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Abstract 

Background: The prevalence of preterm birth (PTB) is high in lower and middle-income 

countries (LMIC) such as India. In LMIC, since a large proportion seeks antenatal care for the 

first time beyond 14-weeks of pregnancy, accurate estimation of gestational age (GA) using 

measures derived from ultrasonography scans in the second and third trimesters is of 

paramount importance. Different models have been developed globally to estimate GA, and 

currently, LMIC uses Hadlock’s formula derived from data based on a North American cohort. 

This study aimed to develop a population-specific model using data from GARBH-Ini, a 

multidimensional and ongoing pregnancy cohort established in a district hospital in North India 

for studying PTB. 

Methods: Data obtained by longitudinal ultrasonography across all trimesters of pregnancy was 

used to develop and validate GA models for second and third trimesters. The first trimester GA 

estimated by ultrasonography was considered the Gold Standard. The second and third 

trimester GA model named, Garbhini-GA2 is a multivariate random forest model using five 

ultrasonographic parameters routinely measured during this period. Garbhini-GA2 model was 

compared to Hadlock and INTERGROWTH-21st models in the TEST set by estimating 

root-mean-squared error, bias and PTB rate. 

Findings: Garbhini-GA2 reduced the GA estimation error by 23-45% compared to the 

published models. Furthermore, the PTB rate estimated using Garbhini-GA2 was more 

accurate when compared to published formulae that overestimated the rate by 1·5-2·0 times.  

Interpretation: The Garbhini-GA2 model developed is the first of its kind developed solely 

using Indian population data. The higher accuracy of GA estimation by Garbhini-GA2 

emphasises the need to apply population-specific GA formulae to improve antenatal care and 

better PTB rate estimates. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.02.21264450doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.02.21264450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Funding: Centre for Integrative Biology and Systems Medicine, IIT Madras; Department of 

Biotechnology, Government of India; Grand Challenges India, BIRAC.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.02.21264450doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.02.21264450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

Panel: Research in Context  

Evidence before this study 

The appropriate delivery of antenatal care and accurate delivery date estimation is heavily 

dependent on accurate pregnancy dating. Unlike GA estimation using crown-rump length in 

the first trimester, dating using foetal biometry during the second and third trimesters is prone 

to inaccuracies. This is a public health concern, particularly in low and middle-income 

countries like India, where nearly 40% of pregnant women seek their first antenatal care beyond 

14 weeks of gestation. The dating formulae used in LMIC were developed using foetal 

biometry data from the Caucasian population, and these formulae are prone to be erroneous 

when used in ethnically different populations. 

Added value of this study 

This study developed a dating model, the Garbhini-GA2 model for second and third trimesters 

of pregnancy using multiple candidate biometric predictors measured in a North Indian 

population. When evaluated internally, this model outperformed the currently used dating 

models by reducing the errors in the estimation of gestational age by 25-40%. Further, 

Garbhini-GA2 estimated a PTB rate similar to that estimated by the Gold Standard in our 

population, while the published formulae overestimated the PTB rates.  

Implications of all the available evidence 

Our Garbhini-GA2 model, after due validations in independent cohorts across the Southeast 

Asian regions, has the potential to be quickly translated for clinical use across the region. A 

precise dating will benefit obstetricians and neonatologists to plan antenatal and neonatal care 

more exactly. From an epidemiologist standpoint, using the Garbhini-GA2 dating formulae 

will improve the precision of the estimates of pregnancy outcomes that heavily depend on 
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gestational age, such as preterm birth, small for gestational age and stillbirth in our population. 

Additionally, our dating models will improve phenotyping by reducing the risk of 

misclassification between outcomes for mechanistic and biomarker research.   
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Introduction 

Estimation of gestational age, commonly known as pregnancy dating, is the cornerstone of 

obstetric care. Delivery of antenatal care – either investigation for foetal morphological 

anomalies, gestational diabetes, and preeclampsia, or nutritional supplementation and foetal 

growth monitoring is primarily dependent on accurate dating. From an epidemiological 

standpoint, dating of pregnancy determines the accuracy of population-level estimates of 

pregnancy outcomes such as preterm birth, foetal growth restriction, and stillbirth. 

