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ABSTRACT

The design and development of generic, low cost, high performance telemetry
components and systems require the optimum integration of custom and standard
hardware elements with a number of real-time software elements. To maintain maximum
flexibility and performance for Goddard Space Flight Center’s VLSI telemetry system
elements, two special real-time system environments were developed. The Base System
Environment (BaSE) supports generic system integration while the Modular Environment
for Data Systems (MEDS) supports application specific development. Architecturally, the
BaSE resides just on top of a commercial real-time system kernel while the MEDS resides
just on top of the BaSE. The BaSE provides for the basic porting of various
manufacturer’s cards and insures seamless integration of these cards into the generic
telemetry system. With this environment, developers are assured a rich selection of
available commercial components to meet their particular application. The MEDS
provides the designer with a set of tested generic library functions that can be employed
to speed up the development of application specific real-time code. This paper describes
the philosophy behind the development of these two environments and the characteristics
which define their performance and role in a final VLSI telemetry system.

INTRODUCTION

Modern real-time telemetry data systems needed to support NASA in the 1990’s and
beyond, require the use and application of state-of-the-art real-time software techniques
and approaches that are tightly coupled with high performance VLSI based hardware
systems. To this end, Goddard Space Flight Center’s (GSFC) Data Systems Technology
Division maintains expertise in both high performance VLSI based hardware design and
state-of-the-art real-time multiprocessing system software design and techniques(l)(2)(4).
This knowledge base is constantly being expanded and augmented by keeping abreast of



the latest commercial hardware processing elements and systems; exploring and exploiting
these technologies as they become available; and maintaining an active on-going dialog
with commercial hardware and software system manufacturers.

With the push toward an automated data driven operation of NASA’s next generation
telemetry data handling systems, it is important that standard system functions be virtually
turnkey in every aspect of their operation. Even though these systems are a tightly
integrated mix of hardware and software elements, they are but single elements in a large,
highly complex NASCOM telemetry data handling system; therefore, these systems must
act as fully automated black box components.

Using the Base System Environment (BaSE) software package, system interactions
between various manufacturer’s cards are prototyped, explored, and tested before being
placed into operational use. Using the Modular Environment for Data Systems (MEDS)
software package, application specific real-time code has a strong modular foundation
that begins with a generic multiprocessing shell and supports the basic software functions
needed by all multiprocessor based telemetry data systems (see figure #1). Because of the
dynamic nature and complexity of these high performance telemetry data systems,
designated system experts with first hand experience, port BaSE and MEDS to the next
generation telemetry systems and perform detailed anomaly analysis and system level
education.

INTRODUCTION To BASE SYSTEM ENVIRONMENT

To maintain their state-of-the-art aspects, NASA’s next generation telemetry systems must
provide a fairly simple and fast path to future enhancements. For this reason, the
electronics hardware is based around the widely supported VMEbus. Likewise, a versatile
software environment, that could support the flexibility of the VMEbus, was also needed.
There are many demands on this environment, but most important it must contain enough
intelligence to automatically configure the system based on a changing hardware
environment. It is the goal of BaSE to provide this type of functionality.

BaSE is more than just a piece of generic software or hardware, it is a developmental and
operational philosophy. It is a means to easily allow the use of the very finest products
that the VMEbus has to offer. It allows the designer to pick and chose those VMEbus
based products that best fit the application at hand. It ensures that products from different
manufacturers can be used together in a “plug and play” fashion. It allows seamless
integration of NASA’s custom VMEbus based telemetry processing cards into the
operational environment. By providing a single environment that is used for all phases of
system development, the use of BaSE spans from initial hardware test and checkout, to
system software development, to final operational system deployment. The goal was to 



FIGURE 1.  THE REAL-TIME SOFTWARE ENVIRONMENT

develop a cost effective telemetry platform that is generic in both hardware and software,
can be used for both development and operations, and can be quickly and easily tailored
to meet changing system needs.

GENERAL DESCRIPTION OF BaSE

BaSE works in conjunction with an unmodified commercially available real-time,
multiuser, multitasking kernel and provides both a complete development environment and
an identical operational environment. This multitasking kernel lies at the core of the
development system and is used to build the system software. This same kernel lies at the
core of the operational system, thus ensuring that both environments are identical. This
dual purpose environment allows the system designer to develop the application directly
on the target system. The use of BaSE eliminates the need for complex and expensive
host software development workstations(5) and microprocessor emulators.



