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Simple Summary: In locally advanced or metastatic non-small cell lung cancer (NSCLC), im-
munotherapy has become a standard as it can improve overall survival and progression-free survival.
However, a durable clinical benefit (DCB) is only achieved in 20–50% of patients. Early identification
of patients likely to benefit from this treatment is not only challenging but also crucial to avoid
immune-related toxicities in patients unlikely to achieve DCB. The aim of our retrospective study was
to assess the value of baseline and serial FDG-PET/CT radiomics for the prediction of response and
survival in NSCLC patients undergoing immunotherapy. In a group of 83 patients, multimodality
radiomics and delta-radiomics models provided added predictive value compared to conventional
clinical parameters. Multimodality radiomics-based models developed using appropriate machine
learning processes were able to predict progression, DCB, Overall Survival and Progression Free
Survival with high confidence.

Abstract: Purpose: We aimed to assess the ability of radiomics features extracted from baseline
(PET/CT0) and follow-up PET/CT scans, as well as their evolution (delta-radiomics), to predict
clinical outcome (durable clinical benefit (DCB), progression, response to therapy, OS and PFS) in
non-small cell lung cancer (NSCLC) patients treated with immunotherapy. Methods: 83 NSCLC
patients treated with immunotherapy who underwent a baseline PET/CT were retrospectively
included. Response was assessed at 6–8 weeks (PET/CT1) using PERCIST criteria and at 3 months
with iPERCIST (PET/CT2) or RECIST 1.1 criteria using CT. The predictive performance of clinical
parameters (CP), standard PET metrics (SUV, Metabolic Tumor volume, Total Lesion Glycolysis),
delta-radiomics and PET and CT radiomics features extracted at baseline and during follow-up
were studied. Seven multivariate models with different combinations of CP and radiomics were
trained on a subset of patients (75%) using least absolute shrinkage, selection operator (LASSO) and
random forest classification with 10-fold cross-validation to predict outcome. Model validation was
performed on the remaining patients (25%). Overall and progression-free survival was also performed
by Kaplan–Meier survival analysis. Results: Numerous radiomics and delta-radiomics parameters
had a high individual predictive value of patient outcome with areas under receiver operating
characteristics curves (AUCs) >0.80. Their performance was superior to that of CP and standard PET
metrics. Several multivariate models were also promising, especially for the prediction of progression
(AUCs of 1 and 0.96 for the training and testing subsets with the PET-CT model (PET/CT0)) or DCB
(AUCs of 0.85 and 0.83 with the PET-CT-CP model (PET/CT0)). Conclusions: Delta-radiomics and
radiomics features extracted from baseline and follow-up PET/CT images could predict outcome in
NSCLC patients treated with immunotherapy and identify patients who would benefit from this new
standard. These data reinforce the rationale for the use of advanced image analysis of PET/CT scans
to further improve personalized treatment management in advanced NSCLC.
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1. Introduction

Lung cancer is the leading cause of cancer-related death worldwide [1]. Non-small
cell lung cancer (NSCLC) accounts for 80–90% of primary lung cancers, and is mostly
diagnosed at an advanced stage with prognosis remaining poor despite recent therapeutic
advances [2]. The introduction of immunotherapy for the treatment of locally advanced
or metastatic non-small cell lung cancer (NSCLC) has shown an improvement in terms of
overall survival and progression-free survival. However, a durable clinical benefit (DCB)
(>6 months) is only achieved in 20–50% of patients [3]. Early identification of patients likely
to benefit from this treatment is therefore crucial. In addition, newly described response
patterns (pseudo-progression, hyper-progression) make response assessment even more
challenging [4]. Therefore, robust response-predictive biomarkers at baseline are crucial to
avoid immune-related toxicities in patients unlikely to achieve DCB.

PD-L1 status has been an important element in treatment decision making until now.
However, approximately 10% of patients whose tumors do not express PD-L1 respond to
treatment, and response is also not certain in cases of high expression of this biomarker [3,5–8].
Alternative biomarker identification is an active research domain in which medical imaging
plays an increasingly important role.

18F-FDG PET/CT is commonly used for characterization and staging of lung cancers.
Medical images are easy to repeat over time, non-invasive and promising for personalized
patient management by reflecting tumor heterogeneity, which seems to be a major cause of
the disparity between response and prognosis. However, for such applications, quantitative
analysis is required.

