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ABSTRACT  
 
This paper aims to develop a more precise vehicular 
positioning system during GPS outages by integrating 
GPS, a tactical grade HG1700 IMU, as well as Wheel 
Speed Sensor and a Yaw Rate Sensor. Using a tight 
coupling strategy, three types of sensor integration 
schemes are proposed, namely GPS/INS/Wheel Speed 
Sensor, GPS/INS/Yaw Rate Sensor and GPS/INS/Yaw 
Rate Sensor/Wheel Speed Sensor. The models for each of 

the schemes are discussed in detail including the sensor 
error models. The benefits after integrating the Wheel 
Speed Sensor and the Yaw Rate Sensor are investigated in 
terms of positioning accuracy during GPS data outages.  
Furthermore, the reduction in the time to fix the carrier 
phase ambiguities after various GPS outage durations is 
analyzed. 
 
INTRODUCTION  
 
To meet the requirements for vehicle safety and stability 
control such as forward-collision avoidance, significant 
attention has been paid to new sensor systems in recent 
years. Among them are anti-lock brake systems (ABS), 
traction control (TC), and vehicle stability control systems 
(VSC) which have already found their way into 
production passenger vehicles (Tseng et al., 1999). In 
most autonomous vehicle control and vehicle stability 
control systems, GPS and other dead-reckoning sensors 
are being employed to provide navigation and positioning 
information (Bevly, 1999). 
 
With respect to GPS, centimeter-level accuracies can be 
achieved by using carrier phase measurements in a double 
difference approach whereby the integer ambiguities are 
resolved correctly. However, difficulties arise during 
significant shading from obstacles such as buildings, 
overpasses and trees. This has led to the development of 
integrated systems whereby GPS is complemented by an 
inertial navigation system (INS). In such a system, GPS 
provides long-term, accurate and absolute positioning 
information which is subject to the blockage of line-of-
sight signals as well as signal interference or jamming. 
Additionally, its measurement update rate is relatively 
low (typically less than 20 Hz). By contrast, an INS is 
autonomous and non-jammable, and most IMU data rates 
exceed 50 Hz with some reaching into several hundreds 
of Hertz. However, the weak points of INS are that its 
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navigation quality degrades with time, and its accuracy 
depends on the quality of INS sensors. 
 
GPS/INS integrated systems have been studied 
extensively. Based on the concept of lower cost and high 
accuracy, Petovello (2003) integrated carrier phase DGPS 
and a tactical grade IMU to provide decimeter-level 
accuracies during GPS outages. By integrating GPS and 
low cost inertial sensors, Sukkarieh (2000) developed a 
low cost, high integrity, aided inertial navigation system 
for use in autonomous land vehicle applications. 
 
Positioning accuracy and system redundancy have crucial 
impacts on the performance and reliability of autonomous 
vehicle control systems and vehicle safety and stability 
control systems. The more accurate the positioning 
system, the more reliable the vehicle autonomy or the 
safety control. The importance of sensor redundancy lies 
in the fact that any sensor failure due to mechanical, 
electrical or an external disturbance could lead to a 
disastrous result if the failed sensor was the only sensor 
on-board (Redmill, 2001). To improve accuracy and 
redundancy, significant work has also been done to 
integrate GPS with other lower cost dead-reckoning 
sensors to aid positioning and/or attitude determination. 
These sensors have ranged from the use of a compass, tilt 
meter and fiber-optic gyro for vehicle pitch and azimuth 
estimation (Harvey, 1998), to the integration of GPS with 
an on-board ABS, odometer and gyro for positioning in 
urban areas (Stephen, 2000). Wheel Speed Sensors are 
fundamental components of an ABS which is standard 
equipment on nearly all vehicles (Hay, 2005).  Kubo et al. 
(1999) implemented a GPS/INS/Wheel Speed Sensor 
integrated system in the wander angle frame for land-
vehicle positioning, and proposed an algorithm to 
calibrate the two tilt angles (azimuth angle and pitch 
angle) between the Wheel Speed Sensor and the IMU 
body frame.  
 
Based on the above discussion, with particular emphasis 
on Petovello (2003), this research aims to develop a more 
precise vehicular positioning system during GPS outages 
by integrating GPS, a tactical grade HG1700 IMU, as 
well as Wheel Speed Sensors and a Yaw Rate Sensor 
from a vehicle stability control (VSC) system. The 
research focuses on how to integrate the Wheel Speed and 
Yaw Rate Sensors with GPS/INS in an effective way and 
what benefits can be gained through this approach. The 
accuracy required is at the centimeter-level so carrier 
phase GPS measurements will be used. To be precise, an 
on-line calibration algorithm was designed to estimate the 
three tilt angles between the vehicle frame and the IMU 
body frame using an extended Kalman filter. Non-
holonomic constraints are also considered for the 
GPS/INS/Wheel Speed Sensor integration strategy. 
Furthermore, the scale factor of the Wheel Speed Sensor 
and the bias of the Yaw Rate Sensor are augmented to the 

GPS/INS centralized Kalman filter in order to improve 
the positioning accuracy. 
 
