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Abstract

Chronic lymphocytic leukemia is a common form of leukemia and is dependent on growth-promoting signaling 

via the B-cell receptor. The Bruton tyrosine kinase (BTK) is an important mediator of B-cell receptor signaling 

and the irreversible BTK inhibitor ibrutinib can trigger dramatic clinical responses in treated patients. 

However, emergence of resistance and toxicity are major limitations which lead to treatment discontinuation. 

There remains, therefore, a clear need for new therapeutic options. In this review, we discuss recent progress 

in the development of BTK-targeted proteolysis targeting chimeras (PROTACs) describing how such agents 

may provide advantages over ibrutinib and highlighting features of PROTACs that are important for the 

development of effective BTK degrading agents. Overall, PROTACs appear to be an exciting new approach 

to target BTK. However, development is at a very early stage and considerable progress is required to refine 

these agents and optimize their drug-like properties before progression to clinical testing.
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Introduction

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature, clonal B cells and is the 

most common form of leukemia in adults with an annual incidence of ~5/100, 000 in the United States [1]. 

Treatment has been revolutionized in recent years by the introduction into routine clinical practice of the 

irreversible Bruton tyrosine kinase (BTK) inhibitor ibrutinib which interferes with signal transduction 

downstream of key cell surface receptors, including the B-cell receptor (BCR), a major driver of this and other 

forms of B-cell neoplasia. However, despite the dramatic clinical responses that can be induced by ibrutinib, 

toxicity and resistance are major limitations and new treatment options are required.
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Proteolysis targeting chimeras (PROTACs) are an exciting new approach for targeted inhibition based on 

event-driven rather than occupancy-based activity [2, 3]. Several BTK-targeted PROTACs have been described 

and these studies provide a powerful illustration of how PROTACs can address clinically relevant drawbacks 

associated with ibrutinib, including improved selectivity and retained activity in models of ibrutinib 

resistance. In this review, we provide an introduction to CLL, the role of BTK in signaling downstream of 

the BCR and its inhibition by ibrutinib, including its clinical activity. We then describe recent findings with 

BTK-targeted PROTACs focusing on how these studies reveal principles underlying efficient PROTAC design 

and how current agents may provide improvements over ibrutinib.

An introduction to PROTACs

This section provides a brief introduction to PROTAC technology. Readers are referred to other expert reviews 

in this special issue for further details.

PROTACs comprise a warhead directed against the target of interest (in this case BTK) coupled through 

a variable linker to an ubiquitin protein ligase (E3) ligase-recruiting element (Figure 1). This facilitates 

formation of a ternary complex (TC) comprising the target, PROTAC and an E3 and results in degradation of 

the target via the proteasome. 

Figure 1. PROTAC-mediated target degradation. The figure illustrates the basic structure of a PROTAC (top) and the mechanism 

of PROTAC-mediated target degradation (bottom). Interaction of the PROTAC with its target and an E3 ligase (TC formation) 

facilitates multiple rounds of target ubiquitylation followed by target degradation via the 26S proteasome. The PROTAC and E3 

ligase are released and are therefore available for further rounds of PROTAC-mediated degradation
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Polyubiquitylation of the target protein is catalyzed by a family of enzymes termed ubiquitin-activating 

enzyme (E1), ubiquitin-conjugating enzyme (E2) and E3 [4]. Ubiquitin is first activated by E1 biquitin-activating 

enzyme which catalyzes formation of a thioester linkage between the C-terminus of ubiquitin and a cysteine 

residue within the E1 protein. Activated E1-bound ubiquitin is then transferred to an E2. Finally, activated 

ubiquitin is transferred from E2 to a lysine residue within the target protein via the action of an E3 ubiquitin 

ligase. There are > 500 E3 ligases which differ in their ability to recognize specific degradation signals within 

target proteins. E3 ligases commonly targeted by PROTACs include cereblon (CRBN), murine double-minute 2 

(MDM2), Von Hippel-Landau (VHL), and inhibitor of apoptosis protein (IAP) [2, 3]. Following transfer of 

ubiquitin to the target protein, E1 continues to recruit and activate further ubiquitin molecules allowing E2 to 

form a chain of ubiquitin molecules on the target protein whereby the C-terminus of each ubiquitin is linked 

to a lysine residue (either Lys11 or Lys48) within the preceding ubiquitin molecule. It is this Lys11/Lys48-linked 

polyubiquitin chain which serves as a target for recognition by the proteasome.

The key distinction to conventional inhibitors is that PROTACs operate via “event-driven” 

pharmacology [2, 5]. Thus, transient target: PROTAC binding is sufficient to recruit an E3 ligase 

resulting in a biological effect. Moreover, subsequent release of PROTAC means that these agents can act 

as catalysts to inhibit target function. By contrast, conventional inhibitors act stoichiometrically via 

“occupancy-driven” pharmacology. 

Although firm “rules” for development of effective PROTACs are lacking it is clear that activity is not 

simply determined by the binary affinities of the PROTAC for its target or E3-ligase. Selectivity can be 

influenced by additional stabilizing protein-protein interactions within the TC which can enhance relative 

degradation of targets with weak affinity for the PROTAC [6-9]. On the other hand, PROTACs may be inactive 

despite formation of the TC if this complex does not allow transfer of ubiquitin to an appropriately-positioned 

lysine residue within the target protein. Thus, choice of warhead, linker and E3 ligase-recruiting ligand all 

exert an important influence and require optimization. Importantly, these elements are coupled, so the choice 

of optimal linker will depend on the nature of the coupled warhead/E3 ligase-recruiting ligand.

