point blockade (ICB). We also summarize the ongoing clinical
efforts, potential challenges, and open questions that remainwith
respect to further developing this combination.

DNA Damage and PARP Inhibition
Both cells and DNA are exposed to continuous damage, which,

if severe, can lead to cell death or, if accumulated over time, to the
development of cancer. As such, the detection and repair of DNA
damage is a critical process, managed by numerous semiredun-
dant pathways (Fig. 1A; ref. 1). DNA single-strand break (SSB)
damage is managed by three general pathways: (1) mismatch-
mediated repair (MMR) mainly repairs errors that escape proof-
reading during replication; (2) base excision repair removes
shorter stretches of damage that do not affect tertiary DNA
structures; and (3) nucleotide excision repair removes longer
stretches of damage, often resulting from UV light, which do
affect tertiary structures. Potentially more serious, double-strand
breaks (DSB) are repaired via two pathways: (1) homologous

recombination (HR) is utilized when the sister copy of the
damaged DNA is present as a template; (2) nonhomologous end
joining (NHEJ) is utilized where no sister copy is available, and is
more error-prone.

PARP1/2 are DNA-damage sensors, which bind toDNA lesions
(2) and catalyze the generation of poly(ADP-ribose) chains. These
negatively charged chains facilitate chromatin remodeling, the
recruitment of protein complexes critical to DNA repair, and have
also been shown to affect replication fork progression speed (3).
In the absence of PARP, SSBs in DNA persist, eventually resulting
in DSBs, and replication progression is accelerated, limiting the
ability of cells to stall replication and repair DNA. In normal cells,
accumulated DSBs are repaired by HR or NHEJ. However, in cells
with mutations in breast cancer 1 (BRCA1) or BRCA2, HR is
defective, and loss of PARP function results in the accumulation of
DSBs and eventual cell death (4, 5). The discovery of this synthetic
lethality between BRCA and PARP prompted the exploration of
PARP inhibition as treatment for cancers with BRCA1/2 defects,
initially in ovarian and breast cancers, where defects in BRCA1/2
occur in up to 20% of patients (6, 7). The FDA has now approved
several PARP inhibitors for the treatment of recurrent platinum-
sensitive ovarian cancer; olaparib, niraparib, and rucaparib as
maintenance therapy following chemotherapy in unselected
patients and olaparib and rucaparib for the treatment of patients
with BRCA1/2 mutations in later lines of therapy (8–10). More
recently, olaparib received approval for the treatment of patients
with BRCA1/2-mutant breast cancer, following progression on
previous treatments (11), and talazoparib was granted priority
review based on data in the same setting (12).

Although the greatest efficacy of PARP inhibitors has been
observed in tumors with BRCA1/2 mutations, patients without
thesemutations can alsopotentially benefit. In particular, patients
harboring tumors with high levels of genomic scarring, such as
LOH suggestive of a defect in DDR (9, 10), or whose tumors have
mutations in other, non-BRCA1/2, DDR genes (13). Defects in
DDR genes are present across a broad range of tumor types,
including prostate, bladder (14), pancreatic (15), and non–small
cell lung (16) cancers, and clinical trials of PARP inhibitors are
ongoing in many of these settings.

Despite these successes, significant potential to improve on the
activity of PARP inhibitors remains. Active preclinical and clinical
research is ongoingwith respect to broadening responding patient
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populations, overcoming emerging resistance, and improving the
depth and duration of response and overall survival (OS). The
development of different combination strategies encompassing
PARP inhibitors is one potential way to address these opportu-
nities and has been broadly reviewed previously (17). For the
remainder of this review, we provide a deeper focus specifically on
the rational combination with ICB.