Radiomics is an approach that allows a finer characterization of tumor lesions by
extracting numerous quantitative parameters from medical images (CT, PET/CT and MRI,
for example) [9]. These features can be used to build complex mathematical models for
lesion characterization (benign versus malignant lesions [7,8,10–12], histology [13] and for
the prediction of patient outcome [14,15]. In the majority of these studies, hand-crafted
features extracted from the segmented functional or fused image tumor volumes have been
considered. More recently, some studies have also considered the use of deep learning
models in order to directly classify lung cancer patients in terms of overall survival without
explicitly extracting radiomics features [16]. All these studies have shown some promising
results, but in both cases, there are no specific investigations addressing the use of PET/CT
radiomics for patients undergoing immunotherapy treatment.

The changes in these features over time (delta-radiomics) have also been suggested
to obtain a more accurate evaluation of tumor response [17]. While single time-point
radiomics and delta-radiomics showed promising results in helping clinicians to choose the
most appropriate treatment in various cancer models, there are still only limited data on
the potential value of using these features in the evaluation of NSCLC patients undergoing
immunotherapy using CT [18]. Mu et al. were recently the first to test a multiparametric
radiomic model combining baseline PET and CT features to predict tumor response and
survival [19]. Using advanced statistical analyses, they reported more heterogeneous
tumors to have a greater probability of reaching DCB, but they did not investigate the
potential additional value of serial examinations.

In this study we aim to assess the ability of radiomics features extracted from baseline
and follow-up 18F-FDG PET/CT scans, as well as their changes during treatment, to predict
response to immunotherapy, DCB, overall survival and progression-free survival.
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2. Materials and Methods
2.1. Patient Population

In this retrospective study, data were retrieved from a total of 83 patients treated
at Poitiers University Hospital (France) between September 2016 and December 2020.
Inclusion criteria were as follows: Eastern Cooperative Oncology Group (ECOG) perfor-
mance status (PS) ≤ 2, histologically proven NSCLC treated with anti-PD-L1 immunother-
apy (nivolumab, pembrolizumab or atezolizumab, as monotherapy or associated with
chemotherapy) and available baseline 18F-FDG PET/CT (PET/CT0) performed within
3 months before the initiation of immunotherapy.

Treatment was chosen depending on histology, PD-L1 expression, ECOG PS and
risk factors and approved by the multidisciplinary oncological board. Immunotherapy
was introduced as a first-line therapy in 23 patients (28%). Ten patients had PD-L1 ex-
pression higher than 50% and received pembrolizumab alone (n = 8) or combined with
chemotherapy (n = 2). Thirteen patients were treated with pembrolizumab associated with
platinum-based chemotherapy (cisplatin or carboplatin) and pemetrexed. Two patients
received atezolizumab, either alone (n = 1) or associated with carboplatin and etoposide
(PD-L1 expression not performed). Sixty patients (72%) received immunotherapy for re-
currence or failure after at least one line of chemotherapy. Seventeen of them had PD-L1
expression ≥ 1% and received pembrolizumab, 41 received nivolumab and 3 received ate-
zolizumab. Five patients were treated with a combination of pembrolizumab, carboplatin
and pemetrexed. Immunotherapy administration followed the recommendations for each
molecule at the time of treatment.

Baseline clinical, demographic and biological data were retrieved from medical records
(age, sex, performance status, smoking history, histological subtype, stage (8th TNM
classification of the International Association for the Study of Lung Cancer [20]), presence
of brain metastasis or not, previous treatments and PD-L1 status (if available).

All patients gave their informed consent for the use of their personal and clinical data.
No ethical committee approval was required, given the retrospective nature of this study of
previously anonymized data.

2.2. Image Acquisition, Segmentation, Pre-Processing and Feature Extraction

Eighteen F-FDG PET/CT scans were performed following EANM guidelines. Acqui-
sition parameters are described in Supplementary Materials. The largest lung lesion was
semi-automatically segmented using the Fuzzy Locally Adaptive Bayesian (FLAB) algo-
rithm [20], and the obtained volume of interest was adjusted manually by an experienced
clinician, if needed. The performance of this algorithm has been extensively evaluated for
functional tumor segmentation, demonstrating high reproducibility and robustness for
different cancer models [21–23]. Tumor segmentation on CT images was performed by
applying the PET VOI on CT images using 3D Slicer [24].

Prior to feature extraction, pre-processing operations were applied on PET and CT
images, as described in Supplementary Materials, to take into account the variability of
image acquisition (PET/CT scanners, acquisition protocols).