The weights of GPS, the Wheel Speed Sensor as well as 
the Yaw Rate Sensor on the Kalman filter are discussed in 
terms of their measurement accuracies. The benefits after 
integrating the Wheel Speed and Yaw Rate Sensors are 
investigated. During 40 s of simulated GPS outages, the 
position and velocity accuracy of any individual 
integration strategy is compared. After various GPS 
outage durations, the reductions in time to fix the carrier 
phase integer ambiguities are analyzed. 
 
This paper is organized as follows. The first part defines 
the three coordinate frames. The second part describes the 
three integration strategies and their implementation 
algorithms. Following a brief description of the kinematic 
test, results are shown and analyzed in the fourth part, and 
conclusions are given at the end.  
 
COODINATE FRAME DEFINITION 
 
Three coordinate frames are important for this work.  
These include the ECEF (Earth-Centered Earth-Fixed) 
frame (e frame), the body frame (b frame) and the vehicle 
frame (v frame), as described below.  The three frames 
are shown in Figure 1. 
 
The origin of the ECEF frame is the center of the Earth’s 
mass. The X-axis is located in the equatorial plane and 
points towards the mean Meridian of Greenwich. The Y–
axis is also located in the equatorial plane and is 90 
degrees east of the mean Meridian of Greenwich. The Z-
axis parallels the Earth’s mean spin axis (Wang, 2003) 
 
The body frame represents the orientation of the IMU 
axes. The IMU sensitive axes are assumed to be 
approximately coincident with the moving platform upon 
which the IMU sensors are mounted. The origin of the 
body frame is at the center of the IMU. The X-axis points 
towards the right of the moving platform, the Y-axis 
points toward the front of the moving platform, and the Z-
axis is orthogonal to the X and Y axes to complete a right-
handed frame. 
 
The vehicle frame is attached to the vehicle at its center of 
gravity to represent the orientation of the vehicle. It is 
actually the vehicle body frame. The X-axis points 
towards the right side of the vehicle. The Y-axis points 
towards the forward direction of the vehicle motion. The 
Z-axis is orthogonal to the X and Y axes to complete a 
right-handed frame. 
 
In this research, the HG1700 IMU is mounted on the top 
of the vehicle. It is an ideal case that the IMU body frame 
coincides to the vehicle frame. However, due to the 
installation “error” of the IMU, the bore sight of the IMU 
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is misaligned with the vehicle frame in most cases. It is 
therefore necessary to calibrate the tilt angles between the 
body frame and the vehicle frame in the integrated 
algorithms. 
 

 
Figure 1 Coordinate Frame Definition 

 
INTEGRATION STRATEGIES & ALGORITHMS 
 
Using a tight coupling strategy, three types of integration 
strategies which are mechanized in the ECEF frame are 
proposed by integrating GPS, the INS as well as several 
on-board vehicle sensors including Wheel Speed Sensors 
and an automotive grade Yaw Rate Sensor. These include: 
• GPS/INS/Wheel Speed Sensor (GPS/INS/WSS); 
• GPS/INS/Yaw Rate Sensor (GPS/INS/YRS) , and; 
• GPS/INS/Yaw Rate Sensor/Wheel Speed Sensor 

(GPS/INS/YRS/WSS). 
 
Tight coupling strategy combines all available sensor 
measurements at each epoch to obtain a globally optimal 
solution using one centralized Kalman filter. 
 

For the equipment used, the IMU data rate is 100 Hz, and 
its mechanization equation output rate is set to 20 Hz. The 
IMU mechanization equations were implemented in the 

ECEF frame. The GPS measurements used herein are 
double differenced L1 carrier phase, double differenced 
Doppler and double differenced pseudorange at a 1 Hz 
rate. 
 
GPS/INS/WSS Integration Strategy & Algorithm 
 
Figure 2 shows the structure of the GPS/INS/WSS 
integration strategy. The Wheel Speed Sensor measures 
the Y-direction velocity in the vehicle frame, while two 
non-holonomic constraints are applied to the X and Z 
directions of the vehicle frame. The non-holonomic 
constraints imply that the vehicle does not move in the up 
or transverse directions, which holds in most cases. The 
Wheel Speed Sensor provides the absolute velocity 
information to update the centralized Kalman filter. 
During GPS outages, the non-holonomic constraints as 
well as the absolute velocity information can constrain the 
velocity and consequently the position drift of the free-
inertial system.  
 