ICB and the Renaissance of Cancer
Immunotherapy

Cancer immunotherapy has had a long and somewhat
chequered history (18), but has witnessed significant successes
in the last decade, driven mainly by ICB antibodies that
promote T-cell activation. T cells are critical to adaptive immu-
nity and contribute to improved outcomes in a range of
cancers (19). Activation of T cells requires two signals: binding
of the T-cell receptor (TCR) to cognate antigen, presented by
MHC, and a costimulatory signal delivered by binding of
CD28 on T cells to either CD80 or CD86 (20). These signals
are complimented by a series of costimulatory and coinhibi-
tory signals that spatially and temporally control T-cell func-
tion, preventing autoimmunity and inflammatory damage
(21). T-cell activation can be seen as a balancing act between
these stimulatory and inhibitory signals, and ICB represents an
effective means of shifting that balance toward activation by
diminishing inhibition.

After approximately 10 years in development, the anti–CTLA-4
inhibitor ipilimumab was the first ICB therapy to receive regula-
tory approval for the treatment of melanoma (22). Around the
same time, early clinical trial data generated significant enthusi-
asm for targeting an alternative receptor, PD-1 (23). PD-1 is
expressed on T cells following activation and delivers inhibitory
signals throughbinding of two ligands, programmeddeath ligand
1 (PD-L1) or 2 (PD-L2). PD-1 is hypothesized to function later in
T-cell activation than CTLA-4 (24), once effector T cells reach sites
of inflammation.

In keeping with such a role, PD-L1 is found on a broad range
of tissues, particularly under inflammatory conditions. PD-L1 is
also expressed on the surface of tumors, prompting the hypoth-
esis that the PD-1/PD-L1 pathway may be of critical relevance
to cancer. This hypothesis has proved to be correct, as a number
of antibodies targeting PD-1/PD-L1 have shown broad clinical
activity, leading to regulatory approval for the treatment of
multiple cancers (25), including melanoma (26, 27), squa-
mous cell cancer of the head and neck (28, 29), Hodgkin
lymphoma (30, 31), urothelial (32–36), Merckel cell (37),
renal cell (38), non–small cell lung (39–43), gastric (44), and
hepatocellular cancers (45); and for any MMR-deficient/micro-
satellite unstable tumor (46, 47).

As with PARP inhibitors, PD-1/L1 inhibition is only effective in
a subset of patients, and a number of biomarkers have been
explored that may identify patients likely to benefit (48). One
such strategy of particular relevance to PARP inhibitor combina-

tions is the exploitation of DDR defects. First highlighted in a
study of the PD-1 inhibitor pembrolizumab in 28 patients with
colorectal cancer, in whichMMR-deficient patients demonstrated
a response rate of 40%, as opposed to 0% in MMR-proficient
tumors (49), this finding was further confirmed in 78 MMR-
deficient patients, across 12 tumor types, who demonstrated a
response rate of 53%, with 21% complete responses (46). The
improved outcome in these patients is believed to be a result of
increased mutational load, which is around 10 times higher in
tumors with MMR deficiency (49) and those with POLE muta-
tions (50), and is a known predictor for response to ICB (51–53),
leading to greater immunogenicity and immune priming, as
evidenced by increased immune infiltration and/or PD-L1 expres-
sion in breast (54), colorectal (55, 56), endometrial (57), and
gastric (58) cancers.

Interestingly, a more recent study, in 60 patients with
advanced urothelial carcinomas, has indicated that defects in
DDR pathways beyond MMR may also enrich for antitumor
responses to anti–PD-1/L1 (59). In this study, patients with a
deleterious alteration in at least one of 34 DDR genes showed a
response rate of 80% versus only 18.8% in patients lacking
these alterations. Significant differences between the two popu-
lations were also seen in progression-free survival and OS.
Although tumors with defects in these non-MMR DDR genes,
such as BRCA1/2 and other HR genes, also have increased
mutational burden (50, 60–62), the magnitude is far smaller
than that seen in MMR deficiency, and seems unlikely to fully
explain increased response to ICB in these patients. Rather,
these patients may have more fundamental differences in
tumor immunogenicity, driven by intrinsic links between DNA
damage and immunity (Fig. 1B).