Metabolic and conventional volumetric parameters were extracted from CT and
metabolic VOIs (including SUVmax, SUVmin, SUVmean, Metabolic Tumor Volume (MTV)
and Total Lesion Glycolysis (TLG)). In addition, a total of 2430 radiomic features were ex-
tracted from both CT and PET VOIs using Pyradiomics [25], 107 were derived from original
images and 2323 were derived from preprocessed images (using different combinations of
interpolation, resampling and filtering), including: 2D and 3D shape parameters, first-order
(histogram-based characteristics) and second-order (texture parameters) features. Detailed
parameter definitions are available at the Pyradiomics website, and the list is presented
in Table S1 [25].
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2.3. Patient Outcomes
2.3.1. Follow-Up and Response Assessment

Patient follow-up was based on clinical examination every 12 weeks until disease
progression or death occurred. Metabolic response was assessed using PERCIST criteria
on follow-up PET/CT performed 6 to 8 weeks (PET/CT1) after treatment initiation [26].
Response was defined as: complete metabolic response (CMR), partial metabolic response
(PMR), stable metabolic disease (SMD) or progressive metabolic disease (PMD), considering
the most hypermetabolic lesion on each scan.

In cases of new lesions on PET/CT1 without clinical worsening, the response was
qualified as unconfirmed progression (UPMD). Then, discrimination between true progres-
sive disease and pseudo-progression was carried out using a second follow-up PET/CT
(PET/CT2) performed after an additional month of treatment [27].

Response was also determined on follow-up CT performed at 8 to 12 weeks according
to Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST) [28]. When patients
had no follow-up PET/CT, response was only assessed using RECIST. Patients were clas-
sified as responders if response was defined as either complete response (CR), partial
response (PR) or stable disease (SD). Patients with progressive disease were considered as
non-responders. Patients were treated until clinical worsening, confirmed progression or
unacceptable toxicity.

2.3.2. Survival and Durable Clinical Benefit (DCB)

Overall survival (OS) was calculated as the time from initiation of immunotherapy
to death, censored at the date of last follow-up for survivors. Progression-free survival
(PFS) was determined as the time from treatment initiation to disease progression or death,
censored at the date of last follow-up for survivors without progression. Durable clinical
benefit (DCB) to immunotherapy was defined as alive and without disease progression
at 6 months.

2.4. Statistical Analysis

We evaluated the discriminative power of clinical parameters (age, sex, smoking,
ECOG PS, histology, PDL1, stage, previous treatment, immunotherapy line and molecule,
tumor response) to predict the studied endpoints (OS, PFS, response, DCB) using chi-
square and Mann–Whitney tests for quantitative and qualitative variables, respectively,
with p-values < 0.05 considered to be statistically significant.

The Kaplan–Meier analyses with log-rank tests were performed for PFS and OS
(Tables S5–S9).

To avoid overfitting, we discarded highly correlated features using Spearman’s rank
correlation, followed by a feature selection using Least Absolute Shrinkage and Selection
Operator (LASSO) [29]. Area under the receiver operating characteristic curve (AUC) analysis,
estimated using univariate logistic regression with Bootstrap, was then performed to evaluate
the predictive value of each parameter (clinical parameters (CP), standard PET metrics and
radiomics features from baseline and follow-up PET/CT) for the different endpoints.

In the multivariate analysis, 7 models (CP, PET, CT, PET-CP, CT-CP, PET-CT-CP) were
built with the most promising selected features using the Random Forest classification
method, with 10-fold cross validation repeated 10 times on the training set (75% of the
initial data) for hyperparameters tuning with randomized patients split (100 iterations for
sample bias correction). The number of variables selected was part of the model tuning
process. Number of features varied between 3 and 8, with an increment of 1 for each. So, for
each model, this number was unique, selected upon the best training results. Subsequently,
the selected model (set of hyperparameters and selected features) was applied on the test
sample (25% of the initial data). The performance of each model in predicting outcome was
measured by AUC analysis.

The delta-radiomics features were defined as the relative net change between
two images: relative Net Change = (FeatureT1−FeatureT0)/FeatureT0. Here, FeatureT0
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was the value of a feature before the treatment and FeatureT1 was the value of the feature
at the 2-month evaluation of the treatment. The delta-radiomics predictive power was also
tested using the same methodology. All the analyses were performed with standard Python
modules, including Sklearn, pandas and Matplotlib.

3. Results
3.1. Patients Characteristics

Clinical and demographic characteristics of the 83 patients enrolled in this study are
summarized in Table 1. No patient was lost at follow-up.

Table 1. Clinical and demographic characteristics of overall population (83 patients) and correlation of
these parameters with iPERCIST response (evaluated in 71 patients) (chi-square and Mann–Whitney tests).