Each CPU card on the VMEbus carries its own copy of the operating system in ROM,
thereby allowing the card to run stand-alone with or without a disk drive or network
connection. The BaSE allows these multiple CPU cards to use VMEbus shared resources
just as if they were the only CPU card in the system.

BaSE can be ported to virtually any Motorola MC68010/20/30 based CPU and its
supporting peripheral equipment (e.g. disk drives) whether it be a commercial card, or
imbedded in a custom application. It is quickly ported (within several days) to new more
powerful hardware as it becomes available. The porting process is simplified because
unique card specific code has been reduced to mere 10% of the overall BaSE code. A
utility program has been developed to simplify the system generation of BaSE and
subsequent ROMing that allows object oriented modifications to the default setup without
changing the source code.

In the development environment, all application specific code resides on the system disk
module, this includes the system startup code, MEDS, Ethernet TCP/IP network
interfaces (3), utilities, etc. In the operational environment, application specific code can
reside on a ROM disk that is placed either locally in the BaSE ROM or globally in a
separate ROM disk card. In either mode, the application code is automatically started
after bootup. The use of a ROM disk ensures that both the development and operations
environments are identical. Plus, it alleviates the need for often tedious and complex run
module generation(8), where the application tasks are intimately linked together with a
real-time kernel into a single module.

BaSE is supported on custom systems with multiple imbedded CPUs. For example, a
GFSC developed card called the VLSI High Speed Packet Processor(7) uses a ring of
three MC68020/030 processors along two CMOS gate arrays. Each CPU runs its own
private BaSE, and through the use of dual ported RAM disks and terminal ports, each
CPU has its own independent development environment. BaSE is also used in an
imbedded mode in the GSFC Transportable Telemetry Workstation(6). This system
consists of a Macintosh II equiped with several custom NUbus cards that perform
various telemetry processing functions. One of the custom NUbus cards supports two
MC68020/030 processors both running BaSE. This card has a shared SCSI port for hard
disk interface and two terminal ports for user interface allowing application specific
system development and monitoring during the prototype stage directly on the target
NUbus card.

OPERATING SYSTEM: RESOURCES

The real-time operating system that is used as the core for BaSE provides one of the
highest performance real-time kernels available for the MC680x0 family. Other real-time



operating systems were not suitable for this environment; they were either too slow, too
large, or too expensive. Many did not provide target system development, the necessary
multiprocessing tools, or the tight hardware coupling and versatility that was required.
Again, the idea was not to develop a “one of a kind” system, but instead a cost effective
generic platform that can be tailored to meet changing system requirements.

The complete real-time operating system has three parts: the real-time kernel, the Basic
Input/Output System (BIOS), and the utility programs. The fully relocatable real-time
kernel is supplied in object code form (source code may be purchased separately) and is
fully generic across any MC680x0 processor. BIOS includes code for basic bootup,
drivers, and I/O devices, for many VMEbus based CPU cards and peripherals. This code
represents the portion of the operating system that is unique to a particular VMEbus
computer system. It is supplied as source code so that the system developer can upgrade,
modify, or tailor it to meet the need. The utilities include compilers, assemblers, linkers,
editors, debuggers, etc.

The real-time operating system provides a basic set of tools, many of which are used by
both BaSE and MEDS, that can be used effectively to build a multiple processor system.
These tools support: global events, global memory installation, global message passing.
Global events are used to synchronize tasks on different processors. The basic functions
can set, clear, and test global event flags. Other functions include delayed set/clear and
task suspension. Global memory installation tools are used to install non-tasking memory
for use in global message passing. The basic functions can allocate, initialize, lock, and
unlock a global memory area. Global message passing tools utilize prioritized queues for
interprocessor/intertask message services. The basic functions can put and get messages.
Other functions can create, delete, and initialize message queues.

ENHANCEMENTS TO BIOS

The original BIOS is designed for an environment in which all cards are from the same
manufacturer and there is only a single CPU board on the VMEbus. Integrating and
porting other manufacturer’s cards could be done with the original BIOS, but it proved to
be custom in its approach and was not easily adapted to NASA’s generic systems
concept. A BIOS was needed that was common on all CPUs used in the system,
regardless of the manufacturer. A number of standard BIOS code modules supplied for
different manufacturer’s CPU cards were analyzed for common code and potential
generic pieces. This common/generic code was stripped out and placed into common
code modules. Initially, the resulting unique code amounted to about 20% of the total
BIOS code. This process continued and modifications were made through the use of
CPU specific parameter files to modify the way the code was assembled leaving only
about 10% of the total BIOS code as unique. The new common BIOS code was then



enhanced to support the generic telemetry platform environment. Furthermore, the card
specific code was modularized and formatted so that even the modules of unique code
were identical in structure. The real-time kernel is not modified in any way, only the BIOS
is altered to meet the requirements.