The error states estimated by the GPS/INS centralized 
Kalman filter include position errors, velocity errors, 
misalignment angles, as well as accelerometer and gyro 
biases. All of these error states are 3x1 vectors. Due to the 
centralized processing approach, the double differenced 
ambiguities ( N∇∆ ) are also contained in the error states. 
The dynamic model for the GPS/INS centralized Kalman 
filter is given in equation (1) (Petovello, 2003). 
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where erδ  is the position error vector 

 
evδ  is the velocity error vector 

 
eε  is the misalignment angle error vector 

 fw  is the accelerometer noise  

 ww  is the gyro noise 

 
bbδ  is the vector of the accelerometer bias 

errors  

 
bdδ  is the vector of the gyro bias errors  

 )( idiag α  is diagonal matrix of time constants for 
the accelerometer bias models 
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 )( idiag β  is diagonal matrix of time constants for 
the gyro bias models  

 bw  is the driving noise for the 
accelerometer biases 

 dw  is the driving noise for the gyro biases 

 
e
bR  is the direction cosine matrix between b 

frame and e frame 
 xδ  is the error states vector, and 

 INSGPSF /  is the dynamic matrix for GPS/INS 
integration strategy 

 
As implied by the above model, the bias states are 
modeled as first-order Gauss-Markov processes. 
 

Figu

In practical use, the tire radius is subject to a change of 
the load and the driving conditions. Additionally, the IMU 
body frame does not always coincide with the vehicle 
frame. Thus, the scale factor of the Wheel Speed Sensor 
and the tilt angles between the vehicle and body frames 
are augmented into the error states of GPS/INS 
centralized Kalman filter. The dynamic model in equation 
(1) is accordingly changed to equation (2) below. The 
Wheel Speed Sensor scale factor and the tilt angles 
between the b and v frames are modeled as random 
constants. 
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where WSSINSGPSF // is the dynamic matrix for 
GPS/INS/WSS integration strategy, Sδ  is the Wheel 
Speed Sensor scale factor error state, and 

[ ]Tvb δγδβδαε =−  is the error vector of the tilt 
angles between the body frame and the vehicle frame 
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and the velocities in GPS/INS system are parameterized 
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where WSSv  is the Wheel Speed Sensor measurement, S  

is the Wheel Speed Sensor scale factor, and v
bR  is the 

direction cosine matrix between the b and v frames 
calculated by the following: 
 

( ) ( ) ( )βαγ 213 RRRRv
b ⋅⋅=  (4) 

where γβα ,,  are the tilt angles between the b and v 
frames with respect to the X, Y and Z axes, respectively. 
 
The measurement model in the extended Kalman filter is 
generally expressed by equation (5): 

 
mxHZ ωδ +⋅=  (5) 

where H is the design matrix, mω  is the measurement 
noise and Z is the measurement residual. 
 
By linearizing equation (3), the measurement residual is 
expressed as in equation (6) 
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where vv is the integrated velocity expressed in the v 
frame. 
 
The design matrix is expressed by a matrix in equation (7). 
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where EV is the skew symmetric matrix of the integrated 
velocity in ECEF frame ev , VV is the skew symmetric 
matrix of the integrated velocity expressed in vehicle 
frame vv , O is a zero matrix with the subscripted 
dimensions and AR is the number of float ambiguities. 
AR is equal to zero when all the ambiguities are fixed.  
 
GPS/INS/Yaw Rate Sensor Integration Strategy & 
Algorithm  
 
Figure 3 shows the GPS/INS/YRS integration strategy.  
Overall, it is structured similar to the GPS/INS/WSS 
integration strategy shown in Figure 2 with the difference 
being that the Yaw Rate Sensor replaces the Wheel Speed 
Sensor (and that these sensors measure fundamentally 
different navigation parameters).  
 
Using the trapezoid method (Jekeli, 2000), the 
measurement from the Yaw Rate Sensor is integrated to 
derive the azimuth angle every second with its initial 
value being provided by the azimuth output of the 
integrated system. 
 

The measurement equation is  
 

tdZ yawAzimuth ∆⋅+= α  (8) 
where AzimuthZ  is the integration output from the Yaw 
Rate Sensor, α  is the azimuth output from the GPS/INS 
integrated system, yawd is the Yaw Rate Sensor bias, and 

t∆  is the integration interval. In this research the 
integration interval is always one second. 
 