Due to their multi-domain nature, PROTACs are relatively large and development of agents with 

physiochemical properties suitable for clinical administration is likely to be challenging [10]. For example, 

even the most effective PROTACs typically have greater molecular weight, total polar surface area and 

numbers of hydrogen bond acceptors and rotatable bonds compared to classical, orally available small 

molecule drugs [11]. These drawbacks may be particularly problematic for kinase-targeting PROTACs where 

comparator small molecule kinase inhibitors (including ibrutinib) are typically administered orally. Although 

some physiochemical limitations may be offset by the unique pharmacological activities of PROTACs (for 

example, reduced target occupancy due to poor cell permeability may be less problematic due to their 

catalytic mode of action), studies have shown that it is possible to substantially improve the activity of 

PROTACs through targeted medicinal chemistry efforts [12].

CLL

CLL is a common, low-grade B-cell malignancy characterized by the accumulation of mature B cells in the blood, 

bone marrow and secondary lymphoid organs of patients [1]. The clinical course is highly heterogeneous with 

some patients not requiring immediate treatment and managed by “watchful waiting”. Progressive disease 

typically follows a response/relapse course whereby patients require repeated rounds of treatment which 

are followed by relapse and ultimately succumb to the disease. 

The disease can be divided into two major subgroups depending on whether the B-cell-of-origin from 

which the leukemia derives has undergone somatic hypermutation (SHM). SHM is a natural process in 

normal B cells whereby mutations are introduced into the genes encoding the variable regions of the BCR, 

the antigen receptor for B cells, and is important for generation of high affinity antibodies. Importantly, these 

CLL subgroups have very different outcomes and 10-year survival rates are ~30-35% for cases lacking SHM 

[termed unmutated CLL (U-CLL)] and ~85% for cases with SHM [termed mutated CLL (M-CLL)] [1].
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The accumulation of malignant cells in CLL appears to be driven by both intrinsic genetic alterations 

and a tumor-promoting effect of the microenvironment [1, 13]. The most common chromosomal changes 

include deletion of part of chromosome 13q (resulting in overexpression of the anti-apoptotic BCL2 protein 

due to loss of repressing miRNAs within this chromosomal region), deletions of 17p or 11q (which result in 

defective DNA damage responses due to loss of genes encoding p53 or ATM) or trisomy 12 (the functional 

consequences of which are not well understood) [14-16]. In addition, next generation sequencing has 

identified recurrent somatic mutations, the most common of which are loss-of-function mutations of p53 

or ATM, activating mutations of NOTCH1 (which leads to enhanced NOTCH1 signaling) and mutations of 

SF3B1 (which encodes a splicing factor) and XPO1 (which encodes a protein involved in nuclear export of 

proteins and RNAs) [17, 18]. Except for del(13q), these chromosomal alterations and somatic mutations are 

more common in the more aggressive U-CLL disease subgroup. The mutational burden also increases with 

treatment due to selection of drug resistant subclones. However, the overall burden of somatic mutations in 

CLL is relatively low compared to other B-cell malignancies.

In addition to genomic drivers, the tissue microenvironment appears to play a central role in driving 

accumulation of malignant cells. CLL cell proliferation occurs within “proliferation centers”, microanatomical 

sites within secondary lymphoid organs where CLL cells interact with an array of supporting cells, including 

stromal cells, nurse-like cells (a type of macrophage) and T cells [19]. These promote CLL cell proliferation 

and survival via a range of factors, including CD40L, CXCL12, IL4, BAFF and contact with integrins. Cell 

communication within tissues is bi-directional and CLL cells also secrete factors which influence the 

microenvironment, such as the T-cell attractants CCL3 and CCL4. Tissues are also the main site of antigen 

engagement of the BCR of CLL cells (discussed in detail below) [20]. Importantly, there is exchange of CLL cells 

between the blood and tissues which is mediated, as in normal B cells, by an array of chemokine receptors 

and integrins [21, 22]. 

Treatment for CLL has evolved rapidly but once progression occurs the main treatment remains 

chemoimmunotherapy (CIT) which is typically based on an anti-CD20 antibody (rituximab, ofatumumab or 

obinutuzumab) combined with either fludarabine or chlorambucil for less fit patients [1]. Many patients have a 

good initial response to CIT but ultimately relapse and require further rounds of treatment. Moreover, patients 

with p53/ATM mutations do not respond to CIT and alternative therapeutic strategies are required. In these 

cases, patients may be treated with newer targeted agents, including BCL2 inhibitors such as venetoclax to 

reverse BCL2-mediated suppression of apoptosis [23] or inhibitors directed against BCR-associated signaling 

kinases, including ibrutinib (discussed in detail below) [24].

The BCR in CLL

The BCR is the key functional determinant of normal B cells and continues to play a major role in determining 

the behavior of CLL cells post-transformation [25]. The BCR consists of a surface immunoglobulin which 

confers antigen-binding specificity coupled to two transmembrane signal transduction molecules, CD79A 

and CD79B (Figure 2). Antigen engagement results in phosphorylation of conserved tyrosine residues within 

the cytoplasmic domains of CD79A and CD79B by the kinase LYN, leading to recruitment and activation of a 

second kinase, SYK. This is followed by assembly of a multiprotein complex termed the signalosome resulting 

in activation of protein and lipid kinases (e.g., BTK and PI3K), adaptor proteins (BLNK) and other enzymes [e.g., phospholipase C (PLCγ2)] [26].

The BCR “senses” the environment for molecules that bind with significant avidity and the strength 

and nature of the response following receptor engagement is varied [27]. Depending on the degree of 

stimulation and the context in which engagement occurs, antigen binding to normal B cells can trigger 

signaling responses leading to survival/proliferation, apoptosis or anergy, a state of cellular lethargy induced 

by antigen engagement in the absence of T-cell help [27]. BCR also mediates a low-level “tonic’’ signal which 

is essential for B-cell survival. In CLL, two differing fates appear to play a central role in determining the 

heterogeneous clinical course. Thus, BCR-induced anergy predominates in M-CLL whereas antigen-induced 
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pro-proliferative/survival signaling is more apparent in U-CLL and may mediate, at least in part, the more 

progressive nature of this subgroup [28].