With the new modularized BIOS used as a base, many enhancements were added to
achieve greater system functionality. One of the first enhancements involved placing the
entire operating system in ROM on board each processor. With this first important step,
processors do not have to depend on disk drives or networks for bootup, thereby making
each CPU fully independent of system peripherals that may or may not be present. The
CPU cards still have full access to these peripherals, but they do not require them for
basic system operation. Resource locks were added so that multiple cards could access
the shared resources virtually simultaneously. Intelligent handling of interrupts and sharing
of global memory were added functions. A new mode of operation function was added,
enabling all CPU cards to run in one of three modes: 1) as a single processor, in a single
CPU environment (e.g. in personal development station), 2) as a master processor in a
multiple CPU environment, or 3) as a slave processor in a multiple CPU environment. The
mode of operation is automatically determined by the BIOS and each CPU card contains
the necessary code to operate in any mode at any time. Finally, a number of diagnostic
functions were added, including comprehensive memory checking and listing of global
and local system configuration.

PORTING BaSE To NEW PROCESSORS AND PERIPHERALS

Porting BaSE to new processors requires writing a limited amount of card specific code
to initialize the card, to process the on board UART, and to handle local interrupts. Also,
several constants in a formatted parameter file must be defined. The most important code
in the porting process, the initial bootup code, is generic across all CPU cards so the
programmer is virtually assured that the system will boot to some degree.

The process of designing drivers for disk drive devices has been greatly simplified. The
original disk drivers supplied in the BIOS were custom coded in assembler. To improve
maintenance, the original code was modularized, recoded in the “C” language, and
relinked to the kernel. Now, each driver has the same format, same set of routines, and the
same structure. New disk drivers can now be written, debugged, and linked to the kernel
in a matter of days, with relative ease, because the programmer concentrates on the
differences between the new disk controller requirements and the library of previous
drivers. Additionally, a library of common disk functions serves to reduce the amount of
new code that needs to be generated.



Overall system maintenance is simplified because 90% of the BIOS code is used across
all processors. Making a change in the common BIOS is reflected in all processors for
that revision. The card specific code is small in comparison and rarely needs
modification.

USING BaSE IN A MULTIPROCESSING SYSTEM

Our use of multiprocessing is fairly straight forward. Each CPU card is stand-alone and
runs its own copy of the operating system in its local RAM. Each card with custom
telemetry processing hardware may be viewed as a smart peripheral card.

Certain system setup problems must be addressed in this environment in the area of
handling interrupts and allocating global memory. In the BaSE, the master CPU card
handles all global VMEbus interrupts and initializes all global VMEbus memory. The
master CPU card converts global VMEbus hardware interrupts to software events that are
set/cleared in a global memory area using operating system supplied multiprocessing
support services. Slave CPU cards suspend on these global events and thus do not have
to process the actual interrupt. When sizing and initializing tasking memory, the master
CPU card installs all global memory that is contiguous to its local memory into its
memory allocation map. Slave CPU cards size and initialize only their own local memory.
This way, multiple processors do not attempt to install the same global memory, which
would be catastrophic if used as tasking memory. Non-contiguous global memory could
be installed by a utility program into any card’s (master or slave) memory allocation map
after multitasking system operations have been started.

INTRODUCTION TO THE MODULAR ENVIRONMENT FOR DATA
SYSTEMS

The systems designed, built, and programmed in GSFC’s Data Systems Technology
Division all have a similar pipelined, multiprocessor, dual bus, hardware architecture as a
platform on which to build application specific hardware. When designing software for
such a system, there are many questions which need to be answered. What data and
parameters will each processor need to accomplish its job? How will the processors
communicate with each other? And with the operator? How can the total job be
subdivided into tasks? On which processors will they run? What data and parameters will
each task need to accomplish its job? How will each task get data? MEDS was developed
to help answer these questions and give an application programmera starting point for
designing a system based on the standard hardware platform.