Figure 3 GPS/INS/YRS Integratio
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is a unity white noise sequence that drives the system, and 
Yawβ  is the inverse of the process time constant. 

 

Table 1 First-Order Gauss Markov Process 
Parameters for Yaw Rate Sensor Bias 

deg/s 059.0=σ  First-order Gauss-Markov process  
( )tudd YawYawYawYaw ⋅+⋅−= βσβ 22&  h 75.01 =Yawβ

  
Equation (9) shows the dynamic model by augmenting the 
Yaw Rate Sensor bias. 
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where yawdδ is the error state of the Yaw Rate Sensor bias, 

Yawβ is the inverse of the time constant, and yawω  is the 
driving noise of the Yaw Rate Sensor bias. 
 
The design matrix is a matrix expressed in equation (10), 
which is derived from the measurement equation (8). 
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where l
eR  is the direction cosine matrix between the e 

frame and the local level frame. Since the estimated error 
states are defined in ECEF frame, and the azimuth angle 
is related to the local level frame, the third row in the l

eR  
matrix appears in the design matrix. 
 
In this integration strategy, the Yaw Rate Sensor provides 
the azimuth update to the centralized filter. Since only the 
relative azimuth is computed from the Yaw Rate Sensor, 
the performance of this integration strategy has a close 
relationship with the measurement accuracy of the Yaw 
Rate Sensor. Given the low quality Yaw Rate Sensor, it is 
difficult to estimate both the azimuth and the YRS bias. 
As such, the benefit in terms of azimuth accuracy is 
expected to be somewhat limited. 

GPS/INS/Yaw Rate Sensor/Wheel Speed Sensor 
Integration Strategy & Algorithm 
 
Figure 4 describes the GPS/INS/YRS/WSS integration 
strategy, which is constructed on the basis of the 
aforementioned two integration strategies. 
 
Since the Wheel Speed Sensor velocity and the Yaw Rate 
Sensor azimuth are considered independent measurements, 
sequential updating is used. This integration strategy 
performs the relative azimuth and the absolute velocity 
updates in a sequential way.  
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The Measurement Accuracy of GPS, Wheel Speed 
Sensor & Yaw Rate Sensor 
 
Using the NovAtel OEM2 precise velocity GPS receiver 
that provides millimeter per second level accuracy, the 
Wheel Speed Sensor measurement accuracy was 
determined in a specially conducted kinematic test. By 
driving the car at low (20 km/h), medium (50 km/h) and 
high (80 km/h) speeds on a flat road and in a straight 
direction, the speed error between the Wheel Speed 
Sensor and OEM2 GPS velocity receiver can be 
computed and the Wheel Speed Sensor measurement 
accuracy can be estimated accordingly. 
 
The measurement accuracy of the Yaw Rate Sensor as 
well as the first-order Gauss-Markov process parameters 
of the Yaw Rate Sensor bias shown in Table 1 were 
determined by a long time static test. In static mode, the 
Yaw Rate Sensor measures the Earth rotation rate. To 
avoid the long term variations in the data, 40 evenly 
spaced 1-second intervals were chosen, and the 
corresponding standard deviation of each interval was 
calculated. The average standard deviation across all 
intervals is computed as the accuracy of the Yaw Rate 
Sensor. The first-order Gauss-Markov process parameters 
were estimated from the autocorrelation series by using a 
least square curve fitting technique. The autocorrelation 
series were computed from the low-frequency 
components in the wavelet decomposition of the long 
time static dataset. 
 
Table 2 summarizes the measurement accuracy of GPS, 
the Wheel Speed Sensor as well as the Yaw Rate Sensor. 
In this table, GPS has the highest accuracy. During GPS 
outages, the Wheel Speed Sensor has a relatively high 
accuracy. Since the Yaw Rate Sensor used in this research 
is automotive grade, it has a lower accuracy. 

