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ABSTRACT 

 

The thesis here reports on and expands the results published in Lamontagne et 

al. [2012].  A hybrid Bayesian weighted/generalized least squares regression 

procedure is used to generate regional skew models for annual maximum rainfall 

floods of various durations in California.  The procedure uses weighted least squares 

to estimate the model coefficients, and generalized least squares to estimate model 

precision.  This procedure is necessitated by the unusually high cross-correlation 

exhibited between concurrent rainfall floods at different sites, which caused the 

regression weights to become unjustifiably erratic.  New diagnostic statistics are 

developed for this special case and applied to real data.  Overall model precision is 

excellent, which is important in the context of Bulletin 17B flood frequency analysis. 

Chapter 1 of the thesis provides an introductory background to flood frequency 

analysis, and the scope and area of the study.  Chapter 1 also describes the procedure 

used by the United States Army Corps of Engineers to develop the rainfall flood time 

series. 

Chapter 2 discusses the characteristics of the log-Pearson Type III distribution, 

the Bulletin 17B flood frequency procedure, the Expected Moments Algorithm, and 

the effect of outliers on frequency estimation and tests for their identification and 

removal. 

Chapter 3 describes the development of weighted least squares and generalized 

least squares for regionalization of hydrologic variables.  Chapter 3 then derives the 

new hybrid weighted/generalized least squares regression procedure and its 
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accompanying diagnostic statistics.  Finally, Chapter 3 discusses recent research 

which uses an alternative generalized least squares framework. 

Chapter 4 details the application of the procedure from Chapter 3 to rainfall 

flood of various durations from California to create a regional skew model for 

California. 

Finally, Chapter 5 examines various aspects of the analysis in Chapter 4 which 

were noticeably different from previous regional skew studies.  In particular, Chapter 

4 reexamines the Pseudo ANOVA table and proposes a new, alternative table. 
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PREFACE 

 

This Thesis focuses on flood frequency analysis, and more specifically on the 

application of Bayesian Generalized Least Squares regression for the generation of 

regional skew models.  The specific application presented here is the generation of 

regional skew coefficient models for California Rainfall Floods of five durations.  The 

genesis of this work was a collaborative regional skew study between the US 

Geological Survey, the US Army Corps of Engineers, and researchers at Cornell 

University.  That work is available as a US Geological Survey Scientific Investigation 

Report (Lamontagne et al., 2012), available through the California Water Science 

Center.  This thesis provides a more in depth and extended discussion of the analysis 

presented there. 

 Chapter 1 contains general background information about the motivation and 

scope of the study.  Section 1.1 details the background, including a brief discussion of 

flood frequency procedures in the United States and current improvements to 

California infrastructure that precipitated this work.  Section 5.2 discusses the 

geographic scope of the study area, which mostly included river basins which drain 

into the Central Valley of California.  Section 1.3 details the range of basin 

characteristics which were available for each study basin as well as a discussion as to 

their range across the study region.  Section 1.4 describes the flood separation 

procedure used by the US Army Corps of Engineers when developing the rainfall 

flood records, and Section 1.5 discusses several notable basins which required special 

treatment. 

 Chapter 2 contains a discussion of flood frequency analysis procedures based 

on the log-Pearson type III distribution.  Section 2.1 explores the characteristics of the 
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log-Pearson type III distribution, and Section 2.2 details the Bulletin 17B fitting 

procedure, which is the standard procedure applied by Federal agencies in the United 

States.  Section 2.3 describes the Expected Moments Algorithm, which is a new 

moments based fitting technique which efficiently accounts for outliers and special 

data types.  Finally, Section 2.4 describes the problem of low outliers in flood 

frequency analysis, and explores several procedures for their identification. 

 Chapter 3 provides a theoretical discussion of Bayesian GLS procedures 

generally, and a description of the new Bayesian WLS/GLS procedure applied by 

Lamontagne et al. [2012].  Section 3.3 also introduces the concept of redundant basins 

and provides a new statistic designed to detect potentially redundant pairs. 

 Chapter 4 discusses the details of the regional skew analysis for California 

rainfall floods first published by Lamontagne et al. [2012].  Section 4.6 provides an 

auxiliary analysis, not published in Lamontagne et al. [2012], which explores whether 

a unique model form for each duration would have been appropriate. 

 Chapter 5 explores several issues which were raised during the US Geological 

Survey internal review process.  Section 5.1 explores the variance of prediction and 

the effective record length statistics to determine if the remarkable results in Chapter 4 

are appropriate when compared to other Bayesian GLS skew studies. Section 5.2 

explores the issue of Analysis of Variance and discusses a new addition to the pseudo 

Analysis of Variance proposed by previous Bayesian GLS work.  Finally, Section 5.3 

explores whether the unique regional skew models for each duration result in 

inconsistencies in the subsequent flood frequency analysis.



   1 

CHAPTER 1 

 

INTRODUCTION 

 

 When designing civil infrastructure, engineers must consider the natural 

loadings which a structure will experience over its lifetime.  For riparian structures, 

this often involves estimating the magnitude of a flood associated with a certain 

frequency, or return period, or the risk of flooding.  Flood frequency analysis attempts 

to estimate the frequency of flood magnitudes based on flood records, basin 

hydrologic characteristics, and a combination of both.  Many methods can be utilized 

in flood frequency analysis. This thesis focuses on the Bulletin 17B (B17B) guidelines, 

which are the standard flood frequency methodology used by US Federal agencies.  

More specifically, this thesis focuses on estimation of the regional log-space skew 

coefficients, which are combined with at-site sample skew coefficients to fit the log-

Pearson Type III (LP3) distribution to annual maximum flood series [Interagency 

Committee on Water Data (IACWD), 1982; Stedinger et al., 1993; Griffis and 

Stedinger, 2007a; England and Cohn, 2008] 

 The research presented here builds on previous work in the Bayesian 

Generalized Least Squares (GLS) regional skew coefficient regression framework 

[Reis et al., 2005; Gruber and Stedinger, 2008].  Methodological advancements 

include the first application of a newly developed least squares algorithm designed to 

accommodate high cross-correlation among the sample skew coefficients, and the 

introduction of a new redundancy metric, standardized distance.  The focus of this 
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study is rainfall floods of various durations in and around the Central Valley of 

California. 

 Section 1 of this chapter contains a discussion of flood frequency methods that 

are commonly applied in the United States, recent developments, and the purpose and 

scope of this research.  Section 2 describes the hydrology of the study region and the 

characteristics of the basins which were selected for inclusion.  Section 3 describes the 

basin characteristics considered as explanatory variables for regional skew, and 

Section 4 briefly describes the procedure used to estimate annual rainfall floods.  

Finally, Section 5 describes special considerations taken for notable study basins. 

Section 1.1: Background 

 The risk of flooding is a major consideration for riparian structures.  Obtaining 

reliable estimates of flood frequency is a very important design consideration.  If one 

can assume that a gauged basin’s hydrology has been stationary over some period of 

record, then the frequency of a flood magnitude can be estimated directly from the 

flood record.   Unfortunately, the length of such records is often limited compared to 

the long return periods of interest, so direct determination of the underlying frequency 

distribution is not precise enough to be of practical use.  For example, one would not 

expect a 30-year record to directly yield a good estimate of the 100-year flood.  In 

some applications, such as dam design, engineers estimate 1,000-year flood events 

[Calzascia and Fitzpatrick, 1989], while the maximum record length for a basin in the 

United States is about 110 years.  Fitting a statistical distribution to flood records 

provides a way to extend the frequency information contained in a record to extreme 

events which have likely not been observed.  For this reason, rigorous flood frequency 
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analysis often involves the fitting of statistical distributions to historical flood records 

[IACWD, 1982; Stedinger et al., 1993; Brutsaert, 2005; Chow et al., 1988]. 

 Several distributions are reasonable for describing annual flood series, 

including  the log-normal (LN), log-Pearson Type III (LP3), and the generalized 

extreme value (GEV) distributions [Stedinger et al., 1993, Chow et al., 1988].  One 

can imagine that extreme flood quantiles estimated from different frequency 

distributions can yield very different flood flow estimates, which can in turn have 

result in very different flood stage estimates. 

 Prior to the 1960s, no uniform method for flood frequency analysis had been 

adopted by the United States Federal government, which is responsible for the 

construction and maintenance of most critical infrastructure in the United States.  Up 

to that time individual agencies each used their own preferred methods, which often 

led to inconsistencies.  In an effort to encourage more consistency, the recently formed 

Water Resources Council published Bulletin 15 “A Uniform Technique for 

Determining Flood Flow Frequencies” in 1967.  Bulletin 15 dictated that the LP3 

distribution with a regional skew coefficient be used by all Federal agencies when 

conducting flood frequency analysis.  This was followed by Bulletin 17 in 1976, 

Bulletin 17A in 1977, and finally Bulletin 17B (B17B) in 1981, with slight revisions 

released in 1982.  These later releases provided further guidance on fitting the LP3 to 

increase uniformity across all agencies [Griffis and Stedinger, 2007b; Griffis, 2006; 

IACWD, 1982].  The LP3 distribution and specific B17B recommendations are 

discussed in more detail in Chapter 2. 
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 Since 1982 there have been no official changes to B17B, but research on flood 

frequency using the LP3 has continued.  Recent advances can be divided into five 

primary categories[Stedinger and Griffis, 2008]: regional skew estimation, use of 

historical information, plotting positions, confidence intervals, and quantile weighting.  

This thesis is focused on improving techniques for regional skew estimation, and 

represents the latest development in regional skew regression methodology.  Another 

recent advance has been improved outlier detection methodologies, which will be 

discussed tangentially in Chapter 2. 

 B17B provides a national skew map (Plate I) for estimation of regional skew, 

but also recommended the analyst seek better, regional models when possible 

[IAWCD, 1982].  To this end, Tasker and Stedinger [1986] proposed a Weighted 

Least Squares (WLS) procedure for regressing regional skew coefficient models on 

basin characteristics.  This framework assumes regression error to be caused by either 

model error or sampling error of the sample skew coefficient.  Sites are weighted 

according to the sampling error variance of their sample skew coefficient (a function 

of record length).  Stedinger and Tasker [1985] and Tasker and Stedinger [1989] laid 

out a Generalized Least Squares (GLS) procedure for hydrologic regression.  This 

differs from a WLS framework in that GLS also accounts for the covariance between 

observations.  The significance of this is discussed in more detail in Chapter 3.  Reis et 

al. [2005] extended this procedure to a Bayesian GLS framework for regional skew 

models.  Traditional GLS can return zero model error variance in some instances, 

which is clearly not realistic.  By contrast, Bayesian GLS generates the posterior 

distribution of model error variance, so this is not a concern.  Bayesian GLS has been 
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applied to regional skew coefficient modeling in the southeast region of the United 

States [Feaster et al., 2009; and Gotvald et al., 2009; Weaver et al., 2009] and in 

California [Parrett et al., 2011], with additional studies currently on going. 

 Kjeldsen and Jones [2006, 2007, 2009] have also applied GLS to generate 

index flood models for the United Kingdom.  Kjeldsen and Jones [2007] present 

evidence that model errors are correlated, while Stedinger and Tasker [1985] assume 

they are not.  The hydrologic regionalization work of Kjeldsen and Jones are described 

in more detail in Section 3.3and by Veilleux [2009]. 

The purpose of this study was to develop regional skew coefficient models for 

rainfall floods of various durations in California using the advances described above.  

This was accomplished using a new WLS/GLS hybrid method similar to that used in 

the previous California instantaneous annual peak skew study [Parrett et al., 2011].  

This study was the result of collaboration between the United States Army Corps of 

Engineers (USACE), the California Department of Water Resources (DWR), the 

United States Geological Survey (USGS) California Water Science Center (CAWSC), 

and the School of Civil and Environmental Engineering at Cornell University. 

 As is the case around the United States, much of the flood protection 

infrastructure in California is in dire need of repair and is slated for rehabilitation or 

reconstruction [ASCE, 2006; Lamontagne et al., 2012].  Before embarking on this 

effort in earnest, the USACE sought to develop the most rigorous study possible of 

flood risk in the Central Valley of California, using the most advanced techniques 

available.  USGS Water Science Centers provide periodic updates to flood frequency 

estimates at sites of interest, so CAWSC and USACE collaborated in this effort.  
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Given the success of the instantaneous annual peak flow study [Parrett et al., 2011], 

USACE sought to expand the study to include annual maximum rainfall floods of 1-

day, 3-day, 7-day, 15-day, and 30-day durations.  Since researchers at Cornell 

University had developed the most recent advances in regional skew regression and 

successfully collaborated with USGS to conduct regional skew studies in the 

Southeast [Feaster et al., 2009; and Gotvald et al., 2009; Weaver et al., 2009] and 

California [Parrett et al., 2011], USGS approached Cornell to conduct the regional 

skew coefficient aspect of the study [Lamontagne et al., 2012]. 

 The USACE provided Cornell with annual maximum unregulated rainfall 

flood records  for each of the durations of interest at 55 basins in and around the 

Central Valley of California.  In some cases these had to be reconstructed from 

regulation records using the process discussed in Section 1.4.  The USGS provided 

key basin characteristics for consideration as explanatory variables. These are 

discussed in more detail in Section 1.3. 

Section 1.2: Study Area 

 The site records selected for this study are primarily from dams and gauging 

stations on rivers and streams which flow into California’s Central Valley and are 

operated by USACE or USGS respectively.  USACE provided records for 55 sites, but 

only 50 were used in this study.  Site records were removed for a variety of reasons 

including flood record unreliability, flood records that were synthetically augmented 

using other study sites, or because a site experienced flows which were 

uncharacteristic of the greater study region.  An example of this last point was 

Orestimba Creek near Newman (study site 22), which experienced 12 years of zero 
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flow in a record of 77 years, with several other reported maximum annual flows being 

less than 5 cfs.  The flood distribution characteristics of Orestimba Creek were 

deemed too different from the greater study region and not characteristic of the critical 

infrastructure sites of interest to USACE. 

 Table 1.1 lists the site number and name, the available period of flood record 

(POR), the mean basin elevation (Elev), and drainage area (DA) for each site included 

in the study.  Figure 1.1 shows the location of each of the study sites and their basins 

overlaid on a map of California. 

 The study sites’ basins cover a wide range of hydrologic types and can be 

divided into three geographical categories: Sierra Nevada Range basins, north Coastal 

Range basins, and south Coastal Range basins.  Both high mountain basins which 

receive deep annual snow pack and small flat basins on the Central Valley floor were 

included.  Mean basin elevations included in this study range between 250 and 7,500 

ft, with drainage areas between 10 and 6,400 sq miles.  Figure 1.2 and Figure 1.3 plot 

the drainage area and mean basin elevation versus site respectively.  
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Table 1.1: Study basins, period of record, drainage area, and mean basin elevation 

[Reproduced from Lamontagne et al., 2012]. 

Site # Site Name POR DA Elev (ft) 
1 Sacramento R Shasta Dam 77 6403 4571 
3 Cottonwood Ck near Cottonwood 68 922 2221 
4 Cow Ck near Millville 59 423 2251 
5 Battle Ck below Coleman Hatch 68 361 4074 
6 Mill Ck near Los Molinos 80 131 3962 
7 Elder Ck near Paskenta 60 93 2998 
8 Thomes Ck at Paskenta 76 204 4146 
9 Deer Ck near Vina 92 209 4199 

10 Big Chico Ck near Chico 77 72 3111 
11 Stony Ck at Black Butte Dam 66 740 2416 
12 Butte Ck near Chico 78 148 3717 
13 Feather R At Oroville Dam 107 3591 5031 
14 North Yuba at Bullards Dam 68 489 4899 
15 Bear R near Wheatland 103 292 2250 
16 N Fork Cache Ck at IV Dam 77 120 2627 
17 American R at Fair Oaks 104 1887 4356 
18 Kings R at Pine Flat Dam 113 1544 7634 
19 San Joaquin R at Friant Dam 105 1639 7046 
20 Chowchilla R at Buchanan Dam 80 235 2152 
23 Del Puerto Ck near Patterson 44 73 1835 
24 Merced R at Exchequer Dam 107 1038 5473 
25 Tuolumne R at Don Pedro Dam 112 1533 5882 
26 Stanislaus R at Melones Dam 93 904 5663 
28 Duck Ck near Farmington 30 11 249 
30 Calaveras R at Hogan Dam 96 372 1991 
31 Mokelumne R at Camanche Dam 104 628 4918 
32 Cosumnes R at Michigan Bar 101 535 3064 
33 Fresno R near Knowles 76 134 3201 
34 S Yuba R at Jones Bar 57 311 5362 
35 M Yuba R below Our House Dam 37 145 5365 
36 Kaweah R at Terminus Dam 50 560 5635 
37 Tule R at Success Dam 50 392 3975 
38 Kern R Isabella Dam 116 2075 7198 
39 Mill Ck near Piedra 52 115 2637 
40 Dry Ck near Lemoncove 50 76 2668 
41 Deer Ck near Fount Spring 41 83 3989 
42 White R near Ducor 46 91 2443 
43 Cache Ck at Clear Lake  87 527 2004 
44 Putah Ck at Mont Dam 78 567 1327 
45 M Fork Eel R near Dos Rios 43 745 3685 
46 S Fork Eel R near Miranda 68 537 1726 
47 Mad R above Ruth Res 28 94 3705 
48 E Fork Russian R near Calpella 67 92 1630 
49 Salinas R near Pozo 41 70 2211 
50 Arroyo Seco near Soledad 107 241 2494 
51 Salmon R at SomesBar 84 751 4261 
52 Santa Cruz Ck near Santa Ynez 67 74 3355 
53 Salsipuedes Ck near Lompoc 67 47 920 
54 Trinity R above Coffee Ck 51 148 5340 
55 Scott R near Fort Jones 67 662 4333 
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Figure 1.1: Location of Study Basins [Reproduced from Lamontagne et al., 2012]. 

 The majority of basins in the study drain the western side of the Sierra Nevada 

Mountain Range, which runs along California’s eastern border.  These basins 

generally range in mean elevation between 2,000 and 7,500 ft, and have drainage areas 

roughly between 90 and 6,000 sq miles.  The southern Sierra Nevada basins, including 

the Kern River (study site 38), the Kaweah River (study site 36), the Kings River 

(study site 18), and the Tule River (study site 37) drain some of the highest elevations 

in the continental US, including Mt. Whitney, which is the highest peak in the lower 

48 states [Carle, 2004]. 
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Figure 1.2: Drainage Area versus Site [Reproduced from Lamontagne et al., 2012]. 

The basins of the central Sierra Nevada flow into the San Joaquin River, which 

account for roughly 9% of California’s total annual runoff.  Study basins in this region 

include eastern sites between the Cosumnes River at Michigan Bar (study site 32) in 

the north to the upper San Joaquin River at Friant Dam (study site 19) in the south (see 

Figure 1.1).  The Cosumnes River is the only Sierra Nevada river in this study which 

is not regulated.  The major tributaries to the lower San Joaquin River are the 

Stanislaus River (study site 26), Toulmne River (study site 25) and the Merced River 

(study site 24) [Carle, 2004].  These basins represent some of the highest mean 

elevation basins in the study, matched only by the southern Sierra Nevada study 

basins. 
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Figure 1.3 Mean Basin Elevation vs. Site [Reproduced from Lamontagne et al., 2012]. 

 The basins of the northern Sierra Nevada region contribute the majority of the 

flow of the Sacramento River, which drains over 30% of California’s total annual 

runoff [Carle, 2004].  In this study the Mt. Shasta region, including the Sacramento 

River at Shasta Dam (study site 1), the Trinity River above Coffee Creek (study site 

54), and the Scott River at Fort Jones (study site 55) were considered Sierra Nevada 

basins. 

 Many of the Sierra Nevada study basins experience significant snowfall in the 

winter months and prolonged snowmelt runoff in the spring.  This study dealt with 

rainfall floods only, so exclusive snowmelt events were not considered.  However, the 

largest annual floods in these basins are often rain-on-snow events in which warming 

temperatures cause precipitation to fall as rain, which rapidly melts much of the 
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snowpack, resulting in large flood events.  This phenomenon was observed by Parrett 

et al. [2011], who conducted a more extensive instantaneous annual peak flow skew 

study for California.  Special considerations taken for these events are described in 

Section 1.4. 

 The majority of the other basins included in the study drain both the eastern 

and western sides of the Coastal Range, which runs roughly parallel to the Pacific 

coast from Oregon to the Mexican border.  In this study, the Coastal Range was 

divided into two groups, with basins north of San Francisco forming the north Coastal 

Range and basins south of San Francisco forming the south Coastal Range. 

 The north Coastal Range experiences the highest rainfalls in California, with 

many basins experiencing over 100 inches of rain per year.  This region accounts for 

roughly 40% of the annual runoff in California [Carle, 2004].  Major study basins in 

this region include the Eel River (both Middle (45) and South (46) Forks), the Salmon 

River gauged at Somes Bar (study site 51), and the East Fork of the Russian River 

gauged near Capella (study site 48).  Incredibly, the Eel River has produced flood 

flows which exceed those experienced on the Sacramento River despite its drainage 

area being less than one-seventh the size.  This is an indication that extreme rainfall 

events dominate the north Coastal Range flood characteristics.  Some higher elevation 

north Coastal Range basins do experience some snowfall in the winter months, but this 

is relatively limited compared to the Sierra Nevada snow packs [Carle, 2004]. 

 It should be noted that three sites draining the interior of the north Coastal 

Range were included in this classification: Cache Creek at Clear Lake (study site 43), 

North Fork Cache Creek at the Indian Valley Dam (study site 16), and Putah Creek at 
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Monticello Dam (study site 44).  These sites experienced many small rainfall floods 

during their period of record, and are not necessarily characteristic of the other north 

Coastal Range sites described above.  Their unique hydrology required special 

consideration when performing flood frequency as discussed in Section 2.4. 

 The south Coastal Range basins experience much less rainfall than the north 

Coastal Range basins.  Major basins in this region include Santa Cruz Creek near 

Santa Ynez (study site 52) and the Salinas River near Pozo (study site 59).  Santa Cruz 

Creek originates in mountainous terrain and has the highest mean basin elevation of all 

the south Coastal Range basins.  The Salinas River often dries out due to evaporation, 

infiltration, and diversion, but feeds groundwater aquifers that sustain local 

agriculture.  This is not uncommon for this region. The aforementioned Orestimba 

Creek, whose record contained 12 zero annual rainfall flood observations from a 

record of 77 years, is located in this region.  The Arroyo Seco River (study basin 50) is 

the only major river in the south Coastal Region which is not regulated [Carle, 2004]. 

 Figure 1.4 plots the mean basin elevation versus drainage area for the three 

geographical categories of sites described above.  Note that the largest and highest 

basins in the study are located in the Sierra Nevada Range, though many Sierra 

Nevada basins have similar mean elevation and drainage area as Coastal basins.  North 

Coastal basins tend to have larger drainage areas than south Coastal basins, though 

both have similar mean basin elevations.  The sites with the largest drainage areas in 

this study are the Sacramento River at Shasta Dam (study site 1) followed by the 

Feather River at Oroville Dam (study site 13).  The three study sites with the highest 

mean basin elevation are the Kings River at Pine Flat Dam (study site 18), the Kern 
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River at Isabella Dam (study site 38), and the San Joaquin River at Friant Dam (study 

site 19).  These basins are located in the south of the Sierra Nevada Range.  In both the 

Coastal and the Sierra Nevada Mountain Ranges, southern basins tend to receive less 

annual precipitation than northern basins [Carle, 2004], and often more snow because 

of the higher elevation.    

 

Figure 1.4: Drainage Area vs. Mean Basin Elevation (Study Site 28 not Plotted) 

[Reproduced from Lamontagne et al., 2012]. 

 The basin with the smallest drainage area and mean basin elevation is Duck 

Creek near Farmington (study site 28), which is located on the floor of the Central 

Valley.  It is the only study site not plotted in Figure 1.4.  This basin has a drainage 

area of 11 square miles and a mean basin elevation of roughly 250 ft.  While Duck 

Creek is not necessarily characteristic of the basins of interest to USACE, its short 
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record length (only 30 years) ensured that it had very little weight in the skew 

regression. 

Section 1.3: Basin Characteristics 

 A total of 20 basin characteristics were provided by USGS for each of the 

study sites.  These included common physical characteristics such as mean basin 

elevation and basin drainage area, geographic characteristics such as basin centroid 

and outlet location, and climatic characteristics such as mean annual precipitation and 

mean January maximum temperature.  Geographic and physical characteristics were 

drawn from the National Hydrologic Dataset (NHDPlus) and National Land-Cover 

Dataset (NLCD).  Climatic characteristics were largely drawn from the Parameter-

Elevation Regressions on Independent Slopes Model (PRISM) climatic dataset.  

Climatic data was compared to the older National Water Information System (NWIS) 

database and inconsistencies were found to be negligible [Lamontagne et al., 2012].  

Table 1.2 contains a list of the basin characteristics considered in this study, along 

with definitions, and the source of the data. 

 Of particular significance to this study was mean basin elevation, EL6000, and 

basin centroid location.  Mean basin elevation is simply the mean elevation above sea 

level in feet and the centroid location is specified by its latitude and longitude in 

decimal degrees.  EL6000 was the percent of the basin area with elevation greater than 

6000 feet, which is generally considered the elevation above which winter 

precipitation falls as snow in California.  Each of these basin characteristics proved to 

be significant through the course of the study, as discussed in Chapter 4.  
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Table 1.2: List of all primary variables considered [Reproduced from Lamontagne et 

al., 2012]. 

Name Description Data source (if applicable) 

Basin No Unique identifier for basin   

BASINPERIM Perimeter, in miles 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

RELIEF Relief, in feet 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

Mean ELEV Average basin elevation, in feet 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

DRNAREA Basin drainage area, in square miles 
 

ELEVMAX Maximum elevation, in feet 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

MINBELEV Minimum elevation, in feet 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

LAKEAREA 

Percentage of area covered by lakes 
and ponds 

2001 National Land Cover Database (NLCD)  
- Land Cover  
http://www.mrlc.gov/nlcd_multizone_map.php 

EL6000 

High Elevation Index - Percent of 
basin area with elevation above 
6,000 feet 

30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

OUTLETELEV Elevation at outlet, in feet 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

RELRELF 

Basin relief divided by basin 
perimeter, in feet per mile 

 

DIST2COAST 

Distance in miles from basin centroid 
to coast along a line perpendicular to 
eastern California border 

 

BSLDEM30M Average basin slope, in percent 
30-m DEM, NHDPlus elev_cm grid 
http://www.horizon-systems.com/NHDPlus/ 

FOREST 

Percentage of basin covered by 
forest 

2001 National Land Cover Database (NLCD)  
- Percent Canopy 
http://www.mrlc.gov/nlcd_multizone_map.php 

IMPNLCD01 

Percentage of basin covered by 
impervious surface 

2001 National Land Cover Database (NLCD) 
- Percent Impervious 
http://www.mrlc.gov/nlcd_multizone_map.php 

PRECIP Mean annual precipitation, in inches 
800M resolution PRISM 1971-2000 data  
http://www.prism.oregonstate.edu/products/ 

JANMAXTMP 

Average maximum January 
temperature, in degrees Fahrenheit 

800M resolution PRISM 1971-2000 data  
http://www.prism.oregonstate.edu/products/ 

JANMINTMP 

Average minimum January 
temperature, in degrees Fahrenheit 

800M resolution PRISM 1971-2000 data  
http://www.prism.oregonstate.edu/products/ 

CENTROIDX 

X coordinate of the centroid, in 
decimal degrees 

 

CENTROIDY 

Y coordinate of the centroid, in 
decimal degrees 

 OUTLETX X coordinate of the basin outlet 
 OUTLETY Y coordinate of the basin outlet 
 

Section 1.4: Procedures for Determining Rainfall-floods 

 Time series of unregulated annual maximum rainfall floods of the five 

durations were prepared by USACE for each of the 50 study sites.  This section 

provides a brief explanation of the process by which these were obtained.  A more in 
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depth discussion of   this can be found in USACE [2002] and Lamontagne et al. 

[2012]. 

 In this study, daily maximum flows are measured from midnight-to-midnight 

rather than in a moving 24-hour window.  Unregulated daily flow data were available 

for 28 of the 50 study sites, while 22 study sites experience some regulation or 

diversions.  The objective in this study was to develop regional skew coefficient 

models for annual maximum unregulated rainfall flood flows.  Thus, USACE had to 

determine and remove the effects of regulation and snowmelt.  In general, a four step 

methodology was used to achieve this:  

(1) Obtain a daily streamflow record for basin. 

(2) If necessary, consider the daily regulation record and remove effects of regulation.  

In some cases this involved observing the daily change in storage record for a basin’s 

terminal reservoir.  

(3) Observe daily hydrograph of large events and remove snowmelt-only events.   

(4) Extract remaining annual maximum flow. 

 

 The process for event separation involves visual inspection of the daily flow 

series supplemented with daily temperature data to determine the start of the snowmelt 

season.  This then serves as the segregation point for events.  If the maximum event 

for the year occurs due to rainfall during the snowmelt period, the segregation point 

was adjusted to include this event in the rainfall floods. 

 Twenty-two of the study sites’ records exhibited significant snowmelt effects 

so that the maximum recorded flood in many years was caused snowmelt only.  These 

events were identified through visual inspection of the flood record and removed 
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[Lamontagne et al. 2012].  Each of these sites are located in the Sierra Nevada Range, 

which experiences much more snowfall than the Costal Range. 

 Twenty-seven sites in this study were included in the previous Sacramento-San 

Joaquin Comprehensive Study, which featured annual maximum rainfall flood values 

through 1998 or 1999 [USACE, 2002].  These records were extended through 2008 

using the procedure discussed above.  The Calaveras River at New Hogan Dam (study 

site 30) was also extended from 1964 back to 1908 using stream gage data from 

upstream and downstream of the reservoir, as well as reservoir storage data from the 

old Hogan Dam reservoir. 

 It should be noted that the time series provided are in fact the total volume of 

run-off divided by the duration, and are thus average flow values.  As a result, it is 

impossible for an average duration flow value to be greater than a shorter average 

duration flow.  For example, the 30-day flow must by definition be less than or equal 

to the 15-day flow.  Realistically speaking, the 30-day flow will be less than the 15-

day flow, because precipitation floods do not begin instantaneously, maintain a 

constant flow, then instantaneously cease.  In most instances the same event accounted 

for the maximum floods at all durations. 

Section 1.5: Notable Basins 

 The flood records for two high elevation sites, the Kern River at the Isabella 

Dam (study basin 38) and the Kaweah River at the Terminus Dam (study basin 36), 

appeared to exhibit a lower bound on flows.  Such a lower bound causes the skew 

coefficient to become very positive, which can in turn cause the fitted LP3 distribution 

to underestimate the magnitude of large flood quantiles.  An in-depth discussion of 
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this phenomenon can be found in Section 2.1.  Through discussion with USACE and 

USGS, it was determined that this lower bound was likely due to the large snowpack 

these basins receive every year, which melts slowly over the course of the year, 

essentially providing a base flow.  The typical base flow magnitude was determined 

graphically by observing the probability plots of the various durations.  Ultimately, 

base flow magnitudes of 150 cfs and 60 cfs were selected for the Kern River and 

Kaweah River basins respectively.  By subtracting these values from the annual 

maximum rainfall flood series, a more reasonable sample skew coefficient can be 

estimated.  When performing flood frequency analysis for these sites, it would be 

advisable to subtract the baseflow when fitting the LP3 distribution, and then to add 

the baseflow to the estimated quantile magnitude.  Figures 1.5 and 1.6 plot the 30-day 

record for the Kern River (study basin 38) with and without baseflow subtraction 

respectively, and the accompanying fitted LP3 curve.  Note that the unadjusted 

observations appear to exhibit a lower bound and the sample has a highly positive 

skew coefficient (0.613).  USGS and USACE hydrologists felt this was unrealistic.  

After the baseflow subtraction, the skew coefficient is nearly zero (0.080), which is 

more comparable to other study basins with similar mean elevation. 
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Figure 1.5: Probability Plot for Kern River at Isabella Dam (Study Basin 38), without 

baseflow subtraction. 