The Modular Environment for Data Systems (MEDS) is designed as a general purpose
software platform which is expanded and customized by application programmers to suit



their particular requirements. It supports the basic software functions needed in all
systems, namely, the ability to setup application specific hardware and software, process
the telemetry data based on the setup parameters, monitor the processing and supply
network support for remote operator interface and data transfer. MEDS supplies an
infrastructure to pass data between systems, processors and tasks as well as support for
operator interface development. A complete system is built by adding custom code to the
general purpose MEDS code. Therefore MEDS spares the application developer from the
burden of creating an infrastructure for each new system and adds consistency in all
system design, implementation and maintenance.

GENERAL DESCRIPTION OF MEDS

A MEDS based system unites and manages the standard multiple processor hardware
platform. The processors are organized as a single master processor directing multiple
subordinate application specific custom cards (see figure #2). The master processor is
the single point of control within the system; it interfaces with the operator, on either a
local terminal or a remote workstation. Using a set of operator defined setup files, the
master processor will initialize the custom cards and monitor their processing on various
status pages. Telemetry data may enter and exit the system via the remote interface as
well. In any case, it is the pipeline of custom cards that actually process the telemetry
data.

The MEDS software resides mainly on the master with cooperating software running on
each custom card. The basic MEDS functions include:

C Setup system and subsystems for processing (e.g. setup VLSI chip registers).

C Control the application specific processing (e.g. enable, disable, reset a card ).

C Monitor the system and subsystems (e.g. gather and display card processing
status).

C Stream data transfer over network (e.g. transfer telemetry data to/from a
workstation).

MASTER CONTROLLER

The system operator interacts with the operator interface task running on the master
controller. The operator interface task directs the other tasks of the system. Typically, the
operator interface task sends commands to other tasks in the system to setup and control
the processing. The operator interface task also gathers system status for display to the
operator.



FIGURE 2.  MEDS MULTIPROCESSOR ARCHITGECTURE

The following description explains the data flows within the master processor (see
figure #3). Along the top path from left to right, operator requests are accepted and
verified. The requests are translated into messages containing setup information which are
passed to the lower level software. The messages are broken into custom card commands
which are passed to the appropriate card’s command buffer by the interprocessor
communications package. A corresponding custom card task (shown on figure #4) picks
up the commands, executes them and returns a response in the global memory. The
master’s interprocessor software waits for the response. When the response is available,
it is sent back to the operator through the layers of software. Note, if the source of the
commands was the remote operator, the commands and responses would originate and
be returned to it. The remote interface is handled by a higher level task built on the the
network interface software package.

Following the path on the bottom of figure #3 from right to left, the status display data
flows from each custom card buffer to the operator. On each card, status is collected and
placed in a global memory status buffer where the master will look for it (shown on
figure #4). Each card’s status block is copied on timed intervals into a system level buffer
by the master. From the system buffer, the operator interface status display pages can be
built. If the operator is on a remote device, the status is packaged and sent via network
software.



FIGURE 3.  DATA FLOW WITHIN THE MASTER CONTROLLER

The path through the center the figure #3 represents the use of a remote device as a
source or destination of telemetry data. Remote data stream transfer is handled by a
separate task. This process picks up the data from a global memory buffer and transfers it
to a remote device on the network or vice versa using the network communications
software. The remote data transfer task can run on a separate processor dedicated to its
function if needed.

CUSTOM CARDS

Since each custom card must interface with the master controller to receive commands
and report processing status, a standard interface is employed. Usually two tasks are
involved in the interface, the card’s command handling task and a status gathering task
(see figure #4). Both tasks exist as skeleton programs which are customized to the card’s
specific needs. The remaining custom card tasks are concerned with the specific pipeline
data processing functions.

The global memory shown on the left of figure #4 corresponds the global memory shown
on the right of the master data flow diagram (figure #3). The card software waits for
commands to arrive in its command buffer. Once they arrive, the command handler,
based on the command op code, calls the appropriate command routine. The command 



FIGURE 4.  DATA FLOW WITHIN A CUSTOM CARD

is executed, a response is generated and it is placed in the global memory buffer by the
command handler. When all commands are executed, the master is notified that a
response is available.

There is a set of general commands which all cards must support such as reset, enable
and disable. Each card has its own set of custom commands which depend on its specific
functions such as packet filtering or CRC checking. Generally, a command initializes a
card’s hardware and software for operational processing or sets a hardware or software
switch to control processing. The path along the top of the figure #4 illustrates command
execution and response. A command execution may involve writing some custom
hardware registers (HW setup) or software parameters in global memory (SW setup). A
card software designer need not concern himself with the workings of the command
passing, he only needs to analyze the functions and parameters needed of his card and
write a list of commands to fulfill those needs. The command execution routines are the
only portion the card developer must write and link to MEDS command handling
package.