Table 2 Measurement Accuracy of GPS, Wheel Speed 
Sensor and Yaw Rate Sensor 

GPS 
Carrier phase: 5 cm 

Doppler: 3 cm/s 
Pseudorange: 50 cm 

Wheel Speed Sensor  5 cm/s 
Yaw Rate Sensor  0.408 deg/s 

 
Kalman filter performs the measurement update in terms 
of the measurement accuracy. When GPS is fully 
available, GPS dominates in the Kalman filter due to its 
high absolute accuracy. Consequently, in this case, the 
three integration strategies produce almost equivalent 
results to GPS/INS integrated system. During GPS 
outages however, the Wheel Speed Sensor with a 
relatively high accuracy dominates in the Kalman filter.  
In contrast, the low quality Yaw Rate Sensor, combined 
with the fact that it only provides relative azimuth 

information, means that it contains less information to the 
Kalman filter 
 
TEST DESCRIPTIONS 
 
Figure 5 shows the kinematic test setup. Data was 
collected near Calgary in an open-sky area with good 
GPS satellite availability. One NovAtel OEM4 GPS 
receiver was set up on the reference station pillar with 
surveyed coordinates. Reference GPS data was collected 
at 20 Hz. Two NovAtel 600 antennas on the van roof 
were connected to two NovAtel OEM4 GPS receivers 
inside the van. One OEM4 GPS receiver collected data at 
a 20 Hz data rate and was used for time tagging the WSS 
and the YRS. The WSS and YRS data was logged at 
20 Hz to a desktop PC. The other OEM4 GPS receiver 
which recorded data at a 1 Hz data rate was part of the 
NovAtel’s Black Diamond System (BDS). A Honeywell 
HG1700 tactical grade IMU was installed on the top of 
the van, which was time tagged by the BDS. IMU data 
was sampled at 100 Hz and was saved on a card for post 
processing. 
 

Figure 5 Field Test Descrip
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system. The GPS/CIMU integrated data was processed by 
the PosPac software from the Applanix Corporation. 
PosPac can compute the optimally accurate and the 
backward smoothed navigation solution. The accuracy 
estimates output from the software indicate that the 
solution is better than 1.4 cm horizontally, and 5.5 cm 
vertically.  
 
To evaluate the effects of the integration strategies during 
GPS outages, four GPS outages were simulated. Each 
outage has durations of 10, 20, 30 and 40 s. Figure 7 
through Figure 10 show the vehicle dynamics during each 
individual GPS outage. Among these four simulated GPS 
outages, outage 1 and 3 are with slow varying vehicle 
dynamics as shown in Figure 7 and Figure 9, and the 
other two (Figure 8 and Figure 10) cover a wide range of 
vehicle dynamics, such as acceleration, deceleration and 
constant speed, as well as attitude orientation changes 
such as turning, constant azimuth as well as pitch and roll 
changes. The locations of the outages on the reference 
trajectory are labeled on Figure 6. 
 

 
Figure 6 Reference Trajectory  

 

 
Figure 7 Vehicle Dynamics With Respect to GPS 
Outage 1 

 
Figure 8 Vehicle Dynamics with Respect to GPS 
Outage 2 

 

 
Figure 9 Vehicle Dynamics with Respect to GPS 
Outage 3 

 

 
Figure 10 Vehicle Dynamics with respect to GPS 
Outage 4 

2 1 3 4
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RESULTS AND ANALYSIS  
 
The performance of each integration strategy is analyzed 
in two ways. First, the position and velocity drift errors 
relative to the reference trajectory during the four 
simulated 40 s GPS outages are evaluated. Comparing the 
behavior of the integration strategies can indicate if any 
benefit can be gained from WSS or YRS during GPS 
outages. Additionally, the estimated position and velocity 
standard deviations, which come from the updated 
covariance matrix in the Kalman filter, are an estimate of 
the actual error by the Kalman filter, which should have 
good agreement with the actual error in an ideal case. In 
practice, however, it indicates that the model and 
parameters in the Kalman filter are well tuned if the 
estimated standard deviation does not deviate too much 
from the variation of the actual error. Furthermore, the 
estimated standard deviation determines the search space 
for ambiguity resolution which has a direct relationship 
with the ambiguity resolution time. From this point of 
view, the actual position and velocity error, as well as 
their estimated standard deviations, are analyzed during 
GPS outages. By computing the error relative to the 
reference solution, the RMS error across all the outages is 
examined. The average estimated standard deviation 
across all of the outages is also computed. 
 
Second, when GPS is restored from a full outage, the time 
to fix the ambiguities, as well as the correctness of the 
selected integers, are investigated. The average time to fix 
ambiguities corresponding to GPS-only, GPS/INS tight 
coupling as well as each individual integration strategy 
were computed after each simulated GPS outage. For the 
data processed herein, correct ambiguities were always 
selected. 
 
Position & Velocity Drift Error During GPS Outages 
 
Figure 11 through Figure 13 compare the position RMS 
errors and the average estimated standard deviations  of 
the three integration strategies to the corresponding values 
from the GPS/INS solution. The velocity results can be 
inferred from the position results and are therefore not 
shown. Table 3 and Table 4 summarize the RMS position 
and velocity drift error as well as the average estimated 
standard deviation at the end of the 40 s GPS outage. 
Table 5 evaluates the position and velocity drift error 
percentage improvement of the proposed integration 
strategies over GPS/INS tight coupling strategy. 
 