 

Figure 1.6: Probability Plot for Kern River at Isabella Dam (Study Basin 38), with 

baseflow subtraction. 
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CHAPTER 2 

 

FLOOD FREQUENCY ANALYSIS 

 Flood risk can be communicated as flood frequency, which is the frequency 

with which a flood of magnitude    or greater is expected to occur.  The return period 

or recurrence interval T is the average length of time between events of    magnitude 

or greater.  If one assumes that annual peak floods are independent events, the  -year 

flood is the flood which has a 1/   annual exceedance probability (AEP) in any given 

year [Stedinger et al, 1993; Interagency Advisory Committee on Water Data 

(IACWD), 1982].  To help minimize the correlation between consecutive years’ 

floods, hydrologists in the United States designate the ‘water year’ to begin on 

October 1 and end on September 31. 

 Analytical flood frequency analysis typically involves the fitting of a statistical 

distribution to the series of annual peak flows, or some transformation of the annual 

peak flows.  The true distribution of annual floods is likely too complex to be 

understood or of practical use to the analyst [Stedinger et al., 1993].  Without 

knowledge of the true distribution’s form, the discrete empirical distribution from 

available flood records can be used to estimate the flood distribution at a site.  One 

downside of this approach is that it implicitly assumes floods greater or less than those 

already observed cannot occur [Loucks and van Beek, 2005; pg 179].  This can 

present difficulties if one is interested in events with return periods greater than the 

period of record (POR) for a basin of interest.  Flood records in the United States are 

typically between 10 and 110 years, while design events might have return periods as 

long as 1,000 years [Calzascia and Fitzpatrick, 1989].  One way to extend the 
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information contained in data to such extreme events is to fit a parametric probability 

distribution to the data.  Several distributions are reasonable for annual floods, and a 

variety of alternatives are used in practice around the world [Stedinger et al., 1993, 

Chow et al., 1988].  In the United States, the log-Pearson Type III (LP3) is used by all 

Federal agencies as recommended by Bulletin 17B [IACWD, 1982].  This ensures that 

flood frequency methods employed across the nation are consistent and reasonably 

precise. 

 This chapter provides a discussion of Bulletin 17B flood frequency techniques 

currently in use in the United States, as well as new methodologies which are coming 

into use.  Section 2.1 explores the properties of the LP3 distribution, the importance of 

the skew coefficient and the use of regional skew estimators.  Section 2.2 is a 

summary of the Bulletin 17B flood frequency procedure.  Section 2.3 describes the 

expected moments algorithm (EMA), which is expected to be adopted as the fitting 

procedure for an anticipated Bulletin 17C. Finally Section 2.4 discusses the issue of 

low outliers in flood records, existing identification procedures, and proposed new 

procedures which are expected to be adopted in a new Bulletin 17C. 

Section 2.1 Flood Frequency based on the log-Pearson Type III distribution 

 The LP3 is a flexible distribution which has been the standard for estimating 

flood quantiles for gauged sites in the United States since 1982 [IACWD, 1982].  The 

Pearson Type III distribution is a variation on the gamma distribution which can take a 

wide variety of shapes depending on its parameters.  This section discusses the LP3 

distribution in more detail, illustrates the affects of changes to its parameters, and 
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discusses the importance of the skew coefficient and the use of a generalized skew 

coefficient.  

Section 2.1.1 The log-Pearson Type III distribution 

 The 3-parameter Pearson Type III (P3) distribution is a variation of the two-

parameter gamma distribution obtained by subtracting a constant   from random 

variable  .  The P3 probability density function (pdf) has the form [Bobée, 1975]: 

      
   

    
                           (2.1) 

which is defined for          and    , where      is the gamma function, 

which is defined as: 

                   
 

 
      (2.2) 

Here    is a shape parameter and   is a scale parameter.  For     ,    is the lower 

bound for  ; and for    ,   is the upper bound for  . 

 The distribution’s three parameters,  ,   , and  , are related to the mean   , 

standard deviation   , and skew coefficient    of   as follows 
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Since    is positive,   and    will have the same sign.  Thus, for      ,    is the 

lower bound for  ; and for     ,   is the upper bound for  .  

 Random variable   is said to be log-Pearson Type III (LP3) distributed if its 

logarithm is P3 distributed.  In this study the LP3 distribution is fit to the base-10 

common logarithms of the annual peak rainfall flood flow; i.e.   is the annual peak 

rainfall flood flow in cubic feet per second (cfs), and          , where         

signifies the base-10 common logarithm.  The LP3 pdf has the form [Bobée, 1975]: 



   26 

      
          

     
                                   (2.4) 

which is defined                and    , where      is the gamma function 

defined in equation (2.2). 

The  th
 non-central moment of   is given by [Bobée, 1975]: 
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where           . Thus, the first three moments of   are given by: 
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 The LP3 is a flexible distribution and can take many shapes, depending on the 

values of   and  .  Bobée [1975] and Griffis and Stedinger [2007a] illustrate the 

various shapes the LP3 can take given different combinations of   and  .  Figure 2.1, 

which is a similar to figure 2 in Griffis and Stedinger [2007a], illustrates the different 

shapes the LP3 distribution can take given various combinations of   and  . 

By observing equations 2.3 it is clear that only the log-space skew coefficient ( 

  ) affects the log-space shape of the LP3 probability density function, as neither the 

log-space standard deviation (   ) nor the log-space mean (   ) affect the shape 

parameter  .  In real-space, however, the log-space standard deviation does impact the 

shape of the distribution, as is clear in Figure 2.1 [Griffis and Stedinger, 2007a].  The 

log-space skew coefficient is particularly important in dictating the real-space shape of 

the LP3 probability density function (pdf) as its sign dictates whether   is an upper or 

a lower bound on Q. 
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Figure 2.1: Probability Density Function for LP3 Distribution with fixed   and 

various combinations of   and   (adapted from Griffis and Stedinger 2007a) 

 Since there are no closed form solutions for the of the LP3, a commonly used 

alternative formulation to find the  th
 quantile,    , is [IACWD, 1982; Stedinger et al., 

1993; Chow et al., 1988]: 

                           (2.7) 

where        is a frequency factor, which is the     quantile of a P3 distribution with 

zero mean, unit variance and skew   . 

 The frequency factor    can be estimated using tables such as those provided 

by IACWD [1982] or by an approximation.  Bulletin 17B recommends the Wilson-
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Hilferty approximation which is valid for estimating frequencies between 0.01 and 

0.99 with        [Wilson and Hilferty, 1931]: 
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where    is the  th
 quantile of the standard normal distribution.  Kirby[ 1972] provides 

an alternative approximation which is valid for more extreme skew values.   

Chowdhury and Stedinger [1991] provide an expression for confidence intervals of 

LP3 quantile estimates when the population skew is approximated by the sample 

skew, some regional skew, or a weighted average of the two. 

 With the formulation provided in equation 2.7, it is not necessary to estimate 

the LP3 parameters provided in equation 2.3 to estimate the quantiles of the fitted 

distribution.  Bulletin 17B, uses a method-of-moments procedure to estimate flood 

quantiles by substituting the sample mean, sample standard deviation, and sample 

skew coefficient into equation 2.7 [IACWD, 1982].  Griffis and Stedinger [2007b] 

compare this and several other proposed approaches for fitting the LP3.  Among these 

alternative fitting methods the Expected Moments Algorithm (EMA) is most 

significant to this research, and is discussed in more detail in Section 2.3. 

Section 2.1.2 Generalized Skew Coefficient 

 Use of generalized, or regional, hydrologic variables are commonplace in 

hydrology.  They are particularly useful if one is interested in flood risk assessment at 

an ungauged location or at a location which has an insufficient record length to ensure 

the required precision [Griffis and Stedinger, 2007c; Veilleux, 2009; Tasker and 

Stedinger, 1989].  As an example, the Flood Estimation Handbook, which provides 

recommendations for flood frequency in the United Kingdom, recommends the use of 
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an index flood, defined as the median annual flood for a basin, which is determined 

from regional data [Institute of Hydrology, 1999]. 

 As formulated in equation 2.7, the shape of the LP3 distribution is largely 

determined by the log-space skew coefficient, so precise estimation of the skew 

coefficient is critical to fitting a data set well.  The sample skew coefficient can be 

difficult to estimate from small samples as it is very sensitive to extreme values 

[IACWD, 1982].  This is not surprising as the sample skew coefficient estimator cubes 

each observation’s deviation from the mean.  In small and moderate sample sizes, 

even a single extreme  observation can have great influence over the sample skew 

coefficient estimate.   

 Bulletin 17B advocates the use of a weighted average of the at-site sample 

skew coefficient and a regional estimate [IACWD, 1982].  This recommendation 

followed earlier findings by Tasker [1978], who illustrated the utility of a reasonable 

generalized skew coefficient through Monte Carlo experimentation.  In particular, 

Tasker [1978] was concerned with the weighting factor used to average the at-site 

sample skew coefficient and the regional skew, and the sensitivity of flood quantile 

estimates to errors in the regional skew value.  Tasker [1978] based his Monte Carlo 

study on regional skew coefficient estimates with an MSE of 0.302, as this was the 

recommended MSE for the skew map included in Bulletin 17, the predecessor to 

Bulletin 17B.  Subsequent developments in regional skew estimation by Tasker and 

Stedinger (1986), Reis et al. (2005), Martins and Stedinger (2002), Gruber et al. 

(2007), among others, have allowed for regional skew estimates with smaller MSE.  

Griffis et al. [2004] illustrated the benefits of using more efficient regional skew 
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values. They found that the precision of quantile estimators is improved through the 

use of a generalized skew coefficient using Monte Carlo analysis.  They generated 

random samples of sizes between 10 and 100 from Pearson Type III distributions with 

skew coefficients between -1.0 and 1.0 and fixed mean and standard deviation. Each 

sample’s population skew was randomly generated about a specified regional skew 

with a specified population skew distribution variance.   

 The study showed that the benefit of regional skew is greatest for basins with 

short records, but diminishes as the basin’s period of record approaches or surpasses 

the effective record length of the regional skew model.  Generally, the use of a 

regional skew was shown to decrease the bias of the 99% quantile estimate (the 100-

year flood), though it did increase for basins with long record lengths.  This was 

because the period of record exceeded the effective record length of the regional skew 

coefficient value.  The worst of these cases corresponded to only 5% estimation error 

of the 99% quantile’s real space magnitude, so the bias introduced did not represent a 

significant part of the overall MSE of the estimate [Griffis et al., 2004]. 

 Griffis and Stedinger [2009] repeated the Griffis et al. [2004] Monte Carlo 

analysis, but considered only a population skew variance of 0.100.  They found that 

use of informative regional skew coefficients decreased the MSE of the 99% quantile 

estimate, regardless of whether the true variance of the skew coefficient estimate was 

used or not.  They found that when regional skew is equal to zero (in the center of the 

hydrologic region of interest), there is significant benefit to properly assessing the 

regional skew precision when estimating the magnitude of the 99
% 

quantile.  When the 

regional skew coefficient is less than or equal to -0.2, they found no benefit from 
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properly assessing the estimate precision.  In fact, for the case that the regional skew 

was less than or equal to -0.5, assigning the correct precision to the regional model 

resulted in less accurate estimates of the 99% quantile. They conclude that use of an 

informative regional skew coefficient can significantly improve the precision of 

quantile estimates compared to use of only the sample skew coefficient. 

Section 2.2 Bulletin 17B Procedure 

Section 1.1: Background of this thesis provides a brief history of the 

development and motivation for Bulletin 17B, with more detailed discussions found in 

Griffis and Stedinger [2007b] and Griffis [2006]. 

 This section briefly describes the Bulletin 17B procedure.  Other descriptions 

are provided by Stedinger et al. [1993], Griffis and Stedinger [2007b], and Flynn et al. 

[2006].  The United States Geological Survey (USGS) also distributes the PeakFQ 

software which automatically performs Bulletin 17B flood frequency analyses on 

flood records (see Flynn et al. [2006]). 

Distribution formulation and skew estimation 

 Bulletin 17B recommends fitting the LP3 distribution to the base-10 

logarithms of the annual maximum flows to estimate flood quantiles.  The properties 

of the LP3 are discussed in Section 2.1.  The logarithm of the p
th

 flood quantile, or the 

flood flow associated with an AEP of p can be estimated using the following equation: 

                          (2.9) 

where    and    are the sample mean and standard deviation of the base-10 logarithms 

of the annual peak flows and    is the LP3 frequency factor associated with 

cumulative exceedance probability   and skew coefficient   . 
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 Bulletin 17B provides tables for    [IACWD, 1982] and also recommends the 

Wilson-Hilferty transformation (equation 2.8) [Wilson and Hilferty, 1931].     and   

are calculated directly using the sample mean and standard deviation formulas 

respectively, but estimation of the skew coefficient is not as straight forward.  As 

discussed in Section 2.1, the skew coefficient has considerable influence over the 

shape of the LP3 distribution, and can significantly affect the magnitude of the large 

flood quantiles which are of most interest.  As a result, a good estimate of the skew 

coefficient is critical to rigorous flood frequency.  Because the skew estimator is 

sensitive to extreme events in small sample sizes, Bulletin 17B recommends using a 

weighted average of the at-site estimate and a generalized or regional estimate. This 

weighted average has the form: 

   
                   

               
       (2.10) 

where    and    are the at-site sample and regional skew coefficients respectively, 

and         and         are the mean square errors for the at-site and regional 

skew coefficients respectively. 

 The weights assigned to each skew coefficient estimates in Equation 2.10 

depend on the relative magnitude of their MSEs, with the more precise estimate being 

given more weight.  To estimate the MSE of the at-site skew coefficient, Bulletin 17B 

recommends the following expression: 

        
     

         (2.11) 

where   is the years of record and, 

                                    

                                        (2.12) 
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 This expression was obtained by fitting a function to Monte Carlo results by 

Wallis et al. [1974].  Griffis and Stedinger [2009] showed this estimator to be 

relatively inefficient, yielding errors as high as 10% for           . Instead they 

recommend an asymptotically correct expression: 

          
 

 
          

 

 
        

   
  

   
        

   

          (2.13) 

where     ,     , and      are correction factors for small sample sizes and    is 

the true at-site skew coefficient. 

From Monte Carlo studies, Griffis and Stedinger [2007b] recommend: 

     
     

  
 

     

  
 

     
    

     
     

     
    

          (2.14) 

      
    

     
 

     

     
 

    

     
 

         is a function of the record length and the true skew coefficient.  As 

the record length increases, the precision of the skew coefficient estimate increases.  

        also increases with the magnitude of the true skew coefficient.  Since the 

true skew coefficient cannot be determined, the sample skew coefficient might be used 

in equations 2.11 and 2.13.  In this case, the estimate of         will also depend on 

the sample skew coefficient. 

 Bulletin 17B recommends three methods for deriving a regional skew 

coefficient,   :  

(1) a regional isoline map, developed using a sufficient number of basins 

which are reasonably close; 

(2) a prediction equation which relates climatologic or basin characteristics to 

at-site skew;  

(3) the simple arithmetic mean of other regional basin skews can be used. 
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In the case that no detailed regional skew study has been performed or the analyst 

prefers not to use such a study, Bulletin 17B provides a national skew map for the 

United States [IACWD, 1982]. 

 In the case that one of the first three regional skew recommendations are 

utilized, the analyst must determine an appropriate estimate for        .  In the case 

that the national skew map is used,              . 

Outlier identification and treatment 

 Bulletin 17B defines outlier observations as ‘data points which depart 

significantly from the trend of the remaining data.’  The occurrence of such 

observations in small samples common to hydrology can undermine the flood 

frequency analysis.  The removal or special treatment of such observations can greatly 

improve the fit of the LP3 curve and the validity of frequency estimates.  Exactly how 

to classify outliers in practice is not entirely clear and Bulletin 17B cautions that ‘all 

procedures for treating outliers ultimately require judgment involving both 

mathematical and hydrologic considerations’ [IACWD, 1982].  As a guide, Bulletin 

17B does recommend the Grubbs-Beck (GB) threshold [Grubbs and Beck, 1972]: 

                                                                                                         

                 (2.15) 

where    and     are the high and low outlier thresholds respectively.     is an LP3 

frequency factor corresponding to a one-tailed significance test for the largest (or 

smallest) magnitude observation given an at-site skew of 0 (corresponding to a log-

normal distribution), sample size N, and 10% significance level.  Bulletin 17B 
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provides a table of    values for various sample sizes [IACWD, 1982; Appendix 4] 

and Stedinger et al. [1993] provide the following formula: 

                                         (2.16) 

 If the logarithm of a flood flow is greater than    it is considered by Bulletin 

17B to be a high outlier.  If historical flood data is available which indicates that this 

flood was the greatest flood in an extended period of time, the flood is treated as 

historic flood data.  Bulletin 17B procedures for the treatment of historic data are 

described in Appendix 6 of IACWD [1982].  If a flood flow is smaller than    it is 

considered a low outlier and censored from the record.  In this case a probability 

adjustment is recommended.  It should be noted that the GB criteria is only a 

recommendation and that further censoring is often necessary.  This point is discussed 

further in Section 2.4 and in Lamontagne et al. [2013]. 

Breaks in the Systematic Record, Observation Thresholds, and Zero Flows 

 Systematic flood records often contain breaks (missing years).  These breaks 

can occur for reasons independent of the flood flows in the missing years, such as 

budgetary or political reasons.  These breaks can also be caused by extreme flows in 

the missing years, for example a large flood might damage gauging equipment.  

Understanding why a break occurred is important for proper statistical treatment of the 

record. If the cause of a break is not related to the flood magnitude in the missing year, 

then the record is treated as a continuous sequence.  If breaks in the systematic flood 

occur due to flood magnitude related events, the record is considered incomplete.  In 

these cases estimates of the missing flood magnitude are often available and can be 

used [IACWD, 1982].   
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 In the event that flows were below some detection limit, Bulletin 17B provides 

guidance for a conditional probability adjustment procedure.  Conditional probability 

adjustment is also recommended if a recorded flood magnitude is zero, for which the 

logarithm is negative infinity.  Zero magnitude annual peak floods are not uncommon 

in arid regions and were experienced in this study. 

Conditional Probability Adjustment 

 Given   of   observed flows have been censored, are below a detection limit, 

or are zeros, an estimator of the probability of an observation being above the 

censoring threshold is: 

   
   

 
   

 

 
       (2.17) 

 Bulletin 17B recommends fitting an LP3 distribution to the     retained 

observations using the procedure described above [IAWCD, 1982].  Let      be the 

probability density function of this distribution.  Flood quantiles greater than the 

censoring threshold, i.e. flood quantiles whose exceedance probability,   ,is less than 

  , can be obtained by solving the following equation for  : 

       
 

  
        (2.18) 

 This follows because      is really the conditional probability distribution of 

  given that   is greater than or equal to the truncation level.  Thus, the exceedance 

probability of any recorded flow above the threshold,  , is equal to the probability the 

threshold is exceeded multiplied by probability of the realization   given the 

probability has been exceeded: 

                   (2.19) 
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 Bulletin 17B offers adjusted product moments based on      which can be 

combined with the regional skew coefficient for flood frequency analysis.  The 

adjusted product moments are found by using equation 2.18 to estimate the flows 

whose exceedance probabilities equal 0.50, 0.10, and 0.01:       ,       , and        

respectively.  Then, the adjusted moments are found using the following formulae 

[IAWCD, 1982]: 

                                                                 

         (2.20) 

                                              (2.21) 

                              (2.22) 

where       and       are the LP3 frequency factors associated with adjusted at-site 

skew coefficient   and exceedance probabilities of 0.01 and 0.50 respectively.  The 

approximation given in equation (2.20) is valid for skew coefficients between -2.0 and 

2.5 [IAWCD, 1982; Appendix 5].  The adjusted products can be combined with the 

regional skew coefficient to find flood frequency estimates. This method is 

recommended for estimating quantiles greater than the median flow (Stedinger et al., 

1993).  Section 2.3 discusses new and improved approaches for the treatment of low 

outliers and zero flows when performing flood frequency analysis. 

Section 2.2.1 Regional Skew Coefficient in Bulletin 17B 

 As discussed in Section 2.2.1, regional skew coefficient estimation in Bulletin 

17B can either involve use of a regional skew study or use of the national skew map 

[IACWD, 1982; Plate I].  The national skew map is based on initial findings by 

Hardison [1974] and was added to Bulletin 17 in 1976.  The skew map was not 

changed in the later revisions to Bulletin 17, and is still recommended for national use 
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and distributed with Bulletin 17B [Hardison, 1974; IAWCD, 1982; Griffis, 2006, 

Veilleux, 2009]. 

 The national skew map was created using 2,972 basins with drainage areas 

smaller than 3,000 sq miles and at least 25 years of record [Hardison, 1974; IAWCD, 

1982].  The flood records for these sites include data through water year 1973, with no 

historical data being considered for any site.  Basins experiencing serious regulation or 

diversions which affected the maximum annual flood were removed from the analysis. 

No attempt was made to identify or treat high outlier observations.  The low 

outlier procedure described in the earlier Bulletin 17 was used to identify low outliers, 

which were treated following Bulletin 17 procedures.  The primary difference between 

Bulletin 17B and Bulletin 17 low outlier procedures is the significance level for the 

Grubbs-Beck threshold in Bulletin 17B has been raised to 10% compared to 1% in 

Bulletin 17 [IACWD, 1982; p. 12].  This change results in more low outliers being 

identified, so that regional estimates of skew might be affected [Griffis, 2006].  The 

developers of the skew map also failed to properly account for zero flows as 

prescribed by Bulletin 17B.  Rather than applying the recommended conditional 

probability adjustment, the zero flow years were simply omitted from the analysis.  

Such omissions can greatly impact the at-site estimates of the skew coefficient. 
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Figure 2.2: National Skew Map provided in Bulletin 17B [IAWCD, 1982, Plate I] 

 Besides the concerns with the development of the skew map cited above, its 

continued use raises other concerns.  The map was developed using flood data through 

water year 1973 [IAWCD, 1982].  Since then 40 years of additional data have become 

available which could greatly improve new regional models.  Stedinger and Griffis 

[2008] also note that new and improved statistical methodologies have been developed 

for regional skew analysis [Reis et al., 2005; Gruber et al., 2007]. When these methods 

have been applied in various regions of the United States, they have produced MSE of 

the regional skew coefficient much smaller than the recommended 0.302 for the 

Bulletin 17B skew map.  Recent GLS and WLS/GLS regional skew studies conducted 

for the Southeast (Veilleux, 2009), California (Parrett et al., 2011), and Iowa (Veilleux 

et al., 2012) produced effective record lengths of 39 (AVP 0.14) and 55-65 (AVP 
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0.14), and 50 (AVP 0.13) years respectively compared to the 17 years provided by 

Bulletin 17B. 

 Furthermore, it is not entirely clear that all of the skew patterns represented by 

the isolines on the skew map make hydrologic sense.  For example, the Bulletin 17B 

skew map recommends regional skew values for coastal North Carolina ranging from 

0.7 to nearly 0.0 [IACWD, 1982; Plate I].  These skew coefficients span a vast range 

of LP3 distribution shapes.  It is not clear that costal basins in northern North Carolina 

should exhibit flood characteristics which are so different than those in southern North 

Carolina.  By contrast, the recent Southeast skew study [Veilleux, 2009] produced a 

regional skew model with constant skew of -0.019 for the entire region. 

Section 2.3 Expected Moments Algorithm 

 The Expected Moments Algorithm (EMA) is a moments based method for 

fitting the LP3 distribution to annual peak flood flows that was first introduced by 

Cohn et al. [1997].  The EMA was conceived as a more rigorous method to 

incorporate historical flood data into a frequency analysis than the conditional 

probability adjustment.  Griffis et al. [2004] extend the EMA framework to consider 

censored observations and use of a regional skew value. In the case that no historical 

data or low outliers are present in the analysis, the EMA returns identical results to 

Bulletin 17B.  In the case that low outliers are present, the EMA has been shown to 

perform as well or better than the Bulletin 17B procedures, and is a more theoretically 

appealing [Griffis et al., 2004]. 

 As roughly half of flood records considered in this study contained at least one 

low outlier (as identified by GB), it was desirable to utilize the EMA to estimate 
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sample skew coefficients for each site and duration.  A second advantage of utilizing 

the EMA was that it provides a good estimate of the MSE of the skew coefficient in 

censored flood records [Cohn et al., 2001].  This estimate was used for flood records 

which experienced heavy censoring, while the Griffis and Stedinger [2007b] variance 

formula was used for all other records.  In this study four or more censored 

observations of record length of 70 was considered heavy censoring.  This is discussed 

in more detail in Chapter 4. 

 A brief description is provided here but longer and more detailed descriptions, 

with the appropriate equations, can be found in Cohn et al. [1997] and England et al. 

[2003].  The EMA follows a four step iterative process [England et al., 2003]: 

1. Estimate initial sample moments (   ,    
 ,    ) from the systematic record; i.e. 

calculate sample moments based on observed, non-censored flows.    . 

2. From  th
 sample moments, calculate the corresponding LP3 parameters (     , 

     ,      ) 

3. Recalculate sample moments (     ,      
 ,      ) from LP3 parameters found in 

step 2 (     ,      ,      ), but use the entire sample (including censored, zero, 

and historical flows) using the actual value of the observed but censored flows 

and the expected value of unobserved flows conditional on the LP3 parameters 

from the previous iteration (   ,    ,    ). For     use the censoring or 

perception threshold for all unobserved flows. 

4.  Test for convergence of LP3 moments; i.e. check for convergence of (     , 

     ,      ) and (   ,    ,    ). If convergence is achieved, END. If convergence is 

not achieved,       and return to step 2. 

 The EMA first estimates sample moments, (  ,    ,   ), from the non-censored 

observations.  These sample moments are then used to calculate the LP3 parameters, 

(  ,   ,   ).  Using these LP3 parameters, a new set of sample moments is calculated 

using all data, which can include observations with known magnitude, magnitude 

exceeding some threshold, magnitude failing to exceed some threshold, or magnitude 
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in some interval.  In the first iteration of EMA, censored observations and 

observations with unknown magnitude are represented by the corresponding threshold.  

In later iterations, these observations are represented by their expected values 

conditional on the previous iteration’s LP3 parameters.  This process is repeated until 

the LP3 parameters between two successive iterations satisfy a convergence criterion. 

 Implementation of the EMA was done using the 2007 version of PeakfqSA, a 

software package developed and offered by Tim Cohn of USGS.  The software can be 

downloaded for free at: 

http://www.timcohn.com/TAC_Software/PeakfqSA/ 

Section 2.4 Effects of Low Outliers on Flood Frequency and their Identification 

 Recently there has been a movement to revise Bulletin 17B [see Stedinger and 

Griffis, 2008].  As part of the revision effort, there is renewed interest in outliers in 

flood records, their interpretation, and tests to identify them. 

The Bulletin 17B definition of outliers is ‘observations which deviate 

significantly from the trend in the rest of the data.’  While this seems unambiguous, 

one should note that ‘trend in the rest of the data,’ might change significantly 

depending on what one assumes to be ‘the rest of the data,’ or the a priori designated 

non-outliers.  The Bulletin17B definition of an outlier is in fact and intentionally 

ambiguous.  It reminds one of the statement about pornography by Supreme Court 

Justice Potter Stewart: “I know it when I see it.” 

In their textbook on outliers, Barnett and Lewis [1994] have a similar, but 

somewhat more nuanced definition, stating that an outlier is ‘an observation (or a 

subset of observations) which appears to be inconsistent with the remainder of that set 

http://www.timcohn.com/TAC_Software/PeakfqSA/
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of data,’ and that outlier identification must consider how suspected outliers ‘appear in 

relation to the postulated model.’  They go on to point out that such observations can 

‘grossly distort estimates of parameters in the basic model of the population’ and can 

‘frustrate attempts to draw inferences on the original population.’ 

In flood frequency analysis based on the LP3 distribution, these concerns 

translate to the inability of a simple parametric probability model to accurately 

represent the frequency of both large and small floods.  Because large floods are of 

most concern, hydrologist might remove or down-weight the unusually small 

observations to achieve a better or more robust description of the largest observations. 

In the context of Bulletin 17B and fitting the LP3 distribution, the leverage of 

small observations on the sample skew coefficient and standard deviation, and as a 

consequence on the fitted distribution is a great concern.  Since the skew coefficient is 

a measure of asymmetry, extreme observations (large or small) can have a great 

impact on the sample skew, particularly if the record length is short.  One expects that 

extremely large events represent valuable information about the frequency of large 

floods, so their high influence on the fitted distribution is acceptable.  On the other 

hand, extremely small events often represent different hydrologic processes than large 

floods, so their high influence on the fitted distribution is disturbing.  Klemes [1986] 

correctly observes “It is by no means hydrologically obvious why the regime of the 

highest floods should be affected by the regime of flows in years when no floods 

occur.” 
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Figure 2.3: Probability Plot for 3-day peaks for Putah Creek at Monticello Dam (study 

site 44), with LP3 fit with all observations and with the smallest observation removed. 

As an example, consider the 3-day Putah Creek (study site 44) record, which 

has a record length of 78 years (see Figure 2.3).  When the LP3 parameters are 

estimated from the entire sample by the method of moments, the result is an upper 

bound for  ,   , which was exceeded in 1940.  If the smallest flood is simply 

disregarded, and the distribution is fit with the retained observations, one does not 

encounter this problem. Is it reasonable to base estimates of extreme flood quantiles 

on a distribution which claims that observed floods have no chance of occurring?  

Clearly the smallest observations in this sample are influential low floods, and should 

be identified and treated in some way to ensure an appropriate fit to the upper tail of 

the data. 
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Putah Creek is an extreme example of a common problem: the 3-parameter 

LP3 is incapable of adequately representing the frequency of both the large and small 

floods [Spencer and McCuen, 1996; IACWD, 1982; Cohn et al., 2013].  One solution 

would be to find a better probability model, but US federal agencies are committed to 

the LP3 distribution.  Instead, problematic small values are identified in some way as 

outliers that are given less weight in the frequency analysis. 

Barnett and Lewis [1994] state that outlier identification is ultimately a 

subjective judgment, still a myriad of tests have been recommended to provide 

objective guidance for an analyst.  These tests can be for a single outlier or for 

multiple outliers. Tests generally assume some population distribution from which the 

observations have been drawn.  The assumed population distribution then provides a 

basis for saying an observation is unusual. 

The Grubbs-Beck test is recommended by Bulletin 17B for outlier 

identification in flood samples [IACWD, 1982].  This test is for a single outlier in 

normal distributed samples. Bulletin 17B provides critical deviates for a 10% test.  

This means that the test will identify at least one low outlier in 10% of independent 

random normal samples. 

With many samples this test performs well, but in other cases, additional 

censoring is necessary.  Section 2.4.1 describes the Grubbs-Beck test, the visual 

identification process used in this study, and the new multiple Grubbs-Beck test.  

Section 2.4.2 compares the three methods when applied to the flood records employed 

in Chapter 4. 
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Section 2.4.1 Low Outlier Identification Procedures 

The Grubbs-Beck Test and the Multiple Grubbs-Beck Test 

 The Grubbs-Beck low outlier threshold recommended by Bulletin 17B is 

computed using equation 2.15.  Bulletin 17B provides a table of    for sample sizes 

ranging between 10 and 149.  This table was taken from Grubbs and Beck [1972], who 

also provide critical deviates for 0.1%, 0.5%, 1%, 2.5%, 5%, and 10% tests, as well as 

critical deviates for simultaneously testing the smallest (or largest) two observations in 

a sample. 

 Underlying the test Grubbs-Beck test is the statistic, 

  
         

 
        (2.23) 

where        is the logarithm of the smallest observation in a sample of size  .  In a 

10% test,      in 10% of normal samples. 