Characteristic Overall Population
(n = 83)

Responders
(n = 40)

Non-Responders
(n = 31) p Value

Age (years), median
(range) 63.5 (38–85) 61.5 (47–82) 65 (43–85) 0.28

Sex, n (%) 0.78
Men 59 (71) 31 (77) 22 (71)

Women 24 (29) 9 (23) 9 (29)
Smoking, n (%) 0.09

Smoker 79 (95) 40 (100) 29 (94)
Non-smoker 4 (5) 0 2 (6)

ECOG PS, n (%) 0.3
0 35 (42) 19 (47,5) 12 (39)
1 44 (53) 19 (47,5) 18 (58)
≥2 4 (5) 2 (5) 1 (3)

Histology, n (%) 0.13
Adenocarcinoma 48 (58) 26 (65) 15

Squamous cell carcinoma 22 (26) 8 (20) 11
Other type 13 (16) 6 (15) 5

PD-L1, n (%) -
<1% 20 (24) 12 (30) 9 (29)

1–49% 18 (22) 8 (20) 2 (6)
≥50% 15 (18) 11 (28) 3 (10)

Not performed 30 (36) 9 (22) 17 (55)
Stage before

immunotherapy, n (%) 0.27
IIB 1 (1) 1 (2) 0
III 11 (13) 6 (15) 3 (10)
IV 71 (86) 33 (83) 28 (90)

Previous treatment, n (%)
Surgery 19 (23) 11 (28) 7 (23)

Radiotherapy 14 (17) 10 (25) 10 (32)
Chemotherapy 58 (70) 22 (55) 26 (84)

Immunotherapy, n (%)
First line 23 (28) 24 (60) 26 (84)

Second or >line 60 (72) 16 (40) 5 (16)
Nivolumab 41 (49) 13 (33) 24 (78)

Pembrolizumab 37 (45) 26 (65) 6 (19)
Atezolizumab 5 (6) 1 (2) 1 (3)

PFS, median (days) 156 250 52 <0.001
DCB, n (%) 35 (42) 25 (63) 3 (10) <0.001

OS, median (days) 256 351 194 <0.001

ECOG PS: Eastern Cooperative Oncology Group performance status; OS: overall survival; PFS: progression-free survival.

Clinical parameters were not significantly different in responders and non-responders.
Considering demographic data, ECOG performance status (PS) was associated with significant
differences in OS and PFS. PFS and OS were significantly shorter in patients with PS ≥ 1
(p = 0.0005 and p = 0.003, respectively). PS and stage before immunotherapy were also signifi-
cantly lower in patients who obtained DCB (p = 0.00009 and p = 0.03, respectively) (Table S3).

Survival tended to be longer in patients more than 63 years old (Figure S1A).

3.2. Patient Outcomes

The median follow-up was 865 days (931± 569, range 98–1759 days). At the last follow-
up, 40 patients (48%) were still alive and 18 (22%) were still receiving immunotherapy. Nine
patients (11%) experienced immunotherapy-induced adverse effects (five with thyroiditis,



Cancers 2022, 14, 5931 6 of 16

one with rising liver enzymes, one with pneumonitis, one with Raynaud’s syndrome and
one with sensitive neuropathy).

Immunotherapy was stopped in 65 patients for various reasons: progression or clinical
worsening in 49 patients (75%); unacceptable adverse event in four patients (6%); intro-
duction of a high dose of corticosteroids (because of brain metastasis with edema) in four
patients (6%); second cancer requiring the introduction of another chemotherapy in one
patient (2%); 2 years of clinical benefit with immunotherapy in seven patients (11%).

Metabolic response was studied using PET/CT1 in 71 patients (85%), and 34 of
them underwent a second PET/CT one month later (PET/CT2). According to iPER-
CIST criteria, metabolic response after 3 months of treatment was as follows: CMR in
three patients (4%), PMR in 29 patients (41%), SMD in eight patients (11%) and PMD in
31 patients (44%). Responder rate was 56% (40 patients). Out of the 40 responders, four
were first assessed as PMD based on PET/CT1 and reclassified as either PMR (n = 3) or
SMD (n = 1) using PET/CT2. In these cases of pseudo-progression, the patients ultimately
obtained a durable clinical benefit (DCB). Response was evaluated using only RECIST 1.1 in
12 patients (PET/CT1 was not performed) and was as follows: 5 PR, 4 SD and 3 PD. A total
of 49 patients were considered as responders (59%) and 34 as non-responders (41%) after
three months of therapy. DCB was then obtained in 35 patients (42%).

Outcome was more favorable for responders than non-responders, with a longer
median PFS (250 days vs. 52, p <0.001) and OS (351 days vs. 194 p <0.001) (Table 1).

3.3. Radiomics and Prediction of Progression, DCB and Survival
3.3.1. Univariate Analysis

Best results of radiomics features extracted from the largest lung lesion at baseline
(PET/CT0) and 2 months (PET/CT1) after treatment initiation are presented in Tables S2–S4
and Figures S1 and S2. Predictive value of parameters derived from follow-up PET/CT scns
performed at month 3 will not be described in this paper as the sample size (34 patients) was
too small to obtain reliable results. The performance of radiomics parameters in predicting
response at month 2 (PET/CT using PERCIST) and month 3 (using iPERCIST for PET/CT
and RECIST for CT) were studied but will not be detailed further in the following sections,
given that they were similar to those predicting other primary endpoints. Therefore, only
progression, DCB and survival results are considered in the results below.