The actual pipeline data processing tasks and interrupt handlers are shown in the center of
the figure as the process labelled “HW Control and Supplemental Data Processing”. The
number and design of these elements are dependent on the hardware design and functions



required of the card. Using the HW and SW parameters setup by the card commands,
these software elements interact directly with the custom hardware during telemetry data
processing. Status is produced during processing by hardware and/or software.

The path along the bottom of figure #4 illustrates the status gathering function on a
custom card. Each card produces status counts in hardware counters and/or software
counters. A task dedicated to the status function runs on each custom card which collects
the card status, formats it into the card status block and writes it to the global memory
where the master expects it. The blocks are gathered on timed intervals by the master
status task, and made available for display at the operator interface or for remote
reporting. The custom card status task is optional. If all status counts are software
generated, they may be incremented directly in the status buffer thus eliminating the need
for a status task. Again, the card designer need not concern himself with how this works,
he only needs to define what type of status his card will generate and where on the card it
can be found.

Also available to the card designer, is the MEDS:LIB which is a software library of C
routines that are commonly used by card developers. For example, move a word, move a
long, move to fifo, move from fifo, move to circular buffer, move from circular buffer,
display and prompt change of a memory location, selftest support routines and so on.
These are reusable routines that appear repeatedly in custom card code. The source and
object code are available and each routine is documented with functional description,
input and output variables, error conditions and special notes.

MODULAR SOFTWARE

The overall MEDS software design is modularized into packages which supply general
purpose system functions such as operator interface support, status gathering support,
command handling support, interprocessor communications, and network
communications. Each package implements a set of functions that serve as a resource to
the application software while hiding the details of their implementation. Consistent
interfaces have been defined for each package so code within a package can be changed
without affecting the application code if the functions and interfaces remain constant.

A MEDS based system is a group of cooperating tasks built on these packages. The
tasks are spread across the processors of the system, both tightly coupled (on the VME
bus) and loosely coupled (on a network between the VME rack and remote workstation).
Some of the packages exist as linkable libraries which the programmer will use to build a
task such as a command handler. Other packages exist as customizable source code files,
where the applications programmer will copy the source file, add in his specific code and
compile, such as a status task. In all cases, the programmer does not need to know the



details of the MEDS code only the interface to it. All processors in a MEDS system run
the PDOS real-time, multitasking OS. MEDS software is written in ‘C’ and assembler is
used for interrupt handlers.

CONCLUSION

To maintain maximum flexibility and performance for Goddard Space Flight Center’s
VLSI telemetry system elements, two special real-time system environments were
developed. The Base System Environment (BaSE) supports generic system integration
while the Modular Environment for Data Systems (MEDS) supports application specific
development. Architecturally, the BaSE resides just on top of a commercial real-time
system kernel while the MEDS resides just on top of the BaSE. The BaSE provides for
the basic porting of various manufacturer’s cards and insures seamless integration of
these cards into the generic telemetry system. With this environment, developers are
assured a rich selection of available commercial components to meet their particular
application. The MEDS supports the basic software functions needed in all systems,
namely, the ability to setup application specific hardware and software, process the
telemetry data based on the setup parameters, monitor the processing and supply network
support for remote operator interface and data transfer. MEDS supplies an infrastructure
to pass data between systems, processors and tasks as well as support for operator
interface development.

The need for these software platforms was apparent from the outset of our work in
telemetry systems. Therefore, much effort was put into making every element of the first
system general purpose. These elements are constantly evolving. Attempts are made to
further generalize and enhance the designs of the hardware and software platforms in each
revision. The pay off is in time, effort and money saved on current and future system
development and system modification. It took 3 years to develop the first system from the
ASICs to the operator interface, but current schedules for more complex systems are in
the 1 year time frame, and would not be possible without the environments described in
this paper.
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NOMENCLATURE

BaSE Base System Environment
BIOS Basic Input/Output System
CMOS Complimentary Metal Oxide Semiconductor
CPU Central Processing Unit
CRC Cyclic Redundancy Check
HW Hardware
MEDS Modular Environment for Data Systems
PDOS Power Disk Operating System
RAM Random Access Memory
ROM Read Only Memory
SW Software
UART Universal Asynchronous Receiver/Transmitter
VLSI Very Large Scale Integration
VME Versabus Module Eurocard Format