 Many flood records contain multiple suspected low outliers, but the Grubbs-

Beck test is designed to identify only one outlier in a sample.  In the case that multiple 

suspected low outliers are a concern, it is unclear how the Grubbs-Beck test be 

applied.  One option is to simply apply the test once and identify all observations 

below the threshold as low outliers (single threshold GB).  Another is to apply the 

Grubbs-Beck test iteratively, removing the outliers identified in each iteration, and 

then re-computing the threshold on the retained sample (iterated GB). 

 While nothing is conceptually wrong with the single threshold approach, it 

rarely identifies more than one outlier, even when subjective judgment would almost 

certainly identify multiple outliers [Cohn et al., 2013].  The performance of the single 

threshold GB test is examined with Monte Carlo analysis by Lamontagne et al. [2013].  
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As expected, the outlier identification rate of the single threshold GB test is 10%, but 

it rarely identify more than a single outlier (average number of outliers if at least one 

is identified is 1.012). 

 Iterated outlier tests, like the iterated GB approach, are common in the outlier 

test literature [Barnett and Lewis, 1994; Spencer and McCuen, 1996], and is 

conceptually a very reasonable way to structure a multiple low outlier test.  However, 

when applied to normal samples, the iterated GB identifies multiple low outliers at 

only a slightly higher rate than the single threshold GB test [Lamontagne et al., 2013].  

This is because the Grubbs-Beck critical deviates are based on the distribution of the 

smallest observation in a normal sample of size N.  The     iteration of iterated GB 

test applies a critical deviate for the     smallest observation in a sample of size 

     , to the     smallest observation in sample of size N.  This is not the 

distribution considered in the derivation of the critical values for the GB test.  Thus it 

is not surprising that the test rarely identifies a second outlier in normal samples 

[Lamontagne et al., 2013]. 

 To address this issue, Rosner [1983] proposed an extreme studentized deviate 

(ESD) test which is a two-sided generalization of the Grubbs-Beck test.  The ESD test 

simultaneously considers both high and low outliers, and achieves the desired 

significance level for a pre-specified number of potential outliers.  Cohn et al. [2013] 

propose a single-sided test statistic, similar to the ESD statistic, for any order statistic 

in a normal sample.  The Cohn et al. [2013] test statistic is 

        
           

   
 

(2.24) 
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Here     and     are respectively location and scale parameters based upon 

                  where 

    
 

   
       

 

     

 

(2.25) 

    
 

     
             

 
 

     

     
(2.25) 

 The Cohn et al. [2013] test statistic         is essentially the same statistic used 

in the Grubbs-Beck test (Equation 2.23), except that the k
th

 observation, and all 

smaller observations have been omitted from the computation of        .  Statistics of 

this form avoid the problem of masking [Spencer and McCuen, 1996].  Masking is 

when an outlier causes the test to fail by distorting the test statistic (through the sample 

mean and standard deviation).  The Cohn et al. [2013] statistic avoids this by not 

including the suspected outliers in the computation of        . 

 The major contribution of Cohn et al. [2013] is a quasi-analytical procedure for 

computing the probability that the test statistic for the k
th

 observation in a normal 

sample,         , is unusually small.  Most previous tests were based on critical 

deviates determined through Monte Carlo analysis, and as a result were limited by the 

extent of tables provided and the resolution of the original Monte Carlo runs.  In fact, 

the oft cited Grubbs and Beck [1972] is actually just an expansion of the earlier, but 

limited critical deviates provided in Grubbs [1969].  The advantage of the Cohn et al. 

[2013] procedure is that it is not limited to a predetermined significance level or 
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limited to samples less than some maximum N, and allows computation of critical 

value for any    . 

 Cohn et al. [2013] do not, however, recommend how their statistic should be 

applied to test for multiple low outliers.  Any application of the statistic would almost 

certainly be iterative, meaning that various order statistics would be tested in 

succession. Spencer and McCuen [1996] divide iterative tests into two categories: 

forward-step and backward-step tests.  Forward-step, or outward sweep tests require 

an a priori specification of the maximum number of potential low outliers, kmax. When 

the k
th

 observation is tested, and if it is determined to be an outlier, all smaller 

observations are also identified as low outliers.  If the k
th

 observation fails to be 

identified as a low outlier, the k-1 observation is tested and so on till no observations 

remain to be tested, or an outlier is found. 

 Backward-step, or inward sweep tests start by testing if the most extreme 

(smallest) observation is an outlier.  If the smallest observation fails to be an outlier, 

the test stops.  If the smallest observation is identified to be an outlier, the second 

smallest observation is tested, and so on till an observation fails to be identified as a 

low outlier.  The iterated GB test is a backward-step (inward sweep) test.  The Rosner 

[1983] test is a two-sided forward-step (outward sweep) test. 

 A problem that inward sweep tests encounter is masking.  This occurs when a 

sample contains multiple low outliers, which affect the test statistic sufficiently 

(through the mean and standard deviation), that the smallest observation does not look 

like an outlier.  Outward sweeping tests avoid this, difficulty, but a priori specification 

of the number of low outliers can present a challenge in some analyses. 
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 Lamontagne et al. [2013] explores different applications of the Cohn et al. 

[2013] test to flood records, in anticipation of the test being applied in a proposed 

Bulletin 17C.  They refer to iterative applications of the Cohn et al. [2013] test statistic 

as the Multiple Grubbs-Beck Test (MGBT).  Their test consists of three steps.  (1) 

First, starting at the median and sweeping outward towards the smallest observation, 

each observation is tested with a MGBT detection rate, or significance level, of     .  

If the     largest observation is identified as a low outlier, the outward sweep stops 

and all observations less than the      largest (i.e. i = 1, …, k) are also identified as 

low outliers.  (2) Next an inward sweep always starts at the smallest observation and 

moves towards the median, with a detection rate of     .  If an observation     fails 

to be identified by the inward sweep, the inward sweep stops.  The total number of 

low outliers identified by the MGBT is then the maximum of  , and    . 

Thus, the algorithm has three parameters which must be specified for the three steps: 

- 1) Outward Sweep  ,      

- 2) Inward Sweep from smallest observation  ,     

After a Monte Carlo analysis, Lamontagne et al. [2013] recommended 

           and          to be a desirable test configuration for flood frequency 

guidelines based on the LP3 distribution.  The a priori maximum number of outliers is 

specified to N/2, thus the initial outward sweep starts at the median. The second step, 

inward sweep replicates the iterated GB, but uses the correct distribution of the 

various order statistics.  The step 1 outward sweep avoids the masking problem by not 

including any suspected outliers in the computation of the test statistic.  The step 2 

inward sweep reflects a willingness to identify outliers at a more aggressive rate 
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         , and also a desire to remain consistent with the Bulletin 17B 10% GB 

test. 

Subjective Visual Identification 

 The visual identification procedure used on the data discussed in Chapter 4 

involved iterative runs of EMA, increasing the low outlier censoring threshold until a 

satisfactory fit to the largest observations was achieved.  This involved first computing 

the sample moments with the EMA on a record using the GB low outlier identification 

test.  Next, the probability plot of the record was visually inspected.  In cases where 

the fitted distribution failed to describe the frequency of the largest observations, or 

small observations appeared to deviate significantly from the trend exhibited in the 

rest of the data, the smallest retained observation was censored and the EMA was re-

run.  This process was repeated until a satisfactory fit to the largest observations was 

achieved. 

 Another consideration for this study was consistency across all flood durations 

for each site.  This study did not consider a single record for each site, as did the 

previous California instantaneous annual maximum study [Parrett et. al., 2011].  

Rather it considered rainfall flood records for five flood durations for each site.  In 

many cases low outlier observations in multiple durations corresponded to the same 

hydrologic event.  Thus, there was a hesitancy to censor an observation in one 

duration and not in others.  In most cases, if an observation appeared as a low outlier 

in one duration, it also appeared as a low outlier in other durations.  In some cases, the 

flood records did not justify consistent censoring across durations and thus a different 

number of observations were censored for various durations at the same site.  In other 
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cases, the case for censoring an additional observation for some duration was 

debatable, but it was a clear low outlier in other durations, so it was censored at all 

durations for consistency.  A table containing the number of low outliers censored for 

each site and duration can be found in Appendix A of this Thesis. 

Section 2.4.2 Comparison of Low Outlier Identification Processes 

The purpose of the analysis in Chapter 4 was to construct regional skew 

coefficient models for rainfall flood durations in California.  To this end, it was 

necessary to estimate the sample skew coefficient for each of the five durations at each 

of the 50 sites.  This was accomplished using the EMA algorithm, with a combination 

of the single threshold GB and manual identification procedures described above.  

After this analysis was complete, the MGBT algorithm developed by Cohn et al. 

[2013] was also applied to the flood records, to assess how its performance compares 

to subjective manual identification.  This section compares the censoring decisions 

made with the three identification procedures, and provides a few examples of flood 

frequency outcomes that result from following the recommendations.  

This section first reports instances where the single threshold GB test was 

sufficient, as well as several instances where additional outliers were identified 

through manual identification.  Next, the section compares the performance of the a 

MGBT configuration with visual identification. 

Performance of the Grubbs-Beck test and Subjective Visual Identification 

A list of the number of observations censored for each site and duration for the 

regional skew analysis can be found in Appendix A of this Thesis.  The overall 

censoring decisions are summarized in Table 2.1.  Note that zero flows were 
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automatically classified as low outliers before applying the GB test or visual 

identification. 

About one third of the 50 sites included in this study have no zero flows or 

floods treated as low outliers by either the GB test or visual inspection.  The 3-day 

Feather River at Oroville Dam (study basin 13) record displayed in Figure 2.4 is an 

example. 

Table 2.1: Summary of low outlier censoring utilized in this study using visual 

inspection to identify low outliers 

  1-Day 3-Day 7-Day 15-Day 30-Day 

No Censoring 16 16 16 16 16 

1 Censored 28 28 28 28 28 

2 Censored 1 2 2 2 2 

3 Censored 1 0 0 0 0 

4 Censored1 2 2 2 2 3 

5 Censored2,3 0 1 1 1 0 

>5 Censored3 2 1 1 1 1 

Total 50 50 50 50 50 
1Cache Creek and N Fork Cache Creek had 4 censored for each duration 
2Santa Cruz Creek had 6,5,5,5,4 censored observation for 1,3,7,15, and 30-Day durations 
respectively 
3Putah Creek had 12, 12, 11, 11, 11 censored observations for 1,3,7,15, and 30-Day durations 
respectively 

The remaining two-thirds of the study sites exhibited at least one flood value 

that was considered a low outlier at some duration.  The GB criterion identified low 

outliers in about one half of the sites in this study.  In many instances, this criterion 

worked well and resulted in a greatly improved fit. 

The 3-day annual peaks for the Trinity River near Coffee Creek (study basin 

54) is an example of a site that had a single low outlier (the 1977 peak) identified by 

the GB test.  As shown in Figure 2.5, without censoring, the skew is very negative, 
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and the largest observations are underestimated.  Comparison of Figure 2.5 and Figure 

2.6 shows that after censoring the smallest observation, the largest observations are fit 

much better. 

 

 

Figure 2.4: Probability Plot for 3-day peaks for the Feather River at Oroville Dam. 

In this study, the visual identification process typically identified just one or 

two more observations as low outliers than GB.  However, a few sites required more 

extensive treatment.  At these sites, the LP3 distribution appeared to be unable to 

provide a good fit to both the small and the large observations at the same time.  The 

censoring process at these sites involved iterating EMA, censoring more of the lower 

tail in order to achieve a good fit in the upper tail.  While there was some hesitancy to 

censor too liberally, high levels of censoring will yield a high MSE of the estimate of 

the skew coefficient, and in turn a smaller weight in the WLS/GLS regression.  This 
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was deemed a better alternative than dropping the sites completely.  Putah Creek at 

Monticello Dam (study site 44) was the most difficult record in the study.  Prior to 

additional censoring, GB only identified one low outlier, leading to a highly negative 

skew coefficient.  After additional censoring of 11 observations from a record of 51 

years, the skew coefficient is still highly negative, -0.741, but the upper tail of the 

fitted distribution is consistent with the larger observations.  In Figure 2.8, the dot 

depicting the value of the smallest retained observation has 12 times the area of the 

other points because 12 of the observations in the sample are represented as being less 

than or equal to that value. 

 

Figure 2.5: Probability Plot for 3-day Peaks for the Trinity River at Coffee Creek with 

no censoring. 
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Figure 2.6: Probability Plot for 3-Day Peaks for the Trinity River at Coffee Creek 

with GB censoring. 

 

Figure 2.7: Probability Plot for 3-Day Peaks for Putah Creek at Monticello Dam with 

GB censoring of one point. 
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Figure 2.8:  Probability Plot for 3-Day Peaks for Putah Creek at Monticello Dam after 

additional censoring 

Performance of the Multiple Grubbs-Beck Test applied to real flood records 

The MGBT was developed to provide the analyst with guidance when 

encountering difficult records such as Putah Creek (Figure 2.8).  Lamontagne et al. 

[2013] applies the MGBT to samples drawn from different probability distributions to 

determine a good configuration for flood frequency analysis.  In this section, the 

MGBT configuration with parameters {                  } is applied to the 

rainfall flood duration records.  Both the number of outliers and resulting fitted 

distribution are compared to the results of the visual identification procedure. 

Two additional sites which were not included in the analysis in Chapter 4 are 

also included: Los Banos Creek and Orestimba Creek.  These records contained many 

suspected outliers and zero flows, so while not suitable for the skew study, they are 

interesting for this section.  
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Table 2.2 summarizes the number of outliers identified for each duration by 

single threshold GB, visual identification, and MGBT (                  ).  

Table 2.3 provides a more concise comparison of the low outlier identification 

procedures as applied to the 50 study sites and the two additional sites. 

In no case did the MGBT fail to identify an outlier that was identified by the 

GB test.  This is not surprising because the final inward sweep has an identification 

rate of 10%, as does the GB test.  In about half of all cases the MGBT and GB tests 

identify the same number of observations.  When the MGBT identifies more, it often 

identifies many more.  The GB test identifies more than 3 outliers for only one site 

(Orestimba Creek, which contains 12 zero flows in a 76 year record).  In contrast, The 

MGBT identifies more than 3 outliers at 17-24 sites, depending on duration, and more 

than 12 outliers at 11-19 sites, depending on duration. 

In about 40-50% of case, depending on duration, the MGBT identifies the 

same number of outliers as visual identification.  Where the two methodologies 

disagreed, the MGBT identified more low outliers in 75% of cases or more.  Most of 

the cases where visual identification reported more outliers than the MGB were 

attributable to an attempt to censor consistently across durations.  An example of this 

might be if an observation at the 30-day duration is an outlier and the corresponding 

observation at the 15-day duration was also censored for no other reason than to 

maintain consistency.  When these cases are accounted for, the MGBT almost always 

identifies more than the visual identification process. This is an encouraging result: the 

MGBT is effective at identifying low outliers that trained hydrologists subjectively 

identified.  
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Table 2.2: Summary of the number records experiencing various levels of low outlier 

identification by three identification methods, for five durations and 52 sites.  
 1-Day 3-Day 7-Day 15-Day 30-Day 
Number of 
Cens Obs 

GB Visual MGB GB Visual MGB GB Visual MGB GB Visual MGB GB Visual MGB 

0 25 16 17 27 16 20 25 16 21 23 16 17 23 16 17 

1 24 28 10 22 28 11 24 28 12 26 28 13 26 28 10 

2 1 1 2 1 2 0 1 2 2 1 2 3 1 2 1 

3 1 1 1 1 0 0 1 0 0 1 0 0 1 0 0 

4 0 2 0 0 2 2 0 2 1 0 2 1 0 3 1 

5 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 

6 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

[7,12] 1 1 4 1 1 5 1 1 4 0 1 4 0 1 4 

[13,20] 0 0 3 0 0 3 0 0 2 1 0 3 1 0 3 

[21,25] 0 0 1 0 0 4 0 0 2 0 0 3 0 0 0 

[26,30] 0 0 3 0 0 3 0 0 1 0 0 0 0 0 2 

[31,35] 0 0 1 0 0 0 0 0 2 0 0 1 0 0 2 

[35,40] 0 0 5 0 0 1 0 0 2 0 0 3 0 0 5 

≥41 0 0 3 0 0 2 0 0 2 0 0 4 0 0 7 

Total 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 

 

Table 2.3: Relative number of outliers identified by the MGBT compared to the GB 

test and visual identification. 

 
1-Day 3-Day 7-Day 15-Day 30-Day 

Less than GB 0 0 0 0 0 
Same As GB 26 27 31 22 23 
More than GB 26 25 21 30 29 

Less than Visual 7 6 7 2 5 
Same as Visual 22 23 26 21 21 
More than Visual 21 21 17 27 24 

 

Over identification is generally less of a concern than under identification 

[Lamontagne et al., 2013].  The logic behind censoring low outliers is that they 

contain little information about the largest floods, and worse, are potentially exerting 

undue influence on the magnitude of extreme flood quantiles.  In this case, Type II 

errors are preferred over Type I: by over identifying we are losing observations which 

contain little information about the frequency of large floods, by under identifying we 

are retaining observations which potentially distort our probability model.  In 
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operational hydrology, subjective decisions about censoring levels can be difficult to 

justify.  In this study, USGS and USACE hydrologists were often hesitant to 

subjectively censor more than a few outliers.  The MGBT is a useful tool to the analyst 

in that it provides an objective justification for severe censoring. 

MGBT and Sample Skew Coefficient 

As documented earlier in this section and in Section 4.1, sample log-space 

skew coefficients for rainfall floods in California are often very negative, which can 

cause a lack of fit to the largest observations.  In the worst case, a highly negative 

skew can result in an upper bound which is smaller than or nearly equal to observed 

flows (see Figure 2.3), which is not reasonable.  Often, censoring a few of the smallest 

observations, as recommended by Bulletin 17B results in a better fit to the largest 

observations, and very often a less negative skew coefficient.  One criticism of this 

practice is that the analyst is simply censoring observations to obtain a skew 

coefficient which is closer to zero, and thus a flood distribution which is log-normal 

distributed. 

In this study, there were several cases in which additional censoring led to a 

more negative log-space skew coefficient. One example is the 3-day record for Elder 

Creek near Paskenta (study site 7).  The GB test identified no low outliers, while a 

visual inspection revealed one low outlier.  By censoring this observation, a better fit 

to the largest observations is achieved, with the skew coefficient changed from -0.864 

to -1.007. 

The MGBT reveals even more compelling examples where additional 

censoring actually cause the log-space skew coefficient to become more negative.  The 
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GB test and a visual evaluation of the 30-day record for Salsipuedes Creek near 

Lompoc (study site 53) identified no low outliers, yielding a log-space skew 

coefficient of -0.193.  MGBT identifies 33 low outliers from a record of 67 years (the 

most allowed by the algorithm), yielding a log-space skew coefficient of -1.014.  

Another example is the 30-day record for Big Chico Creek near Chico (study site 10); 

the GB test and visual inspection identified one low outlier, yielding a log-space skew 

of -0.584, while the MGB test identified 38 low outliers of a record of 77 years, 

yielding a log-space skew coefficient of -1.121.  Clearly censoring does not always 

achieve a less negative skew. 

 In most cases, the additional low outlier identification recommended by the 

MGBT resulted in a better fit than the GB test and the visual identification procedure.  

As an example, consider the previously mentioned 3-day record for Putah Creek at 

Monticello Dam (study site 44) (see Figure 2.7 and Figure 2.8).  The GB test 

identified one low outlier, resulting in a log-space skew coefficient of -1.328, while 

the visual inspection procedure identified 12 low outliers, resulting in a log-space 

skew coefficient of -0.741.  The MGB test identified 22 low outlier observations, 

resulting in a log-space skew coefficient of -0.515.  Both the visual identification and 

MGB test fitted distributions appear to fit the largest observations well.  A probability 

plot, with three fitted distributions for the three low outlier identification procedures is 

plotted in Figure 2.9. 

Another example is the 1-day record for Putah Creek.  As with the 3-day 

duration, the GB test identified one low outlier, while the visual identification 
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procedure identified an additional 11 observations, and the MGB identified 26 low 

outliers, resulting in a greatly improved fit to the largest observations. 

 

Figure 2.9:  Probability Plot for 3-day Peaks for Putah Creek at Monticello Dam with 

the fitted distribution for each of the three low outlier identification procedures. 

Another compelling example is the 1-day record for Orestimba Creek near 

Newman (site not included in skew study).  This basin is very arid, experiencing zero 

flow (no annual rainfall floods) in 12 years of a 77 year record.  The GB test identifies 

no non-zero outliers for this record, resulting in a log-space skew of -1.41, which is 

the default lower bound for the skew coefficient in the PeakfqSA software.  A visual 

inspection of this record was not performed because it was not included in the 

California duration skew study.   Simply disregarding the zero flows and calculating 

the log-space skew coefficient of the non-zero flows yields a log-space skew of -

1.197.  By contrast, the MGB test identifies 26 low outliers, yielding a log-space skew 

of -0.672, which achieves an excellent fit to the largest observations. 
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Figure 2.10:  Probability Plot for 1-day Peaks for Putah Creek at Monticello Dam 

with the fitted distribution for each of the three low outlier identification procedures. 

  

 

Figure 2.11: Probability Plot for 1-Day Peaks for Orestimba Creek near Newman with 

the fitted distribution for the GB and MGB low outlier identification procedures. 
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In some cases the additional censoring by the MGB algorithm actually resulted 

in a worse fit of the largest observations.  For example, consider the 1-day records for 

the Bear River near Wheatland (study site 15) (Figure 2.12) and the Merced River at 

Exchequer Dam (study site 24) (Figure 2.13).  One observation in each of these 

records was identified as a low outlier either by visual inspection or GB, which 

provides a reasonably good fit to the largest observations.  In both cases, the MGB test 

identifies all observations smaller than the median as low outliers, which is the most 

allowed by the MGB algorithm. 

 

Figure 2.12: Probability Plot for 1-Day Peaks for the Bear River near Wheatland with 

the fitted distribution for each of the three low outlier identification procedures. 
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Figure 2.13:  Probability Plot for 1-Day Peaks for the Merced River at Exchequer 

Dam with the fitted distribution for the GB and MGB low outlier identification 

procedure. 

The choice of the median as the starting place for the MGB low outlier 

identification procedure is a logical aspect of the algorithm.  The median has a return 

period of approximately two years, and generally an analyst is only interested in 

estimating the magnitudes of floods with much smaller exceedance probabilities.  

However, using the median as the starting place for the MGB procedure is not 

supported theoretically and is somewhat arbitrary.  In practice, the starting place of the 

MGB procedure should not influence the low outlier identification and the subsequent 

flood frequency analysis.  In this study, when applying the MGB threshold to 52 flood 

records for five durations (260 flood records in all), it was found that the MGB 

identified all observations less than the median as low outliers in 12% to 20% of 

records, depending on duration. 
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Because the EMA algorithm represents censored flows as smaller than the 

smallest retained observation, the magnitude of the smallest retained observation has a 

large impact on the value of the fitted skew coefficient.  The arbitrary choice of the 

median as the starting location for the MGB algorithm appears to be impacting the 

number of censored observations and by extension the flood frequency results in many 

cases.  Future work will consider alternative starting locations for the MGBT, or 

alternative algorithms in the case that the censoring threshold is set at the median. 

 In conclusion, the GB test remains a reasonable low outlier test for flood 

frequency analysis in many cases, but often fails to identify potential low outliers 

which cause the fitted distribution to describe the largest observations poorly.  The 

visual inspection procedure used in the California Duration Skew Study often agreed 

with the GB test, but also often identified additional observations which were 

classified as low outliers and censored in the flood frequency analysis.  In general 

additional low outlier classification was limited to one or two additional observations, 

but in an extreme case (Putah Creek, study site 44) involved censoring as many as 12 

observations.  Though this resulted in better fitting distributions, the process is 

subjective and different analysts might reasonably censor at different levels.  To 

provide a more objective low outlier identification procedure for arid basins like Putah 

Creek, the MGBT test has been proposed by Cohn et al. [2013].  This methodology 

often leads to more liberal censoring than the GB test.  In many cases the MGB test 

results in improved fits, but the algorithm’s reliance on the median as the starting 

location for the low outlier testing appears to be having a deleterious effect in some 

cases. 
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 One solution for such cases is to initially scan for low outliers starting at the 

median, but if the median is found to be a low outlier, to scan upwards until a non-

outlier observation is found.  Another solution might be to scan from the 55
th

 or 60
th

 

percentile if the median is found to be a low outlier.   As with the GB test, low outlier 

identification with MGB should involve a review, as no automated detection algorithm 

can anticipate all cases. 

Conclusion 

 

This chapter describes flood frequency analysis procedures which are 

commonly applied in operational hydrology.  Section 2.1 describes the log-Pearson 

Type III distribution and the use of a generalized skew coefficient when fitting it to 

short flood records.  This motivates the procedure described in subsequent chapters.  

Section 2.2 summarizes the Bulletin 17B procedure, which is the standard flood 

frequency procedure followed by Federal agencies in the United States.  Section 2.3 

describes the Expected Moments Algorithm, which is a moments based fitting 

procedure for the log-Pearson Type III distribution which can accommodate many 

different data types, censoring levels, and use of a generalized skew coefficient.  

Finally, Section 2.4 describes the low outlier identification procedure applied in this 

study, as well as a new objective outlier detection test which is better suited to the 

detection of multiple outliers in a flood sample.
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CHAPTER 3 

 

LEAST SQUARES REGRESSION METHODS FOR REGIONAL SKEW MODELS 

 

Regionalization of hydrologic variables is commonplace in hydrology 

[Stedinger and Tasker, 1985; Reis et al., 2005;Institute of Hydrology, 2005; Griffis 

and Stedinger, 2007; Chow et al., 1988; Brutsaert, 2005].  Regional models might be 

constructed to provide estimate a variable of interest at a site with no data.  In other 

cases a regional model might be constructed to aid the estimation of a noisy statistic 

from limited data, as in the use of a regional skew value for flood frequency analysis 

in Bulletin 17B [IACWD, 1982].  Estimation of the skew coefficient is difficult in 

small samples, as it is very sensitive to extreme observations.  In Bulletin 17B, the 

weighted average of the regional skew and the at-site sample skew is used in 

subsequent analyses, where the weights depend on the relative magnitude of the MSE 

of each estimate.  The smaller the MSE of the regional model, the more meaningful it 

will be for Bulletin 17B flood frequency analysis.  Bulletin 17B provides a national 

skew map, which was originally published in 1974 [Hardison, 1974], and has a MSE 

of 0.302.  The result is that the regional skew is of little value to the overall analysis, 

even for relatively short records. 

This chapter describes regression methods which are used to create regional skew 

models with much smaller MSE, and are therefore more meaningful to flood 

frequency analysis.  Section 3.1 describes the historical development of weighted and 

generalized least squares methods for regional skew models.  Section 3.2 presents the 

theoretical derivation of these methods and a new hybrid method developed for this 
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study.  Section 3.3 describes the concept of redundant basins, their statistical 

implications under the GLS framework, and metrics for their detection.  Section 3.3 

also discusses recent attempts to explicitly account for model error correlation in a 

GLS framework. 

Section 3.1: Development of WLS/GLS skew coefficient models 

Tasker and Stedinger [1986] proposed a Weighted Least Squares (WLS) procedure for 

regressing regional skew models on basin characteristics, given sample skew values 

for a set of sites.  This procedure weights sample skew coefficients on the basis of 

sampling error (a function of record length) and model error variance describing the 

precision of the model.  Stedinger and Tasker [1985, 1986a,b] and Tasker and 

Stedinger [1989] laid out a Generalized Least Squares (GLS) procedure for quantile 

regression.  The main advantage of GLS over a WLS regional skew regression is that 

GLS explicitly accounts for cross-correlation among skew coefficient estimators.  This 

is an important consideration, because highly cross-correlated samples are not 

independent samples.  Failure to account for this cross-correlation can lead to 

overestimation of model precision [Stedinger, 1983; Stedinger and Tasker, 1985].  

Reis et al. [2005] provide a Bayesian analysis of that GLS model.  Bayesian GLS is an 

improvement over traditional GLS because it generates the posterior distribution of the 

model error variance.  Traditional GLS can return a zero model error variance 

estimate, indicating that no model error exists, which is unreasonable [Reis et al. , 

2005]. 
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Bayesian GLS methods have been applied to regional skew studies for annual 

peak flows in the Illinois River basin [Reis et al., 2005] and the Southeast [Feaster et 

al., 2009; Gotvald et al., 2009; Weaver et al., 2009]. 

Recently, a modified WLS/GLS procedure was applied to a regional skew 

study for annual peak flows in California [Parrett et al., 2011].  It was found that skew 

coefficients in California exhibit much higher cross-correlations than those in the 

Southeast.  As a result, standard GLS became unstable and produced complex weights 

which were not justifiable [Veilleux, 2009].  This modified methodology has been 

applied in Iowa [Eash et al., 2013], Arizona [Mason, 2012], Missouri [Mason, 2012], 

and Vermont, with more studies underway [Veilleux, 2013 personal communication]. 

Section 3.2: Standard GLS and Hybrid WLS/GLS Procedure 

This section describes the theoretical development of the regional regression 

framework applied to regional skew regression in Chapter 4.  This section also 

describes the theoretical development of various diagnostic statistics which are 

adapted to the described regression framework. 

Section 3.2.1 Standard GLS Framework 

The GLS framework assumes that a linear model with additive errors can adequately 

describe the regional skew coefficient [Reis et al., 2005].  If one has   explanatory 

variables and   study basins, the GLS model has the form: 

                                    
  

for         

  (3.1) 

        

In more compact vector-matrix notation, the GLS regional model in equation (3.1) can 

be written: 
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        (3.2) 

     

 where 

     is an       vector of unbiased at-site skews for each study basin,     

    is an       vector of basin characteristics for each study basin 

    is a       vector of model coefficients 

    is an       vector of total error. 

Following the regression framework from Tasker and Stedinger [1986], the total error 

vector   has two components: the regression model error and the sampling error of the 

at-site sample skew coefficient estimates for each site.  The regression model error,  , 

is due to the use of an imperfect model.  The sampling error is due to lack of data and 

is a function of record length and the true at-site skew coefficient.  The total error 

vector   by assumption has zero mean (i.e.       ), and covariance matrix, 

        . 

Let   
  be the variance of the regression model error and       be the 

covariance matrix of the at-site sample skew coefficients for the   sites. The  th 

diagonal element of       is the variance of the at-site sample skew coefficient for site 

 .  The covariance matrix   of the total error vector   for the model with an additive 

error described in Equation (3.2) is given by [Tasker and Stedinger, 1986]: 

    
         (3.3) 

In a WLS regression, the covariance of the sampling errors are ignored and the 

off-diagonal terms of   are zero.  In a GLS regression, the off-diagonal terms of   

represent the covariance of the sampling errors of the at-site sample skew coefficients 

[Stedinger and Tasker; 1985].  Given the covariance matrix  , the unbiased minimum 

variance estimator of  ,   , is [Draper and Smith, 1967; equation 2.11.10]: 
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                     (3.4) 

Because   is not known, it must be estimated from the data [Kroll and 

Stedinger, 1998, 1999; Reis et al., 2005].  This is important, particularly when 

assessing model uncertainty, because basins with high covariance do not represent 

independent samples.  It is expected that basins that are spatially close will experience 

similar hydrologic conditions, leading to high covariance among estimated flood 

characteristics.  To correctly analyze regional skew model uncertainty, a reasonable 

covariance model must be developed.  Griffis and Stedinger [2009] provide an 

expression for the variance of the at-site sample skew coefficient     (Equation (3.22)) 

but no direct expression for estimation of the covariance of the at-site sample skew 

coefficients exists.  Martins and Stedinger [2002] provide an empirical relationship 

between the correlation of the skew coefficient and the annual flood peaks between 

two sites.  Thus an important step in regional skew studies is the development of an 

appropriate regression model for the cross-correlation of annual floods at different 

basins.  This is discussed further in Section 3.2.3. 

A variety of regression diagnostic statistics have been developed for GLS to 

help in model comparison and selection.  A brief summary and description of some 

useful statistics is provided below.  See also Gruber et al. [2007].  