BTK

BTK is a TEC family non-receptor kinase that plays a critical role in B-cell development. Individuals with 

X-linked agammaglobulinemia (XLA) lack BTK expression due to loss-of-function germline mutations and this 

leads to absence of blood B cells and low levels of serum immunoglobulins. BTK plays a pivotal role in mediating 

signal transduction downstream of the BCR where it is activated following phosphorylation on Tyr551 by LYN 

and/or SYK (Figure 2) [29, 30]. In some settings, BTK activation also involves PI3K activity which leads to 

accumulation of the inositol lipid phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P
3
) and recruitment of 

BTK to the plasma membrane via its PI(3,4,5)P
3
-binding PH domain [31]. BTK autophosphorylation on Tyr223 

results in full activation [29].The principle downstream target for BTK is PLCγ2 which catalyzes conversion of (PI(4,5)P
2
) to DAG 

and IP
3
 (Figure 2). PLCγ2 activation is mediated by BTK-dependent phosphorylation and is facilitated by BLNK which provides a scaffold for BTK/PLCγ2 interactions [32-34]. Production of IP

3 
downstream of BTK/PLCγ2 results in increased intracellular Ca2+ (iCa2+) by the release of Ca2+ from the endoplasmic reticulum 

Figure 2. Activation of BTK and PLCγ2 downstream of the BCR. The BCR comprises an antigen-binding immunoglobulin coupled 
to CD79A and CD79B signal transduction molecules. BCR engagement leads to activation of proximal kinases, such as LYN 

and SYK. BTK is activated by SYK-mediated phosphorylation and autophosphorylation and, with the scaffold protein BLNK, 

mediates activation of PLCγ2. Once activated, PLCγ2 cleaves phosphatidylinositol 4,5-bisphosphate (PI(4,5)P
2
) to generate 

inositol 1,4,5-trisphosphate (IP
3
) and diacylglycerol (DAG), leading to increased intracellular Ca2+ (iCa2+) and activation of PKC 

isoforms. Key downstream effects include activation of MAP kinases and Ca2+-dependent transcription factors, such as nuclear 

factor-κB (NF-κB) and, via calmodulin (CaM) and calcineurin, nuclear factor of activated T-cells (NFAT), resulting in increased 
transcription of genes involved in control of survival, migration and proliferation. Note that not all pathways activated downstream 

of the BCR are shown
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via IP
3
 receptors followed by influx of extracellular Ca2+ via plasma membrane channels in a process known 

as store-operated Ca2+ entry [35]. Increased iCa2+ together with DAG accumulation leads to activation of 

protein kinase C isoforms which mediate activation of various MAPKs (ERK, JNK and p38 MAPK), and nuclear translocation of the transcription factor NF-κB (by inhibition of its inhibitor IKK) [36, 37]. Increased iCa2+ also activates CaM and calcineurin leading to nuclear translocation of NFAT. NF-κB and NFAT in turn induce 
expression of target genes encoding proteins which promote B-cell survival (BCL2, BCL2A1), migration (CCR7) 

and proliferation (MYC, CCND1 and CCND2) [38-41]. BTK also mediates receptor “cross-talk” downstream of 

the BCR and contributes to activation of integrins and increased cell adhesion [42] and down-regulation of 

chemokine receptor (CXCR4) following BCR activation [43].

It is important to recognize that BTK also contributes to signaling downstream of other cell surface 

receptors in B cells, including chemokine and toll-like receptors [44-47]. For example, deletion or chemical 

inhibition of BTK reduces CXCL12 (the major ligand for CXCR4)-mediated cell migration and adhesion, and 

homing of B cells to lymphoid organs in vivo. BTK also has important functions in non-B cells. For example, 

BTK is important for FcγR-induced activation of pro-inflammatory cytokines in monocytes [48] and FcγRIIA-induced platelet activation [49].

Ibrutinib

Ibrutinib (previously known as PCI-32765) is a first-in-class oral, once daily inhibitor of BTK. It binds covalently 

to Cys481 within the BTK active site via reaction between the cysteine thiol and the ibrutinib acrylamide 

group (Figure 3). It is a potent inhibitor of BTK (50% inhibition at ~0.5 nM in an in vitro kinase assay) [50]. 

Ibrutinib inhibits many other kinases in addition to BTK including BLK and BMX (which are inhibited 

with similar potency to BTK, IC
50

 < 1 nM) and HCK, EGFR, ERBB2, ITK and JAK3 (IC
50

 1-20 nM) [50]. Of 

these BLK, BMX, EGFR, ERBB2, ITK and JAK3 contain cysteine residues analogous to Cys481 of BTK. In initial 

cell-based studies, ibrutinib inhibited BTK autophosphorylation on Tyr223 in anti-IgM-stimulated DOHH2 

human lymphoma cells with an IC
50

 of ~10 nM [50]. Ibrutinib also inhibited downstream phosphorylation of PLCγ2 and ERK1/2.
The first characterization of ibrutinib’s effects in primary CLL cells was reported by Herman et al. [51]. 

This study confirmed that ibrutinib reduced BTK tyrosine phosphorylation and downstream phosphorylation of AKT and ERK1/2, and activation of NF-κB. Although ibrutinib’s effects on CLL cell viability were generally 
modest (~10% median cell killing at 1 µM), ibrutinib induced caspase-dependent apoptosis in both U-CLL 

and M-CLL cases, and independently of the presence of del(13q), del(11q) or del(17p). Ibrutinib also induced 

apoptosis in the presence of various survival signals, including CD40L, BAFF, fibronectin or co-culture with 

Figure 3. Reaction of ibrutinib with Cys481 of BTK
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stromal cells. Importantly, this study showed that ibrutinib reduced production of cytokines (IL6, IL10, and TNFα) from activated T cells, despite an apparent lack of BTK expression in these cells, revealing potential 
for off-target effects.