At Baseline (PET/CT0)

Standard PET-based features (SUVs, MTV, TLG) were not able to significantly dis-
criminate between patients in terms of progression, DCB or survival (p = 0.44). Predictive
performance of clinical parameters and standard PET/CT metrics were lower. The predic-
tive power of ECOG PS and age were moderate with AUC of 0.70 for DCB and OS. AUC
for volume and TLG did not exceed 0.67 to predict progression. SUV and all the other
clinical features had low predictive power.

Advanced image analysis provided better results. For example, longer PFS and OS
were observed in cases of high PET0_GLCM_Clustershade (p = 0.0007), low CT0_kurtosis
(p = 0.001) and low CT0_GLSZM_GLNUN (p = 0.00003).

Moreover, PET- and CT-based radiomics features were able to predict outcomes with
AUC up to 0.85 for progression and 0.80 for OS. Texture-based features had better perfor-
mance than first-order and shape parameters. The highest predictive power was obtained
with texture-based parameters representing regional or local heterogeneity characteriza-
tion (such as CT0_GLRLM_LRLGLE (AUC 0.85) and PET0_GLCM_Imc1 (AUC 0.85) for
progression, CT0_GLDM_SDE (AUC 0.80) and CT0_GLSZM_ ZonePercentage (AUC 0.80)
for OS). Radiomics predictive power was moderate for PFS and DCB (AUC up to 0.74 for
the best parameters).
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At Month 2 (PET/CT1)

OS and PFS were significantly longer in patients with more homogeneous tumors,
as demonstrated by low GLCM-Imc1 (p = 0.00003, HR = 5.99, for TEP1), low kurtosis
(p = 0.00007, HR = 3.79 for CT1), low busyness (p = 0.0008, HR = 2.94 for CT1), high GLCM-correlation
(p = 0.0002, HR = 0.30 for CT1) and high NGTDM-coarseness (p = 0.004, HR = 0.37 for CT1). OS
and PFS were also significantly longer in patients with more regular tumors (high Surface-
Volume Ratio, p = 0.0004 for CT1; high sphericity, p = 0.000006, for PET1).

Performance of clinical parameters and standard PET/CT metrics to predict outcome
remained low, similarly to those at baseline. A higher number of radiomics features
demonstrated a high predictive value (as demonstrated by an AUC ≥ 0.80), especially
for progression, with AUC up to 0.91 (Variance for CT1) and 0.88 (PET1_Maximum),
for example. After 2 months of treatment and unlike at baseline, first-order parameters
(extracted from filtered images) managed to perform equally to shape-based and some
more complex texture-based features. Radiomics overall predictive performances at month
2 were higher than at baseline, except for the prediction of DCB.

Delta-Radiomics

Baseline and follow-up PET/CT studies were used to determine radiomics features
variation during treatment (delta-radiomics). None of these features achieved higher
predictive performance than parameters at month 2 (PET/CT1). Increasing size of the
lesion (as reflected by the least axis length (p = 0.00006) and mesh volume (p = 0.0008)) was
associated with non-response. We also observed that non-responder tumors tended to lose
the roundness of their shape, with a decrease in sphericity (p = 0.1) and flatness (p = 0.16),
but these changes were not statistically significant.

DeltaPET parameters demonstrated an equally high predictive power for PFS and OS
(AUC = 0.81 for deltaPET_GLDM_LGLE and AUC = 0.83 for deltaPET GLRLM_RunEntropy,
respectively) compared with PET/CT1 features (AUC = 0.83 with PET1_GLCM_ClusterTendency,
AUC = 0.84 with CT1_GLCM_Imc2 for PFS, and AUC = 0.82 for PET1_GLRLM_SRLGLE
for OS). DeltaCT features had a slightly lower predictive power for OS compared with PET/CT1
features (AUC = 0.73 for deltaCT_GLRLM_LRLGLE and AUC = 0.81 for CT1_GLSZM_SZNU).
The performance of delta-radiomics features were better than baseline parameters in
predicting PFS (AUC of 0.84 for deltaCT, 0.81 for deltaPET and 0.74 and 0.73 for TEP0
and CT0, respectively). They did not perform better than single time-point features for
DCB (AUC of 0.77 and 0.73 for deltaPET and deltaCT and AUC of 0.74 and 0.75 for PET0
and CT0, respectively) or for progression (AUC = 0.82 for deltaCT_flatness and 0.74 for
deltaPET_GLCM_Correlation).