In Figure 11, the RMS position error and average 
estimated standard deviation of the inertial plus Wheel 
Speed Sensor is much smaller than that of the free-inertial 
system. From Table 3, the free-inertial system horizontal 
RMS position error of 2.189 m and velocity error of 
0.123 m/s at the end of the 40 s GPS outage can be 
reduced to 0.329 m and 0.028 m/s by using the inertial 

plus Wheel Speed Sensor system, which yields an 85.0% 
and 77.2% improvement respectively. Since the Wheel 
Speed Sensor does not provide any aiding in the up 
direction, no improvement can be found. The 3D position 
drift error can be reduced from 2.207 m for the free-
inertial system to 0.455 m through the integration with the 
Wheel Speed Sensor, and the 3D velocity drift error can 
be reduced from 0.124 m/s to 0.030 m/s. The 3D position 
percentage improvement is 79.4%, and the velocity 
percentage improvement is 75.8%. Therefore, the Wheel 
Speed Sensor greatly enhances the system accuracy 
during GPS outages when it is suitably integrated with 
GPS and INS. Similarly, the average estimated standard 
deviation is also reduced when integrating the Wheel 
Speed Sensor. In the meantime, with respect to the actual 
3D position and velocity errors of 0.455 m and 0.030 m/s 
respectively, the average estimated 3D position and 
velocity errors are at 1.523 m and 0.073 m/s. The RMS 
actual error and the average estimated standard deviation 
with respect to the four simulated GPS outages agree 
reasonably well even though some differences exist due to 
the limited sample of the simulated outages. 

 

 
Figure 11 Position RMS Error and Average Estimated 
Standard Deviation for Four GPS Outages 
(GPS/INS/WSS Integration Strategy) 

 
Figure 12 compares the position RMS errors and the 
average standard deviations between the GPS/INS/YRS 
and GPS/INS tight coupling strategies. Their average 
estimated standard deviations virtually overlap. With this 
in mind, it makes sense that the actual position and 
velocity RMS error of the GPS/INS/YRS system is only 
slightly smaller than that of the free-inertial system. The 
RMS horizontal position and velocity error of the free-
inertial system are reduced 8.6% and 3.3% respectively, 
from 2.189 m and 0.123 m/s to 2.001 m and 0.119 m/s. 
The 3D RMS position and velocity error are reduced 
8.4% and 4.0% respectively, from 2.207 m and 0.124 m/s 
of the free-inertial system to 2.021 m and 0.119 m/s of 
inertial plus Yaw Rate Sensor system. Compared to the 
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GPS/INS/WSS integration strategy, GPS/INS/YRS 
reduces the position and velocity drift error to a much 
smaller degree. It again shows that the Yaw Rate Sensor 
has less weight in the Kalman filter due to its low 
measurement accuracy. Thus, the overall improvement 
from the Yaw Rate Sensor is less significant than with the 
Wheel Speed Sensor.  
 
Table 3 Position and Velocity RMS Error at the End 
of 40 s GPS Outage  

RMS error at the end of 40 s 
GPS outage  Strategies 

Horizontal Up 3D 
Position [m] 

GPS/INS 2.189   0.283 2.207 
GPS/INS/WSS 0.329 0.314 0.455 
GPS/INS/YRS 2.001 0.282 2.021 

GPS/INS/YRS/WSS 0.310 0.313 0.441 
Velocity [m/s] 

GPS/INS 0.123 0.008 0.124 
GPS/INS/WSS 0.028 0.010 0.030 
GPS/INS/YRS 0.119 0.008 0.119 

GPS/INS/YRS/WSS 0.027 0.010 0.029 
 

 
Figure 12 Position RMS Error and Average Estimated 
Standard Deviation for Four GPS Outages 
(GPS/INS/YRS Integration Strategy) 

 
Since the GPS/INS/YRS/WSS integration strategy relies 
on the Wheel Speed Sensor to a larger degree than the 
Yaw Rate Sensor, the RMS actual and the average 
estimated errors are largely reduced by Wheel Speed 
Sensor with a slight further reduction by the sequential 
integration of the Yaw Rate Sensor. Comparing Figure 11 
and Figure 13, the horizontal RMS and 3D position error 
of the GPS/INS/WSS integration strategy at the end of the 
40 s GPS outage can be slightly reduced from 0.329 m 
and 0.455 m to 0.310 m and 0.441 m respectively through 
the addition of the Yaw Rate Sensor. Accordingly, the 
horizontal and 3D position error percentage improvement 

of GPS/INS/WSS integration strategy over GPS/INS can 
be marginally increased from 85.0% and 79.4% to 85.8% 
and 80.0% by the GPS/INS/YRS/WSS strategy.  