Ponader et al. [52], demonstrated that ibrutinib inhibited CLL cell survival induced by either anti-IgM 

(to cross-link and stimulate the BCR) or co-culture with nurse-like cells. Ibrutinib also reduced CLL cell 

proliferation and secretion of CCL3/4 following nurse-like cell co-culture. Importantly, CCL3/4 concentrations 

were also reduced in the plasma of patients receiving ibrutinib suggesting that CCL3/4 could be used as 

a pharmacodynamic (PD) response biomarker. Consistent with previous studies which revealed a role 

for BTK in mediating signal transduction downstream of chemokine receptors in normal B cells [44, 45], 

ibrutinib inhibited migration of CLL cells towards CXCL12/CXCL13 and inhibited AKT/ERK phosphorylation 

following stimulation with anti-IgM, CXCL12 or CXCL13. Finally, this study showed that ibrutinib reduced the 

accumulation of leukemic cells in vivo in the Eµ-TCL1 mouse model of CLL [52].

De Rooij et al. [53], demonstrated that ibrutinib inhibited BCR-induced PLCγ2 phosphorylation, 
integrin-mediated adhesion to fibronectin or VCAM-1 and CXCL12/CXCL13/CCL19-induced adhesion, 

and migration.

Finally, ibrutinib has been shown to interfere with downstream signaling responses, including 

anti-IgM-induced pro-survival survival signaling, and induction of mRNA translation and a cytoprotective 

unfolded protein response [54-56]. Interestingly, potentiation of BCR signaling by IL4 was shown to render 

cells less sensitive to pro-apoptotic effects of ibrutinib [57]. 

It is important to consider off-target effects of ibrutinib. This is of course relevant for drug toxicity and this 

is discussed in detail below. However, off-target effects might also be beneficial and contribute to ibrutinib’s 

efficacy in CLL or broaden the drug’s therapeutic utility. For example, inhibition of ITK in T cells appears to 

promote beneficial Th1 immunity, and both BTK-dependent and -independent effects appear to contribute to 

enhanced T cell numbers and function in CLL patients [58, 59]. Moreover, ibrutinib has activity in models of 

solid tumors, for example, by inhibition of EGFR/HER2 in EGFR mutant non-small cell lung cancer [60], and 

is also undergoing clinical evaluation in non-hematological malignancies.

Clinical trial data in CLL

Initial clinical evaluation of ibrutinib was carried out in a phase I trial of patients with relapsed/refractory 

(R/R) B-cell malignancies which included 16 patients with CLL or small lymphocytic lymphoma (SLL, a 

tissue-based variant of CLL) [61]. The study reported a striking response rate amongst CLL/SLL patients 

for this heavily pre-treated population; 11/16 (69%) achieved objective responses (complete or partial 

response) assessed using standard response criteria. Notably, all responding CLL patients experienced a 

rapid reduction in their lymph node size and disease burden accompanied by lymphocytosis (i.e. increased 

CLL cells in the blood) lasting over a year in some patients. This effect is thought to be due to redistribution 

of cells from tissues to blood rather than a sign of disease progression and has been reported in other clinical 

trials of signal inhibitors in CLL patients and in studies of ibrutinib in mouse models [52]. It is likely to be due 

to effects of ibrutinib on the pathways that control homing/retention of CLL cells within tissues, potentially 

via effects on chemokine receptors and integrins. This lymphocytosis complicates assessment of response 

and subsequent trials have adopted modified assessment criteria. 

Another notable feature reported in this first clinical study of ibrutinib was that BTK occupancy by drug 

was maintained at high levels ( > 80%) for 24 h, whereas plasma concentrations of ibrutinib rapidly decreased 

following drug administration [61]. This is likely to be explained by the covalent nature of the interaction 

between ibrutinib and BTK. Based on these very promising clinical responses observed in this trial, more 

advanced trials were performed (summarized in Table 1) and these ultimately led to the approval of ibrutinib in the United States, Europe and other countries for treatment of treatment naï�ve (TN) and R/R CLL. 
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Limitations of ibrutinib

Although ibrutinib has led to major improvements in outcomes for CLL patients, substantial limitations 

have been encountered, especially linked to development of resistance and toxicity. Rates of discontinuation 

vary between clinical settings but may be as high as ~50% at 3 years [71]. Outcomes following ibrutinib 

discontinuation are poor, especially for patients who discontinue due to progression, but this may improve 

with increasing availability of other further treatment options (e.g., BCL2 inhibitors) [72, 73].

Resistance is either simple (i.e. progression of CLL) or transformation to higher grade malignancy. Approximately 80% of progressive cases have mutations of either BTK or PLCγ2 whereas the frequency 
of these mutations is lower (~40%) in cases that transform. The vast majority of BTK mutations involve 

substitution of Cys481 with a serine residue. Cys481Ser mutant BTK retains enzymatic activity but is much less 

sensitive to ibrutinib-mediated inhibition due to the lack of covalent binding [74]. It remains to be definitively 

demonstrated that these mutations cause clinical ibrutinib resistance [75] but it is likely that their acquisition 

represents progression of disease to a state that retains BTK-dependence but reduced sensitivity to (reversible) ibrutinib-mediated inhibition. PLCγ2 mutations affect a number of different amino-acid residues 
but are thought to maintain activity despite BTK inhibition [76].

The most common side effects of ibrutinib include diarrhea, nausea, fatigue, upper respiratory tract 

infections, rash, dyspnea, and edema. More severe toxicities which lead to discontinuation include arthralgia, 

atrial fibrillation and rash in the front-line setting, and atrial fibrillation, infection, pneumonitis, bleeding 

and neutropenia in R/R disease [71]. These toxicities may be mediated by off-target effects. For example, 

off-target EGFR inhibition by ibrutinib is thought to contribute to development of rash and diarrhea. Atrial 

fibrillation is a serious complication and may have an incidence of up to 10% in ibrutinib-treated patients at 

2 years follow-up [77]. The mechanisms are not known, but cardiac tissue does express BTK (as well as TEC 

which is also effectively inhibited by ibrutinib) [78]. Bleeding is another common cause for discontinuation. 