3.3.2. Multivariate Analysis

Seven multivariate prediction models were composed of a variable number of selected
features (from 3 to 18): clinical parameters alone (CP), PET- and CT-derived parameters
alone or combined with CP. The results are presented in Figure 1 (training) and Figure 2 (test-
ing). The radiomics-based models consisted only of single-time point features (TEP/CT0
or TEP/CT1), given that delta-radiomics did not show higher performances. The metabolic
response determined using PERCIST on PET/CT1 was integrated into the models estab-
lished at month 2. The performances in predicting response to immunotherapy (assessed
with PERCIST, iPERCIST and RECIST) of each model were also investigated and were
similar to those of other outcomes (DCB, progression, survival) and therefore will not be
further detailed.
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Figure 1. Performances of seven multi-parametric models for the prediction of outcome using clin-

ical data (CP) and radiomics features derived from PET and CT at baseline (A) and at month 2 (B) 

in the training data set, with their standard deviations integrated. OS: overall survival; PFS: pro-

gression-free survival, DCB: durable clinical benefit. 

Figure 1. Performances of seven multi-parametric models for the prediction of outcome using clinical
data (CP) and radiomics features derived from PET and CT at baseline (A) and at month 2 (B) in the
training data set, with their standard deviations integrated. OS: overall survival; PFS: progression-free
survival, DCB: durable clinical benefit.
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Figure 2. Performances of seven multi-parametric models for the prediction of outcome using clinical
data (CP) and radiomics features derived from PET and CT at baseline (A) and at month 2 (B) in the
testing dataset.
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At Baseline (PET/CT0)

Clinical parameters model showed low predictive value for progression, DCB, PFS
and OS (AUC of 0.64, 0.40, 0.81, 0.5, and 0.67, 0.60, 0.71, 0.63 in the training and the testing
subset, respectively) (Figures 1A and 2A). Among available clinical parameters, only ECOG
PS was selected for DCB and PFS and only age for OS in the process of model building.
Models including radiomics features had a high predictive value outcome with AUCs
over 0.80, except for the CT-CP model (AUC of 0.75 for the prediction of DCB in the
testing subset). The PET radiomics model outperformed the CT model in predicting DCB,
progression and PFS. Combining PET and CT features further improved performance for
the prediction of DCB, progression and OS, compared to PET or CT features-only models.
The most contributing radiomic features to the models were first-order parameters extracted
from filtered CT images and texture features extracted from PET and CT images (such
as skewness, median, NGTDM_Complexity, GLCM_Autocorrelation and GLCM_imc1).
During the building process, AUC varied greatly for some models, with standard deviation
up to 15% for the PET-CT-CP model predicting PFS (Figure 1). Highest stability (SD = 3%)
was obtained predicting progression using PET-CT (AUC of 0.96 and 1 for the training and
validation subsets, respectively), DCB using PET (AUC of 0.82 and 1) and PET-CP (AUC of
0.78 and 1), PFS using PET-CT (AUC of 0.65 and 1) and PET-CT-CP (AUC of 0.74 and 1)
and OS using PET-CP (AUC of 0.83 and 1).

At Month 2 (PET/CT1)

We observed a similar trend compared with the results obtained at baseline (Figures 1B and 2B).
The CP model was less efficient than models including radiomics features. There was
an overall increase of prediction performances for most of the multivariate models for
progression, PFS and OS, in addition to more consistent results between the training and
testing subsets, especially for progression and PFS. The models that appeared to be the
most promising for the different outcomes were: PET-PC (AUC of 0.91 and 1 for the training
and testing subsets, respectively) and PET-CT (AUC of 0.84 and 1) for DCB; PET (AUC of
0.97 and 1), CT (AUC of 0.74 and 1), PET-PC (AUC of 1 and 1) and PET-CT (AUC of 0.96
and 1) for progression; PET for PFS (AUC of 0.96 and 0.96), and PET-CT for OS (AUC of
0.84 and 0.89).

The most contributing features to the models were textural features, first-order param-
eters extracted from filtered images (PET and CT), age, ECOG PS and response assessed
with PERCIST on PET/CT.

We have performed an analysis of the radiomics quality, according to which our study
scores19 points (out of 36, Table S10) [30].

4. Discussion

The action of anti-PD-1 and anti-PD-L1 antibodies differs from conventional chemother-
apies and has induced new evolution patterns, making imaging-based response assessment
more challenging. Response may be delayed, and early tumor infiltration by immune cells
may induce an initial increase in lesion size. In order to take into account these atypical
patterns, we chose to evaluate patients according to iPERCIST criteria, as proposed by
Goldfarb et al. in 2019 [27]. We identified four patients (5%) with pseudo-progressions,
which is consistent with previous studies in relation to a temporary increase in tumor
burden to transient immune-cell infiltrate followed by tumor regression [31]. All of these
patients subsequently obtained a lasting clinical benefit. This is again in agreement with
previous studies reporting the occurrence of pseudo-progression being a good prognostic
factor [32–34]. It is therefore important to be able to identify these response patterns to
avoid stopping a potentially effective treatment too early.