 

 
Figure 13 Position RMS Error and Average Estimated 
Standard Deviation for Four GPS Outages 
(GPS/INS/YRS/WSS Integration Strategy) 

 

Table 4 Position and Velocity Average Estimated 
Standard Deviation at the End of 40 s GPS Outage 

Average estimated standard 
deviation at the end of 40 s 

GPS outage  Strategies 

Horizontal Up 3D 
Position [m] 

GPS/INS 3.621 1.328 3.858 
GPS/INS/WSS 0.862 1.255 1.523 
GPS/INS/YRS 3.616 1.327 3.852 

GPS/INS/YRS/WSS 0.862 1.255 1.523 
Velocity [m/s] 

GPS/INS 0.178 0.052 0.186 
GPS/INS/WSS 0.053 0.05 0.073 
GPS/INS/YRS 0.178 0.052 0.186 

GPS/INS/YRS/WSS 0.052 0.05 0.072 
 

Table 5 Position and Velocity Error Percentage 
Improvement of Three Integration Strategies over 
GPS/INS Tight Coupling Strategy 

Strategies Horizontal 3D 
Position [%] 

GPS/INS/WSS 85.0 79.4 
GPS/INS/YRS 8.6 8.4 

GPS/INS/YRS/WSS 85.8 80.0 
Velocity [% ] 

GPS/INS/WSS 77.2 75.8 
GPS/INS/YRS 3.3 4.0 

GPS/INS/YRS/WSS 78.1 76.6 
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Time to Fix Ambiguities after GPS Outages 
 
The ambiguity resolution time is determined by the search 
volume, which is closely related to the covariance of the 
estimated ambiguities. It has been shown theoretically in 
Scherzinger (2002), and verified by Petovello (2003) as 
well as Zhang et al. (2005), that an external measurement 
update such as an inertial measurement can reduce the 
covariance of the estimated ambiguities and, as a result, 
some benefits can be gained in the time to fix ambiguities 
after GPS outages. 
 
More specifically, from the above analysis on the position 
and velocity drift error and the average estimated standard 
deviation during GPS outages, the external velocity 
update from the Wheel Speed Sensor significantly 
reduces the estimated standard deviation and makes the 
ambiguity search space smaller. Therefore, the time to fix 
ambiguities can be reduced for any integration strategy 
that contains the Wheel Speed Sensor. In other words, the 
Wheel Speed Sensor can benefit significantly in reducing 
the time to fix ambiguities after GPS outages. 
 
Figure 14 shows the time to fix ambiguities for the GPS-
only, GPS/INS tight coupling and GPS/INS/WSS 
strategies after four simulated GPS outages that last 10 s, 
20 s, 30 s and 40 s. Table 6 and Table 7 show the 
percentage improvement in the average time to fix 
ambiguities over GPS-only as well as GPS/INS tight 
coupling for all integration strategies and all GPS outage 
durations. With respect to GPS-only, corresponding to the 
fourth GPS outage, the time to fix ambiguities after 10 s is 
much larger than other scenarios. The possible reason to 
account for this is that a 2.5 m/s2 acceleration in the East 
direction as well as a 14 deg/s azimuth rate occurred 
simultaneously between 0 and 10 s during the fourth GPS 
outages. The detailed vehicle dynamics can be found in 
Figure 10. The high vehicle dynamics may insert some 
influences on the time to fix ambiguities. 
 
When integrating the Wheel Speed Sensor with GPS/INS 
system, the percentage improvement over GPS-only 
reaches 94.5 %, 44.8%, 20.7% and 11.3%. By contrast, 
the percentage improvement over GPS/INS tight coupling 
reaches 7.1%, 6.7 %, 5.1% and 4.1 %. From Petovello 
(2003) and Zhang et al.(2005), the INS does not provide 
significant improvement over the GPS-only case after 
about 30 seconds of GPS outages. Therefore, for the 
shorter GPS outages, both INS and WSS contribute to the 
improvement on the time to fix ambiguities over GPS-
only. For outage durations that are larger than 30 s, the 
improvements are less significant than a shorter time 
period of GPS outages. Nevertheless, the addition of the 
WSS does provide some benefit. 
 