Interestingly, XLA patients do not have bleeding issues [79] implying factors other than BTK contribute to 

this toxicity. This may involve TEC which, like BTK, is involved in collagen receptor glycoprotein VI signaling 

and platelet aggregation [80, 81]. Consistent with this, incidence of bleeding is less with acalabrutinib, a more 

selective, second generation irreversible BTK inhibitor.

Overall, ibrutinib is a powerful new therapeutic agent for CLL. It can induce dramatic clinical responses, 

however, resistance and toxicity are substantial limitations. There are numerous new BTK inhibitors in 

development, including acalabrutinib and non-covalent inhibitors, such as vecabrutinib and AQR-531 [82]. 

Table 1. Key clinical trials with ibrutinib in CLL

Name Phase Population Response Ref

N/Aa IB/II R/Rb 71% ORRc by standard response criteria. Additional 

18% partial response with persistent lymphocytosis
[62]

Resonate III R/R Demonstrated that ibrutinib was superior to 

ofatumumab for response rate, PFSd and OSe

[63]

N/A I/IB TNf ≥ 65 years 90% achieved objective response or partial response 

with persistent lymphocytosis

[64]

Resonate-2 III TN ≥ 65 years Demonstrated that ibrutinib was superior to 

chlorambucil for overall response rate, PFS and OS
[65]

Helios III R/R Ibrutinib + bendamustine/rituximab superior to 

bendamustine/rituximab for PFS and OS
[66, 67]

Alliance A041202 III TN ≥ 65 years Ibrutinib superior to bendamustine + rituximab for 

PFS. No difference between ibrutinib or ibrutinib + 
rituximab for PFS

[68]

ECOG 1912 III TN ≤ 70 years Ibrutinib + rituximab superior to CIT for PFS and OS 
at interim analysis

[69]

iLLUMINATE III TN ≥ 65 years or < 65 years 
with coexisting conditions

Ibrutinib + obinutuzumab superior to chlorambucil + 

obinutuzumab for PFS
[70]

aN/A: not applicable; bR/R: relapsed/refractory; cORR: overall response rate; dPFS: progression-free survival; eOS: overall 

survival; fTN: treatment naïve
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However, PROTACs offer an exciting new approach to targeted inhibition of BTK and to address clinical 

limitations associated with ibrutinib.

BTK-targeted PROTACs

The first specifically designed BTK-targeted PROTACs were reported by Huang et al. [8], at the start of 2018. 

CJH-005-067 and DD-04-015 contain warheads derived from the non-covalent BTK inhibitors bosutinib 

(BCR-ABL kinase inhibitor known to also inhibit BTK [83]) and RN486 (a highly selective BTK inhibitor [84]), 

respectively, and a shared pomalidomide-derived E3 ligase-binding moiety (Figure 4). Pomalidomide recruits 

CRBN, the substrate recognition component of the DCX E3 protein ligase complex [85].

Both compounds very effectively reduced expression of BTK within 4 h in acute myeloid leukemia 

(AML)-derived MOLM-14 cells with little effect on other potential PROTAC targets investigated, including 

AURKA. DD-04-015 was most effective at ~100 nM but showed a pronounced “hook effect” where the 

effectiveness of BTK down-modulation was reduced at higher concentrations (10 µM). A hook effect is 

thought to be due to predominant formation of dimer target:PROTAC and PROTAC:E3 ligase complexes which 

fail to engage target proteolysis, rather than TC formation, at high PROTAC concentrations.

When tested for growth inhibitory activity in BTK-dependent TMD8 cells (derived from diffuse large 

B-cell lymphoma), DD-04-015 and its parental BTK inhibitor (RN486) showed similar potency (IC
50

s ~20-30 

nM following a 3 day exposure). However, the potency of DD-04-015 was relatively effectively maintained 

following wash-out of drug after a relatively short (6 h) exposure compared to RN486. This prolonged PD 

effect of DD-04-015 relative to RN486 was ascribed to persistent effects following BTK degradation compared 

to reversible active site occupancy. Similar prolonged PD effects have been described for PROTACs targeted 

against other targets [86].

Buhimschi et al. [87], described a series of BTK-targeted PROTACs utilizing a non-covalent BTK inhibitor 

warhead which was closely related to ibrutinib but lacked the acrylamide moiety which mediates covalent 

binding of ibrutinib to BTK Cys481. This inhibitor was coupled to various linkers and a pomalidomide-derived 

CRBN-targeting motif. The initial compounds, MT-540 and MT-541, had 12-atom linkers and very effectively 

reduced BTK expression in Namalwa cells (derived from Burkitt’s lymphoma). Exploration of the effect 

of shortening the linker demonstrated that an 11-atom linker was most effective for BTK targeting with a 

DC
50

 (i.e. concentration required to degrade 50% of the total BTK pool) of ~70 nM. However, more drastic 

reductions in linker length (to 8 or 5 atoms) ablated PROTAC activity. 

Figure 4. Structures of compounds CJH-005-067 and DD-04-015. BTK-targeted warheads (derived from bosutinib in CJH-005-067 
and RN486 in DD-04015) are colored blue and pomalidomide-derived CRBN-targeting moieties are colored red [8]
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Further compounds were synthesized using a different point on the pomalidomide moiety for linker 

attachment (C5 of the phthalimide ring versus C4) (Figure 5). With this attachment position, inclusion of an 

8-atom linker in compound MT-802 resulted in very potent activity (DC
50

 ~9 nM in a 24 h assay in Namalwa 

cells), whereas this linker length was incompatible with PROTAC activity in the context of C4-attachment. A 

12-atom linker attached at C5 (compound MT-809) also resulted in potent activity (DC
50

 ~12 nM). MT-802 and 

MT-809 very effectively induced BTK degradation (> 99% maximal reduction at 250 nM) and did not show 

a hook effect at concentrations up to 2.5 µM. Interestingly, BTK-targeted PROTACs based on a VHL-binding 

ligand were relatively inactive for BTK degradation. Therefore, effective BTK targeting is dependent on 

selection of an appropriate E3 ligase binding moiety. 