We investigated the ability of clinical parameters and standard baseline PET/CT
metrics (SUV, MTV, TLG) to discriminate between patients in terms of response (according
to PERCIST at the first restaging, iPERCIST and RECIST1.1 after 3 months of treatment),
DCB and survival. Low ECOG PS (PS = 0) and tumor stage (stage III vs. IV) were



Cancers 2022, 14, 5931 11 of 16

associated with DCB. These results are consistent with those of Seban et al. [35] and
Nardone et al. [36]. In addition, OS was longer in patients with smoking history, in
agreement with immunotherapy having been found to have a greater benefit in NSCLC
patients with a smoking history than in those who had never smoked [37]. None of the
considered clinical parameters was able to discriminate responders from non-responders.

Some authors previously reported a relationship between large MTV, high TLG and
progression during immunotherapy, suggesting a potential predictive value of these param-
eters to predict response and survival [38,39]. In our study, these easily calculated features
were not statistically different according to response or outcome, and therefore they did
not reach a high level of predictive power, probably because of a narrower distribution of
their values in our selected population.

On the contrary, a large number of PET and CT radiomics features were correlated
with therapeutic response, DCB and survival and had a high predictive value (AUC≥ 0.80).
The best-performing parameters at baseline were texture parameters. First-order and shape
features also demonstrated a high predictive value, especially at the first restaging (PET1).

Overall, PET and CT parameters extracted from PET/CT1 were greater predictors than
those at baseline (with a gain ranging from 5 to 10% for the AUC of the best parameters
for progression and PFS). Moreover, features at 4 months (PET2) showed AUCs up to 1 for
the prediction of DCB and OS. This gain in predictive power should be taken with caution
as there were fewer patients in the group studied at month 2 (71 segmented tumors) and
month 3 (n = 34) compared with baseline, which could result in a higher risk of overfitting.

OS and PFS were significantly longer in patients with more homogeneous tumors at
baseline and at the first restaging. These results are in agreement with previous studies [36,38,40].
Nardone et al. [36] reported that high entropy related to tumor aggressiveness in the literature [41]
and low correlation were both associated with poor prognosis. Ahn et al. also found that contrast
and busyness were able to predict recurrence in surgically treated patients [42]. A low value of
coarseness was an independent prognostic biomarker associated with a high risk of recurrence
in our study. This finding is in contrast with Mu et al. [19] reporting patients with more
heterogeneous tumors to have a higher probability of obtaining DCB.

In terms of shape, Mu et al. reported that patients with more convex tumors had a
greater chance to achieve DCB [19]. Indeed, sphericity is thought to reflect PD-L1 expres-
sion and thus potential response to treatment, as PD-L1 cells could form rounder lesions
according to Saeed-vafa et al. [43]. In our study, tumor shape also appeared to be significant
for outcome, with longer PFS and OS in patients with more rounded but spiculated lesions
on the first follow-up PET/CT, reflected by high sphericity and high Surface Volume Ratio,
respectively. An increasing size of the lesion during the first 2 months was associated with
non-response, as expected. Regarding tumor boundaries, Dercle et al. demonstrated that
early regularization of tumor margins was strongly associated with response to nivolumab
and gefitinib [44]. Complex tumor boundaries are indeed conventionally associated with
tumor aggressiveness and worse outcome [45,46]. In our study, while non-responder
tumors tended to lose the roundness of their shape, an increase in the smoothness of
tumor contours (decrease in surface-to-volume ratio) was surprisingly associated with
non-response. This atypical finding could result from the sensitivity of shape features to
segmentation and respiratory motion. Deep learning used for feature extraction without
the need for an intermediate segmentation step may be useful in the future to overcome
such limitations [47].