Variance of Prediction and Average Variance of Prediction 

Variance of prediction is the variance of the model’s predicted skew     about the true 

value   .  Reis et al. [2005] make the distinction between old sites, which were 

included in the original skew study, and new sites which were not.  For old sites 

already included in the study, the model error variance and the sampling variance of 
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the predicted skew are correlated.  For a new site not included in the construction of 

the regional model, this correlation does not exist [Veilleux, 2009].  The variance of 

prediction for a new site is given by [Reis et al., 2005]: 

             
       

          
  (3.5) 

where    is the     row of  , containing the basin characteristics of site  . 

       can be thought of as the sum of the model error variance and the 

sampling variance of the predicted skew for site  .  The variance of prediction for an 

old site is given by [Reis et al., 2005]: 

             
       

          
       

      
                (3.6) 

where    is a column vector with one on the  th
 row and zero otherwise. 

The third term in the expression for          accounts for the correlation of the 

model error variance and the sampling error for site   which was included in the 

construction of the regional skew model.  For sites not included in the original study, 

this term is zero, thus the expression for variance of prediction at a new site in 

equation (3.5). 

When comparing various regional models, the models’ performance over a 

region is likely of more interest than for a specific site.  Tasker and Stedinger [1986] 

recommend an average variance of prediction statistic, which is obtained by averaging 

the sampling error over the basins used to generate the regional model: 

       
 

 
         

 

   

 (3.7) 

Gruber et al. [2007] notes that        as formulated in equation (3.7) assumes 

basins used in the construction of the regional model are characteristic of those where 



77 

 

the regional skew will be applied.  A natural extension of        to old sites is 

provided by Reis et al. [2005]: 

       
 

 
      

 

   

    (3.8) 

Again, recall that       includes a term for the cross correlation of the model error 

variance and sampling error variance for a site included in the study.  This term is not 

included in the       because a new site is not included in the study. 

Pseudo   
   

The standard    statistic commonly reported in regression studies is the based 

on the ratio of the residual errors and the total variability observed in the data.  In the 

Tasker and Stedinger [1985] regression framework the errors are divided into model 

errors due to an imperfect model and sampling errors due to finite record lengths.  

Thus, even a perfect model cannot explain all of the variability observed in the data, 

but instead will have zero model error variance.  Thus, the traditional    is not 

appropriate for the Tasker and Stedinger [1985] regression framework. 

Griffis and Stedinger [2007] develop a pseudo   
  statistic which is a measure 

of model performance.  The pseudo   
  can be calculated as: 

  
    

   
    

   
    

 (3.9) 

where 

    
     is the model error variance of a model with   explanatory variables 

    
     is the model error variance of a model with no explanatory variables. 

Thus, a regression model with no model error would have an   
  of one, while a model 

which performs no better than the constant model would have an   
  of zero.  This is a 
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measure of the amount of variation in the true skew the model is describing.  The 

constant model captures no variation in the skew, so it must always have an   
  of 

zero. 

Average sampling error variance 

The average sampling error variance (ASEV) describes the contribution of the 

sampling error of regional model parameters to the total variance of prediction 

[Stedinger and Tasker, 1985].  The ASEV plus the expected value of the model error 

variance is        as defined in equation (3.7). ASEV can be calculated as: 

     
 

 
      

          
  

 

   

 (3.10) 

Error Variance Ratio and Misrepresentation of Beta Variance 

The error variance ratio (EVR) is a measure of the relative magnitudes of the 

sampling error and model error.  The motivation for calculation of EVR is to 

determine if an OLS analysis is appropriate or if a more sophisticated WLS or GLS 

analysis may be necessary.  The EVR can be calculated as [Griffis and Stedinger, 

2007]: 

    
      

       

    
  (3.11) 

OLS considers only a single error term, whereas WLS and GLS divide the error into 

sampling error and model error.  If sampling error is negligible compared to model 

error, an OLS analysis should be sufficient.  If sampling error is important, then a 

WLS or GLS analysis is preferred to an OLS analysis.  Griffis and Stedinger [2007] 

advise that 20% is a reasonable threshold above which WLS or GLS should be 
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employed.  Another issue to consider is whether          varies widely from site-to-

site, suggesting that the homoscedasticity assumption of OLS is less applicable. 

Misrepresentation of beta variance is used to determine if a WLS analysis is 

sufficient or if GLS is preferred [Griffis and Stedinger, 2007].  GLS considers the 

cross-correlation of the at-site sample skew coefficients, while WLS neglects this 

cross-correlation.  Stedinger and Tasker [1985] show this cross-correlation has the 

greatest impact on the precision of the estimator of the constant term.  If the cross-

correlations are insignificant, then the WLS estimate of the variance of the constant 

term of the regional WLS model should be nearly the same as the GLS estimate of the 

variance.  If the cross-correlations are positive and significant, WLS would 

overestimate the precision of the constant term, so that the WLS estimate of the 

variance would be significantly smaller than the GLS estimate of the variance.  

Veilleux et al. [2011] define MBV as: 

    
       

                 

       
                 

 
    

   
 (3.12) 

where   is a     vector of ones and 

   
 

   
 (3.13) 

If WLS is appropriate, MBV should not be much greater than one.  Griffis and 

Stedinger [2007] advise that to avoid standard error of the constant term greater than 

10%, a threshold of 1.2 should be adopted. 

Leverage and Influence 

Leverage is a measure of an observation’s potential to influence the model 

regression due to its location in the variable space.  Tasker and Stedinger [1989] show 
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that leverage for site   in a GLS framework is given by the  th
 diagonal element of the 

    
 : 

    
           

  
      (3.14) 

The influence of an observation is the effect removing that observation from 

the analysis has on the final model.  Observations whose omission causes great change 

in the analysis are said to be influential, or to have high influence [Weisberg, 1985].  

The influence for an observation in an OLS regression is computed: 

   
   

    

        
    

 (3.15) 

where 

    is the  th
 diagonal element of the OLS hat matrix,      (defined in 

equation (3.16)) 

    is the residual for observation   
    is the observed variance of the residuals. 

The OLS hat matrix,     , is: 

                 (3.16) 

Tasker and Stedinger [1989] extended Cook’s D to the generalized least squares case.  

Noting that                             , Cook’s D for the GLS case becomes: 

       
       

    
 

          
  

  (3.17) 

where 

      is the  th
 diagonal element of   

      
  is the  th

 diagonal element of        
   

Leverage and influence values in excess of      and     respectively are considered 

large by Tasker and Stedinger [1989].  
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Effective Record Length 

Effective record length (ERL) is often cited when comparing various regional 

skew models (see Griffis and Stedinger 2007; Veilleux, 2009; Gruber et al., 2007; 

Reis et al, 2005).  ERL is obtained by substituting          and     for       ) and    

in Equation (3.22) and solving for the resulting  .  Thus, ERL is a function of the 

model predicted skew and its variance.  The ERL for a specific site may not be 

informative as an indicator of the overall model performance if the model contains 

non-constant terms.  In this case an average ERL might be reported, in which the 

       and     from the constant model are used.  This approach is taken by 

Lamontagne et al. [2012]. 

Section 3.2.2 Hybrid WLS/GLS Procedure 

Bayesian GLS as formulated in Section 3.2.1 has been used in regional skew 

studies in the Illinois River Basin [Reis et al., 2005] and the Southeast [Veilleux, 

2009; Weaver et al., 2009; Feaster et al., 2009; and Gotvald et al., 2009].  Parrett et al. 

[2011] document that when cross-correlations of the annual maximum series are high, 

as with California annual maximum flow series, the GLS regression produces extreme 

weights (both positive and negative).  If the true correlation relationships were known 

these weights would defensible.  Because sample correlations and correlation models 

are used, these complex weights are not defensible.  To address this problem, Parrett et 

al. [2011] developed a WLS/GLS hybrid method which used WLS to find the model 

coefficients and GLS to estimate the precision of the models.  Because WLS ignores 

the high cross-correlations between sampling errors, it produced reasonable weights 

but would generally underestimate the precision of the model.  Thus, a GLS analysis 
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which acknowledges the cross-correlations was used to estimate the precision of the 

estimated parameters.  This WLS/GLS procedure was used in regional skew analysis 

for rainfall floods in California [Chapter 4, Lamontagne et al., 2012] and in Iowa 

[Eash et al., 2013].  Ongoing studies are currently applying the methodology to 

Arizona [Mason, 2012], Missouri [Mason, 2012], and Vermont, with more studies 

planned [Veilleux, 2013 personal communication]. 

The degree of cross-correlation among the annual maximum rainfall floods 

were even greater in this study than in the annual instantaneous maximum study.  This 

is likely because only rainfall floods were considered whereas Parrett et al. [2011] 

considered floods of every origin. Also, averaging the flood volume over the flood 

duration dampened the effect of spatial and temporal variability among hydrologic 

events.  Because of the high cross-correlations in this study, a similar methodology to 

that of Parrett et al. [2011] was utilized.  This section discusses the procedure for this 

method as well as adjustments to various diagnostic statistics. 

Step 1: Ordinary Least Squares Analysis 

The first step of the hybrid analysis is to obtain an OLS skew coefficient 

estimate for each study basin.  This is an iterative procedure.  At first a simple 

constant model, which is an average skew value, is used.  After the subsequent WLS 

and GLS estimators are computed, the OLS model can be expanded to reflect those 

basin characteristics which are shown to be statistically significant.  This was shown 

to improve the average variance of prediction of the final model, but did not generally 

affect which basin characteristics were statistically significant. 
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The OLS model has the form described in Equation (3.2).  Recall that    is a vector of 

unbiased skew coefficients.  The unbiased skew coefficient for site  ,    , can be found 

using the correction factor derived by Tasker and Stedinger [1986], given below 

       
 

  
    (3.18) 

where 

    is the length of systematic record at site  , excluding any historical record 

    is the traditional sample skew coefficient estimator 

The OLS regression parameters,      , are simply (Drapper and Smith, 1967; equation 

2.1.17): 

                  (3.19) 

The OLS regional skew coefficient vector,      , is given by 

             (3.20) 

The OLS regional skew coefficient for site   is the  th
 element of       , notated:        .  

Tasker and Stedinger [1986] provide an expression for the variance of the unbiased 

skew coefficient estimator based upon: 

            
 

  
 
 

        (3.21) 

Griffis and Stedinger [2009] provide an equation for the variance of the at-site sample 

skew coefficient. When combined with the equation (3.21), the variance of the at-site 

unbiased skew is calculated as: 
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(3.22) 

where 

       
     

  
  

     

  
  

      
    

  
    

    

  
    

     

  
    

       
    

  
     

    

  
     

    

  
     

(3.23) 

     ,      , and       in equation (3.23) are correction factors for small sample 

sizes.  The variance of the at-site skew coefficient estimate calculated in equation 

(3.22) is generally used in the following WLS and GLS steps.  The effects of minor 

censoring (less than 3 censored observations in 70 years of record) on the variance 

estimate in equation (3.22)(3.17) were generally considered insignificant and were 

ignored.  For sites experiencing heavier censoring of low outliers and zero flows, the 

variance of the skew coefficient generated by EMA was substituted in.  This is 

examined in more detail in Chapter 4. 

Step 2: Weighted Least Squares analysis 

WLS is used to develop estimators for the regression coefficients.  Unlike 

OLS, WLS explicitly accounts for heteroscedacity of the at-site sample skew 

coefficient estimates. Unlike GLS, WLS neglects the correlation between study basins.  
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The first step in the WLS analysis is estimation of the model error variance using 

Bayesian-WLS (B-WLS) as described by Reis et al. [2005]. 

The B-WLS estimate of the model error variance,          
 , is the mean of the 

posterior distribution of   
  from a WLS analysis,           

  .  Reis et al. [2005] 

layout a quasi-analytical procedure to numerically estimate the pdf of the marginal 

distribution of   
 , which is given as 

          
                     

                   
  

  
   

    
  

                    
 
             

  
  

                      
   

(3.24) 

where 

              
   is the WLS covariance matrix defined in equation 

(3.27) 

        are the WLS model parameters 

            
   is the prior distribution of         

  

      denotes the determinant of matrix  . 

 

The MEV prior distribution,     
  , is assumed to be exponential, having the form 

          
                

                                        
    (3.25) 

A value of 10 was assigned to  ,which corresponds to a prior mean model error 

variance of 1/10.  This indicates that that           
           .  The Bayesian 

estimate of          
  can be calculated as: 

         
            

               
           

              
  

(3.26) 

This is implemented using numerical integration. 

Given          
 , the covariance matrix,     , is a diagonal matrix calculated 

with equation (3.27), with off-diagonal elements set to zero. 
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               (3.27) 

where 

    is an       identity matrix (  is the number of study basins) 

            is an       matrix containing the variances of unbiased 

at-site skew coefficient estimates obtain through equation (3.22) on the 

diagonals and zero otherwise 

The WLS weight matrix,   is computed: 

                   
  

  
  

  
                

  
  

 (3.28) 

where 

    is a       matrix of weights 

This matrix is used to compute the least squares estimate of the regional skew model 

parameters,      : 

          (3.29) 

Step Three: Bayesian GLS analysis of model precision 

Given the model parameters and weights calculated in step two, a Bayesian 

GLS (B-GLS) analysis is conducted to determine the precision of the regional skew 

model parameters.  A procedure similar to that discussed in step 2 is conducted to find 

the GLS estimate of the model error variance,          
 .  For this analysis, equation 

(3.24) has been altered to the form 

          
                          

   
    

  

                    
 
             

  
  

                      
   

(3.30) 

Here             
   is the GLS covariance matrix, defined as 

              
            

         (3.31) 

where  
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      is an       matrix, with the sampling variances of the unbiased at-site 

skew coefficients,         , on the diagonal and sampling covarinaces of the 

unbiased at-site skew coefficients on the off-diagonal.   

 

The procedure for estimating sampling covariance is discussed in more detail in 

section 3.2.3. Given the B-GLS estimate of       
 ,               

   is calculated using 

equation (3.31).  The GLS covariance matrix for      ,         , is given by: 

                        
     (3.32) 

Variance of Prediction 

As defined in section 3.2.1, the variance of prediction describes the precision 

of the regional model.  Since the hybrid WLS/GLS procedure uses WLS to generate 

the model and GLS to estimate its precision, the WLS/GLS variance of prediction 

equations use the WLS weights, the GLS estimate of the model error variance, and the 

GLS covariance matrix [Lamontagne et al., 2012, Appendix 3].  Thus: 

                   
                    

      
  (3.33) 

 

       
 

 
         

 

   

 (3.34) 

and, 

                   
                     

      
            

       (3.35) 

 

          
 

 
         

 

   

 
(3.36) 

where, 

    is an       vector with one at the  th
 row and zero otherwise 
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Leverage and Influence 

Since a WLS framework was used in this study to select the regional skew 

model coefficients, the WLS covariance matrix,     , should be used to determine 

the leverage for each site.  Following the same framework as Tasker and Stedinger 

[1989], the correct leverage values for this study are provided by 

    
          

    
  

      
   

or 

    
     (3.37) 

The second expression,   , used the definition of the WLS weights,  , provided in 

equation (3.28).  The leverage for site   is provided by the  th
 diagonal element of 

    
 . 

Noting that 
   

     
 equals                  , Tasker and Stedinger [1989]’s  

generalized Cook’s D can be decomposed into two parts: the squared residual divided 

by its variance and the ratio                   (see equation (3.15) for the OLS case of 

this decomposition).  Given this decomposition, Weisberg [1985; pg 120] explains an 

observation’s influence comes from two sources: the lack of fit of the model (squared 

standardized residual) and the observation’s leverage or potential [                 ].  

Because the model parameter estimates were determined through a WLS analysis, the 

observation’s potential should be represented in terms of a WLS analysis.  As the 

precision of the model was described with a GLS analysis, the lack of fit of the model 

at an observation should be expressed in terms of a GLS analysis.  Thus, the correct 

measure of influence for this study is provided by [Veilleux, 2012; Veilleux et al., 

2011; Lamontagne, 2012 Appendix 3]: 
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(3. 38) 

where  

        
  is the  th

 diagonal element of     
            

and 

                                   
  

                                                    
     

                                            
            

          
          

         

                                            
         

                                             
       

(3.39) 

 

  
                            

            
       

            
                

    

                                                                            
           

    
(3. 40) 

  
                            

            
       

                                  
                

    

                                                                            
           

    
(3. 41) 

   

For brevity,                    
  , and                    

  . 

The application of this new influence measure is discussed in Chapter 4. 

Section 3.2.3 Cross-Correlation Models 

Martins and Stedinger [2002] developed a relation between the cross-

correlation of the at-site sample skew coefficient estimators (           ) and the cross-

correlation of concurrent annual peaks between two sites (    ) through Monte Carlo 

experimentation.  This relationship was used in this study, and is provided by 
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 (3.42) 

where  

       is the cross-correlation of concurrent annual peaks at sites   and   

    is a constant between 2.8 and 3.3 

     is a factor which accounts for the difference in sample size 

between basins   and  . 

     is defined as 

                           (3.43) 

where 

      is the length of the concurrent record 

    ,    is the length of record for basins   and   respectively 

Given             and an estimate of the sampling variance of    for each site,    
 , the 

covariance matrix can be calculated.  Recall that covariance can be expressed: 

                            
    

 (3.44) 

 where 

    
,     

 are the standard deviations of the at-site sample skew 

coefficient of for basins   and   respectively 

Use of the sample cross-correlation of the concurrent annual maximum flows in 

equation (3.43) is not recommended.  Tasker and Stedinger [1989] state that “sample 

estimates of      are imprecise given short record lengths usually encountered,” which 

“can result in sets of      which make neither hydrologic nor statistical sense.”  Instead 

they recommend use of a smooth cross-correlation model based on the distance 

between basin gauging stations.  Their model has the form: 

          
   

      
       (3.45) 

where 

      is the distance between basin gauging stations   and   

    and   are model parameters such that     and       



91 

 

Reis et al. [2005] considered both a constant and a linear distance cross-correlation 

model in separate case studies.  The linear distance model had the form: 

                    (3.46) 

where 

    is the distance between basin gauging stations   and   in kilometers 

such that            

The assumption of normal additive errors is a key assumption of many linear 

regression diagnostic statistics and is common in least squares regression [Weisberg, 

1985, Draper and Smith, 1967].  A normal distributed variate can take values on the 

interval [- , + ], while cross-correlation is limited to the interval [-1, +1].  Thus, 

Gruber and Stedinger [2008] employ a Fisher Z transformation to map the sample 

cross-correlations to the real numbers on the interval [- , + ].  The Fisher Z 

transformation is provided by [Kendall and Stewart, 1961]: 

Fisher Z  
 

 
   

   

   
  (3.47) 

where 

   is the sample cross-correlation between two basins 

Instead of modeling sample cross-correlation, Gruber and Stedinger [2008] 

recommend modeling Fisher Z. 

Tasker and Stedinger [1989] advise that equation (3.45) could be improved 

with different functional forms or through the addition of different basin 

characteristics.  Gruber and Stedinger [2008] experiment with many functional forms 

of both distance and drainage area for the Southeast study, using ordinary least squares 

regression.  A four parameter exponential decay function of distance between basin 

centroids was shown to perform best: 
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(3.48) 

where 

   ,   , and   are model parameters determined by OLS regression 

      is the distance between the centroids of basin   and   

   is a random error 

An important advance in equation (3.48) is the use of basin centroids rather than 

gauging stations to determine basin-to-basin distance.  The basin gauging station is 

almost always located at the basin outlet (an exception in this study was the use of 

upstream and downstream gauges to estimate a river’s flood record at some point).  

Use of basin gauging station location by Tasker and Stedinger [1989] and Reis et al. 

[2005] might be problematic as adjacent gauging stations might drain basins 

composed of areas spanning a great distance.  Cottonwood Creek near Cottonwood 

(study site 3) and Battle Creek near the Coleman fish hatchery (study site 5) are an 

example of such a pairing (see Figure 1.1).  While their gauging stations are adjacent 

(less than 5 miles apart), they drain opposite sides of the Central Valley.  The distance 

between their centroids better reflects this (51 miles apart). 

In this study a variety of functional forms for relating the Fisher Z transformed 

cross-correlation to the distance between basin centroids were experimented with.  

Ultimately a three parameter exponential decay model having the following form 

appeared to best represent the cross-correlations in this study: 

                   (3.49) 

Further discussion of correlation model selection for this study can be found in 

Chapter 4. 
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Section 3.3: Redundant Basins 

Section 3.3.1: Redundant Basins and Redundancy Metrics 

When conducting a regional hydrologic regression study, it is good to ensure 

that no two basins are redundant.  Redundancy occurs when one basin is nested within 

another so that they represent largely the same area and are not two spatially 

independent observations.  In this case, it is likely that they will experience very 

similar hydrologic events so that their model error will be correlated.  Thus, retention 

of both basins in a regional skew coefficient model is statistically incorrect [Gruber 

and Stedinger, 2008].  This study involved only 50 sites, many of which were familiar 

to researchers, so that redundancy was not of great concern.  Other studies might 

involve sufficiently many sites so that such manual examination of basins to ensure 

autonomy is not feasible.  For example, the California instantaneous annual peak study 

included 146 basins across California [Parrett et al., 2011].  In such cases, metrics can 

be used to identify basins which might be redundant so that the researcher can 

examine those few cases more closely.  The California and Southeast instantaneous 

annual peak skew studies utilized two metrics: normalized distance and drainage area 

ratio.  Normalized distance,   , is defined as [Gruber and Stedinger, 2008]: 

   
   

        
 

 (3.50) 

where 

     is the distance between the centroids of basins   and   

    ,     are the drainage areas of basins   and   respectively 

Drainage area ratio,    , is defined as [Gruber and Stedinger, 2008]: 

        
   

   
 
   

   
  (3.51) 
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 To understand these metrics more intuitively consider a delineated watershed 

as roughly triangular.  Admittedly this is an over-simplification, but it holds true if one 

considers that watersheds typically expand in breadth as one travels up the main 

channel from the outlet.  Given this approximation, it is clear that the basin centroid 

will typically lay well within the basin, likely farther from the narrow outlet than the 

broad farthest reach.  Given roughly triangular watersheds, the distance between two 

neighboring basins’ centroids should increase as a function of their drainage areas.  

For smaller basins, one would expect much less distance between neighboring basins’ 

centroids than for larger basins.  To reflect this,    is the centroid-to-centroid 

distance scaled by the product of the drainage areas. 

Gruber and Stedinger [2008] point out that nested basins are not necessarily 

redundant.  In the case of a very small basin nested within a much larger basin, the 

difference in their size and characteristics might be enough to ensure only weak cross-

correlation of the skew coefficient.      is a measure of how similar two basins are in 

size, the idea being to determine the extent to which two basins might represent the 

same geographic area and are, for the purposes of a regional skew study, redundant.  

Gruber and Stedinger [2008] advises that     less than or equal to 5 and    less 

than or equal to 0.5 be used as a guideline for determining basins which might be 

nested and redundant. 

If the size of all basins in a regional hydrologic study are on the same order of 

magnitude, the    and     metrics work well.  However, problems arise if some 

basins are many times larger than others.  In this case, several basins might be nested 

within a single large basin without violating the    and     provided above. Parrett 
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et al. [2011] document such a case, in which several basins were nested within the 

Sacramento River at Keswick and the Feather River at Oroville Dam basins, despite 

   and     being greater than 0.5 and 5 respectively.  In that case both large basins 

were dropped from the skew study so that the smaller basins could be used. 

For such cases, a new redundancy metric was developed and applied to this 

study.  Standardized distance,   , is defined as 

   
   

            
 

     

        

 (3. 52) 

 

 By using the sum rather than the product of the drainage areas, the    statistic 

is more sensitive to nested basins of vastly different sizes than   .  The    factor 

allows    and    to have roughly the same scale. 

Section 3.3.2: Model Error Correlation 

WLS and GLS regression, as presented by Stedinger and Tasker [1985], 

divides the regression error into two elements: the error due to the use of an imperfect 

model and the sampling error due to short record length.  In a WLS analysis, both 

model error and sampling error are assumed to be uncorrelated between study basins, 

so the off-diagonal elements of the covariance matrix   are zero.  In the Stedinger and 

Tasker [1985] GLS framework, error correlation is attributed solely to sampling error.  

This means that the off-diagonal elements of   are estimates of the covariance of the 

at-site sample skew coefficients.  Model errors are still assumed to be independent, 

with mean zero.  This assumption is not universally accepted [Kjeldsen and Jones, 

2009]. 
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The Flood Estimation Handbook (FEH), which provides guidelines for flood 

frequency in the United Kingdom, involves the use of an index flood when conducting 

a flood frequency analysis at an ungauged site [Institute of Hydrology, 1999].  To 

generate an estimate of the index flood for ungauged sites, Kjeldsen and Jones [2009] 

utilize a variation of GLS regression.  Their formulation of GLS allows for the 

possibility of model error correlation, indicating the regression model systematically 

fails to predict the index floods at basins in a predictable way which can be modeled.  

They attribute this systematic failure to the inability of a simple regression model 

based on basin characteristics to fully reflect the complexity of basin dynamics 

[Kjeldsen and Jones, 2009; Kjeldsen and Jones, 2006]. 

Kjeldsen and Jones [2007] present empirical evidence of model error 

correlation in an index flood study for the United Kingdom.  Systematic failure of a 

regression model might be caused in various ways besides the complexity of the 

natural environment.  Veilleux [2009] offers a discussion of model error correlation in 

the context of redundant basins.  Her argument is that one would expect model error 

correlation if two basins are redundant as they represent essential the same watershed.  

Kjeldsen and Jones [2009] did not remove nested basins and acknowledge that nested 

basins are an “intuitive” explanation of model error correlation.  Veilleux [2009] 

argues that removing redundancies improves the regression analysis with only 

marginal loss of data, since redundant basins represent nearly the same watersheds. 

Another cause of model error correlation is the use of an insufficient model.  

Systematic failure of a model can often indicate that some important explanatory 

variable has been neglected.  The assertion by Kjeldsen and Jones [2009] that a simple 
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regression model cannot fully capture the true complexity of the natural environment 

is not disputed by the Stedinger and Tasker [1985] GLS framework; rather the model 

errors discussed by Stedinger and Tasker [1985], Reis et al. [2005], and this thesis are 

caused by precisely this.  The departure is in the assertion that model errors are 

correlated and that this correlation might be described in terms of distance between 

basins [Kjeldsen and Jones, 2006, 2007].  The rational for modeling cross-correlation 

of model errors as a function of distance between basins is that basins which are close 

exhibit similar hydrologic characteristics which impact the flood statistic of interest 

and have been neglected from the regression. While the neglected explanatory variable 

might be impossible to determine precisely, it seems likely that a surrogate variable 

could be developed.  As Kjeldsen and Jones [2009] state that they have rigorously 

examined all reasonable combinations of explanatory variables and are still 

experiencing model error correlation, nested redundant basins are more likely the 

cause of this correlation, or else use of an inadequate correlation model for sampling 

error of the index flood. 

Conclusion: 

This chapter provides the theoretical framework for regional hydrologic 

regression based on the Bayesian GLS procedure proposed by Reis et al. [2005].  A 

variety of diagnostic statistics for the Bayesian GLS analysis are reported and 

explained.  Additionally, a new WLS/GLS procedure is introduced.  This procedure 

uses Bayesian WLS to estimate the model parameters, but Bayesian GLS to assess its 

precision.  This methodology was developed because the high correlation between 

skew sampling errors in California resulted in complex GLS regression weights which 
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were not justifiable [Parrett et al., 2011; Lamontagne et al., 2012].  Finally, this 

chapter explores the potential impact of redundant basins on hydrologic regression and 

presents a new metric, standardized distance (  ), to detect them. 
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CHAPTER 4 

REGIONAL ANALYSIS OF CALIFORNIA LOG-SPACE SKEW COEFFICENTS 

FOR D-DAY MAXIMA 

 

This chapter describes the application of the new regional skew analysis 

methodology developed in Chapter 3to annual maximum rainfall flood records of five 

durations in the state of California.  The specific basins used in this study, as well as a 

general discussion of their hydrology can be found in Chapter 1.  Section 4.1 discusses 

the observed log-space skew coefficients of the flood records used in the study.  

Section 4.2 describes the difficulties encountered when attempting to apply traditional 

regionalization techniques to this study, and Section 4.3 provides justification for the 

use of the methodology described in Chapter 3 for this study.  Section 4.4 presents the 

results of the case study.  Section 4.5 discusses the application of new leverage and 

influence statistics developed for this study, and Section 4.6 discusses the 

development of the non-linear elevation terms utilized in the regional skew study and 

examines its parameterization.  

Section 4.1: Observed log-space skew coefficient 

 Before a regional skew analysis could be conducted, reasonable estimates of 

the at-site sample skew coefficient had to be computed for each study site and each 

duration.  The presence of low-outliers in a flood series can make obtaining reliable 

estimates of the sample skew difficult.  Bulletin 17B defines an outlier as an 

observation “which departs from the trend of the rest of the data [IACWD, 1982].”  

Various low-outlier identification and censoring procedures have been proposed and 
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shown to improve flood frequency results [IACWD, 1982; Cohn et al., 2001; Griffis et 

al., 2004].  These procedures were discussed in more detail in Chapter 2 of this thesis. 

 This study used an iterative manual identification procedure in which low 

outliers were visually identified by observing the fitted distribution on a probability 

plot.  When the fitted distribution failed to accurately represent the data, and 

particularly when it failed to describe the largest observations of a flood record, the 

smallest observations were incrementally censored and the distribution was refit to the 

retained data using the Expected Moments Algorithm [Cohn et al., 2001]. 

 For the first iteration of the procedure the Grubbs-Beck lower bound threshold 

recommended by Bulletin 17B was used [IACWD, 1982].  In cases where additional 

censoring was deemed necessary, the EMA censoring threshold was adjusted to be 

less than the smallest retained observation.  In no case was an observation identified as 

a low-outlier by the Grubbs-Beck test retained in the analysis.  For more details 

concerning the censoring procedure and the extent of censoring in this study, please 

see Section 2.4. 

 Flood series were analyzed for five different flow durations.  In most instances 

the smallest observations in a flood record corresponded to the same hydrologic event 

across all durations, i.e. the 1-day duration flood usually occurred during the 30-day 

duration flood.  Thus, an effort was made to ensure censoring consistency across 

durations.  In some instances minor inconsistencies were allowed if the fitted 

distribution described the largest observations of a sample well without further 

censoring.  Censoring too liberally, within reason, should not greatly impact the 

estimated skew coefficient given the long record lengths in this study.  The extent of 
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censoring for flood records used in this study is discussed at length in Section 2.4.2, 

and a summary of censoring for individual sites can be found in Table 2.1.  The 

observed log-space skew coefficient for each basin and duration used in this study are 

plotted in Figure 4.1 in order of ascending 7-day log-space skew and listed in Table 

A.1-Table A.7 in Appendix A.  

 

 
Figure 4.1: Log-space skew for rainfall floods all durations vs. site name, in order of 

ascending 7-day log-space skews. 

Note that at-site sample log-space skew coefficients ranged roughly between -1.1 and 

0.2.  While a fair amount of variation between durations was observed for each basin, 

skew coefficients for all durations trend together across study basins. 
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Section 4.2: Cross-Correlation of annual rainfall floods for California 

   Many hydrologic variables, including the at-site sample skew coefficient, are 

cross-correlated among basins which are geographically close or hydrologically 

similar [Stedinger and Tasker, 1985].  Regional skew regression methods which do 

not consider cross-correlation of sample skew coefficients implicitly assume they are 

independent observations.  If the degree of correlation is significant, this assumption 

might impact the fitted regression parameters and will almost certainly impact the 

estimated precision of the model [Reis et al., 2005].  This is important in this 

application, because Bulletin 17B procedures use a weighted average of the regional 

and sample skew coefficients for flood frequency, in which the weighting is based on 

the relative precision of the two skew estimates.  Thus it is important to estimate the 

precision of the model well. 