More detailed biological characterization focused on MT-802 and a related control compound SJF-6625 

which is unable to bind CRBN due to methylation of the glutarimide ring of the pomalidomide moiety and does 

not induce BTK degradation. Time course experiments demonstrated that MT-802-induced BTK degradation 

was rapid (detected within 1 h and near maximal at 4 h with 250 nM MT-802). MT-802-induced BTK 

degradation was effectively prevented by the proteasome inhibitor epoxomicin or MLN-4924, an inhibitor of 

the NEDD8-activating enzyme that neddylates and activates the CRBN complex. Moreover, BTK degradation 

was prevented by an excess of either ibrutinib or pomalidomide confirming activity was dependent on 

formation of a TC.

Analysis of the specificity of MT-802 for kinase binding was performed using KINOMEscan (DiscoverX®), 

a competition based assay to measure binding of 468 kinases to an immobilized ligand. Compounds that bind 

the kinase active site (i.e. ibrutinib and MT-802) prevent binding of the kinase to immobilized ligand reducing 

the amount of kinase captured. The amount of kinase captured can be compared between test versus control 

samples, and quantitative polymerase chain reaction is used to detect the specific kinases (each tagged with 

a unique DNA label) bound to the immobilized ligand. This demonstrated that, like ibrutinib, MT-802 also 

bound TEC. However, a number of other ibrutinib-targeted kinases were only relatively weakly bound by 

MT-802, including ITK and JAK3. The increased target-specificity of MT-802 relative to ibrutinib was thought 

to be, at least in part, due to the non-covalent nature of the BTK-targeted warhead in MT-802. 

The study by Buhimschi et al. [87], is particularly interesting as it included the first analysis of effects of 

BTK-targeted PROTACs on Cys481Ser mutant BTK, acquisition of which (as described above) is thought to be a 

major cause of ibrutinib resistance in CLL patients. In vitro kinase assays demonstrated that although MT-802 

was a less potent inhibitor of wild-type BTK than ibrutinib (IC
50

s for MT-802 and ibrutinib were ~50 nM and 

Figure 5. Structures of compounds MT-802 and SJF620. The reversible BTK-inhibiting warhead related to ibrutinib is colored 
blue and the CRBN-targeting moieties are colored red [87, 88]. Differences in the structure of SJF620 compared to MT-802 are 
highlighted by dotted regions
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< 0.05 nM, respectively), MT-802, but not ibrutinib, retained activity against Cys481Ser mutant BTK (IC
50

s for 

MT-802 and ibrutinib were ~20 nM and ~2 nM, respectively). Moreover, when overexpressed in BTK-null 

XLA cells, wild-type and Cys481Ser mutant BTK were approximately equally sensitive to MT-802-induced 

degradation (DC
50

s ~15 nM). Perhaps most importantly, MT-802 retained the ability to reduce the level of 

the active autophosphorylated form (i.e. BTK kinase activity) of BTK in patient-derived CLL cells from an 

ibrutinib-resistant patient with Cys481Ser mutated BTK. By contrast, ibrutinib was only able to reduce BTK 

autophosphorylation in matched pre-treatment cells with wild-type BTK from the same patient. 

Sun et al. [89], described a small series of BTK-targeted PROTACs comprising an ibrutinib-related 

warhead lacking the acrylamide group or an alternate BTK inhibitor, sperbrutinib [90] with pomalidomide 

(CRBN-targeted) or RG-71120-derived (MDM2-targeted) E3-binding moieties. Overall, pomalidomide 

containing PROTACs appeared more promising and further studies focused on P13I which contained the 

ibrutinib-derived warhead and pomalidomide-derived moieties (Figure 6). P13I effectively reduced BTK 

expression in various B-cell lines (e.g., DC
50

 ~10 nM after a 3 day incubation in Ramos cells). Neither ibrutinib 

or pomalidomide induced BTK degradation, whereas ibrutinib, pomalidomide, MG132 or MLN-4924 were 

able to effectively reduce P13I-induced BTK degradation.

In vitro assays demonstrated that P13I inhibited BTK kinase activity with an IC
50

 of ~100 nM and was 

therefore considerably less effective than ibrutinib (IC
50

 ~0.5 nM). However, P13I was slightly more potent 

than ibrutinib for growth inhibition of B-cell lymphoma derived HBL1 cells (IC
50

 1.5 nM for P13I versus 2.5 

nM for ibrutinib in a 3 day assay). This is consistent with the idea that relatively weak interactions between 

PROTACs and target proteins can be off-set by stabilizing protein:protein interactions within the TC [7, 92]. 

Cycloheximide blocking experiments were used to evaluate the stability of BTK in the presence or absence 

of P13I and demonstrated that P13I accelerated the turn-over of both wild-type and Cys481Ser mutant BTK. 

P13I also inhibited the growth of HBL1 cells with enforced overexpression of Cys481Ser mutant BTK, whereas 

ibrutinib was relatively inactive (IC
50

 ~30 nM for P13I versus 700 nM for ibrutinib). Finally, the authors 

demonstrated that, unlike ibrutinib, P13I did not inhibit in vitro activity or induce degradation of ITK or 

EGFR, known targets of ibrutinib.

Figure 6. Structures of compounds P13I and L18I. BTK-inhibiting warheads derived from ibrutinib and pomalidomide-derived 
CRBN-targeting moieties are colored blue and red, respectively [89, 91]. Differences in the structure of L18I compared to P13I are 
highlighted by dotted regions
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Zorba et al. [93], described a detailed series of experiments to probe the importance of TC formation 

and inter-element co-operativity in the design of effective BTK-targeted PROTACs. These authors synthesized 

a small library of compounds comprising a previously disclosed reversible BTK inhibitor [94] and a 

pomalidomide-derived CRBN-targeting moiety joined by PEG-based linkers of differing lengths (Figure 7). 