Using PET-based multivariate modeling was more efficient in predicting DCB, pro-
gression and PFS, while CT remained a better predictor of OS. Those results underlined
the complementarity of both imaging techniques. This was confirmed by an improvement
of combined PET/CT models in predicting DCB, progression and OS. Unsurprisingly,
the addition of low-performing clinical parameters did not further improvethe outcome
prediction. It has been shown in prior studies that combined multi-modality models could
perform better than single-modality approaches (clinical, radiomics or genomic data) for
outcome prediction [48]. Overall, all multimodality models including radiomics features in
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the testing subset achieved a high predictive power (AUC ≥ 0.80) for all outcomes. The
most significant radiomics features included in the models were texture features extracted
from PET and CT images and first-order parameters extracted from filtered CT images.
The results of the models whose performance varied the most between the training and
testing subsets should be taken with caution. The models that appeared the most promising
were therefore PET-CT-CP for DCB, PET-CT for progression and PET for PFS. The lowest
variability of performance estimates (AUCs) was obtained for the prediction of progression,
which is consistent with the highest predictive performance during the univariate analysis.
The performances of these models are similar to those obtained by Mu et al. [19] in devel-
oping a radiomic signature to predict DCB in NSCLC patients treated with immunotherapy.
They combined radiomics features extracted from PET, CT images and the fused PET and
CT images (KLD), ECOG PS and histology with an AUC of 0.89 for the training dataset
and AUCs of 0.86 in both the retrospective and prospective tests cohorts.

Our study had some limitations, including its retrospective design and the small
sample size. The interval of time between baseline PET/CT and the introduction of im-
munotherapy in patients treated in our institution was variable, and we chose to only
include patients with a maximum delay of 3 months (from a few days to 3 months maxi-
mum) to take into account the natural history of lung cancer and avoid non-representative
baseline PET/CT results in a rapidly evolving pathology. This meaningful choice reduced
our inclusion potential. However, in this study we applied a highly appropriate methodol-
ogy to overcome the risk of overfitting, considering the large number of features extracted
and the small size of the population. Indeed, to address this issue, we selected features
using two steps. First, over-correlated parameters using Spearman rank coefficients were
discarded. Then, the LASSO algorithm was used to select the most promising parameters
as it is known to be a robust statistical method for data reduction [49]. In addition, we
performed a cross-validation to build our models, which has been shown to be an effi-
cient method to provide an unbiased estimation on survival prediction [50]. This rigorous
methodology allowed us to consider a very large number of parameters to start with, and
to avoid missing potentially important ones. Radiomics features extraction and analysis is
complex and involves many steps that can affect the reproducibility of studies based on this
approach [51]. After acquisition, segmentation is the first critical step for which we used a
valid and robust method (FLAB) on PET images. Using a low-dose CT performed for PET
attenuation correction, tumor segmentation on CT images was facilitated by automated
alignment of the datasets from the acquisition system (PET/CT). Various filtering and quan-
tization were applied to original datasets since no pre-processing consensus has yet been
achieved, despite harmonization efforts from the scientific community. We partly addressed
the issue of reproducibility and validation following image biomarker standardization and
consensus–based definitions and guidelines for generating radiomics [52].

In this study, the median predicted value was used as a cut-off point to dichotomize high-
and low-risk patients. It is likely that different values would yield different results. However,
testing multiple cutoffs to find the best one without an independent validation dataset in
which to test it has been repeatedly shown to yield overly optimistic results [49,50]. By using
the median, this source of bias is avoided, and the conclusions remain conservative.

The fact that patient recruitment was carried out over several years (2016 to 2020)
explained the heterogeneity of our population reflecting the gradual appearance of the
various immunotherapy molecules and their combination with chemotherapy. Rapidly
evolving practice resulted in immunotherapy being introduced in our population either
in the first or second line with different treatment regimens. This resulting population
heterogeneity is representative of that observed in clinical routine. The predictive value
of PD-L1 status could not be investigated since it was not available for a third of our
population, given that it was not necessarily requested for immunotherapy prescription,
especially before 2019.

Only 34 patients had a second follow-up PET/CT scan, given that this exam is not
systematically recommended in routine for the follow-up of lung cancers. As demonstrated,
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it was found useful to better characterize initial progression, but it may be interesting to
also suggest its use in a larger study based on our promising results for the prediction of
DCB and OS.

Validation is always a crucial point in radiomics studies. To validate our predictive
models, we divided our population into training and validation datasets. This choice
necessarily led to a small-size validation group in which individual variability could
explain slightly lower performance.

5. Conclusions

The introduction of immunotherapy in the management of locally advanced and
metastatic lung cancer has improved patient survival but only achieves a lasting clinical
benefit in 20 to 50% of patients. The search for biomarkers that can successfully identify
patients likely to benefit from this treatment is therefore a major challenge. Our study
showed that radiomics parameters extracted from baseline and follow-up PET/CT scans,
as well as their evolution during treatment, could play an important role in evaluating
the risk of progression during treatment and in predicting response to therapy, DCB and
survival of NSCLC patients treated with immunotherapy. As demonstrated in this real-
clinical-conditions cohort, these parameters seemed to provide a real added value for
outcome prediction compared with clinical or standard PET/CT metrics alone, which could
be beneficial for personalized patient management. Although promising, these results
provide the rationale for an external validation in a large prospective cohort to ensure their
clinical significance.
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