 No direct estimate of the cross-correlation of the sample skew coefficients of 

flood records is readily available.  Martins and Stedinger [2002] provide a relationship 

between the cross-correlation of two annual maximum flood series and the cross-

correlation of their estimated sample skew coefficients.  The cross-correlation of the 

sample skew coefficients for each duration in this study were estimated from the 

cross-correlation of the rainfall flood records between each site. 

 The observed cross-correlation between concurrent rainfall floods of various 

durations were significantly greater than those observed between concurrent annual 

instantaneous peak flows in California [Parrett et al., 2011].  This was expected 

because instantaneous peak flows in California are caused by rain and snowmelt 

events, while rainfall floods are caused predominantly by rainfall only.  This increases 
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the chances that two annual maxima occur essentially at the same time and thus are 

likely to be highly correlated.  Furthermore, the averaging of flood volumes over 

longer durations diminished the effect of spatial and temporal variability of hydrologic 

events, resulting in higher cross-correlations.  The cross-correlation between rainfall 

floods increased with flood duration so that cross-correlation between 30-day floods 

was nearly always greater than cross-correlation between 1-day floods. 

   To construct the GLS covariance matrix, Tasker and Stedinger [1989] 

recommend utilization of a cross-correlation model rather than sample cross-

correlations in order to create a covariance matrix which is consistent and 

hydrologically defensible.  Gruber and Stedinger [2008] illustrate that modeling the 

Fisher Z transformation of the cross-correlation of annual maximum floods is well 

suited to the skew regression framework and can improve regional skew analysis 

results.  This is discussed in more detail in Section 3.2.   

Tasker and Stedinger [1989], Reis et al. [2005], Gruber and Stedinger [2008], 

and Parrett et al. [2011] model cross-correlation (or Fisher Z transformed cross-

correlation) as a function of the distance between basins.  This study experimented 

with various functional transformations of distance to describe Fisher Z transformed 

cross-correlation between annual maximum rainfall floods for each of the durations.  

In this study distance was measured between basin centroids. 

 The precision of the Fisher Z transformed cross-correlation estimator for two 

sites is a function of the concurrent record [Veilleux, 2009].  By setting a minimum 

concurrent record length for a site pairing to be included in the correlation model 

development, only more reliable cross-correlation estimates were utilized.  A 
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concurrent record threshold uses reliable correlation estimates, but also retains enough 

site pairings for a good analysis.  A concurrent record length of at least 50 years was 

adopted. With a concurrent record threshold of 50 years for the 1-day duration, 624 of 

1,225 possible pairings were used, which included 42 of 50 possible sites. Eight sites 

were excluded from the analysis because they had record lengths less than the 50 

years. 

 Parrett et al. [2011] selected a two parameter exponential decay model for 

Fisher Z transformed cross-correlations between annual maximum floods in 

California.  The only explanatory variable for their model was distance between basin 

centroids.  The model adopted for this study (Equation (4.1) is a generalization of their 

model, including an extra, additive constant parameter.  It was observed that this 

model better described the transformed cross-correlation for the rainfall floods 

considered in this study.  Unlike the Parrett et al. [2011] model, this correlation model 

does not converge to zero at some great distance.  It is important to note that this 

model was intended to provide cross-correlation between study basins which are fairly 

close, and that sample correlation did not drop to zero in the distance range of interest. 

The model is: 

                   (4.1) 

where 

    is the Fisher Z transformed cross-correlation between concurrent flood 

records at sites i and j. 

  ,  , and   are model parameters selected through regression 

     is the distance between the centroids of basins   and   in miles 

An ordinary non-linear least squares regression was performed to find 

appropriate model parameters for each duration.  Non-linear least squares was 
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necessary because the model form is not linear.  A weighted least squares regression 

would have been appropriate if sampling variances of the Fisher Z statistic varied 

greatly between pairings.  Because the concurrent record lengths were fairly uniform 

across all pairings, the sampling variance of the Fisher’s Z statistic is also fairly 

uniform across pairings, and thus an ordinary least squares regression should be 

adequate.  Table 4.1 provides the correlation model parameters for the five study 

durations.  All model parameters were significant at the 0.05 significance level.  While 

it is surprising that the model parameters are not ordered in duration, Figure 4.2 shows 

that model transformed correlation are generally ordered by duration over the range of 

distances of interest. 

Table 4.1: Parameters of cross-correlation models for concurrent flood flows for all 

durations. 

Duration a b c 

1-Day 0.38 0.15 6.05E-03 

3-Day 0.38 0.22 5.62E-03 

7-Day 0.38 0.26 4.96E-03 

15-Day 0.36 0.31 4.58E-03 

30-Day 0.41 0.28 4.80E-03 

 

 Table 4.2 reports a summary of statistical results from the correlation 

regression for each duration for both the selected three parameter model and a constant 

model.  The constant model has the form: 

      (4.2) 

The constant model has an effective record length between 12 and 13 years, 

depending on the duration.  The constant model has a Pseudo R
2
 of zero for all 

durations, as it is explaining none of the variability in the Fisher Z-transformed cross-

correlations between flood records.  The final model has Pseudo R
2
 values between 68 
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and 72%, with effective record lengths between 33 and 36 years depending on 

duration.  These effective record lengths are similar to the reported effective record 

length of the correlation model used in the previous California instantaneous annual 

maximum study. 

Table 4.2: Statistical Summary of Regression for the Final Correlation Model (Eqn. 

4.1) and the Constant Model (Eqn. 4.2) for all study durations. 

Duration Model MEV Pseudo R
2
 ERL 

1 Constant 0.1011 0 13 

 

Final 0.0320 0.68 34 

3 Constant 0.1103 0 12 

 

Final 0.0330 0.70 33 

7 Constant 0.1125 0 12 

 

Final 0.0311 0.72 35 

15 Constant 0.1156 0 12 

 

Final 0.0299 0.74 36 

30 Constant 0.1146 0 12 

 

Final 0.0309 0.73 35 

 

Figure 4.2 displays the cross-correlation models for each duration included in 

this study, as well as the cross-correlation models for the California instantaneous 

peak study [Parrett et al., 2011] and the Southeast instantaneous peak [Veilleux, 2009] 

study.  The Southeast correlation model declines rapidly with increasing distance, 

while the California instantaneous peak correlation model declines gradually with 

increasing distance.  The d-day rainfall flood correlation models have a similar shape 

to the California instantaneous peak correlation model, but are larger.  As rainfall 

flood duration increases, so does the cross-correlation for a fixed distance. 
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Figure 4.2: Models of cross correlation between concurrent annual maximums for all 

durations as a function of the distance between basin centroids. 

Section 4.3: Methodology adjustment for California rainfall floods 

 This section briefly describes the methodical adjustments to the standard 

Generalized Least Squares (GLS) procedure used to generate regional skew models 

for rainfall floods in California.  For a more theoretical discussion, see Section 3.2: 

Standard GLS and Hybrid WLS/GLS Procedure. 

 Figure 4.2 shows that the cross-correlation between annual maximum rainfall 

floods for all durations were greater than those observed in the previous Southeast 

study [Veilleux, 2009; Weaver et al. ,2009; Feaster et al., 2009; Gotvald et al., 2009] 

and the previous instantaneous peak study in California [Parrett et al., 2011].  Parrett 

et al. [2011] document that high cross-correlation of sampling errors can lead to 

instability in the regression parameter estimates.  This occurs when GLS seeks to 

exploit the high cross-correlation through a series of complicated weights.  Figure 4.3 

illustrates regression weight instability by plotting the weights assigned to each site in 
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this study for a constant model (Equation (4.4)) by OLS, WLS, and GLS versus record 

length.   

 
Figure 4.3: Comparison of regression weights assigned to study sites (for the constant 

model) from OLS, WLS, and GLS analyses 

 The sum of all regression weights must equal one.  Note that OLS assigns an 

equal weight of (1/50) to each site, regardless of record length.  WLS, plotted as a 

dashed line, assigns greater weight to basins with longer record length because the 

precision of the at-site sample skew coefficient estimator is a function of record 

length.  In this study, WLS assigns a weight of 0.04 for a record length of 114 years 

versus 0.007 for a record length of 28. The ratio is not quite 2:1.  The WLS weights 

are not perfectly linear in record length because an estimate of the at-site skew is used 

to find the variance of the skew estimate rather than the true, unknown population 

skew for that site (see Chapters CHAPTER 2 and CHAPTER 3 for discussion).  One 

would expect the GLS weights to vary somewhat from WLS weights, but the GLS 

weights should remain reasonable; i.e. not highly negative or positive.  While the GLS 
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weights plotted in Figure 4.3 still sum to one, they depart radically from the WLS 

weights and are generally erratic. 

 If the true cross-correlation of the skew coefficients were known, such 

complex weights might be defensible.  Unfortunately the true cross-correlations are 

not known and are estimated from the cross-correlation of the concurrent rainfall flood 

records.  The precision of these estimates do not justify such complicated weights, so a 

GLS analysis was judged to be unacceptable [Parrett et al., 2011].  However, a WLS 

analysis which ignores high cross-correlation would overestimate the precision of the 

regional model by assuming that sampling errors are independent.  Thus, it was 

necessary to adopt an alternative regression method for the regional skew analysis 

which utilized a WLS framework to estimate skew model coefficients, but assess the 

precision of the model using a GLS framework. 

Section 4.3.1: Hybrid OLS/GLS/WLS for California rainfall floods 

 Following a procedure similar to that described by Parrett et al. [2011], an 

OLS/WLS/GLS hybrid procedure was developed for this study of rainfall floods.  This 

process used an OLS regression to create an initial regional skew model.  The OLS 

regional skew coefficients were used to estimate the variance of the at-site sample 

skew coefficients for each site.  With these variances, a WLS regression was used to 

find regional skew coefficient models for each duration.  The precision of these 

models was then estimated using a Bayesian-GLS procedure.  These steps are 

discussed in greater detail in Section 3.2: Standard GLS and Hybrid WLS/GLS 

Procedure. 
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Section 4.3.2: Sample skew coefficient variance for records experiencing heavy 

censoring. 

 In order to estimate the sampling covariance matrix, it is necessary to obtain 

reliable estimates of the at-site sample skew coefficient’s variance for each basin and 

duration in the study.  For most of the records in this study, these were obtained using 

the formula provided by Griffis and Stedinger [2009] and repeated in Equation 3.26.  

This expression was originally obtained by Griffis [2003] through an extensive Monte 

Carlo analysis involving samples drawn from Pearson Type 3 distributions of record 

lengths 10 to 150 years.  The study involved complete and uncensored samples.  No 

examination of the effects of censoring on the precision of the skew coefficient 

estimator was made. 

 If one were to randomly censor observations from a sample, the Griffis and 

Stedinger [2009] equation would still be valid.  On the other hand, censoring of low 

outliers by removing the smallest observations in a sample is not random and could 

potentially affect the estimated variance.  Thus, an alternative estimate of the sample 

skew coefficient variance was needed for sites experiencing significant censoring.  

The expected moments algorithm (EMA) provides an estimate of the variance of the 

sample skew coefficient.  The process used to derive this estimate is documented in 

the appendix of Cohn et al. [2001]. 

 Forty-eight of the 50 basin records included in this study contained less than 

five censored observations for all durations, and the Griffis and Stedinger [2009] 

approximation of the variance of the sample skew coefficient was used.  In fact, 46 of 

the 50 basin records included in this study contained less than four censored 

observations; the two basins with 4 censored observations are Cache Creek at Clear 
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Lake (study basin, 43) and North Fork Cache Creek at the Indian Valley dam (study 

basin, 16).  These two basins have record lengths of 83 and 77 years respectively; the 

censoring for these sites was deemed minor compared to their record length, so the 

Griffis and Stedinger [2009] formula for the variance of the skew estimator was 

deemed appropriate.   

The two basin records experiencing greater than four censored observations, 

Santa Cruz Creek at Santa Ynez (study basin, 52) and Putah Creek at the Monticello 

dam (study basin, 44) warranted more extensive censoring.  Depending on duration, 

four to six observations were censored at Santa Cruz Creek from a record of 78 years, 

while eleven to twelve observations were censored at Putah Creek from a record of 67 

years.  This censoring level was deemed too extreme to use the Griffis and Stedinger 

[2009] formulation, so the EMA estimate of the variance of skew was utilized.  

Because censoring for most basin records involved one or two observations from 

record lengths in excess of 70 years, and the heavy censoring sites represented only 

two basin of 50, the effects of this inconsistency in methodology was thought to be 

minor.  This was checked with a sensitivity analysis. The WLS/GLS regression 

analysis was rerun without the four heavy censoring sites.  There was very little 

difference in the results, including the average variance of prediction.  Thus the 

handling of these four sites in the OLS/WLS/GLS analysis had very little effect on the 

regional model or its estimated precision.  The change was actually surprising small, 

but can be understood in that there were 50 sites in all, the Putah Creek and Santa 

Cruz Creek skews were assigned large sampling variances by EMA and thus small 
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weights, and that Putah Creek and the two Cache Creek basins are physically very 

close so that they are highly correlated and do not represent three independent basins. 

Section 4.4: Regional skew coefficient modeling results 

 In this study, five regional skew coefficient models were developed: one for 

each rainfall flood duration considered.  It was expected that flood durations would 

exhibit different distribution characteristics as floods of different durations can have 

very different characteristics.  On the other hand, the regional skew coefficient models 

should not be very different, otherwise inconsistencies between flood frequency 

results for various durations might occur. 

 This study included 50 basins in and around the Central Valley of California.  

Record lengths ranged from 28 to 116 years with a mean of 74 years and a standard 

deviation of 24 years (see Table 1.1 for a list of basins included in the study and their 

period of record).  More than two thirds of basins have record lengths in excess of 65 

years.  A total of twenty possible explanatory variables were provided by USGS for 

most basins.  These characteristics are described and defined in detail in Chapter 1.  

The full suite of basin characteristics were not available for all basins, so initial study 

results were obtained using only 47 basins that had the full set of explanatory 

variables, while the final models were developed using all 50. 

 Synthetic basin characteristics, which are combinations or functions of one or 

more of the provided basin characteristics were also tested.  These include several 

non-linear functions of mean basin elevation.  While a variety of basin characteristics 

were tested, only functions of elevation proved statistically significant.  This was also 

observed by the previous California instantaneous peak study.  The importance of 



116 

 

elevation was attributed to the switch from rainfall-only hydrology at low elevations to 

rain and snowmelt hydrology at high elevations [Parrett et al., 2011]. 

 Basin drainage area is a commonly used characteristic in hydrologic models.  

Figure 4.4 plots sample skew coefficients for each study site in order of ascending 

drainage area.  Note that no clear trend is exhibited in the plot, indicating that basin 

drainage area is likely a poor explanatory variable for regional skew. 

 
Figure 4.4: Observed at-site sample skew coefficients versus site, ascending basin 

drainage area. 

 Figure 4.5 displays the skew coefficient for each study basin and duration, 

sorted by mean basin elevation.  Note a clear non-linear trend with elevation, in which 

low elevation skew coefficients vary about one mean, while high elevation skew 

coefficients vary about a less negative mean, with a brief and rapid transition zone in 

between. 
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Figure 4.5: Observed at-site sample skew coefficients versus site, ascending mean 

basin elevation. 

 To address the apparent non-linear trend in elevation, a variety of non-linear 

functions of elevation were tested.  Ultimately, the function given by Equation (4.3) 

provided the best regression results across all durations.  Section 4.6 Development 

procedure for non-linear models and sensitivity analysis describes the development of 

the non-linear elevation function as well as an assessment of the possible error 

incurred by ignoring estimation error in its coefficients. 

            
    

    
 
  

  (4.3) 

where      is the mean basin elevation in feet. 

This function is essentially zero for low elevation basins (     less than 2,500 

ft) and one for high elevation basins (     greater than 4,500 ft), with a rapid 

transition period between 3,000 and 4,000 ft.  This function is similar to that used by 

Parrett et al. [2011] for California annual maximums. 
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 Many regional skew model forms and explanatory variables were tested.  For 

brevity, only four model forms are presented and discussed in this thesis: the constant 

model, the linear elevation model, a discontinuous EL6000 model, and the non-linear 

elevation model. 

The constant model has the form: 

     (4.4) 

where  

    is a regression constant 

The linear elevation model has the form: 

              (4.5) 

where 

     and    are regression constants 

       is the mean basin elevation for site  . 

The discontinuous        model has the form: 

         for           

and 

            for           

(4.6) 

where 

     and    are regression constants 

         is the        (percent of basin above 6,000 ft) for site  . 

The non-linear (NL) elevation model has the form: 
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            (4.7) 

where 

     and    are regression constants 

     is the non-linear (  ) function defined in Equation 4.2 for site  . 

The discontinuous        model was developed because a linear        model 

failed to adequately describe basins with low       .  As an alternative, the three 

parameter model described by Equation (4.7) was developed:    

                                   for           

and 

                           for           

(4.8) 

where 

    ,   , and    are regression constants 

         is the        for site   

The slope coefficient    failed to be statistically significant for any duration, so the 

model described by Equation 4.6 was adopted instead. 
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Table 4.3: Summary of statistical results for various models considered. Terms in parenthesis are standard error of computed term above. 

Duration Type B0 B1 B2 B3 MEV ASVE AVPnew R
2 

Nominal ERL 

  Constant* -0.32 - - - 0.078 0.035 0.113 0 66 

1-Day Linear Elevation -1.02 1.79E-04 - - 0.026 0.040 0.066 0.66 110 

 
Discont. EL6000 -0.69 - 0.62 - 0.017 0.038 0.055 0.78 131 

 
NL Elevation -0.73 - - 0.69 0.012 0.038 0.049 0.85 146 

 
NL Elev Final** -0.73 - - 0.69 0.011 0.037 0.048 0.86 150 

    (0.22) 
  

(0.12) (0.009) 
      Constant -0.27 - - - 0.080 0.039 0.118 0 62 

3-Day Linear Elevation -0.97 1.78E-04 - - 0.025 0.043 0.068 0.69 104 

 
Discont. EL6000 -0.64 - 0.63 - 0.016 0.041 0.057 0.80 122 

 
NL Elevation -0.68 - - 0.71 0.008 0.040 0.049 0.90 143 

 
NL Elev Final -0.69 - - 0.68 0.009 0.040 0.049 0.89 143 

    (0.22) 
  

(0.11) (0.008) 
      Constant -0.22 - - - 0.053 0.040 0.093 0 76 

7-Day Linear Elevation -0.83 1.53E-04 - - 0.014 0.045 0.059 0.74 117 

 
Discont. EL6000 -0.54 - 0.53 - 0.013 0.043 0.056 0.75 121 

 
NL Elevation -0.58 - - 0.61 0.007 0.042 0.049 0.87 138 

 
NL Elev Final** -0.59 - - 0.59 0.007 0.042 0.049 0.87 140 

    (0.23) 
  

(0.11) (0.006) 
      Constant -0.30 - - - 0.034 0.043 0.076 0 95 

15-Day Linear Elevation -0.88 1.44E-04 - - 0.010 0.048 0.058 0.71 124 

 
Discont. EL6000 -0.60 - 0.49 - 0.008 0.046 0.055 0.75 130 

 
NL Elevation -0.65 - - 0.57 0.006 0.046 0.052 0.84 138 

 
NL Elev Final** -0.65 - - 0.55 0.005 0.046 0.051 0.85 141 

    (0.24) 
  

(0.11) (0.005) 
      Constant -0.36 - - - 0.033 0.044 0.076 0 98 

30-Day Linear Elevation -0.84 1.21E-04 - - 0.017 0.049 0.066 0.48 113 

 
Discont. EL6000 -0.60 - 0.40 - 0.012 0.047 0.059 0.63 125 

 
NL Elevation -0.64 - - 0.47 0.011 0.047 0.058 0.67 128 

 
NL Elev Final** -0.63 - - 0.44 0.010 0.046 0.056 0.69 133 

    (0.24) 
  

(0.11) (0.008) 
    

* Non-significant terms in bold 

         
** Analysis included all 50 sites, whereas all others included 47 sites 
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 Table 4.3 provides a summary of the statistical analysis for the best performing 

models for all durations.  The diagnostic and goodness of fit statistics are defined and 

described in Section 3.2.  Nominal effective record length (nominal ERL) is a 

variation of the previously defined ERL.  Since the variance of prediction and the 

regional skew coefficient varies across the range of the explanatory variables, it is 

impossible to give a single ERL for a skew model unless it is constant.  Nominal ERL 

instead uses the average variance of prediction for a new site (      ) and the 

constant model regional skew coefficient to calculate the ERL.  The actual ERL for a 

new or old basin depends on the mean elevation of that basin. 

 The constant model coefficient fails to be statistically different than zero at the 

5% level for any duration considered in this study, indicating that there is not strong 

evidence that the coefficient should not be zero.  This is surprising since the majority 

of the sample skew coefficients are negative, and the model error variance (MEV) is 

relatively small.  This is explained by the high cross-correlation between sample skew 

coefficients, which greatly affects the precision of the estimated parameters [Stedinger 

and Tasker, 1985].  The misrepresentation of beta variance (MBV) ranged between 

13.4 and 18.4 across study durations for the final models, indicating that ignoring the 

cross-correlation would cause the analysis to overestimate the precision of the constant 

term in Equation (4.7) by a factor of 13.4 to 18.4.  While it is not a perfect analog for 

the constant model, it gives an idea of the effect of cross-correlation on model 

precision. 

Cross-correlation reduces the precision of the regression parameters by 

reducing the effective number of independent sites.  Stedinger [1983, eqn. 41] gives an 
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approximation for the variance of a regional average skew given   sites, each with   

normally distributed observations, and average cross-correlation of   .  With this 

approximation, it is possible to compute the effective number of independent sites for 

any combination of  ,  , and   .  Figure 4.6 plots the effective number of independent 

sites versus average cross-correlation for the case that   is 50, and   is 57, which is 

the average years of concurrent record in this study. 

 

Figure 4.6: Effective Number of Independent Sites vs. Average Cross-Correlation, 

using Stedinger [1983] approximation 

The average cross-correlation in this study is 0.283, though this varies across sample 

sites.  The effective number of independent sites for the case that    is 0.283 is about 

23: less than half of the actual number of sites included.  Of course this is an 

approximation, some of whose assumptions are violated, but it gives a sense for the 
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affect of cross-correlation on model precision.  The impact of this effect on the Pseudo 

ANOVA table (Table 4.4) is explored more in Section 5.2. 

The   
  describes the amount of variation in the at-site sample skew 

coefficients the model is describing, so the   
  for the constant model is zero for all 

durations.  The linear elevation model performs well, with   
   between 0.48 and 0.74, 

and nominal ERL lengths between 104 and 124 years depending on duration.  

However, the linear model tends to over-estimate skew coefficients for low elevation 

basins and under-estimate skew coefficients for high elevation basins.  The 

discontinuous        model performs better than the linear elevation model for all 

durations, with   
  between 0.63 and 0.80 and nominal ERL lengths between 104 and 

131 years depending on duration.  The non-linear elevation model performs best of all 

the models tested, with   
  between 0.67 and 0.90 and nominal ERL lengths between 

128 and 146 years depending on duration. 

The discontinuity of the        model presents some difficulty.  As 

formulated in Equation (4.6), the model assigns one regional skew coefficient to low 

       basins and another to high        basins.  The discontinuity is not a 

concern for most of the range of       , but might present a problem for basins with 

       near 4.  In this case, a river basin evaluated at one point along the channel 

might be given a regional skew coefficient value vastly different than at a second 

nearby upstream point, despite the basins being almost completely redundant.  In this 

case, it seems unlikely that flood characteristics at one site are very different than 

those at another site.  The non-linear elevation model addresses this by essentially 
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providing one regional skew value for low elevation basins and another for high 

elevation basins, with a rapid, smooth, and continuous transition in between. 

 Figures Figure 4.7 through Figure 4.11 plot the observed at-site sample skew 

coefficients and the fitted non-linear elevation regional skew model versus elevation 

for each duration considered in this study.  Figure 4.12 compares the five fitted 

models.  The wide scatter exhibited in the sample skew coefficients displayed in 

Figures Figure 4.7-Figure 4.11 is mostly due to the sampling error in the skew 

coefficient estimators.  Moreover, because of the high correlations among the annual 

peaks of a given duration, the residual errors are correlated.  For example, the cluster 

of three high-elevation sites with very positive skew observed in Figure 4.11 

correspond to the San Joaquin River (study basin 19), the Kings River (study basin 

18), and the Kern River (study basin 38), which are adjacent to each other in the 

highest region of the Sierra Nevada Mountain Range. 

Overall the model errors are remarkably small, and the fitted functions are 

reasonable (see Table 4.4).  For the rainfall flood series considered here, there is a 

clear distinction between basins with low mean elevation and basins with high mean 

elevation.  Lower mean elevation basins are likely completely dominated by rainfall 

only floods, while higher mean elevation basins experience rain-on-snow events which 

make very small annual maximums much less likely, and change the shape of the 

flood distribution. 
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Figure 4.7: Observed at-site sample skew coefficients versus mean basin elevation (1-

day). 

 

Figure 4.8: Observed at-site sample skew coefficients versus mean basin elevation (3-

day). 
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Figure 4.9: Observed at-site sample skew coefficients versus mean basin elevation (7-

day). 

 

Figure 4.10: Observed at-site sample skew coefficients versus mean basin elevation 

(15-day). 
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Figure 4.11: Observed at-site sample skew coefficients versus mean basin elevation 

(30-day). 

 

Figure 4.12: Regional Skew Models for all durations considered. 
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Figure 4.12 plots the fitted regional skew coefficient model for each of the 

durations considered in this study.  It should be noted that the 30-day skew model 

diverges somewhat from the other models and that the models are not ordered as one 

might expect.  It is helpful to consider that these are skew coefficient models, and not 

flow quantile models, so they should not necessarily be sorted by duration.  In fact, if 

one considers the standard errors of the model parameters (roughly 0.2 for the constant 

and 0.1 for slope), it is not even clear that the models are significantly different from 

each other.  Thus, hydrologic insight based on differences between models must be 

stated cautiously and discussed with some skepticism. 

Some of the trends exhibited do seem to reinforce our hydrologic 

understanding of rainfall floods in California.  The hydrologic driver of the 30-day 

duration is clearly a different process than the hydrologic drivers of the shorter 

durations.  The 1, 3, and 7-day duration events are almost always caused by a single 

passing storm system, whereas the 15-day and 30-day duration events are almost 

certainly caused by several weeks of storm systems. Thus it is not surprising that their 

flood distribution characteristics are different.  It can be observed that the skew 

models for shorter duration events (1, 3, and 7-day) are in fact sorted by duration and 

do not cross; the longer the flood duration, the less negative the skew coefficient at all 

elevations. 

 The 15-day and 30-day duration skew coefficient models vary much less 

between high and low elevation basins, indicating that at longer durations, flood 

distribution characteristics are more uniform across the study region than at shorter 

durations.  The averaging of flood volumes over longer durations is at least in part 
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responsible for this increased uniformity with increased duration.  Another possible 

explanation is that basin response to prolonged rain events (two to four weeks) is more 

uniform because the rain volume exceeds the natural basin storage quickly relative to 

the flood duration. This minimizes the impact of basin heterogeneity on flood 

characteristics because a greater percent of the total rainfall is going directly to runoff.  

Given this, it is not surprising that much more scatter was observed in the sample 

skew coefficients for 30-day duration than shorter durations (see Figures Figure 4.7-

Figure 4.11), and also that less of an elevation signal was observed (see “Model” term 

Table 4.4 and Pseudo in Table 4.3).  

 Table 4.4 reports a pseudo ANalysis Of VAriance (ANOVA) for the 

recommended non-linear model for each duration.  The table divides the variability 

observed in the skew coefficient estimators into three categories: the variability 

explained by the model (“Model”), the variability in the true skews that the model 

cannot explain (“Model Error”), and the variability due to the sampling error in the 

individual skew coefficient estimators (“Sampling Error”).  The table also contains the 

total variability, which is the sum of the three.  The major source of variability for all 

durations is the sampling error.  Recall from Section 3.2, the Error Variance Ratio 

(EVR) is the average sampling variance divided by the variance of the model error.  

For this study, EVR values range from 12.4 to 26.3 across durations.  Thus, the 

sampling error in the skew coefficient estimators is overall much larger than the model 

error.  Clearly an Ordinary Least Squares analysis, which ignores the limited precision 

of the skew coefficient estimators, is likely to fail to correctly represent the 

information in the data set and ultimately the true variance of prediction. 

2

R
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Table 4.4: Pseudo ANOVA for fitted model for each duration considered 

  1-Day 3-Day 7-Day 15-Day 30-Day 

Model 3.384 3.660 2.347 1.359 1.070 
Model Error 0.533 0.448 0.336 0.244 0.485 
Sampling 
Error 6.602 6.439 6.234 6.399 6.348 
Total 10.519 10.548 8.916 8.002 7.902 

  
     EVR 12.4 14.4 18.6 26.3 13.1 

MBV 13.4 15.2 17.1 18.4 18.0 
Pseudo   

  0.86 0.89 0.87 0.85 0.69 
 

 Table 4.4 also reports the Misrepresentation of Beta Variance (MBV) statistic, 

which is the ratio of the sampling variance that the GLS analysis ascribes to the 

constant in the model and the variance that a WLS analysis (which neglects cross-

correlations) would ascribe to the constant (see Section 3.2) [Parrett et al., 2011].  

MBV values range from 13.4 to 18.4 across the durations.  These large values of MBV 

indicate that error analysis produced by WLS would drastically overestimate the 

precision of the constant term.  Thus, a GLS analysis is needed to correctly evaluate 

the precision with which the constant term can be resolved.  This is particularly 

important in these analyses because the contribution of parameter uncertainty to the 

average variance of prediction is at least twice as large as the model error variance for 

each study duration.  This is a result of the very large correlation among the records 

which limits the amount of information the regional data set provides.   

 The total variability decreases with increasing duration.  This means that as 

duration increases there is less elevation signal in the observed skew coefficients and 

that skew coefficient values become more uniform.  This is confirmed by observing 

Figures 4.6A-4.6E: note that as duration increases, so too does the scatter in skew 
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values.  Not surprisingly, the amount of variability the model is able to describe also 

decreases with increasing duration, as there is simply less variability to explain.  

Model error remains relatively constant across durations, as does sampling error. 

 Because the models include an explanatory variable that depends on elevation, 

the actual variance of prediction for a site depends on its average basin elevation.  

Table 4.5 gives the variance of prediction for a new site (a site not included in this 

study) as a function of its mean basin elevation between 0 and 10,000 feet.  For basins 

below 2,500 feet, there is no change in the variance of prediction with elevation; 

similarly, all basins above 4,500 feet have the same variance of prediction.  There is 

little variation in the effective record lengths (ERL) with changes in elevation despite 

an appreciable variation in the variance of prediction.  The change in the sampling 

variance of the skew coefficient estimators due to the change in estimated skew 

coefficient with elevation approximately balanced the differences in the prediction 

variance for lower and higher elevations. 

Table 4.5: Variance of Prediction (VPnew) and Effective Record Length (ERL) for all 

durations as a function of elevation. 

  
Elevation 

(ft) 

1-Day 3-Day 7-Day 15-Day 30-Day 

VPnew ERL VPnew ERL VPnew ERL VPnew ERL VPnew ERL 

< 2500 0.058 186 0.059 172 0.058 156 0.062 157 0.066 145 

3000 0.055 182 0.056 168 0.055 155 0.059 156 0.063 144 

3200 0.052 177 0.053 164 0.053 153 0.055 155 0.060 144 

3400 0.047 170 0.049 159 0.049 151 0.051 154 0.056 143 

3600 0.043 164 0.044 155 0.045 151 0.046 154 0.052 142 

3800 0.040 162 0.042 155 0.042 153 0.042 156 0.049 141 

4000 0.039 162 0.041 157 0.041 156 0.041 157 0.048 141 

>4500 0.039 162 0.040 157 0.041 156 0.041 157 0.048 140 
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Section 4.5 Leverage and Influence measures 

 Leverage can be thought of as the potential impact of an observation on the 

fitted model due to its position in the variable space.  Influence is a measure of the 

actual effect of an observation on the final fitted regression model coefficients.  