A prototypical compound (compound 9 in that study), with an 18-atom linker substantially reduced BTK 

expression in Ramos cells (DC
50

 ~6 nM at 24 h) with evidence for a clear hook effect at higher concentrations 

(> 1 µM). Similar to the study of Buhimschi et al. [87], PROTACs based on recruitment of alternate 

E3 ligases (VHL and IAP) were much less effective at downregulating BTK expression compared to 

CRBN-recruiting compounds. 

This series of compounds was used to address the role of co-operativity in PROTAC activity. A previous 

study by Gadd et al. [7], demonstrated the importance of stabilizing interactions between the target and E3 

ligase within the TC for effective and selective degradation of the bromo-domain containing protein, BRD4. 

Comparison of BTK-targeted PROTACs with variable linkers demonstrated that reduction in linker length 

below 11 atoms strongly ablated BTK degrading activity. Fluorescence resonance energy transfer analysis 

demonstrated that this loss of BTK degrading activity was tightly correlated with loss of proximity binding of 

BTK and CRBN. Thus, short linkers appeared to lead to steric clashes which limited TC formation and effective 

PROTAC activity. Moreover, the authors were unable to demonstrate co-operative BTK-CRBN binding. Thus, 

at least for this series of compounds, co-operative target-ligase binding does not appear to be required for 

effective target degradation. 

More detailed biological characterization was performed using Ramos cells treated with 1 µM compound 

9 or compound 10 for 24 h. Quantitative proteomic analysis demonstrated that these compounds reduced 

expression of remarkably few proteins in addition to BTK. Other degradation targets identified, including 

ZFP91, IKZF1 and IKZF3, all of which are transcription factors and were speculated to be natural targets 

for CRBN-mediated degradation. In vivo effects were investigated following sub-cutaneous administration 

in rats. Interestingly, reduced BTK expression was observed in spleen, but not lung tissues, despite similar 

Figure 7. Structures of compounds 9 and 10. BTK-inhibiting warheads are colored blue and pomalidomide-derived CRBN-targeting 

moieties are colored red [93]. Note that compound 10 differs from compound 9 by having a longer linker
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accumulation of compound in both sites. The reasons for this observation are not known, but might reflect 

tissue-specific variation in expression of components of the ubiquitin-proteasome system.

The potential impact of covalent modification of BTK by a BTK-targeted PROTAC was addressed first 

by Tinworth et al. [95], by comparing PROTACs containing irreversible and non-covalent ibrutinib-derived 

warheads and an IAP-recruiting moiety (Figure 8). As expected, both PROTACs inhibited BTK activity in in 

vitro assays and the covalent, but not reversible PROTAC, was demonstrated to conjugate to recombinant 

BTK using mass spectrometry. Cell-based studies were performed using THP1 cells, derived from AML, and 

demonstrated that only the non-covalent PROTAC resulted in reduced BTK expression (DC
50

 ~200 nM in a 

16 h assay). Thus, despite being able to effectively inhibit BTK activity, the covalent PROTAC was not able 

to promote BTK degradation. The authors suggested that covalently bound PROTAC may block ubiquitin 

transfer to the target or access to the proteasome [95].

Further analysis was performed in Ramos cells treated with anti-IgM to stimulate BCR signaling. The 

covalent PROTAC reduced BTK Tyr223 autophosphorylation, consistent with inhibition of BTK kinase activity, 

but failed to induce BTK degradation. By contrast, the reversible PROTAC relatively weakly reduced BTK Tyr223 

Figure 8. Structures of covalent PROTAC 2 and reversible PROTAC 3. BTK-inhibiting warheads derived from ibrutinib are colored 

blue and IAP-targeting moieties are colored red [95]. The difference in the structure of the reversible PROTAC 3 compared to 

covalent PROTAC 2 is highlighted by a dotted region
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autophosphorylation (likely due to lower enzyme inhibitory activity associated with reversible binding), but 

did induce BTK degradation.

Effects of these reversible and covalent BTK-targeted PROTACs on protein degradation were investigated 

using mass spectrometric analysis of Ramos cells (without anti-IgM stimulation). These experiments were 

performed using PROTACs with CRBN-recruiting moieties and alternate linker structures. The covalent 

PROTAC did not affect BTK degradation, but induced degradation of LCK and CSK, known targets of ibrutinib, 

when tested at 10 µM, suggesting that some targets may be amenable to targeted degradation via covalent 

PROTACs. The reversible PROTAC also induced degradation of LAT2, CD19 and INPP5D.

In contrast to these studies, a more recent report has reported effective BTK degradation by a covalent 

PROTAC [96]. Compound 7 in the series (Figure 9), comprising an ibrutinib-related BTK inhibitor retaining 

the acrylamide group [97] linked to a VHL-targeting moiety, induced BTK degradation in K562 cells (derived 

from chronic myelogenous leukemia) with a DC
50

 of ~150 nM in an 18 h assay.

As discussed above, optimization of physiochemical properties of PROTACs will be critical to move the field 

from exploration of chemical probes towards clinical exploitation. Studies have demonstrated that, despite 

their relatively large size and other physiochemical limitations, targeted medicinal chemistry efforts can lead 

to improved activity for PROTACs [12]. Although this is at a relatively early stage for BTK-targeted PROTACs, 

important progress has been made in improving pharmacokinetic (PK) properties. A recent follow-on study 

from the Rao group reported compound L18I which is closely related to P13I (Figure 6) [91]. Similar to P13I, 

L18I also induced degradation of Cys481Ser BTK in HBL1 cells with a DC
50

 of ~30 nM at 36 h. In addition, L18I 

induced degradation of other BTK variants with Thr, Gly, Trp or Ala substitutions at Cys481. L18I was suitable 

for in vivo administration and, in contrast to ibrutinib, significantly reduced the accumulation of Cys481Ser 

BTK-expressing HBL1 cells in a mouse xenograft model with no evidence for substantial toxicities as assessed 

by body weight. Moreover, L18I was well tolerated (no deaths) in a short term, acute toxicity study in B6 mice.