Fundamental Links between DNA Damage,
Inflammation, Cancer Progression, and
Immunity

To detect pathogens, the immune system utilizes pattern
recognition receptors (PRR) that recognize molecular motifs,
termed pathogen-associated molecular patterns, conserved
across multiple foreign organisms (63). PRRs also recognize
similar motifs in endogenous cellular components, referred to
as damage-associated molecular patterns (DAMP), generated
following stress or damage. One such DAMP is cytosolic DNA,
which is recognized by the DNA sensor cyclic GMP-AMP
synthase (cGAS). Binding of DNA to cGAS leads to recruitment
and activation of stimulator of interferon genes (STING), which
promotes expression of IFN and other inflammatory cytokines
via TANK-binding kinase 1 and interferon regulatory factor 3
(64). Recent studies have demonstrated that chromosomal
instability (65) and deficiency in DDR genes, such as ATM
(66) or RAD51 (67), leads to accumulation of cytosolic DNA,
triggering activation of STING and promoting type I immunity.
In keeping with this biology, breast tumors positive for a
gene signature of DDR deficiency, related predominantly to

Figure 1.
A, Themain DDR pathways are indicated from left to right, as follows: MMR; nucleotide excision repair (NER); base excision repair (BER); HR; NHEJ. The form of DNA
damage most relevant to each pathway is indicated along the top of the DNA strand. Relative fidelity of the repair systems is indicated by their position
relative to eachother on the vertical axis. Keygenes in each pathwayare indicated, togetherwith highlighted roles in the response andactivity of both PARP inhibition
and checkpoint blockade. B, DNA damage promotes cell-extrinsic immunogenicity through activation of the STING and NF-kB transcription factors, which
promote release of proinflammatory signals and increased infiltration of immune cells. Tumor cell–intrinsic immunogenicity is increased through the upregulation of
MHC and costimulatory surface receptors, which increase the visibility of tumor cells to T cells.
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HR-based repair, have increased STING activation and immune
infiltrate compared with negative tumors (68). In addition to
activation of STING, DNA damage has also been shown to lead
to activation of the proinflammatory transcription factor NF-kB
via PARP1 (69), and ATM-mediated SUMOylation (70) and
phosphorylation of NF-kB essential modulator (NEMO).

The activation of STING and NF-kB following DNA damage
would be expected to lead to increased inflammation and
infiltration of tumors by immune cells, a phenomenon
observed in patients with defects in multiple DDR pathways
across multiple types of cancers. In breast cancer, low levels of
BRCA1, ATM, and X-ray repair cross complementing 1 (XRCC1)
expression associate with significantly higher levels of CD8
T-cell infiltration (71), as do mutation of BRCA1 (72). In
pancreatic cancer, signatures of DSB repair, as well as MMR
deficiency, are associated with increased expression of genes
related to T-cell infiltration and type I immunity (73). Simi-
larly, in head and neck squamous cell cancer, methylation of
HR genes, indicating reduced expression, correlates to increased
expression of a type I immunity gene signature (74). Finally,
defects in BRCA1/2 are correlated to increased levels of PD-L1
expression (61, 75) and increased T-cell infiltration in ovarian
cancers (61). This increased immune priming likely accounts
for the improved response to ICB seen in tumors with DDR
defects in pathways other than MMR, who do not present with
such significant increased mutational burden.

In addition to altering the extrinsic immunogenicity of
tumors at the level of the microenvironment, DNA damage
can also alter the intrinsic immunogenicity of tumor cells
through modulation of surface phenotype. For example, stud-
ies of aphidicolin and cytarabine have shown the ability of
DNA-damaging agents to drive upregulation of natural-killer
group 2, member D ligands, inducible T-cell costimulator
(ICOS) ligand and MHC class I, in an ATM- or ATR-dependent
manner (76, 77). These studies, though not directly related to
PARP inhibition, suggest that increased DNA damage can make
cells more visible to, and sensitive to killing by, T cells and
natural killer (NK) cells, through modulation of surface phe-
notype. Although not clearly documented, it is also possible
that the epigenetic changes that occur as a result of sustained
DNA damage (78) could also affect the expression of key
immunomodulatory proteins at the tumor cell surface.