Leverage and influence terms are formally defined in Section 3.2, and Section 3.2.2 

derives the new leverage and influence values used in this study. 

 If β̂  has dimension k and n is the sample size (number of basins in the study), 

the mean of the leverage values is k/n and values greater than 2k/n are generally 

considered large.  Influence values greater than 4/n are typically considered large 

[Tasker and Stedinger, 1989].  Using these guidelines, leverage values greater than 

0.12 and influence values greater than 0.08 were considered large in this study. 

 Figures Figure 4.13-Figure 4.17 display influence and leverage statistics for 

each basin for the 1-day, 3-day, 7-day, 15-day, and 30-day durations sorted by 

influence, respectively.  Leverage values did not change radically from one duration to 

another because the matrix of basin characteristics and the sample sizes were the same 

for all durations.  The small changes in leverage values are because the at-site skew 

coefficients for a basin were different for different durations as were the model error 

variances.  Because influence values depend on the residuals computed from the 

individual skew estimators for each duration, there was significant variation in the 

influence of some basins from one duration to another.  
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Figure 4.13: Leverage and Influence values (1-day), sorted by influence. 

 

Figure 4.14: Leverage and Influence values (3-day), sorted by influence. 
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Figure 4.15: Leverage and Influence values (7-day), sorted by influence. 

 

Figure 4.16: Leverage and Influence values (15-day), sorted by influence. 
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Figure 4.17: Leverage and Influence values (30-day), sorted by influence. 

 The South Fork Eel River near Miranda (study basin 46) has high influence at 

shorter durations.  This is because the South Fork Eel River had a very high residual 

for the 1-day and 3-day durations, with a relatively small sampling error variance 

(based on 68 years of record).  The influence, particularly for 1-day, was only 

marginally high and therefore not important to the study. 

 The Tuolumne River at New Don Pedro Dam (study basin 25) and the Kings 

River at Pine Flat Dam (study basin 18) have high influence at longer durations.  Each 

of these basins has a long record length (112 and 113 years, respectively), resulting in 

larger weights and thus relatively high leverage.  Since they have large residuals at the 

longer durations and long record lengths, it was not surprising their influence values 

are so high. 
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 Upon first inspection of the leverage and influence values for this study, the 

Sacramento River at Shasta Dam (study basin 1) appeared to have very high influence 

for the 1-day duration, but only moderate to low influence for all other durations.  This 

warranted a closer examination of the 1-day data for this basin, which revealed an 

error in the censoring level: a clear low outlier had not been censored, resulting in an 

uncharacteristic highly negative skew.  After this additional value was censored and 

the regression was re-run, the regional skew model fit was improved, and the 

Sacramento River basin’s influence for the 1-day duration became quite reasonable.  

Generally, it is poor practice to change the number of observations censored explicitly 

to achieve a desired result, but in this case, the diagnostic statistics alerted the 

researcher to an error in a previous analysis, which was corrected and resulted in an 

improved model. 

 Overall, this is an example wherein large leverage values were not expected.  

The value of the nonlinear function of elevation ranged from zero for basins below 

3,000 feet to 1 for basins above 4,200 feet. Thus, it was impossible for any basin to 

have an extreme value. Sampling error associated with each skew coefficient also 

contributed to the leverage. Longer-record sites did not have record lengths much 

longer than 100 years, and many sites had record lengths about that long. Thus, no 

sites were unusual. Examining the leverage and influence statistics indicated there 

were no obvious problems in the development of the flood data, the basin 

characteristics file, the at-site skew estimators, or in the statistical analyses. 
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Section 4.6 Development procedure for non-linear models and sensitivity analysis 

 As exhibited in Figure 4.12, the observed at-site skew coefficients in this study 

followed an apparent non-linear trend in mean basin elevation.  A similar phenomenon 

was observed by the California instantaneous annual maximum skew study. The effect 

was attributed to a transition from rain-only floods in low elevation basins to rain-on-

snow floods in high elevation basins [Parrett et al., 2011, pp. 15]. 

 Parrett et al. [2011] experimented with a variety of nonlinear functions of 

elevation.  The selected function NL, as described by Equation (4.9) varies between 

zero at low elevations to one at high elevations. 

           
    

 
 

 

  (4.9) 

Here   is a scale parameter that determines the location of the transition 

between high and low basins, and   is a slope parameter which determines how 

rapidly NL increases from 0 and 1 near  . 

 Parrett et al. [2011] found that an NL term with        ft and     

described a trend from low to high elevation basin skew coefficients well when scaled 

and added to a constant term.  This study adopted the same non-linear form, but found 

that the scale and slope factors used by the previous study were not the best for rainfall 

floods.  In particular, it appeared that the step between high and low elevation basin 

skews occurred at a lower elevation than previously observed.  Also, the zone between 

low and high elevation basin skews was much shorter and the rise more dramatic than 

in the previous study of annual instantaneous maximum floods.  Regional skew 

models utilizing several NL terms with various combinations of   and   such that 
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       and     were fit for each study duration.  The NL term with a location 

parameter a of 3,600 ft and a slope parameter   of 12 provided a good fit to the 

observed skew coefficients across all durations. 

 Figure 4.18 plots the NL term used in this study (a = 3600, b = 12) and the NL 

term used by Parrett et al. [2011] (a = 6500, b = 2) versus mean basin elevation.  The 

NL(a = 6500, b = 2) term rises much more gradually than NL(a = 3600, b = 12), 

appearing almost linear over the range of mean basin elevation shown in Figure 4.18.  

In contrast, the rise of NL(a = 3600, b = 12) is so rapid that NL becomes either 0 or 1 

for most study basins. 

 

 

Figure 4.18: Non-linear Elevation Term (NL) versus mean basin elevation for this 

study (a = 3600, b = 12) and the California instantaneous maximum study (a = 6500, b 

= 2). 

A summary of statistical results for various parameterizations of NL are 

reported in Table 4.6.  Other parameterizations were also tested, but the models in 

Table 4.6 resulted in the best fits among those tested.
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Table 4.6: Summary of Bayesian WLS/GLS statistical results for various non-linear models considered in the California Rainfall 

flood Skew Study. 

Duration Type B0 B1 MEV ASVE AVPnew R
2 

Nominal ERL 

1-Day a = 4000 b = 4 -0.80 0.86 0.015 0.038 0.053 0.81 136 

 
a = 4000 b = 8 -0.71 0.74 0.013 0.038 0.051 0.83 141 

 
a = 3600 b = 12 -0.73 0.69 0.011 0.037 0.048 0.86 150 

 
a = 4500 b = 1 -1.41 1.95 0.024 0.039 0.064 0.70 114 

3-Day a = 4000 b = 4 -0.75 0.85 0.016 0.041 0.057 0.81 128 

 
a = 4000 b = 8 -0.67 0.73 0.013 0.041 0.053 0.85 135 

 
a = 3600 b = 12 -0.69 0.68 0.009 0.040 0.049 0.89 146 

 
a = 4500 b = 1 -1.34 1.91 0.029 0.043 0.072 0.65 102 

7-Day a = 4000 b = 4 -0.64 0.73 0.010 0.043 0.053 0.83 137 

 
a = 4000 b = 8 -0.56 0.62 0.008 0.043 0.051 0.85 142 

 
a = 3600 b = 12 -0.59 0.59 0.007 0.042 0.049 0.87 147 

 
a = 4500 b = 1 -1.16 1.66 0.017 0.044 0.061 0.69 119 

15-Day a = 4000 b = 4 -0.69 0.67 0.008 0.047 0.054 0.77 133 

 
a = 4000 b = 8 -0.61 0.57 0.007 0.046 0.053 0.80 136 

 
a = 3600 b = 12 -0.65 0.55 0.005 0.046 0.051 0.85 142 

 
a = 4500 b = 1 -1.19 1.57 0.011 0.048 0.058 0.69 125 

30-Day a = 4000 b = 4 -0.67 0.54 0.015 0.047 0.062 0.56 117 

 
a = 4000 b = 8 -0.61 0.46 0.013 0.047 0.060 0.61 120 

 
a = 3600 b = 12 -0.63 0.45 0.010 0.046 0.056 0.71 128 

 
a = 4500 b = 1 -1.07 1.26 0.019 0.048 0.068 0.43 108 
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One concern with the statistical results described in Section 4.4 is that those 

analyses have assumed the parameters of the NL term in Equation 4.8 were given and 

not estimated.  A particular concern is the use of a universal   parameter for all 

durations.  Consistency between durations was a major concern in the analysis and 

varying the non-linear term might have led to undesired inconsistencies.  On the other 

hand, the a term might reasonably have varied between 3,000 and 4,000 for each 

duration.  The following analysis considers what would have been the results if a 

duration specific   had been used rather than a common  . 

Expanding Equation (4.7), the non-linear elevation model for regional skew at 

site i,   , can be represented as: 

                 
     

 
 

 

                  
     

 
 

 

  

(4.10) 

 

Taking the partial derivative of Equation (4.10) with respect to NL-elevation function 

parameter  , yields: 

   

  
          

     

 
 

 

  
 

 
 
     

 
 

 

  (4.11) 

Equation (4.11) is the change in the regional skew coefficient,   , for a basin with 

mean elevation       given a change in  .  With this term, a new regional skew model 

was fit for each duration, having the form: 

               
  

  
 

  

  

    
  (4.12) 

where, 

   ,    and    are regression constants 

     is the    function defined in Equation 4.2 for site   
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 is given by Equation (4.11) 

 
  

  

 
 is the sample mean of  

   

  
 overall study basins 

If the parameter    is not statistically different than zero, it indicates that using 

a duration specific   results in a model which is not statistically different than the 

model which assumes a common  , i.e. the model in Equation (4.12) is not statistically 

different than model in Equation (4.10), and use if a universal   is acceptable. 

This procedure is similar to the non-linear regression procedure recommended 

by Draper and Smith [1967, pg. 267].  To apply linear least squares to a non-linear 

model, they recommend linearization of the non-linear term using a first order Taylor 

series approximation.  Here we have re-added the first order term for the scale 

parameter to test if a common   for all durations is consistent with the data.  Figure 

4.19 plots the fitted 1-Day regional skew models described by Equation (4.10) and 

Equation (4.12). 

 
Figure 4.19: Fitted 1-day Regional Skew models, using a common non-linear scale 

parameter,  , (Equation (4.10)) and a duration specific   (Equation (4.12)). 

Table 4.7 contains the fitted regression parameter    for the model described in 

Equation (4.12) for each duration, along with its standard error and p-value.  Note that 

   fails to be statistically significant for any duration.  This indicates that neglecting 
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the first order linearization term is appropriate and that use of a common a parameter 

across all durations is likely appropriate. 

Table 4.7: Summary of statistical results for first order linearization term    of the 

non-linear elevation model. 

Duration    Std. Error P-value (Two Sided) 

1 141 252 0.58 

3 107 250 0.67 

7 40 285 0.89 

15 -94 309 0.76 

30 -52 390 0.89 

 As was resolved earlier, the change in   was not statistically significant.  Still 

each duration specific   would have varied slightly from the universal  , and 

measures of regression precision would change with the introduction of uncertainty in 

a third parameter.  Table 4.8 compares the ERL for the regional skew models 

described by Equation (4.10) and the expanded model in Equation (4.12) at various 

elevations.  The expanded model serves as a surrogate for estimating a unique   for 

each duration.  Note that ERL varies only slightly from the previously reported values 

for basins with low or high mean elevation when   is estimated, but varies somewhat 

in the transition zone where   has a larger effect.  While the fall in ERL is appreciable 

in the transition zone, the ERL remain high, ranging from 98 to 86 years depending on 

duration, which are associated with variance of prediction ranging from 0.077 to 

0.086.  Thus, the choice of NL scale parameter does influence the variance of 

prediction for basins in the narrow transition zone between high and low elevation 

basins, but does not seriously impact regional skew model form or the fitted regression 

coefficients.  The extended model may do better in some cases because of a smaller 
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model error variance,   
 , but generally has a larger MSE because of the larger 

parameter area that is now included. 

Table 4.8: Comparison of Nominal Effective Record Length (ERL) for the final non-

linear elevation regional skew model (Equation (4.10)) and the extended model 

(Equation (4.12)). 

  1-Day 3-Day 7-Day 15-Day 30-Day 

 
Final 

Model 
Extended 

Model 
Final 

Model 
Extended 

Model 
Final 

Model 
Extended 

Model 
Final 

Model 
Extended 

Model 
Final 

Model 
Extended 

Model Elevation 

< 2500 186 192 172 174 156 157 157 154 145 148 

3000 182 180 168 163 155 146 156 141 144 137 

3200 177 157 164 142 153 129 155 123 144 121 

3400 170 121 159 112 151 104 154 100 143 99 

3600 164 98 155 93 151 91 154 88 142 86 

3800 162 113 155 109 153 108 156 104 141 101 

4000 162 158 157 148 156 145 157 139 141 133 

>4500 162 169 157 159 156 156 157 150 140 142 

 

 Figure 4.20 plots the ratio of the ERL of the Extended model and the ERL of 

the Final model (i.e. ERL(Ext. Model)/ERL(Final Model)) across a range of basin 

elevations.  For each duration, the ratio is nearly equal to one for low and high 

elevations, indicating that the ERL of the extended model and the ERL of the Final 

model are nearly equal.  In the transition zone between 3,000 ft and 4,000 ft, the ratio 

is much less than one, indicating that the ERL for the extended model is less than the 

ERL for the Final model. 
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Figure 4.20: Ratio of ERL from the Extended model and ERL from the final model 

(ERL(Ext. Model)/ERL(Final Model)) versus mean basin elevation for five study 

durations. 

This analysis confirmed that using a single non-linear parameter a for 

consistency across durations was statistically justified because the first-order 

linearization term was not significant at any duration.  Moreover, except in the 

immediate zone of the transition, treating the universal   as a known quantity would 

have very little effect in the computed ERL of skew estimates. 

Conclusion 

 The EMA was used to estimate at-site sample log-space skew coefficients for 

1-day, 3-day, 7-day, 15-day, and 30-day duration rainfall floods for 50-sites in and 

around the central valley of California.  Bayesian Generalized Least Squares 

regression failed to provide stable regional skew coefficient models due to extremely 

high cross-correlation between sampling error of the skew coefficients.  A Bayesian 

WLS/GLS analysis was developed and implemented which utilized weighted least 

squares to develop model parameters and generalized least squares to estimate their 

precision.  Strong non-linear trends in mean basin elevation were observed, and a non-
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linear elevation term similar to that used in the previous California instantaneous 

annual maximum study was utilized. 

 Regression results were very good, with ERL ranging from 140 to 192 years 

depending on rainfall flood duration and mean basin elevation.  Leverage and 

influence statistics were calculated for each regional model.  No basin had very high 

leverage or influence at all durations.  A linearization of the non-linear elevation term 

confirmed the validity of using a common non-linear scale parameter   across all 

durations, rather than a unique   parameter for each duration.  
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CHAPTER 5 

MODEL PRECISION, ANALYSIS OF VARIANCE, AND MODEL 

CONSISTENCY 

 

 This chapter explores several concerns which were raised during the 

USGS/USACE review process for Lamontagne et al. [2012] (Chapter 4 includes those 

results).  One concern was that the effective record lengths reported in Chapter 4 were 

much greater than the previous California annual peak skew study [Parrett et al., 

2011].  A related concern is that the reported variance of predictions were very small.  

These concerns are addressed here in Section 5.1.  A second concern was that the 

computed sums of squared deviations from the mean were much smaller than the 

estimate in the Pseudo ANOVA table for every duration.  This concern is explored 

here in Section 5.2.  That discussion raises the general issue of how an ANOVA or a 

pseudo ANOVA should be constructed to explain how variability in the data can be 

partitioned among variability explained by the model, true unexplained variability, and 

sampling error.  Section 5.3 addresses the concern that the skew models do not seem 

to trend in duration, which might lead to inconsistencies in the subsequent flood 

frequency analysis. 

Section 5.1: Effective Record Length and Regional Skew 

The results in Chapter 4 pertaining to the regional skew analysis for California 

rainfall floods are published in Lamontagne et al. [2012].  When that report was in 

review, some surprise and concern was raised over the remarkably low variance of 

prediction (     ) and high effective record length (ERL).  This section explores 
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whether the results reported in Chapter 4 are reasonable and seeks to answer the 

concerns which were raised.  This is done by first considering how ERL is computed, 

and what factors can influence its value.  Second, a very simple approximation of the 

final non-linear models in Chapter 4 is constructed, and a simple approximation to its 

      is compared to the reported       from Chapter 4.  Finally, the discussion 

highlights the differences between the analysis in Chapter 4 and previous GLS studies: 

in particular the discussion considers the previous California instantaneous annual 

maximum skew study [Parrett et al., 2011]. 

Section 5.1.1: Computation of the Effective Record Length 

The Effective Record Length (ERL) is an index by which to understand the 

implications of the magnitude of      .  If the ERL of the regional skew model is 

greater than the at-site record length, then regional information will be more important 

than the at-site data, and vice versa. 

With the Bulletin 17B frequency procedure, the variance of prediction is used 

to assign weights to the regional skew and the at-site skew reflecting the relative 

precision of each [IACWD, 1982].  The ERL values in Table 4.5 are computed using 

the Griffis-Stedinger formula for the mean square error of the skew coefficient [Griffis 

and Stedinger, 2009], their formula can be written: 

         
 

 
          

 

 
          

  

   
          

 

where    is the sample skew,   is the true skew, and a, b, and c are correction factors 

for small sample sizes. ERL is computed by setting   equal to the regional skew 



150 

 

coefficient,   , and solving for the   such that                 .  Griffis and 

Stedinger [2009] provide an alternative ERL statistic based on the ratio of the MSE of 

the regional and the at-site skew coefficient. 

Two factors enter the ERL computation: the regional skew coefficient value, 

  , and the variance of prediction for a site,      .  Figure 5.1 plots the Griffis-

Stedinger MSE of the sample skew coefficient,   , versus the regional skew coefficient, 

  , for three record lengths.  Here    is serving as the unknown population skew.  The 

strong dependence of the MSE on the assumed    is evident.  Note that two sample 

skew coefficients with the same record length, but different    skews, have different 

MSE.  

 

Figure 5.1: MSE of the Skew Coefficient versus Regional Skew used to compute 

MSE 

Again using the relationship in Griffis and Stedinger [2009], Figure 5.2 plots 

the ERL versus MSE for   .  For a constant MSE, as   approaches zero, the ERL 
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approaches the minimum for that MSE.  This follows from Figure 5.2 wherein the 

     line has the smallest ERL for any fixed MSE. 

 
Figure 5.2: ERL versus MSE of Regional Skew Coefficient 

This effect revealed itself in other regional skew studies. Consider the 

Southeast Skew Study [Veilleux, 2009] and the California Annual Maximum Skew 

Study [Parrett et. al., 2011].  Both studies reported an average variance of prediction 

of 0.14, but the Southeast Skew Study reported an ERL of 40 years, whereas the 

California Annual Maximum Skew Study reported an ERL of 60 years.  This 

difference is because the regional model in the Southeast is a constant of -0.019, while 

the California regional skew model takes values from [-0.62, 0.68].  Similarly, the 

regional skew analysis for Iowa resulted in a constant model equal to -0.4, with an 

average variance of prediction of 0.16, and an ERL of 50 years [Eash, 2013].  Thus, 

with a larger average variance of prediction, the Iowa study reports a larger ERL than 

the Southeast study with a smaller average variance of prediction. 
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Thus it is not surprising that ERL values reported in Chapter 4 are greater than 

those reported in previous studies: the magnitude of the regional skew was greater 

than that reported in the Southeast for all durations and also greater than the California 

annual maximum model for most durations.  This also explains in part why the ERL 

decreases with increasing duration and increasing elevation: this occurs because the 

regional skew magnitude is greatest at short durations and low elevations and the same 

MSE for the assumed skew will have a larger ERL because a larger sample would be 

required to achieve the MSE value. 

Section 5.1.2: Variance of Prediction for a Simple Regional Skew Model 

The previous section shows that the high ERL reported in Chapter 4 are in part 

due to the greater magnitude of the California duration skew model relative to 

previous studies.  Still, the reported variances of prediction in this study are much 

smaller than in Parrett et al. [2011].  As a check of the WLS/GLS analysis in Chapter 

4, consider the following simple analysis of the data. 

Given the steep rise between the low and high elevation sites, the final models 

in Chapter 4 are essentially a constant average skew for low elevation sites and a 

second constant average skew for high elevation sites.  In the WLS/GLS regression in 

Chapter 4, these averages are weighted means where the weights are essentially based 

on record length for each of the sites, because the model error is so small and cross-

correlation of sampling errors is ignored. 

For the purposes of the following discussion, define three elevation classes: L) 

low (mean basin elevation < 3,500 ft), H) high (mean basin elevation > 4,000 ft), and 
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M) medium (mean basin elevation [3,500 ft, 4,000 ft].  This results in   = 24 class L 

sites,   = 20 class H sites, and   = 6 class M sites.  In the simple analysis that 

follows, the medium elevation basins (class M) are neglected. 

A simple approximation of the final model reported in Chapter 4 can be based 

upon: 

    
 

          

         

    

 ( 5.1) 

where, 

  is an elevation class taking either     for low elevation or     for high 

elevation sites, 

    is the regional skew coefficient for elevation class       

   is the number of sites in elevation class       

   is a set of site indices for elevation class       

    is the sample skew coefficient for site  , and 

      is the weight for site i which is a member of elevation class      . 

Let      be the       covariance matrix of the    sample skews in elevation class  . 

Let         be a        matrix containing only the diagonal elements of     . 

The weight vector    employed in this simple analysis using ( 5.1) has the value: 

      
        

     
  

  
        

  ,           ( 5.2) 

where   
  =       is a      row vector of ones.  The  th

 entry of    is the 

weight for site   in elevation class  ,      .  This is a special and simple case of the 

standard WLS weight matrix for a constant model, ignoring model error variance.  If 

one considers the case that the observed sample skew coefficients are correlated, the 

sampling variance of the constant value for model,     or  , described by ( 5.1) is: 
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  ( 5.3) 

For any model, variance of prediction is composed of two elements: model error 

variance and sampling error variance of the fitted model [Reis et al., 2005].  An 

approximation of the variance of prediction for this simple analysis is given by: 

            
  ( 5.4) 

where   
  is the model error variance assigned to the final non-linear elevation model 

by the Bayesian GLS procedure described in Chapter 4.  Let          be the variance 

of prediction for the final model in the Bayesian GLS analysis in Chapter 4 at site  .  If 

       is nearly equal to          for      it indicates that, given the small model error 

variance, the reported        and ERL from the complicated analysis in Chapter 4 are 

consistent with the much simpler analysis reported here.  This is desirable because it 

would indicate the ‘back-of-the-envelope’ analysis described above confirms the 

complex Bayesian GLS analysis in Chapter 4, given the computed model error 

variance. 

The preceding analysis is consistent with the procedure in Chapter 4 because 

the model was estimated through a WLS analysis and the precision of that model was 

assessed from a GLS analysis, i.e. the cross-correlation of the sampling errors was 

neglected in the model selection, but was considered when assessing its precision.  A 

potential drawback of the simple analysis is that it ignores the contribution of the 

model error variance to the sampling error variance of the model parameter.  For 
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simplicity, it is assumed to be zero in ( 5.1)-( 5.3) and in the definition of   .  However 

the model error variance is much smaller than the average sampling error variance (see 

ASVE in Table 4.3), so this is not expected to have a significant impact on the 

magnitude of   . 

The value of          for the final models in Chapter 4 varies from site to site.  

For this reason, their average across all study sites,        ,  is reported in Table 4.3 

in Chapter 4.  The simple analysis in this section divides sites into elevation classes, 

and computes a unique     and        for     and  .  Thus consider an elevation 

class specific        based on          values computed with the Chapter 4 model: 

          
 

  
         

    

 ( 5.5) 

Here          is the       for site   from the analysis in Chapter 4.  It is expected 

that           will be nearly equal to       .  This will help show that the small 

       reported in Chapter 4 are consistent with the        for the very simple, 

straightforward analysis in this section.  Table 5.1 reports the values of    and        

for the simple model, and           from ( 5.5) for each duration and for low (   ) 

and high (   ) elevation classes.  Figure 5.3 and Figure 5.4 plot the data in Table 

5.1 for the low and high elevation classes respectively. 
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Table 5.1: Comparison of    and        from simple weighted mean analysis and 

reported           from Chapter 4 for low and high elevation categories and for five 

study durations. 

Duration 1-Day 3-Day 7-Day 15-Day 30-Day 

Elevation 

( ) 
Low 

( =1) 

High 

( =2) 

Low 

( =1) 

High 

( =2) 

Low 

( =1) 

High 

( =2) 

Low 

( =1) 

High 

( =2) 

Low 

( =1) 

High 

( =2) 

   0.045 0.028 0.048 0.030 0.049 0.033 0.054 0.035 0.054 0.037 

       0.056 0.038 0.057 0.039 0.056 0.040 0.059 0.040 0.063 0.046 

          0.056 0.039 0.057 0.040 0.057 0.041 0.060 0.041 0.064 0.048 

 

Figure 5.3: Low elevation   ,       , and           for five study durations. 
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Figure 5.4: High elevation   ,       , and           for five study durations. 

As was expected, the approximation of the variance of prediction described in ( 

5.4) are nearly equal to           in all durations and at both high and low 

elevations.  In a few cases                 .  This is likely because    does not 

consider the contribution of model error variance to the sampling error of the 

computed model.  As expected, these differences are very small.  Importantly, Table 

5.1 indicates that the remarkably low        reported by the GLS analysis in Chapter 

4 are very reasonable, given the reported small model error variances, resulting in the 

dominance of the sampling errors.  Even modest changes in the model error variance 

would not change the           as long as the sampling error continues to dominate. 

Section 5.1.3: Comparison of Results from Chapter 4 and CA Annual Maximum 

Study 

 The analysis in the previous section was initially intended to assure reviewers 

for Lamontagne et al. [2012] that the low       and high ERL associated with the 

final models in that report are reasonable.  Many of their concerns centered on 
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comparisons between Lamontagne et al. [2012] and the previous California Annual 

Maximum Skew Study (Parrett et al. [2011]).  Parrett et al. found an        of 0.14 

with a nominal ERL of 60 years versus the        of 0.048-0.056 and ERL of 133-

150 in Chapter 4, even though the geographic area of the two studies was similar. 

 A significant difference between the two studies was that they modeled 

different phenomena.  Parrett et al. [2011] considered instantaneous peak flows of all 

sources.   Lamontagne et al. [2012] considered duration flows caused primarily by 

rainfall. 

Even the 1-Day annual maximum rainfall flood series and the instantaneous 

annual maximum series are very different.  First, all snowmelt floods have been 

removed from the flow record. Second, the rainfall flood series has been averaged 

over a 24-hour period.  The two phenomena will have different distributions, 

potentially very different distributions, and consequently different skew coefficients.  

This difference will likely increase with duration, i.e. the 1-Day rainfall flood record is 

likely more similar to the instantaneous peaks than the 30-Day rainfall flood record.  

Thus comparisons between the Parrett et al. [2011] and Lamontagne et al. [2012] 

studies must be made cautiously. 

Another significant difference between the two studies is the number and type 

of sites included.  The majority of the 50 sites included in Lamontagne et al. [2012] 

were large basins associated with US Army Corps of Engineers dams, while the 158 

sites in Parrett et al. [2011] run the gamut from small mountain streams to larger 

rivers.  Thus, there was much more real variation to describe in the Parrett et al. [2011] 
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study.  This is demonstrated by comparing the model error variance of the constant 

model,   
    , from the two studies.   

     describes the expected variation in the true 

skew coefficients.  Parrett et al. [2011] report a   
    =0.2, while Lamontagne et al. 

[2012] report   
     = [0.03,0.08] depending on duration.  There can be almost an 

order of magnitude less expected variation in the true skews in the Lamontagne et al. 

[2012] analysis than the Parrett et al. [2011] analysis. 

Thus it is not surprising that the MEV for the final model,   
    , in 

Lamontagne et al. [2012] is much smaller than in Parrett et al. [2011] (about 0.01 for 

all durations versus 0.1).  Recall from Chapter 3 (equation (3.5)) that       can be 

represented as: 

                                   

                                  

The average sampling error variance for the final models in Parrett et al. [2011] and 

Lamontagne et al. [2012] are nearly equal (0.03 vs. [0.04-0.05] depending on 

duration).  The large difference in the       from the two studies is mostly 

attributable to the difference in the MEV, which seems to be largely driven by the 

nature of the phenomena modeled and the types of sites included. 

Conclusion: 

Section 5.1 addressed concerns raised during the review of Lamontagne et al. 

[2012] (which is largely reproduced in Chapter 4) that the reported       and ERL 

are unrealistic, particularly when compared to previous skew studies.  These concerns 
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are addressed in three ways.  Section 5.1.1 discusses the effect of the regional skew 

magnitude on computed ERLs.  The magnitude of the regional skew values reported in 

this study are generally greater than in previous studies. 

Section 5.1.2 presents a very simple analysis as an approximation of the more 

complicated analysis presented in Chapter 4. The approximate variance of prediction 

from this analysis,       , is compared to average values of the       values reported 

in Chapter 4.  It was found that the simple analysis agrees well with the more 

complicated analysis, reassuring us that       is reasonable.  Finally, Section 5.1.3 

discusses the previous California skew study and the analysis in Chapter 4.  It is 

observed that: 1) they are modeling very different phenomena making comparisons 

difficult at best, and 2) the range of study basins considered in Chapter 4 limits the 

amount of variability in the true skew coefficients and thus the magnitude of the 

model error variance is very small, resulting in small       and large ERL. 

Section 5.2: Analysis of Variance re-examined 

ANalysis Of Variance (ANOVA) and the coefficient of determination are used 

in regression studies to quantify the overall variability in a dataset and the ability of 

models to explain that variability.  Because of the unique characteristics of the 

regional GLS studies reported in Reis et al., [2005], Chapter 4, and several USGS 

reports, a pseudo R
2
 and a pseudo ANOVA was developed. The generated statistics 

did not include in the ANOVA table a correction for cross-correlation between 

estimators of the hydrologic statistics of interest, and that could be a concern. 

Moreover, in the regional skew study described in Chapter 4, results of the pseudo 

ANOVA (Table 4.4) varied widely from those of a traditional ANOVA.  In some 
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cases the discrepancy in the estimated total sum of squared deviation was as much as 

40%.  These concerns led to a general re-examination of the ANOVA issue, which is 

described in the following section. 

Various ANOVA have been proposed for generalized least squares regression 

(see Greene [2008] for a summary).  The following discussion will divide proposed 

GLS ANOVA into empirical and theoretical approaches.  Empirical approaches 

estimate variability directly from the data.  The traditional ANOVA for ordinary least 

squares is thus an empirical approach.  Theoretical approaches estimate the division of 

variability using the theoretical or assumed error structure for the data and estimated 

parameters, particularly various variance components.  The pseudo ANOVA 

recommended by Gruber et al. [2007] and employed in Chapter 4 is an example of a 

theoretical approach. 

A third ANOVA approach arises implicitly from a family of “pseudo   ” 

statistics based upon maximum likelihood analysis.  These MLE-based    statistics 

are computed as the ratio (or some transformation of the ratio) of the likelihood 

function values of the final model and the constant model [see for example Baxter and 

Cox, 1970].  Such statistics are commonly applied in logistic regression [Menard, 

2000] and discrete-count regression models including Poisson and negative-binomial 

regression [Dobson, 2002; Cameron and Trivedi, 1998; Liu et al., 2005].  A pseudo 

ANOVA table can generally be constructed to match computed values of a pseudo    

statistic.  Such MLE-based pseudo-R
2
 tables are not explored in detail in this section. 

Before examining the empirical and theoretical approaches, it is important to 

understand the difference in their conceptual motivation.  The empirical ANOVA 
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divides the observed variation for the sample among several components 

corresponding to variation explained by the model, and residual unexplained errors.  