Jaime-Figueroa et al. [88], also reported a medicinal chemistry effort aimed at improving PK properties 

of MT-802. Similar to other studies, replacement of the CRBN-targeting moiety with a VHL-targeting ligand 

resulted in substantially reduced activity. However, replacement of the amide group that connected the 

linker to the pomalidomide moiety in MT-802 with an ether and removal of one of the carbonyls within the 

pomalidomide moiety resulted in compound SJF620 (Figure 5) with retained BTK-degrading activity and 

Figure 9. Structure of covalent PROTAC compound 7. BTK-inhibiting warhead related to ibrutinib is colored blue and VHL-targeting 

moiety is colored red [96]
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improved PK properties. For example, following intravenous administration in mice, SJF620 had a half-life of 

1.64 h and a C
max

 of 2.1 µg/mL, compared to values of 0.119 h and 0.073 µg/mL for MT-802.

ConclusionConsistent with its key role in mediating activation of PLCγ2 and Ca2+ mobilization, BTK is an attractive 

target to interfere with survival and proliferation-promoting signaling downstream of the BCR. Indeed, 

the irreversible BTK inhibitor ibrutinib has substantially improved outcomes for patients with CLL and 

some other B-cell malignancies. However, clinical utility of ibrutinib is limited by toxicity and development 

of resistance, and there is a continuing need for new treatment options. Here, we have reviewed current 

progress in development of BTK-targeted PROTACs, with a particular focus on their potential to address 

clinically-relevant drawbacks associated with ibrutinib.

Overall, PROTACs appear to offer an effective, alternate strategy to inhibit BTK activity in CLL. In 

particular, several agents have been shown to retain activity against Cys481Ser mutant BTK, a major cause 

of clinical ibrutinib resistance [87, 89]. Moreover, BTK-targeted PROTACs appear to be more selective than 

ibrutinib, even when using very similar (ibrutinib-related) warheads. This has been ascribed to improved 

selectivity associated with non-covalent binding to BTK and may also reflect stabilizing interactions between 

BTK and E3 ligase within the TC. Enhanced selectivity has been reported for PROTACs in a number of other 

studies [2, 6, 8]. Whether this improved selectivity equates to reduced toxicity will require evaluation in 

appropriate in vivo models, particularly to address the most serious ibrutinib-associated toxicities, including 

atrial fibrillation and bleeding. Although development of PROTACs with suitable PK properties can be 

challenging, especially for oral administration [98], more recent studies have generated agents suitable for in 

vivo administration with evidence for in vivo anti-tumor activity [88, 91, 93].

These studies of BTK-targeted PROTACs have also revealed important features for consideration for the 

development of effective BTK degrading agents. Two studies have addressed the effectiveness of covalent 

BTK-targeted PROTACs with differing results [95, 96]. The reasons for these differences are not clear, but there 

are many differences between the compounds tested and assays used to evaluate activity. Thus, it remains 

unclear to what extent covalent binding may be generally compatible with BTK inhibition by PROTACs.

As previously discussed [2, 99], studies of BTK-targeted PROTACs confirm the importance of appropriate 

selection of both linker and E3 ligase recruiting moiety. Overall, CRBN-recruiting moieties seem most effective 

for BTK targeting [87, 89, 93] and this may relate to the inherent flexibility of CRBN [100]. Linker length is 

also critical, although the optimal length is dependent on the nature of the coupled warhead and E3-binding 

domain. This is clearly illustrated in the study by Buhimschi et al. [87], where linker tolerability differed 

depending on the point of attachment to the pomalidomide moiety. As discussed [93], it is also interesting to 

note that shorter linkers can be tolerated when attached to alternate BTK-targeted scaffolds, where increased 

length of the target-binding structure may compensate for shorter linker length [8]. Detailed biochemical 

studies suggest that, at least in the context of the series studied by Zorba et al. [93], the influence of linker 

length is primarily to avoid negative, steric clashes between target and E3 ligase. This contrasts markedly with 

previous studies where stabilizing protein-protein interactions with the TC promoted co-operativity [7, 92].

An interesting feature of these studies is the variable detection of a hook effect which is thought to be due to 

formation of inactive binary PROTAC:target and PROTAC:E3 ligase complexes at high PROTAC concentrations. 

For example, this phenomenon, was reported for compound 9 and DD-04-015 [8, 93], but not for MT-802 or 

reversible PROTAC 3 [87, 95]. The hook effect is expected to be countered by co-operative binding within the 

TC (thereby favoring TC formation over dimers). Although the studies differ in the concentrations and time 

points analyzed, it is interesting to note that a clear hook effect was observed for compounds described by 

Zorba et al. [93], where co-operativity within the TC did not seem to operate.

Finally, an interesting feature revealed by in vivo studies is that the PROTAC effectiveness differs between 

tissue sites. Thus, compound 10 in Zorba et al. [93] was able to degrade BTK in the spleen but not lungs of 

mice, despite similar drug exposure in both sites. This intriguing observation could be due to tissue-specific 

differences in the expression of components of the ubiquitin system, such as E3 ligases or de-ubiquitinases. 
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Although not yet explored in the context of BTK-targeted PROTACs, it will be interesting to determine whether 

such differences can be exploited to avoid toxicities associated with BTK inhibition in normal tissues (for 

example, by selectively degrading BTK in malignant, but not normal cells). A similar approach has recently 

been described for PROTACs deployed to degrade the anti-apoptotic BCL-X
L
 protein. Thus, VHL-targeted 

PROTACs degrade BCL-X
L
 in malignant cells but not thrombocytes due to the lack of VHL in these cells, and 

thereby avoid platelet toxicity associated with BCL-X
L
 inhibition [101].

Overall, PROTACs appear to be an exciting new approach to target BTK with important distinctions 

to canonical kinase inhibitors exemplified by ibrutinib. However, development is at a very early stage and 

considerable progress is required to refine these agents and optimize their drug-like properties before 

progression to clinical testing.
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