Given this potential for DNA damage to promote inflamma-
tion and immune priming, patients deficient in key DDR path-
ways could be expected to demonstrate better prognosis. The data
in this regard are mixed, with a number of large metaanlayses
demonstrating improved prognosis for patients with ovarian
cancer harboring mutations in BRCA1/2 (79, 80), possibly due
to the relationship between BRCA1/2 mutations and platinum
sensitivity. However, the data in patients with breast cancer are
more mixed, with some studies indicating poorer prognosis in
BRCA1/2-mutant patients (81, 82).

It is therefore clear that, despite the ability of DNA damage to
promote immune priming, DDR-deficient tumors still ultimately
escape immune control and growunchecked.One explanation for
this is that in the presence of DDR defects, DNA damage fails to
resolve, but persists at a level that is nonlethal to the tumor. This
low-level DNA damage continues to drive inflammatory signal-
ing, stimulating continued infiltration by innate immune cells,
like macrophages and neutrophils, which promote further DNA
damage, via free radical release, and drive a switch in the immune

milieu of the microenvironment from a Th1-skewed immunity,
favoring cytotoxic T-cell function, to chronic inflammation and
immunosuppression, both promoters of cancer progression and
immune escape (83, 84). The result is a self-sustaining cycle of
DNA damage and chronic inflammation, which is challenging to
break through use of any single therapeutic approach, but which
could potentially be addressed through the combination of PARP
inhibitors and ICB.

CombiningPARP InhibitionandCheckpoint
Blockade

In the context of defective DDR, PARP inhibition can trigger
catastrophic DNA damage and tumor cell death. This shift from
chronic, low level, DNA damage, to more significant DNA
damage has the potential to "reset" the inflammatory micro-
environment of tumors, reinstating a productive Th1 immune
response. Preclinical studies support this potential role for
PARP inhibitors. The PARP inhibitor talazoparib has been
shown to drive cytosolic DNA accumulation and STING acti-
vation in tumor cells in vitro (85) as well as STING activation
in vivo, in mouse models of cancer, where it also leads to
increased infiltration by immune cells and enhanced function-
ality of CD8 T cells and NK cells (85, 86). Similar immune
priming, measured as a Th1 immunity gene signature, has been
shown in several clinical studies to promote the response to ICB
(87–89). At the same time, PARP inhibition has been shown to
lead to upregulation of PD-L1 in vivo (90), likely as a result of
the interferon expression described (91), but also in vitro and in
xenografts. The latter finding suggests a parallel cell-intrinsic
mechanism of PD-L1 regulation downstream of PARP, inde-
pendent of external signaling. This adaptive and intrinsic upre-
gulation of PD-L1 may function to inhibit immune responses
downstream of PARP inhibitor–mediated priming, and could
potentially be overcome through the combination of PARP
inhibitor with an anti–PD-1/L1 antibody.