Figure 15 compares the time to fix ambiguities after 10 s, 
20 s, 30 s and 40 s GPS outages for a GPS-only, GPS/INS 

tight coupling and GPS/INS/YRS integration strategies. 
The GPS/INS/YRS strategy improves the time to fix 
ambiguities over the GPS-only strategy to a larger degree 
for a shorter GPS outage, and to a smaller degree for a 
longer GPS outage. Comparing between the 
GPS/INS/YRS and GPS/INS tight coupling integration 
strategies, since the estimated standard devations of 
GPS/INS/YRS and GPS/INS tight coupling are almost 
identical, no significant benefit in the time to fix 
ambiguities can be expected from the Yaw Rate Sensor 
integration strategy even if the GPS outage time is less 
than 30 s. This means the Yaw Rate Sensor contributes 
less to the improvement of time to fix ambiguities over 
the GPS/INS tight coupling strategy. 
 

 
Figure 14 Time to Fix of Ambiguities after 10 s, 20 s, 
30 s, 40 s GPS Outages for GPS-only, GPS/INS Tight 
Coupling and GPS/INS/WSS Integration Strategy 

 

 
Figure 15 Time to Fix Ambiguities after 10 s, 20 s, 30 s, 
40 s GPS Outages for GPS-only, GPS/INS Tight 
Coupling and GPS/INS/YRS Integration Strategy 

 
For the GPS/INS/YRS/WSS integration strategy that is 
dominated by the Wheel Speed Sensor, its position 
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average estimated standard deviations shown in Table 4 
are same as those for the GPS/INS/WSS integration 
strategy. From this point of view, it makes sense that the 
times to fix ambiguities after GPS outages shown in 
Figure 16 for the GPS/INS/YRS/WSS integration strategy 
are all basically the same as for the GPS/INS/WSS 
integration strategy shown in Figure 14. 
 

 
Figure 16 Time to Fix Ambiguities after 10 s, 20 s, 30 s, 
40 s GPS Outages for GPS-only, GPS/INS Tight 
Coupling and GPS/INS/YRS/WSS Integration 
Strategy 

Table 6 Average Time to Fix Ambiguities Percentage 
Improvement of Three Integration Strategies over 
GPS-only 

Durations of GPS outages Strategies 
10 s 20 s 30 s 40 s 

GPS/INS/WSS 94.5 44.8 20.7 11.3 
GPS/INS/YRS 94.1 40.8 16.7 8.1 

GPS/INS/YRS/WSS 94.6 44.8 20.7 11.3 
 

Table 7 Average Time to Fix Ambiguities Percentage 
Improvement of Three Integration Strategies over 
GPS/INS Tight Coupling  

Durations of GPS outages Strategies 
10 s 20 s 30 s 40 s 

GPS/INS/WSS 7.1 6.7 5.1 4.1 
GPS/INS/YRS 0 0 0 0.7 

GPS/INS/YRS/WSS 7.1 6.7 5.1 4.1 
 
CONCLUSIONS 
 
Using a centralized processing approach, three integration 
strategies are proposed by integrating the Wheel Speed 
Sensor (WSS) and Yaw Rate Sensor (YRS) with 
GPS/INS in various combinations, namely GPS/INS/WSS, 
GPS/INS/YRS and GPS/INS/YRS/WSS. The WSS scale 
factor, the tilt angles between the b and v frames as well 

as the YRS scale factor are augmented to the error states 
of a centralized Kalman filter. 
 
When GPS is fully available, GPS dominates in the 
Kalman filter, and the three integration strategies produce 
almost equivalent results to the GPS/INS integrated 
system. 
 
During GPS outages, the benefits gained by integrating 
on-board vehicle sensors are reductions in the position 
and velocity errors as well as an improvement in the time 
to fix ambiguities. Improvements in the position and 
velocity errors are closely related to the sensor 
measurement accuracy. The Wheel Speed Sensor with 
high measurement accuracy outweighs the Yaw Rate 
Sensor with lower quality, and hence provides the most 
benefit. The Wheel Speed Sensor greatly enhances the 
system accuracy during GPS outages. The reduction of 
the actual and estimated errors resulting from the Yaw 
Rate Sensor is less significant than with the Wheel Speed 
Sensor. 
 
The estimated standard deviation has a direct relationship 
with the time to fix ambiguities. The Wheel Speed Sensor 
significantly reduces the estimated standard deviation and 
makes the ambiguity search space smaller. The time to fix 
ambiguities can be reduced to a large degree for any 
integration strategy that contains the Wheel Speed Sensor. 
The estimated standard devations of the GPS/INS/YRS 
and GPS/INS tight coupling approaches are almost 
identical. No significant benefit in the time to fix 
ambiguities were obtained from the Yaw Rate Sensor. 
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