The theoretical approach can be more general: can describe the expected variation in a 

random sample with the estimated variance and correlation structure.  Thus, the 

theoretical approach is somewhat divorced from the actual sample, and its results 

deviate from the empirical approach.  The reasons for the development and use of 

theoretical approaches over empirical ones are explored in this section. 

As a final introductory aside, it is important to note how the various ANOVA 

in this section relate to ANOVA types I, II, and III [Herr, 1986].  Herr describes how 

ANOVA types I, II, and III can be used to describe the effect of different treatments in 

an experiment.  For example, suppose a model of body mass index (BMI) was based 

on two treatments: whether a person exercised and whether a person ate a healthy diet.  

ANOVA types I, II, and III each seek to explain the incremental amount of variability 

explained by each individual treatment.  The difference between the three “types” lies 

the underlying assumptions about treatment hierarchy and interaction. See Herr [1986] 

for an in-depth discussion.  Type I assumes a hierarchy to the treatments, and adds 

each treatment to the model in order of importance.  The incremental sum of squares 

explained by each treatment is reported, as well as the sum of squares for its 

interaction with the previously added treatments.  Type II ANOVA does not assume a 

hierarchy, but reports the incremental sum of squares explained by each treatment 

given all other treatments are already included in the model. Type II ANOVA assumes 

no interactions between the treatments.  Type III ANOVA reports the incremental sum 

of squares explained by each treatment, assuming all other treatments and their 
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interactions are already included in the model.  These ANOVA methods date to the 

1930s, though the “type I, II, and III” terminology is traced to the SAS software 

[Langsrud, 2003].  In contrast to those methods, each of the different ANOVA 

described here are concerned with the fraction of variability explained by the whole 

model, and not with the incremental effect of each explanatory variable.  The different 

ANOVA presented in this section address the division of variability between models 

and errors, and do not address assumptions about the model structure or the hierarchy 

of explanatory variables. 

Section 5.2 has several subsections. Section 5.2.1 describes empirical ANOVA 

approaches which have been applied in both ordinary and generalized least squares 

regression studies.  Section 5.2.2 describes the development of theoretical ANOVA 

approaches for GLS by Reis [2005] and Gruber et al. [2007] for application with 

regional hydrologic studies.  Section 5.2.3 considers a new theoretical ANOVA 

approach for such hydrologic studies.  Section 5.2.4 provides a numerical example 

describing a hydrologic study and discussion comparing two theoretical ANOVA 

approaches with an empirical ANOVA approach.  Finally, Section 5.2.5 concludes 

with a discussion of the relative merits of the various approaches for describing the 

partition of variability among that explained by a model, that due to model error, and 

that due to sampling error in regional hydrologic studies. 

Section 5.2.1: Empirical ANOVA Approaches 

The analysis in Chapter 4 focused on regional skew regression.  For greater 

generality, this section will frame the discussion in terms of a dependent variable   .  

The observed value of    is    .  This distinction is needed because in many 
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applications, such as regional skew regression, only estimates of    are available.  The 

sample mean of a given set of     is   . The least squares model estimate of    is    .  

The following discussion will assume a linear model of the form: 

        (5.6) 

 

Where 

 

    is a     vector of    ’s,   is a     matrix of independent 

variables, 

   is a     vector of decision variables, and 

  is a    vector of errors. 

It is assumed that the errors have zero mean, so that       , and covariance 

matrix         .  The error covariance matrix can take three forms depending on 

the type of regression employed. 

In ordinary least squares (OLS) regression, the errors are assumed to be 

uncorrelated and homoscedastic, thus  

         (5.7) 

where    is the error variance and   is a     identity matrix.   

In a weighted least squares regression (WLS), the errors are assumed to be 

uncorrelated and heteroscedastic, thus 

            
      if     

                if     

(5.8) 

where   
  is the variance of   .   

Finally, In generalized least squares (GLS), the errors are assumed to be 

correlated and heteroscedastic, thus 
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              if     

                       if     

(5.9) 

where      is the cross correlation of    and   .  Note that this definition will be 

adjusted slightly in the subsequent analysis of the Stedinger and Tasker [1985] 

hydrologic regional regression framework.  In that framework the   is composed of 

sampling errors which are correlated, and a constant model error variance which is not 

correlated. 

 Recall from Chapter 3 that the least squares estimate of the model parameters 

  is given by 

        
    

  
    

     (5.10) 

where   is the regression case (either OLS, WLS, or GLS).  Let    be the weight 

matrix for the   case, defined as: 

        
    

  
    

   (5.11) 

Thus, the -parameter estimator can be written        . 

Section 5.2.1.1 Untransformed Empirical ANOVA 

The standard ANOVA table reports the total sum of squared errors about the 

mean,     as a measure of the overall variability in the data.      is computed as: 

              

 

   

         
 
        

        
 
        

(5.12) 

 where  

 

     is the sample mean of   , 

    is a     vector of ones, and 

   is a     vector containing    for every element. 
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Let     be a     vector containing the fitted model estimates of    for 

regression case  .  Expanding (5.12): 

           
 
        

                        
 
                

                 
 
                 

 
                  

 
       

                          

(5.13) 

 Thus, the     is divided into three components: error sum of squares    , 

model sum of squares    , and a cross-product   .  Here    ,    , and     are 

sums of squares and can take only positive values, while    can be positive or 

negative .     represents the variation created (or lost) due to the correlation between 

the model variation.  In the OLS case,    is zero for models with a constant, but this 

is not true for the general case.  The following discussion illustrates why. 

Untransformed Empirical ANOVA for the OLS Case 

Assume     is estimated from a linear model having the form: 

        (5.14) 

If    is the least squares solution of an OLS analysis, then by equation (5.14): 

                       

           

(5.15) 

Because      is the least squares estimator, it minimizes     from equation 

(5.13). Setting the first derivative of     equal to zero yields the OLS normal 

equation: 
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               (5.16) 

From equation (5.14),    
 

   
   .  Thus, 

    
                   

 
             (5.17) 

Also, 

                 (5.18) 

Note that       .  If   contains a column of ones, meaning that the model has 

a constant, equation (5.18) includes 

                (5.19) 

Combining ( and (, and recalling the definition of    from (5.13), the    for the OLS 

case,          is 

                   
 
           

                             
 
                 

 
   

                             
 
              

 
   

                                   
 
                        

 
    

                              
 
                                  

          

(5.20) 

Thus, for the OLS case with a constant term, equation (5.13) becomes the classic 

relationship 

                           (5.21) 

The OLS empirical ANOVA table (Table 5.2) is often reported in regression 

studies [Draper and Smith, 1966].  The coefficient of determination, commonly 
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referred to as   , reports the fraction of variability which is explained by the model.  

   is computed as one minus the ratio of          and         . 

     
        

 
        

       
 
       

   
        

        
  (5.22) 

Table 5.2 is referred to as the OLS “empirical” ANOVA because it is 

computed directly from the data rather than estimated from the analysis.  This 

distinction becomes important later in this section. 

Table 5.2: OLS empirical ANOVA table 

Source Sum of Squares Degrees of Freedom 

                
 
        k 

                
 
        n-k-1 

         Sum of Above n-1 

                        

Untransformed empirical ANOVA for the General Case 

Now consider equation (5.13) for the more general case.  In the WLS or GLS 

cases    does not become zero.  This is because the analysis no longer attempts to 

minimize the sum squared errors,    , from equation (5.13).  Consider now the   case, 

where   = WLS or GLS.  For the   case, equation (5.15) becomes [Draper and Smith, 

1966]: 

              
        

                    

         

(5.23) 

 

Recall that for the general case,          .  The sum of squared errors,    , 

is no longer minimized by   .  Rather, the ‘least squares’ now refers to the sum of 
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squared weighted residuals,   
    ,  which are minimized by    [Draper and Smith, 

1966]: 

  
            

 
            

                               
 
  

           

(5.24) 

where    is a     vector of transformed  , and       
  

.  The   case normal 

equation becomes: 

    
             (5.25) 

Thus for   = WLS or GLS,    
 
           and in general             

  and consequently        .  An exception is the trivial case that         for 

some constant a, which is actually an OLS analysis.  Similarly, it can be shown that 

the    term for the GLS case,        ,  equals zero for the trivial case that all 

diagonal elements of      equal some constant   and the off diagonals all equal some 

constant  . 

Table 5.3: Empirical ANOVA table for WLS or GLS Regression 

 

 

Interestingly,           shows that the correlation between the residuals 

and the model variation occurs even when the observations are not correlated.  Thus, 

the OLS ANOVA division of variability does not work for the GLS case or the WLS 

Source Sum of Squares 

               
 
         

               
 
         

               
 
         

    Sum of Above 
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case, because            .  The WLS or GLS empirical ANOVA table should 

include the    term if all of the sample variability is to be accounted for, as in Table 

5.3. 

Several problems arise in Table 5.3.  Because    can take negative values,    

is no longer bounded by [0,1].  This is problematic for our understanding of   : 

     means that the model is explaining more variability than exists in the data.  

For this reason the traditional    is not a reliable means to compare different models 

for the GLS or WLS cases [Buse 1973; Blomquist, 1980].  The presence of the CP(J)  

term, that can be positive or negative, results in an ANOVA table that is much harder 

to interpret. Another issue with Table 5.3 is that it is no longer clear how many 

degrees of freedom each quantity reflects, and a degrees of freedom column is not 

included with the table. 

Section 5.2.1.2 Transformed Empirical ANOVA 

 This section explores several empirical approaches to ANOVA for GLS which 

divide variability between sources in a transformed space rather than in the original 

problem space.  As described, these methods originate from the interpretation of WLS 

and GLS as OLS in a transformed space where the errors are homoscedastic and 

uncorrelated.  This can raise new concerns. 

Draper and Smith [1966] ANOVA 

To structure an ANOVA for the WLS or GLS cases, Draper and Smith [1966] 

propose transforming the data and residuals to a space where     .  Consider the   

case for  =WLS or GLS.  Recall that       
  

.  Pre-multiply both sides of equation 

(5.6) by   
: 
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(5.26) 

 

Consider the OLS model in the transformed space: 

           (5.27) 

The   case parameter estimators,   , are the OLS parameter estimators for the 

transformed space,        [Draper and Smith, 1966; Greene, 2008]: 

                        
    

  
        (5.28) 

The transformed total sum of squares,      is provided by: 

               
 
        

                     
 
               

 
                

 
        

                                

(5.29) 

where    is a     vector containing the sample mean of the   .  Here,      is divided 

into three components: sum of squares due to error,     , and sum of squares due to the 

model,     , and a cross-product term    .  Draper and Smith [1966, pg. 78-79] claim 

that          and thus a natural extension is a transformed   ,    , defined as one 

minus the ratio of      and     .  However, Buse [1973] correctly points out that 

         in every case, as there is no guarantee that the transformed independent 

variables   contain a constant (column of ones) and in general it will not.  Table 5.4 

reports the transformed WLS or GLS empirical ANOVA.  Again note that this is an 

empirical table because it is computed directly from the data. 

It is not clear that this table provides any additional value over the empirical 

ANOVA table (Table 5.3): its prime motivation was that        disappears, which turns 
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out not to be true.  Furthermore, the transformed empirical ANOVA reports variation in a 

space which is solely a computational construct and maybe of no interest or relevance to the 

analyst [Greene, 2008, 156]. 

Table 5.4: Empirical ANOVA for a Transformed WLS or GLS Analysis 

Source Sum of Squares 

               
 
        

               
 
        

                
 
        

        Sum of Above 

                      

Buse [1973] ANOVA 

Buse [1973] recognizes the problem with Table 5.4, and devised an alternative 

empirical    for the GLS case which is bounded on [0,1].  The following discussion 

describes the ANOVA which is implicitly suggested by his empirical   .  Buse [1973] 

shows that if the model includes a constant, 

         
 
  

           

           
 
  

                     
 
  

           

(5.30) 

 

where     is the constant model for the   case defined: 

         
    

  
    

     (5.31) 

The term on the left-hand-side of equation (5.30) describes the total 

generalized sum of squares about the weighted mean.  The first term on the right-

hand-side of equation (5.30) describes the generalized variability about the weighted 

mean explained by the model, and the second term describes the generalized 
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variability about the model.  A generalized empirical ANOVA can be based on 

equation (5.30), as shown in Table 5.5. 

Table 5.5: Generalized WLS or GLS empirical ANOVA 

Source Sum of Squares 

                      
 
  

             

                    
 
  

           

            Sum of Above 

     
                            

 

Unlike    ,      
  is bounded on [0,1].  However, like the transformed 

empirical ANOVA in Table 5.4, this analysis is still concerned with deviations in 

transformed space, which is purely a computational construct and might be of no 

interest to the analyst.  In particular, for the simpler WLS case where the variances on 

the diagonal of J vary widely, the weights places in Table 5.4 on the deviations of 

model predictions from the average, and on different errors, will also vary widely. So 

what do such sum of squares mean? 

Section 5.2.1.3 A note on other empirical    Statistics 

Several empirical ANOVA and associated coefficients of determination have 

been described in this section. Others are described by La Du and Tanaka [1989]. 

There seems to be no universally accepted pseudo ANOVA procedure for GLS 

analyses.  Greene [2008] prefers the definition of    reported in Table 5.3, and thus 

implicitly prefers the empirical ANOVA over the transformed empirical ANOVA.  

Blomquist [1980] recommends the Baxter and Cragg [1970] “pseudo   ” 

based on likelihood ratios. The Baxter and Cragg [1970] “pseudo   ” is computed as 
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(5.32) 

 

where    is the log maximum likelihood function value when only a constant 

is used, and    is the log maximum likelihood function value for the final model and 

  
   

 is the log maximum achievable value of the likelihood function.  Similar “pseudo 

  ” are recommended by Menard [2000] for logistic regression and are commonly 

applied in maximum likelihood discrete regression, wherein the dependent variable is 

discrete [Long, 1997].  These “pseudo   ” are typically based on some deviance 

statistic, which is a measure of the distance between    and   
   .  A natural “pseudo 

  ”, based on this deviance statistic[Cameron and Trivedi, 1998] 

    
    

      
    

      
    

 (5.33) 

Liu et al. [2005] propose a differed “pseudo   ” for negative binomial 

regression: 

  
    

 

  
 (5.34) 

where   and    are the variances of the gamma-distributed error for fitted final 

model and the constant model respectively.  This statistic can be seen as directly 

related to the “pseudo   ” statistic proposed for Bayesian GLS by Gruber et al. 

[2007].  In a different vein, Gelman and Pardoe [2006] reviews Bayesian    for 

hierarchical models (related to ANOVA “type I”).   

Buse [1973] describes the various shortcomings of the    as a standalone 

statistic, and recommends the analyst use caution.  Similarly, Jarrett [1974] finds the 
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   is useful, but should be paired with other analyses, perhaps graphical, to fully 

understand a model performance.  

Section 5.2.2: Theoretical ANOVA approaches 

 The previous section described several empirical approaches to 

ANOVA for WLS and GLS analyses.  An additional concern in the Stedinger and 

Tasker [1985] hydrologic regression framework is the division of error between model 

error and sampling error.  This division is not easily estimated by empirical methods, 

so theoretical methods based on the variance and correlation structure of the data have 

been used.  This section describes the development of the pseudo ANOVA for the 

Stedinger-Tasker model and compares it to empirical approaches. 

In the Stedinger and Tasker [1985] hydrologic regression framework, the error 

is composed of model error and sampling error.  In this framework, equation (5.6) is 

expanded to 

               (5.35) 

where   is a     vector of model errors and   is a     vector of sampling 

errors.  Model error is due to the use of an imperfect model.  Sampling error is due to 

the use of finite records to estimate each of the  -observations.  It is assumed that both 

error types have zero mean, i.e.            .  The covariance matrix of  ,  

      , is given by: 

                        
             (5.36) 

where       is the sampling error covariance matrix, and   
     is the model 

error variance of the model with     explanatory variables.  Let   
     be the 

model error variance of the constant model.  Note that the model errors are 
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uncorrelated and are assumed to have constant variance for every observation.  In 

contrast, the sampling errors can be correlated between sites and do not have equal 

variance. 

Even a perfect model [  
      ] cannot explain sampling error, so using 

    in the computation of    in Table 5.3 would not provide the desired insight.  

Instead, Reis [2005] proposes using the Bayesian estimate of the model error variance 

of the fitted model, to estimate the unexplained variation in the true  .  This follows 

by noting that 

                           
          

     (5.37) 

 Thus, the expected model error sum-of-squares is     
    , where 

   
     is the Bayesian estimate of     

     . 

To estimate the variability in the true skew explained by the model, Reis 

[2005] recommends the empirical estimator: 

          
 
 (5.38) 

where    is the constant model from either a  =WLS or GLS analysis.  The 

estimate of the total variation in the true skew is then: 

    
               

 
 (5.39) 

Noting that    is one minus the ratio of the model error and the total 

variability, Reis [2005] proposes the pseudo   : 

  
            

    
    

    
               

  
          

 

    
               

  (5.40) 
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This implicitly suggests the simple pseudo ANOVA in Table 5.6; however 

Reis [2005] did not recommend such an ANOVA.  Sample error could also be added 

to this table.  

Table 5.6: Pseudo ANOVA table based on Reis [2005] pseudo   ,   
          

Source Sum of Squares 

Model           
 
 

Model Error     
     

Variability in   Sum of Above 

  
            

    
    

    
               

  

Because   
          considers only true   variation, this implicit table 

considers only true   variation.  This is an advantage because it recognizes that even a 

perfect model will not explain all of the variability in the observed data.  Because the 

estimate of the total variability is based on the estimate of    
     and an empirical 

estimate of model variability, it will change depending on the postulated model.  This 

is problematic:  the variability in the data should not depend on the selected model.   

This highlights a flaw in the Reis [2005]   
         : two models with the same 

model error variance could have different   
          values if the models have 

different           
 
.  Thus, this    

          may have trouble comparing 

competing models, and by extension Table 5.6 is a flawed ANOVA for comparing the 

performance of different models. On the other hand, even with OLS, models with 

larger R
2
 values need not have statistically significant parameters in comparison to 

models with smaller R
2
 values, and R

2
 is known to increase whenever another 
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explanatory variable is added. Clearly R
2
 values should not be the primary criteria for 

model selection.  

Gruber et al. [2007] propose a theoretical pseudo ANOVA and pseudo    

which is based entirely on estimates of the sampling error and model error variances, 

rather than computed from the data.  Like Reis [2005], Gruber et al. note that the 

expected value of the sum of squares due to model error would be  

                                          
     (5.41) 

Similarly, the expected value of the sum of squares due to sampling error in the 

observations is 

                                                             

 

   

 (5.42) 

The constant model can explain no variability in the data.  Thus the model 

error variance of the constant model,   
    , describes the variability of the true   by 

correctly deducting sampling error variability.  Thus, an estimate of the total sum of 

squares in the true skew is given by: 

                  
                 

         
     (5.43) 

where    is a     vector of model errors for the constant model.  Gruber et 

al. [2007] then propose a pseudo   ,   
 , computed as: 

  
    

    
    

    
    

   
   

    

   
    

 (5.44) 

Like the Reis [2005]   
         , the value of   

  is bounded on the interval 

[0,1].  A model with no model error, i.e.    
      , will have   

   .  A model 

which explains no variability, i.e.    
        

    , will have   
   .  Also, like the 
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Reis [2005] pseudo   ,   
  only incorporates model error variability.  This is crucial 

because even a perfect model will not explain sampling error variability.  A natural 

extension of   
  is their pseudo ANOVA table (Table 5.7), which reports the 

breakdown of variability between model error (equation(5.41)), sampling error 

(equation (5.42)), and variability explained by the model.  This final term is computed 

by subtracting the model error sum of squares (               ) from the total sum 

of squares in the true   (             ): 

                                             
         

    

      
        

      

(5.45) 

The pseudo ANOVA proposed by Gruber et al. [2007] (Table 5.7) is an 

improvement over Table 5.6 because it includes the sampling error sum of squares.  

One way to determine if a WLS or GLS analysis is preferred over an OLS analysis is 

to compare the relative magnitude of the model error variability and sampling error 

variability.  Table 5.7 makes this possible.  Another feature is that the estimate of the 

total sum of squares,          , does not depend on the selected model.  A related 

feature is that   
  does not depend the empirical variation of the model about a mean, 

and consequently two models with the same model error variance will have the same 

  
 .  This is an improvement over the Reis [2005]   

         . 

A key advantage of the Table 5.7 over the empirical ANOVA in Table 5.3 is 

that Table 5.7 divides the error variability into sampling error and model error.  A 

second advantage is that sampling errors are removed in the computation of   
 , 

reflecting the fact that even a perfect model cannot explain all of the variability in a 
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data set.  For conciseness in the following discussion, Table 5.7 will be referred to as 

the B-GLS ANOVA, for Bayesian GLS ANOVA. 

Table 5.7: Pseudo ANOVA table for WLS or GLS regression [Gruber et al., 2007] 

Source Sum of Squares Degrees-of-freedom 

               
        

        

                    
           

                          

 

   

   

          Sum of Above      

  
    

   
    

   
    

  

A criticism of Table 5.7 is that it incorrectly assigns degrees of freedom to 

each quantity.  If the sampling errors are positively correlated, then the effective 

number of independent observations is potential much smaller than   (see Stedinger 

[1983] for a discussion of this issue).  Furthermore, the estimate of the variation in the 

true   is correlated with the sampling errors (i.e. recall the interpretation of the       

term from equation (5.13)).  Finally, if    
     and    

     are estimated with a Bayesian 

analysis, then the prior distribution of   affects the effective degrees of freedom.  This 

last point is most important for small sample sizes, with large correlation.  Thus it may 

be best to delete the degrees of freedom column. 

It is important to observe that the pseudo ANOVA is based solely on the 

theoretical breakdown of error among different sources and does not depend solely on 

the observations.  A consequence of this is that                  from equation 

(5.47), and thus it is difficult to compare empirical ANOVA results with theoretical 
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pseudo ANOVA results.  This in itself is not necessarily troubling, but should be 

understood.  The following section explores an alternative theoretical ANOVA based 

on       . 

Section 5.2.3: New Pseudo ANOVA 

The previous section described theoretical pseudo ANOVA approaches 

proposed by Reis [2005] and Gruber et al. [2007].  This section explores an alternative 

ANOVA for the Stedinger and Tasker [1985] regression framework based on the 

theoretical value of       .  Recall from equation (5.13) that 

                         

where 

           
 
        

               
 
         

               
 
         

              
 
         

(5.46) 

and   indicates whether an OLS, WLS, or GLS analysis is used to estimate the 

regression model parameters, and    ,    ,    , and    are the total observed sum-

of-squares, observed error sum of squares, observed model sum of squares, and 

observed cross-product term respectively.  A new pseudo ANOVA can be based on a 

estimate of       . First, consider the case that a       or     analysis is used to 

estimate both the model parameters and their precision.  Let   be a     matrix with 

each element equal     . The derivation in the appendix shows that  
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 -   Correction 

(5.47) 

The first line in equation (5.47) relates        to the Gruber et al. [2007] 

pseudo ANOVA (Table 5.7). The second and third terms explain the variation due to 

model and sampling errors respectively, and are identical to those proposed by Gruber 

et al. [2007] (see Table 5.7). The first term describes the variation of the true model 

about its mean, and the fourth term is a correction for the errors in computing the 

sample mean.  

An new pseudo ANOVA table can be based on the final line in equation 

(5.47).  The first term on the last line of equation (5.47) reports the variation of the 

true model about its mean.  The second and third terms describe the variation due to 

model error, and sampling error respectively.  The last term is a correction for the 

correlation of the sampling errors.  Unfortunately,   is unknown.  If    is substituted 

for  , the first term in equation (5.47) is similar to the term proposed by Reis [2005] 

to estimate the variation explained by the model (see equation (5.38)).  Table 5.9 is an 

alternative pseudo ANOVA based on equation (5.47). 
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Table 5.8: New Pseudo ANOVA for WLS or GLS regression based on the Stedinger 

and Tasker [1985] regression framework, and the estimate of        

Source Sum of Squares 

              
        

      

                         
     

                        
        

 

 

   

  

 -Correction  
 

 
         

   

 

   

 

           Sum of Above 

The pseudo ANOVA in Table 5.8 is appealing because it is a theoretical 

ANOVA based on       .  The appendix of this chapter contains a derivation of an 

expression for        for a hybrid WLS/GLS analysis, such as the one used in 

Chapter 4.  In a WLS/GLS analysis, WLS is used to estimate the model parameters, 

and GLS is used to estimate the precision of the model.  Table 5.9 contains an adapted 

alternative B-GLS pseudo ANOVA for the WLS/GLS case based on       . 

Table 5.9:  New Pseudo ANOVA for Hybrid WLS/GLS regression based on the 

Stedinger and Tasker [1985] regression framework, and the estimate of        

Source Sum of Squares 

                
            

        

                             
     

                        
        

 

 

   

 

 -Correction  
 

 
           

   

 

   

 

           Sum of Above 
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    computes variability about the sample mean.  Because the sampling errors 

are heteroscedastic, it is unclear why the sample mean is appropriate.  Buse [1973] 

addresses this by computing the variation about     rather than   .  Reis [2005] also 

takes this approach, estimating the variability explained by the model by the sum of 

squared variations about the constant model.  Adopting this idea, define a new total 

sum of squares, computed about the constant WLS or GLS model: 

              
 
         (5.48) 

 

where     is an     vector containing the constant model for the   case for       

or    .  Recall the definition of    in equation (5.11). Let    be the corresponding 

weight vector for the constant model, for the   case: 

        
    

  
    

   (5.49) 

where   is a     vector of ones.  Let   be a     matrix containing    on each row. 

Substituting   for   in the derivation of       , it can be shown that 

                               
                       

 

   

                     
   

          
   

   

 

   

 

(5.50) 

where       is the     element of   .  If    is substituted for  , the first term in 

equation (5.50) is the nearly the same as the term proposed by Reis [2005] to describe 

the variation explained by the model.  Table 5.9 contains a pseudo ANOVA based on 

equation (5.50). 
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Table 5.8, Table 5.9, and Table 5.10 have theoretical appeal.  Table 5.8 is a 

theoretical extension of the OLS empirical ANOVA and matches        in 

expectation.  In that vein, Table 5.10 is divorced somewhat from the OLS empirical 

ANOVA because it is based on a computation of total variation about a weighted 

average.  On the other hand, Table 5.10 correctly recognizes the heteroscedascity of 

the observations, and is more consistent with past GLS ANOVA efforts by 

Buse[1973] and Reis [2005]. 

Table 5.10: Alternative Pseudo ANOVA for WLS or GLS regression based on the 

Stedinger and Tasker [1985] regression framework, and the estimate of          

Source Sum of Squares 

                
 
       

      

                         
     

                                    

 

   

 

 -Correction                      
   

          
   

   

 

   

 

         Sum of Above 

There are several advantages of three new pseudo ANOVAs over that 

proposed by Gruber et al. [2007].  First, Table 5.8 is based directly on an estimator of 

      , and as such is much more closely related to the traditional empirical OLS 

ANOVA (Table 5.2).  In fact the pseudo ANOVA in Table 5.8 can be seen as an 

extension of the traditional empirical ANOVA, wherein we attempt to estimate 

       for a random sample rather than directly for the data. In contrast the B-GLS 

ANOVA does not attempt to match the traditional empirical ANOVA, but rather to 
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explain the implications of the fitted model and the contributions of different sources 

of variation to a random observation. 

The new tables include all the terms which compose         whereas the 

pseudo ANOVA in Table 5.7 admittedly neglects a correction for the correlation of 

the sampling errors.  The alternative tables are perhaps most instructive in indicating 

how this term might be constructed.  

Like the hybrid theoretical/empirical ANOVA implicitly suggested by Reis 

[2005]’s   ,   
         , a troubling aspect of the two alternative pseudo ANOVA is 

that the estimate of the total variability in the data will depend on the choice of fitted 

model.  This is clearly problematic, but the extent of the problem is not clear.  An 

increase in            or            will be accompanied by a corresponding 

decrease in    
    , but it is unlikely that these will perfectly compensate.  The 

following section explores the extent of this problem through numerical examples. 

Section 5.2.4: Examples and Discussion 

The previous sections describe several conceptual frameworks for a GLS 

ANOVA, including procedures based upon both empirical and theoretical 

computations.  In particular, Section 5.2.3 develops a new pseudo ANOVA table that 

approximates the expectation of the total sum of squares    .  This section explores 

the relative merits of the alternative pseudo ANOVA approaches using numerical 

examples to illustrate the differences. In particular, three ANOVA computations are 

compared: an empirical GLS ANOVA, the B-GLS pseudo ANOVA, and a new 

alternative B-GLS pseudo ANOVA based on       .  A particular concern is the 

relative advantages of the two pseudo ANOVAs.  The empirical GLS ANOVA is 
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included because it is closely related to the new pseudo ANOVA; unfortunately 

empirical GLS ANOVA procedures have no good way to provide out the average 

sampling variance, and thus are unable to address the relative importance of that 

critical source of variability.  

The breakdown of the sum of squares for each ANOVA computation is 

reported for three fitted models: a constant model, a linear elevation model, and the 

final non-linear elevation model reported in Chapter 4.  As discussed earlier, a feature 

of the new pseudo ANOVA is that the estimate of the total sum of squares depends on 

the fitted model, but it is not clear to what extent this is true.   

The three ANOVA computations for each of the three fitted models are applied 

for two data sets: the 1-Day and 30-Day California skew data from Chapter 4 (see 

Table 5.11, Table 5.12, and Table 5.13).  Sampling errors are fairly consistent between 

the two data sets corresponding to different durations, but the cross-correlation among 

the skew estimators increases with duration.  Comparing the magnitude of  -

Correction in Table 5.12 for the two data sets provides an idea of how sensitive the  -

Correction term is to changes in the correlation structure of the data.  While it is easy 

to see how  -Correction will behave in simple cases, it is not clear how realistic 

variance and correlation structures will affect that term. 

Table 5.11 reports the empirical GLS ANOVA for the two example data sets.  

Here           , indicating that the constant model is explaining some variability.  

This is clearly not true in a traditional sense. In Table 5.11            because the 

constant model is a weighted mean, so that          is the sum of squared 

differences between that weighted mean and the sample mean.  In all cases in Table 
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5.11, the         term is small, though generally noticeable.  A key shortcoming of 

this and other empirical GLS ANOVAs is  that          does not make a distinction 

between model errors and sampling errors because it has no way to partition the 

                         . 

Table 5.11: Empirical GLS ANOVA for the 1-Day and 30-Day duration skews for the 

constant, linear, and non-linear elevation models. 

Source 

1-Day 30-Day 

Constant 

Linear 

Elevation 

NL 

Elevation Constant 

Linear 

Elevation 

NL 

Elevation 

         0.19 4.09 4.90 0.02 1.90 2.26 

         7.64 3.19 2.94 5.75 3.59 3.45 

        -0.37 -0.17 -0.39 -0.05 0.24 0.02 

    7.45 7.45 7.45 5.72 5.72 5.72 

 

Table 5.12: B-GLS pseudo ANOVA for the 1-Day and 30-Day duration skews for the 

constant, linear and non-linear elevation models 

Source 

1-Day 30-Day 

Constant 
Linear 

Elevation 

NL 

Elevation 
Constant 

Linear 

Elevation 

NL 

Elevation 

          0.00 2.43 3.10 0.00 0.74 1.03 

                3.65 1.22 0.55 1.54 0.80 0.51 

                 6.30 6.30 6.30 6.07 6.07 6.07 

          9.95 9.95 9.95 7.61 7.61 7.61 

Table 5.12 reports the B-GLS pseudo ANOVA proposed by Gruber et al. 

[2007].  Unlike the empirical ANOVA, this analysis can and does distinguish between 

the model error and the sampling error.  Also, this analysis correctly identifies that the 

constant model does not explain any variability by considering the modeled variance 

associated with each term. This analysis is somewhat divorced from the actual data 
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because it reports the variability that would be expected in a random sample with the 

variance structure of the estimated model. 