Initial preclinical studies, conducted in the BRCA1-deficient
BR5 mouse ovarian cancer model (92), indicated that a combi-
nation of the PARP inhibitor veliparibwith anti–CTLA-4 increases
T-cell infiltration and IFNg production, and improves survival.
However, in the same study, combination with anti–PD-1/L1 led
to less notable increases in T-cell activity and no improvement in
survival. The increased activity for anti–CTLA-4 in this study is
potentially explained by the generally greater activity observed for
anti–CTLA-4 compared with anti–PD-1/L1 in preclinical mouse
models. However, the lack of activity for the combination with
anti–PD-1/L1 contrasts withmore recent studies conducted in the
BRCA wild-type EMT6 breast cancer, ID8 ovarian, and CT26
colorectal models (85, 90) and in the BRCA-deficient BrKras
ovarian cancer model (93), in which the combination of anti–
PD-L1 with the PARP inhibitors olaparib, talazoparib, and ruca-
parib, respectively, led to significantly improved antitumor activ-
ity. One explanation for these contrasting results is the use of
different models, with differences in immune context. For exam-
ple, the CT26 model, which demonstrated good activity for the
combination, has been characterized as having high mutational
burden and robust T-cell infiltration (94), factors that might
lend themselves to predicting antitumor responses to immu-
notherapy. In contrast, the BR5 model, which demonstrated
modest activity, is a genetically engineered mouse model
(GEMM) developed by the targeted modification of a limited
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number of genes (95). Characterization of other GEMMs has
indicated a low mutational burden, which may be associated
with reduced responses to immunotherapy (96). Another
potential explanation is the use of PARP inhibitors that differ
with respect to catalytic inhibition and PARP trapping poten-
cies (97), with veliparib being significantly less potent than
olaparib, talazoparib, or rucaparib. It is possible that the use
of more potent PARP inhibitors in the context of the BR5
model would yield a different result. In keeping with this
theory, talazoparib, which has high catalytic and PARP trap-
ping potency, demonstrated greater immune-modulatory and
antitumor activity in the BR5 model (86) than was observed
with veliparib (92).

Taken together, the available preclinical and translational
data strongly support combining PARP inhibition and ICB, and
based on these data, a number of clinical trials are currently on-
going (Table 1). Up to now, data from three different PARP
inhibitor/anti–PD-1/L1 combinations are available: olaparib/
durvalumab (98, 99), niraparib/pembrolizumab (100, 101),
and BGB-A317/BGB-290 (102). Both of the first combinations
were well tolerated, with toxicities in line with those observed

for the relevant agents in monotherapy settings. In contrast, the
latter combination demonstrated an increased rate of hepatic
toxicity, suggesting that tolerability of PARP inhibitor/anti–PD-
1/L1 combinations may vary depending on the agents being
utilized and/or the exact setting. All three combinations
showed evidence of antitumor activity in a range of settings.
In castration-resistant prostate cancer (98), the olaparib/
durvalumab combination led to PSA responses (�50% reduc-
tion) in 47% of 17 patients. Patient benefit was greater in those
with DDR defects (PFS 16.1 months) versus those with no
defects, or unknown status (PFS 4.8 months). Accepting the
limitations of cross-trial comparisons, these results compare
favorably with monotherapy data in similar settings, where
olaparib (13) demonstrated a 22% PSA response rate, with a
PFS of 9.8 months in patients with DDR defects and 2.1 months
in those without, whereas anti–PD-1 agents showed an 11%
PSA response rate (103). In platinum-resistant ovarian cancer
(101), the niraparib/pembrolizumab combination demon-
strated an overall response rate (ORR) of 25%; this response
rate is in line with that observed for PARP inhibitor mono-
therapy in BRCA1/2-mutant patients in this setting (104), but is

Table 1. Ongoing trials combining PARP inhibitors and checkpoint inhibitors

Combination Trial Description References

Olaparib þ DORAa Olaparib vs. olaparib þ durvalumab in previously treated TNBC N/A
Durvalumab NCT03167619

MEDIOLA Basket study in gBRCA-mutant ovarian, or HER2– breast cancer, relapsed (99)
NCT02734004 platinum-sensitive SCLC and gastric cancer
BISCAY Umbrella study in previously treated bladder cancer selected for N/A
NCT02546661 defects in HR
BAYOU Study in cisplatin-ineligible bladder cancer
NCT03459846
NCT02484404a Basket study in previously treated ovarian cancer, gBRCA-mutant TNBC,

NSCLC, SCLC, prostate cancer, microsatellite stable colorectal cancer
(109)

HUDSON Umbrella study in patients with NSCLC who have progressed on anti–PD-1/PD-L1 N/A
NCT03334617

Olaparib þ KEYNOTE-365 Umbrella study in previously treated mCRPC N/A
Pembrolizumab NCT02861573

Niraparib þ TOPACIO Basket study in HER2– TNBC and ovarian cancer (100, 101)
Pembrolizumab NCT02657889

Rucaparib þ CheckMate 9KD Umbrella study in mCRPC N/A
Nivolumab NCT03338790

ATHENA Phase III study in front line ovarian cancer
NCT03522246
NCT03572478a Phase I/IIa study in prostate/endometrial cancers

Avelumab þ Javelin PARP Medley Basket study in NSCLC, ovarian cancer, HER2– breast cancer, bladder cancer, N/A
Talazoparib NCT03330405 and mCRPC

Javelin BRCA/ATM Tissue agnostic study in BRCA/ATM-mutant solid tumors N/A
NCT03565991
NCT03637491 Triplet combination with binimetinib in Ras-mutant solid tumors N/A
Javelin Ovarian PARP 100 Phase III study in front line ovarian cancer
NCT03642132

BGB-A317 þ
BGB-290

NCT02660034 Basket study in ovarian cancer, TNBC, mCRPC, bladder cancer, SCLC,
HER2– gastric cancer, pancreatic cancer, and other solid tumors

(102)

Niraparib þ
PD-1 inhibitor

NCT03308942 Single-arm study in NSCLC N/A

Niraparib þ NCT03307785 Phase I/II in solid tumors N/A
TSR-042 FIRST

NCT03602859
Phase III study in front-line ovarian cancer

Veliparib þ
Atezolizumab

NCT02849496 HER2–, BRCA-mutant TNBC N/A

Rucaparib þ
Atezolizumab

NCT03101280 HER2–, BRCA-mutant ovarian cancer and TNBC N/A

Niraparib þ ANITA Phase III study of maintenance treatment in recurrent ovarian cancer
Atezolizumab NCT03598270a

Abbreviations: mCRPC, metastatic castration-resistant prostate cancer; TNBC, triple-negative breast cancer.
aInvestigator-sponsored studies.
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encouraging given activity for the combination was indepen-
dent of DDR defect status. In relapsed platinum-sensitive,
BRCA1/2-mutant ovarian cancer (99), the olaparib/durvalu-
mab combination demonstrated an ORR of 63%, which is also
in line with PARP inhibitor monotherapy activity in this setting
(104). Finally, the niraparib/pembrolizumab combination has
also shown preliminary activity in advanced triple-negative
breast cancer (100), with an ORR of 28% (60% in BRCA1/2-
mutant patients; again in line with PARP inhibitor monother-
apy; ref. 105). These early breast and ovarian data are support-
ive of further exploration of the combination, as it is possible
that the combination may bring benefit to a broader popula-
tion, without DDR defects, as compared with monotherapy
PARP inhibition, or in the form of longer-term benefit in all
patients; the latter being likely given that the benefit of ICB is
seen predominantly as improved survival (106).

Future Perspectives and Conclusions
Overall, clinical studies conducted to date suggest combina-

tions of PARP inhibition and anti–PD-1/L1 agents are well
tolerated and demonstrate antitumor activity in a range of tumor
types. However, given the early nature of these data, several key
questions remain unanswered. Most critically: what is the mag-
nitude and nature of benefit from combination treatment versus
monotherapy? Does benefit vary across different tumor types,
lines of therapy, or biomarker-defined populations? Is there an
optimal dose or schedule for treatment?