One concern is that this analysis does not account for cross-correlation of the 

sampling errors [Gruber et al., 2007].  If sampling errors are positively correlated 

between sites,                  and            are likely to be too large.  Thus 

this theoretical ANOVA will not match a corresponding empirical ANOVA. 

In Table 5.12           is not linked in any way to     or       ; in certain 

cases           can be quite different than    . It is not clear this is a problem, but it 

is an issue that should be understood.  Much of the information provided by the B-

GLS pseudo ANOVA does not depend on          .  For example, pseudo    

depends only on           and                .  Still a theoretical analysis with a 

strong tie to the traditional     is appealing. 

Table 5.13: Alternative B-GLS pseudo ANOVA based on        for the 1-Day and 

30-Day duration skews for the constant, linear, and non-linear elevation models (after 

Table 5.9) 

Source 

1-Day 30-Day 

Constant 
Linear 

Elevation 

NL 

Elevation 
Constant 

Linear 

Elevation 

NL 

Elevation 

           0.00 4.09 4.89 0.00 1.88 2.25 

                 3.56 1.20 0.54 1.50 0.78 0.50 

                  6.17 6.17 6.17 5.94 5.94 5.94 

 -Correction -1.78 -1.78 -1.78 -2.09 -2.09 -2.09 

           7.95 9.68 9.82 5.35 6.51 6.60 

Table 5.13reports the alternative pseudo ANOVA based on        proposed 

in Section 5.2.3.  Unlike, the B-GLS pseudo ANOVA proposed in Gruber et al. 

[2007], the analysis in Table 5.13 is based on the expectation of the various sum of 

squares that would be computed from the sample, including       .  The terms which 
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describe model error and sampling error,                  and                   

respectively, are nearly identical to those in Table 5.12.  However, there is now a 

correction term for the covariance of the sampling errors,  -Correction.  This term 

should not be neglected; it is about 33% of                  . In the table the   -

Correction  does not depend on the model, but it does increases with increasing 

duration. This occurs because the average cross-correlation of the observations also 

increases with duration.  This is interesting because the average sampling errors are 

actually smaller for the longer duration, but the  -Correction still becomes larger. 

The troubling aspect of Table 5.13 is that            depends on the selected 

model.  This is clearly not reasonable: the total sum of squares should depend on the 

data, or the variance structure of the data, not the postulated model.  This variation 

occurs because increases in            are not perfectly balanced by decreases in 

                .  The change in            is most dramatic when comparing the 

constant model to models with explanatory variables; but the fact that it changes at all 

is a concern.  The discrepcency should not be surprising:                  is based 

on the estimate of   
     from a Bayesian analysis with an informative prior and 

           is based on an estimate of  .  For small   the prior of   
     will have a 

large influence on    
    , which would distort                 .  For large  , small 

estimation errors in    
     can distort                  when multiplied by      .  

Estimation errors in    can have a great influence on           .  As a result 

           and                  are not perfectly balanced. 
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The primary differences between the B-GLS pseudo ANOVA proposed by 

Gruber et al. [2007] and the alternative B-GLS pseudo ANOVA lays in the estimation 

of the variability explained by the model and the correction for correlation among the 

sampling errors.  The alternative’s estimate of the variability explained by the model, 

          , causes            to vary depending on the postulated model.  This is 

clearly not acceptable, and leads to our rejection of the alternative B-GLS pseudo 

ANOVA. 

That said, the correction for correlation among the sampling errors could prove 

useful if added to the B-GLS pseudo ANOVA in Gruber et al. [2007].  It is true that it 

will not change the analyst’s understanding of the breakdown of variability between 

sampling errors and model errors. Nor will it affect the judgment of whether an OLS 

analysis is sufficient.  It will, however, inform the analyst of the impact of sampling 

error covariance, an issue which necessitated major methodological adaptations 

reported in this thesis.  The current B-GLS pseudo ANOVA table does not reflect this 

potentially critical issue. Simply adding the correction term does not seem appropriate, 

as there are differences between                    and                 , which 

could be substantial for small  .  Instead, define a new ratio called the covariance loss 

factor (CLF): 

     
            

                 
  

   

 
  

            

                
  (5.51) 

The CLF describes the fraction of adjusted sampling error variability 

(                 ) which has been lost (or gained) due to the correlation among 

the sampling errors.  This can help indicate how much smaller the expected sum-of-
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squared variability would be if we included the cross-correlation of the sampling 

errors in the ANOVA analysis.  The second equality puts the covariance equality 

factor in terms of the Gruber et al. [2007]                 .  A CLF < 10% would 

suggest that the B-GLS pseudo ANOVA and the alternative would be very similar. 

When CLF is perhaps greater than 25%, one should recognize that the B-GLS pseudo 

ANOVA describes the relative average variation in a random observation due to the 

model, the model error, and due to sampling error – but it does not describe the 

expected sum of squared values for a set of observations with cross-correlated 

sampling errors.  In general, if the average cross-correlations remain the same, CLF 

should increase with the number of sites n included in an analysis. With further 

experience it may be possible to understand how the magnitude of covariance loss 

factor should influence the choice of WLS, GLS or WLS/GLS analysis.  Thus, Table 

5.14 is a proposed modification of the B-GLS pseudo ANOVA proposed in Gruber et 

al. [2007]. 

Table 5.13 is identical to the B-GLS pseudo ANOVA proposed by Gruber et 

al. [2007] (Table 5.8), except that it includes the new covariance loss factor.  By 

including           and    , Table 5.13 answers two potential questions: First, for a 

typical site, how much of the variability in the skew at that site is explained by the 

model, model error, and sampling error.   The B-GLS pseudo ANOVA answers that 

question, and rather than being written in terms of variances and average variances, 

the B-GLS pseudo ANOVA is scaled to look like a standard ANOVA.  The second 

question is how much total variability is expected in the data and how much of this is 

described by the model, model error, sampling error, and the covariance of sampling 
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errors.      answers this question by indicating by how much the B-GLS pseudo 

ANOVA overestimates the expected sum of squares of a set of observations with 

correlated errors.  Table 5.14 reports the proposed modification of the B-GLS pseudo 

ANOVA table for the numerical examples consider in this section. 

Table 5.14:  Proposed modification of the Gruber et al. [2007] pseudo ANOVA 

Source Sum of Squares 

               
        

      

                    
     

                          

 

   

 

          Sum of Above  

     
   

 
  

            

                
  

The top half of Table 5.14 is identical to the B-GLS pseudo ANOVA, (Table 

5.11).  The new line for CLF indicates that because of the cross-correlation, we expect 

sampling errors variability to decrease about 27-28%. A nice feature of the CLF is that 

it can be computed before any analysis is started, because it only depends on the 

sampling error covariance matrix. 

Table 5.15: Numerical application of the proposed modification of the B-GLS pseudo 

ANOVA 

 1-Day 30-Day 

Source 
Constant 

Linear 

Elevation 

NL 

Elevation 
Constant 

Linear 

Elevation 

NL 

Elevation 

          0.00 2.43 3.10 0.00 0.74 1.03 

                3.65 1.22 0.55 1.54 0.80 0.51 

                 6.30 6.30 6.30 6.07 6.07 6.07 

          9.95 9.95 9.95 7.61 7.61 7.61 

    -0.28 -0.28 -0.28 -0.27 -0.27 -0.27 
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Section 5.2.5  Reflection of B-GLS ANOVA Tables 

Previous sections of this chapter have provided both theoretical insight and 

numerical experience related to reasonable definitions of a ANOVA for the Stedinger–

Tasker GLS regression framework.  A fundamental problem is that the sampling errors 

are not observed, and thus an empirical ANOVA such as that typically generated for 

OLS analyses cannot be generated. A reoccurring issue is what one hopes the 

ANOVA table is intended to illustrate. B-GLS pseudo ANOVA in Table 5.7 is very 

attractive because it is relative simple and highlights the key sources of variability in 

the data: variation explained by the model, variability attributed to model errors, and 

the expected variability in the sampling errors. For all models the sum of model 

variability and model error is represented by     
    , which is the best B-GLS 

estimate of the variability in the     values obtained by a B-GLS analysis of the 

constant model. For other regression models, model variability and model error 

variability are divided as       
        

        and      
    , respectively, where    

     

is the best B-GLS estimate of the model error variance for the model with k 

parameters.  To the sum of model and model error variability is added the expected 

sum of squared sampling errors, 

     
  

       =           
 
    

where E{   
 } =  var(i) has been denoted as          throughout this thesis.  

A concern had been that these three terms ignored the cross-correlation among 

the sampling errors, and how those error interact with estimated parameters. Here 

Table 5.8 is particularly informative. If we try to match the Table 5.7 theoretical sums 

of squares (described as n times the variance of each variable), to the expected value 
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of the empirical sums of squares in Table 5.9, we see that its use of the sample 

estimate of the average of the     that causes the differences. Use of the average results 

in the (n-1) factors in Table 5.8 that appears in the                  and 

                  rows. The (n-1) factor mimics the loss of one degree of freedom 

that is a consequence of computing the sum of squares about the sample mean, and is a 

relatively small correction. The big impact results from the use of the sample mean 

when envisioning the sum of squares of the sampling errors. Were the n sampling 

errors known, then the expected sum of their squares about their theoretical mean of 

zero would be 

     
  

      =           
 
    

However, when we subtract the sample average of these errors from all the 

values, we obtain 

            
     =      

        
     

=           
 
    –

 

 
          

 
                  

 
     

=       
        

 

 
     

 

 
              

 
    

which is simply                   plus the -correction in Table 5.8. Thus 

the B-GLS pseudo ANOVA proposed by Gruber et al. [2007] correctly describes the 

theoretical variability due to the model, the model errors, and the sampling errors if 

one imagines centering the errors about their true mean of zero. However, its estimate 

of the total sum of squares is too large if one envisions centering the sum of squares 

about a sample average value of     because the correlations among all the sampling 

errors would reduce the computed sum of squares. Thus it is reasonable to argue that 
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the B-GLS pseudo ANOVA proposed by Gruber et al. [2007] is the appropriate 

representation of the total variability in ones data, which would on average be 

underestimated by the empirical sum of squares.  However, the distortion in the 

expected empirical sum of squares is a useful measure of the impact of cross-

correlation on the analysis and has been included in the misrepresentation of beta-

variance statistics discussed in Chapter 3.  

Section 5.2.6: Conclusions 

 When analyzing the California skew Data described in Chapter 4, it 

was observed that the B-GLS pseudo ANOVA table was different than the empirical 

ANOVA table.  While this is not in itself problematic, it is useful to understand why 

the two tables differ.  This section explores the issue of ANOVA as a GLS regression 

diagnostic for a range of GLS applications.  ANOVA are divided into two types: 

empirical and theoretical.  Empirical approaches are based solely on the data, whereas 

theoretical approaches are based on the hypothesized error variance structure with the 

estimated parameters.  Thus empirical ANOVA report the variability in a sample, 

while theoretical ANOVA report the expected variability in a random sample with a 

given error variance structure. 

 Theoretical ANOVA are necessary in the Stedigner and Tasker [1985] 

regression framework because sampling error and model error variability are not 

easily segregated with empirical methods.  It was noted that the theoretical ANOVA 

proposed by Gruber et al. [2007] (denoted B-GLS pseudo ANOVA) did not include all 

of the terms in       ; in particular it omits             .  A new theoretical 

ANOVA based on an approximation of        was derived, denoted alternative B-
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GLS pseudo ANOVA.  This new alternative is ultimately rejected because the 

estimate of the total variability in the data is highly dependent on the hypothesized 

model.  However, a new covariance loss factor, which estimates the fraction of 

sampling error variability lost due to positive correlation among the sampling errors 

has been added to the B-GLS pseudo ANOVA table.  The new factor provides the 

analyst with an estimate of the factor by which the sum of squares of the sampling 

errors in the data set is decreased relative to the value that would be expected if 

sampling errors were independent. 

Section 5.3: Consistency of the Regional Skew Models Across Durations 

This section examines consistency across durations of the regional skew 

models developed in Chapter 4.  This was a concern raised during the review process 

for Lamontagne et al. [2012], which reports most of the analyses in Chapter 4.  In 

particular, it addresses the concern that the skew models are not ordered by duration as 

one might intuitively expect.  For example one might expect that as duration increased 

the magnitude of skew models might either increase or decrease monotonically.  The 

underlying concern is that subsequent flood frequency analyses for each duration is 

consistent with each other, i.e. the     annual exceedance probability (AEP) flood 

should decrease with increasing duration.  The     AEP is the flood which has 

probability   of being exceeded in any given year.  Thus the 0.01 AEP flood will be 

exceeded in any year with probability 1/100.  This is also commonly called the 100 

year flood. 

Here the consistency concern is addressed in three ways: Section 5.3.1 

considers the real-space characteristics of log-space models developed in Chapter 4.  
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Section 5.3.2 compares the estimated 0.01 AEP floods computed with the sample 

standard deviation and regional skew for a variety of study sites.  Finally, Section 

5.3.2 examines the effect of the log-space skew and log-space standard deviation on 

the relative magnitude of floods of different durations. 

Before entering a discussion of regional skew model trends across durations, it 

is important to recall that the parameters of the final regional models from each 

duration were not statistically different from each other, meaning that the simple 

confidence intervals for the parameters overlapped.  This is not evidence that a single 

model should necessarily be used for all durations: the model parameters are not 

significantly different from many alternative values.  However, it is a caution not to 

attribute too much to differences between regional skew models for different 

durations. 

Section 5.3.1: Real-space Characteristics of Regional log-space Skew Models across 

Study Durations 

This section examines the real-space characteristics of the log-space skew 

models developed in Chapter 4 for a variety of study basins across each of the five 

rainfall flood durations.  This is done by considering the real-space skew coefficient of 

a log-Pearson Type III with a log-space skew coefficient equal to the regional skew 

from Chapter 4. 

The real-space skew of the log-Pearson Type III distribution depends on both 

the log-space skew coefficient and the log-space standard deviation [Griffis and 

Stedinger 2007; Stedinger et al., 1993].  One should not draw conclusions about the 

shape of the fitted distributions for the various durations by simply comparing the log-

space skew coefficients.   
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To help clarify this issue, the real-space skew coefficients associated with the 

log-space regional skew were calculated for each of the five study durations at twelve 

representative sites, which had their own at-site log-space standard deviations.  Sites 

were selected that had long record lengths and spanned a wide range of mean basin 

elevations.  Recall that mean basin elevation is an explanatory variable in the final 

models selected in Chapter 4.  Those models essentially assign a constant skew for 

low elevations and a constant skew for high elevations, with a rapid transition zone 

between the two.  Four sites were selected for each of the three elevation types: low, 

transition, and high.  Characteristics of the sites are summarized in Table 5.16. 

Table 5.16:  Summary of Twelve Representative Basins from three elevation 

categories. 

Site Number Site Name 

Record 

Length 

Mean Basin 

Elevation (ft) Category 

15 Bear R. near Wheatland 103 2250 Low 

30 Calaveras R. at Hogan Dam 96 1991 Low 

43 Cache Ck. at Clear Lake 87 2004 Low 

50 Arroyo Seco R. near Soledad 107 2494 Low 

12 Butte Ck. near Chico 78 3717 Trans. 

33 Fresno R. near Knowles 76 3201 Trans. 

10 Big Chico Ck. near Chico 77 3111 Trans. 

45 M Fork Eel R. near Dos Rios 43 3685 Trans. 

13 Feather R. at Oroville Dam 107 5031 High 

24 Merced R. at Exchequer Dam 107 5473 High 

25 Tuolumne R. at Don Pedro Dam 112 5882 High 

31 Mokelumne R. at Camanche Dam 104 4918 High 

The log-space mean and standard deviation was computed for each site and each 

duration using the Expected Moments Algorithm (EMA), following the same 

censoring recommendations used in Chapter 4.  The real-space skew coefficient is 

then computed using the log-space sample standard deviation and the log-space 

regional skew coefficient.  Figure 5.5 plots the log-space skew coefficients for low, 
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transition, and high elevation basins for each of the five study durations.  Figure 5.6, 

Figure 5.7, and Figure 5.8 plot the real-space regional skew coefficient for the low, 

transition, and high elevations respectively. 

 
Figure 5.5: Log-Space Regional Skew Coefficient for Low, Transitional, and High 

Elevation Basins. 

In log-space, the regional skew coefficients increase with duration from 1-Day 

to 7-Day, then generally decrease with duration from 7-Day to 30-Day.  The exception 

is low elevation 30-Day skew, which is greater than low-elevation 15-Day.  The 

precision of the model parameters makes it difficult to determine if this is a real 

difference or a result of sampling error in the computed parameters. 
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Figure 5.6: Real-Space Regional Skew Coefficient for four Low Elevation Basins, 

using regional log-space skew and sample log-space standard deviation. 

For low-elevation sites, the real-space skew coefficient remains relatively 

constant across durations.  In all cases the 7-Day skew coefficient is largest, and there 

is almost no difference between the 15-Day and 30-Day regional skew coefficient. 

 
Figure 5.7: Real-Space Regional Skew Coefficient for four High Elevation Basins, 

using regional log-space skew and sample log-space standard deviation. 
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High elevation real-space regional skew is generally greatest for the 3-Day 

duration, before decreasing with increasing duration.  Real-space regional skew values 

change much more with duration for high elevation sites than for low-elevation sites.  

This was also the case in log-space (see Figure 5.5).  This indicates that the shape of 

the distribution of rainfall floods is more uniform across durations for low elevation 

sites than high elevation sites.  The hydrologic reasons for this are difficult to 

determine, but elevation in California often dictates the degree to which rain-snow 

interactions impact the flood hydrology [Parrett et al., 2011; Lamontagne et al., 2012]. 

 
Figure 5.8: Real-space Regional Skew Coefficient for four Transitional Elevation 

Basins, using regional log-space skew and sample log-space standard deviation. 

As one would expect, the trend in real-space regional skew coefficient across 

durations for the transitional sites is a mixture of the trends observed for high and low 

sites.  Site 12 has the highest mean basin elevation of all of the transitional basins 
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basin elevation of all of the transitional basins (3111 ft).  The real-space regional skew 

values for Site 11, i.e. more uniform real-space skew, with 7-Day having the 

maximum magnitude.  This is similar to what is observed in Figure 5.6. 

Overall, the trend in real-space skew across durations is not erratic for any of 

the representative sites.  One would be very concerned if the regional skew for 

different durations at the same site were drastically different, but they are not.  The 

trend in both real-space and log-space regional skew values are not monotonic with 

duration, but there is no obvious or compelling reason why it should be.  The 

underlying hydrologic reasons for the observed trends in regional skew are not clear, 

though elevation seems to affect the spread of long and short duration regional skews.  

It is speculated this might because of the impact of snowmelt hydrology on 

distribution of floods of different durations at high elevations, but it is difficult to draw 

hydrologic meaning from the skew coefficient of annual maximum flows. 

Section 5.3.2: Comparison of 100-year flood estimates for different durations 

computed with regional skew model 

The annual maximum d-Day rainfall flood record is generated by averaging rainfall 

flood records over a sliding d-Day window, then selecting the maximum for each 

water year.  Thus, the magnitude of the d-Day rainfall flood cannot increase with 

duration: 

                    if     (5.52) 

Where   and   are rainfall flood durations, and       is the maximum d-Day rainfall 

flood (flow rate) for year   and duration.  For this reason, flood quantiles for a fixed 

AEP,  , should not increase with decreasing duration: 
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                        if     (5.53) 

Where         is the   AEP flood for duration d.  A concern is that the flood 

quantiles computed using the regional skew models in Chapter 4 do not provide      

which violate Equation (5.53). 

As a check, the 0.01 AEP flood (i.e. 100-year flood) is computed using the 

regional skew for the 12 representative sites and the five study durations.  This 

involves using the at-site sample mean, at-site sample standard deviation, and the 

regional skew for each site and duration to estimate the 0.01 AEP flood.  This is not 

the procedure recommended by Bulletin 17B, because the at-site sample skew is not 

used in the computation.  This example is only intended to see if the regional skew 

itself causes inconsistencies.  Figure 5.9, Figure 5.10, and Figure 5.11 plot the 0.01 

AEP flood for each of the study durations for low, high, and transitional representative 

basins respectively.  Note that for every basin, the magnitude of the 0.01 AEP flood 

decreases with increasing duration. 
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Figure 5.9: Rainfall Duration Flood 0.01 AEP for four low elevation sites, computed 

using sample log-space mean and standard deviation, and regional log-space skew 

coefficient. 

 
Figure 5.10: Rainfall Duration Flood 0.01 AEP for four high elevation sites, 

computed using sample log-space mean and standard deviation, and regional log-space 

skew coefficient. 
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Figure 5.11: Rainfall Duration Flood 0.01 AEP for four transition elevation sites, 

computed using sample log-space mean and standard deviation, and regional log-space 

skew coefficient. 
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50-, 100-, 250-, 500-, and 1000-year floods.  Figure 5.12, Figure 5.13, and Figure 5.14 

plot the computed AEP for Site 50 (low), Site 12(transitional), and Site 25(high) 

respectively. 

 
Figure 5.12: Site 50 AEP flood quantiles for five durations, computed using sample 

log-space mean and standard deviation and regional log-space skew coefficient. 

 
Figure 5.13:  Site 12 AEP flood quantiles for five durations, computed using sample 

log-space mean and standard deviation and regional log-space skew coefficient. 
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Figure 5.14: Site 25 AEP flood quantiles for five durations, computed using sample 

log-space mean and standard deviation and regional log-space skew coefficient. 
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between ERL,      , and the magnitude of the skew model is explored.  Also, a 

simple approximation of the final model in Chapter 4 is proposed.  This model returns 

an approximate      which is very similar to the values reported in Chapter 4, 

confirming that the low       is reasonable.   Section 5.2 reexamines the Pseudo 

ANOVA table, compares it to a traditional ANOVA table, and an addition term to 

account for the cross-correlation of sampling errors.  Finally, Section 5.3 examines 

whether the trend of the regional skew models across flood durations is reasonable, 

and whether they lead to inconsistencies in subsequent flood frequency analyses.  The 

real-space regional skew values for various representative sites are compared, and 

flood quantiles are computed using the regional skew coefficient.  Inconsistencies are 

not observed, confirming that while trends across durations are unexpected and hard to 

explain, they do not seem to return inconsistent flood frequency results. 
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Chapter 5 Appendix 

 

This appendix derives        for the hybrid WLS/GLS analysis used in 

Chapter 4, and the general WLS or GLS case.  Start by recalling some definitions.  Let 

   be a     vector of observations.  Assuming a linear model, 

        (5.54) 

 

where   is a     matrix of basin characteristics, and   is a     vector of model 

parameters, and   is a     vector of errors.  Note that 

       

         
(5.55) 

Let    be the covariance matrix of   from a  -case analysis.  Let    be the least-

squares estimate of  .  Recall from Chapter 3, 

        
    

  
    

          (5.56) 

Where    is the  -case weight matrix, defined as: 

        
    

  
    

   (5.57) 

The fitted model for the  -case is given by: 

                                 (5.58) 

Let    be a     vector containing the sample mean in each element.     is computed 

as 

                      (5.59) 
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where   is an     matrix containing     in each element. 

Suppose a WLS/GLS hybrid analysis, such as the procedure described in 

Chapter 4, is used.  This means that a WLS analysis is used to estimate the model 

parameters, and a GLS analysis is used to estimate their precision.  Generalizing this, 

suppose the  -case is used to estimate the model parameters and the  -case is used to 

estimate the precision of the model.  This means that the fitted model is computed as 

             (5.60) 

where          . 

 Note that 

                                           (5.61) 

where         ,         , and         are the sum of squares due to errors, sum of 

squares due to the model, and the cross-product term for a hybrid     case. 

To estimate       , an approximation for  each of the expressions on the RHS 

of ( will be derived.  First consider            .  Recall that          

        
 
        .  Expanding the definition of         : 

                 
 
        

                                

                    

                
         

        

(5.62) 
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Recall the property that the trace of a matrix is invariant under cyclic permutations 

(i.e.                      ) [Bretscher, 2009], and that the trace of a scalar is 

the scalar: 

                                            
     

           
         

                                          
       

         
           

(5.63) 

Taking the expectation of equation (: 

                                           
      

         
          (5.64) 

Now, consider            .  Recall that                  
 
        .  

Expanding the definition of         , 
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(5.65) 

Note that      .  Also, note that 

                             
       

       
                     

                              

   

(5.66) 

 

Taking the expectation of (5.65) and recalling the cyclic property of the trace yields: 

                                         
          

           
                            

                              

                        
          

         
                                   

(5.67) 
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Now consider            .  Recall that                   
 
        .  

Expanding this definition yields: 

                  
 
        

                                   

                             

                       
         

       

                                  

(5.68) 

Note that 

                                                (5.69) 

Taking the expectation of equation ( and recalling the cyclic property of the trace: 

                          
               

             

                          

                                 

                            

(5.70) 

Substituting equations (, (5.67), and (5.70) into equation (5.62) and simplifying yields: 
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(5.71) 

The last line in equation (5.71) relates        to the Gruber et al. [2007] 

pseudo ANOVA (Table 5.7). The second and third terms explain the variation due to 

model and sampling errors respectively, and are identical to those proposed by Gruber 

et al. [2007] (see Table 5.7). The first term describes the variation of the true model 

about its mean, and the fourth term is a correction for the errors in computing the 

sample mean.  This correction term can be further decomposed.  Let      .  The 

    diagonal element of  ,      is 
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 (5.72) 

where     is the cross-correlation of the sampling errors.  The correction term in 

equation (5.71) is computed as 

               

 

   

    
     

 

 
         

 

   

 
 

 
         

   

 

   

 (5.73) 

Substituting equation (5.73) into equation (5.71) yields 

                        
              

 

   

    
    

 
 

 
          

 

 
         

   

 

   

 

   

 

                            
        

 

 
          

 

   

 
 

 
         

   

 

   

 

 

(5.74) 

Unfortunately,   is not know.  If    is used instead, an estimate of        is 

                               
        

 

 
          

 

   

 
 

 
         

   

 

   

 

(5.75) 

Instead, suppose a J case analysis is used to both estimate the model parameters and to 

assess the precision of the model, the estimate of        becomes 
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(5.76) 
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APPENDIX A 

Table A.1: Censoring Decisions for analysis in Chapter 4, Part 1 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

1 Sacramento R Shasta Dam 77 EMA Cens/Zeros 1 0 0 0 0 
 

   
Additional Censored 2 2 2 2 2 

 

   
Total 3 2 2 2 2 

 3 Cottonwood Ck near Cottonwood 68 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 4 Cow Ck near Millville 59 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 5 Battle Ck below Coleman Hatch 68 EMA Cens/Zeros 1 0 0 0 0 
 

   
Additional Censored 0 1 1 1 1 

 

   
Total 1 1 1 1 1 

 6 Mill Ck near LosMolinos 80 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 7 Elder Ck near Paskenta 60 EMA Cens/Zeros 0 0 1 1 1 
 

   
Additional Censored 1 1 0 0 0 

 

   
Total 1 1 1 1 1 

 8 Thomes Ck at Paskenta 76 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 
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Table A.2: Censoring Decisions for analysis in Chapter 4, Part 2 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

9 Deer Ck near Vina 92 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 10 BigChico Ck near Chico 77 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 11 Stony Ck at BlackButteDam 66 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 12 Butte Ck near Chico 78 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 13 Feather R At OrovilleDam 107 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 14 North Yuba at BullardsDam 68 EMA Cens/Zeros 0 0 0 1 1 
 

   
Additional Censored 2 2 2 1 1 

 

   
Total 2 2 2 2 2 

 15 Bear R near Wheatland 103 EMA Cens/Zeros 0 0 1 1 1 
 

   
Additional Censored 1 1 0 0 0 

 

   
Total 1 1 1 1 1 

 16 N Fork Cache Ck at IV Dam 78 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 3 3 3 3 3 

 

   
Total 4 4 4 4 4 
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Table A.3: Censoring Decisions for analysis in Chapter 4, Part 3 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

17 American R at FairOaks 104 EMA Cens/Zeros 0 0 0 1 1 
 

   
Additional Censored 1 1 1 0 0 

 

   
Total 1 1 1 1 1 

 18 Kings R at Pine Flat Dam 113 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 19 SanJoaquin R at Friant Dam 105 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 20 Chowchilla R at Buch Dam 80 EMA Cens/Zeros 1 0 0 0 0 
 

   
Additional Censored 0 1 1 1 1 

 

   
Total 1 1 1 1 1 

 23 DelPuerto Ck near Patterson 44 EMA Cens/Zeros 1 0 0 0 1 
 

   
Additional Censored 0 1 1 1 0 

 

   
Total 1 1 1 1 1 

 24 Merced R at Exchequer Dam 107 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 25 Tuolumne R at DonPedroDam 112 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 26 Stanislaus R at MelonesDam 93 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 1 1 1 1 1 

 

   
Total 1 1 1 1 1 
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Table A.4: Censoring Decisions for analysis in Chapter 4, Part 4 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

28 Duck Ck near Farmington 30 EMA Cens/Zeros 1 1 0 0 0 
 

   
Additional Censored 0 0 1 1 1 

 

   
Total 1 1 1 1 1 

 30 Calaveras R at Hogan Dam 96 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 31 Mokelumne R at Camanche Dam 104 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 32 Cosumnes R at Michigan Bar 101 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 33 Fresno R near Knowles 76 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 34 S Yuba R atJones Bar 57 EMA Cens/Zeros 0 0 0 1 1 
 

   
Additional Censored 1 1 1 0 0 

 

   
Total 1 1 1 1 1 

 35 M Yuba R below OurHouseDam 37 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 36 Kaweah R at Terminus Dam 50 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 
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Table A.5: Censoring Decisions for analysis in Chapter 4, Part 5 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

37 Tule R at Success Dam 50 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 38 Kern R Isabella Dam 116 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 39 Mill Ck near Piedra 52 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 40 Dry Ck near Lemoncove 50 EMA Cens/Zeros 0 0 1 1 0 
 

   
Additional Censored 1 1 0 0 1 

 

   
Total 1 1 1 1 1 

 41 Deer Ck near Fount Spr 41 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 42 White R near Ducor 46 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 43 Cache Ck at Clear Lake  87 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 3 3 3 3 3 

 

   
Total 4 4 4 4 4 

 44 Putah Ck at Mont Dam 78 EMA Cens/Zeros 1 1 2 2 2 
 

   
Additional Censored 11 11 9 9 9 

 

   
Total 12 12 11 11 11 
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Table A.6: Censoring Decisions for analysis in Chapter 4, Part 6 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

45 M Fork Eel R near DosRios 43 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 46 S Fork Eel R near Miranda 68 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 47 Mad R above Ruth Res 28 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 48 E Fork Rus R near Calpella 67 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 49 Salinas R near Pozo 41 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 50 Arroyo Seco near Soledad 107 EMA Cens/Zeros 0 1 1 1 1 
 

   
Additional Censored 1 0 0 0 0 

 

   
Total 1 1 1 1 1 

 51 Salmon R at SomesBar 84 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 1 1 1 1 1 

 52 SantaCruz Ck near SantaYnez 67 EMA Cens/Zeros 2 2 1 0 0 
 

   
Additional Censored 4 3 4 5 4 

 

   
Total 6 5 5 5 4 
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Table A.7: Censoring Decisions for analysis in Chapter 4, Part 7 of 7 

Site # Site Name POR Type of Cens 1-Day 3-Day 7-Day 15-Day 30-Day   

53 Salsipuedes Ck near Lompoc 67 EMA Cens/Zeros 0 0 0 0 0 
 

   
Additional Censored 0 0 0 0 0 

 

   
Total 0 0 0 0 0 

 54 Trinity R above CoffeeCk 51 EMA Cens/Zeros 0 1 1 1 1 
 

   
Additional Censored 1 0 0 0 0 

 

   
Total 1 1 1 1 1 

 55 Scott R near FortJones 67 EMA Cens/Zeros 1 1 1 1 1 
 

   
Additional Censored 0 0 0 0 0 

       Total 1 1 1 1 1 
  