With respect to the nature of combination versusmonotherapy
benefit, the clinical studies described to date, and outlined above,
have, by their nature, relied upon early endpoints, such asORR. In
patients with limited responsiveness to PARP inhibition, such as
those lacking DDR defects, response rate may be an informative
endpoint. However, in settings where response to PARP inhibi-
tion is already high, such as in BRCA1/2-mutant ovarian cancer, it
may be more appropriate to assess combination benefit in terms
of improved duration of response or improved survival, necessi-
tating extended monitoring in such studies.

When considering tumor type and line of therapy, it is of note
that data published to date have been in tumor types that have
shown historic activity for PARP inhibition, but limited activity
for anti–PD-1/L1. In tumor types where anti–PD-1/L1 is an
established standard of care, for example, non-small cell lung
cancer (NSCLC), response rate may be a more relevant endpoint,
particularly outside of PD-L1–positive patient groups. A critical
question to address though will be whether the combination has
activity only in anti–PD-1/L1-na€�ve patients or also in those who
have progressed on anti–PD-1/L1monotherapy—a group that
represents a critical unmet medical need.

Elucidating the role of and interplay between different bio-
markers with respect to activity will be critical to the success and
future development for this combination, and necessitates the
integration of precision medicine during early clinical trials. In
this regard, the definition of DDR deficiency will likely be a
critical factor in optimal patient selection. Obtaining contem-
poraneous tumor tissue and matched blood samples is key to
fully characterizing not only the presence of DDR defects, but
also their nature. For example, how many and which genes are
mutated? Are the mutations heterozygous or homozygous? Are
they germline or somatic, and, if they are somatic, are they
early, relatively clonal, or late, subclonal, events? Such in-depth

analysis is important in all settings, but is likely to be partic-
ularly relevant in settings such as NSCLC, where, in contrast to
ovarian cancer, most mutations are likely to be somatic in
nature. It will also be important to understand the distinct
effects that different forms of DDR defects may have on tumor
immunogenicity, both at the level of neoantigen compliment
and of immune signaling within the microenvironment. To this
end, it will crucial to integrate genomic profiling with sequenc-
ing of the T-cell receptor repertoire, gene expression profiling
and IHC/fluorescent assessments of PD-L1 expression, CD8
T-cell infiltration, and broad immune infiltrate, in order to
define the overlap between DDR and immune-related biomar-
ker groups and to build a deeper understanding of how DNA
damage interfaces with antitumor immunity.

The question of optimal dose and schedule is a challenging
one to address. Given the limitations of preclinical modeling
for this combination, it will likely be necessary to empirically
determine an optimal schedule and dose clinically. Here,
correlative studies including sequential tumor biopsies and
serial blood collection may be informative, alongside standard
assessments of tolerability and activity. A comparison of
changes in the tumor microenvironment or TCR repertoire
between pre- and posttreatment samples may identify differ-
ences between alternative doses and schedules. Given the
relatively reduced tolerability of sustained PARP inhibition as
compared with anti–PD-1/L1, it may be desirable, in patients
undergoing sustained treatment, to deliver PARP inhibition on
a more pulsatile schedule. Longitudinal tracking of ctDNA
during treatment could be one potential way to inform the
duration of such PARP inhibitor pulses, both by using ctDNA as
a surrogate for tumor burden, but potentially by tracking the
dynamics of resistance mutations (107), using these as a trigger
for cessation and reinstatement of PARP inhibition.

Greater clarity with respect to these key questions and
others, such as the role of PARP inhibitor potency, will be
important as clinical trials' read out, and as basic and trans-
lational science, continues to bring new insights with respect to
the mechanism and activity of both PARP inhibition and ICB
individually, and in combination. Finally, although we have
focused here on PARP inhibitor and anti–PD-1/L1 combina-
tions, other targeted agents against components of the DDR are
being evaluated for combination with ICB, including ATR
inhibitors (108), which were shown to combine safely with
the anti–PD-L1 durvalumab, resulting in early signals of activ-
ity. There are also other promising immunotherapeutic agents
in development, which should be considered for combination
with DDR inhibitors.
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