Conventionally, counting the number of days from the last menstrual period (LMP) using 

Naegle’s methods (1) has been used to arrive at the estimated delivery date and, thereby, 

gestational age. This method is still used as the primary method in many low and middle-

income countries. The use of LMP to compute GA is highly contingent on factors such as 

regularity of menstrual cycle and accurate recall of the date of LMP. The menstrual cycle’s 

regularity is susceptible to change in conditions like polycystic ovarian syndrome (2) and 

obesity (3). Consumption of contraceptives and breastfeeding just before conception can also 

affect the menstrual cycle (4,5). 

The best time and method for assessing GA during pregnancy is the first trimester using 

ultrasonographic measurement of crown-rump length (CRL) (1,6–9). The measurement 

protocols for CRL are well established and practised as a standard of care globally. The 

physiological and pathological variations in foetal growth can affect the accuracy of GA 

prediction in the second and third trimesters (10). GA dating formulae based on foetal biometry 

in the second and third trimesters, such as Hadlock’s formula (11), are widely used in USG 

machines in India. However, Hadlock’s formulae were developed on a sample of pregnant 

Caucasian women from a North American population. Foetal growth can have ethnic variations 

in the South Asian population, where foetuses are generally smaller than their western 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.10.02.21264450doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.02.21264450
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

counterparts. This may lead to underestimating GA in our setting by models developed from a 

western population (12). This underestimation may cause delays in planning deliveries and 

consequently an increased risk of post-dated pregnancy, perinatal asphyxia, and stillbirth. 

The ideal way of developing and overcoming the influence of foetal growth in dating is to 

identify biometric features that are relatively less affected by foetal growth restriction. An 

accurate dating model for the second and third trimesters is essential in LMICs like India, 

where more than 40% of pregnant women seek antenatal care beyond their first trimester (13). 

In this study, we developed dating models for second and third trimesters of pregnancy using 

multiple candidate biometric predictors measured in a North Indian population and validated 

it internally in a separate dataset from the same population. We evaluated the impact of the 

newly developed model on the estimation of preterm birth (PTB) rate and compared it against 

globally published models. 

Methods 

Study design and data collection 

The GARBH–Ini cohort (interdisciplinary Group for Advanced Research on BirtH 

outcomes-DBT India Initiative) is an ongoing prospective observational cohort of pregnant 

women initiated in May 2015 at Gurugram Civil Hospital, Haryana, India. The participants 

were enrolled before 20 weeks of gestation and followed three times during pregnancy 

(18-20w, 26-28w and 30-32w) till delivery. Detailed methods of the GARBH-Ini study have 

been published earlier (14). A first trimester dating scan was performed if a participant was 

enrolled within 14 weeks of her pregnancy. She was followed at least once in each trimester 

till the end of the pregnancy, when an ultrasound examination was performed to measure foetal 

biometry and other foetal and maternal characteristics. Participants in the cohort were enrolled 
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after obtaining written informed consent. Ethics approvals were obtained from the institutional 

ethics committees of Gurugram Civil Hospital, Safdarjung Hospital, Translational Health 

Science and Technology Institute, and Indian Institute of Technology Madras (14). 

The dataset for this study was derived from the GARBH-Ini study consisting of 6498 

participants at the time of enrolment. We included participants who had their pregnancy dating 

done in their first trimester, had undergone one ultrasonographic examination in the second or 

third trimester of pregnancy and had the outcome of their pregnancy documented (n = 2649). 

The details of selection criteria and participant flow are provided in Figure 1. Data collected 

for a participant in the second and third trimesters were treated as different observations leading 

to a sample of No = 4972. Of these observations, 4768 observations were selected based on the 

availability of all five ultrasound metrics – Biparietal diameter (BPD), occipitofrontal diameter 

(OFD), head perimeter (HP), abdominal perimeter (AP) and femur length (FL). 

Dataset preparation for modelling and internal validation 

The resultant dataset consisting of 4768 observations was split into a TRAINING set of 3338 

observations (70% of the dataset and an unseen TEST set of 1430 observations (30% of the 

dataset, see Figure 1). The unseen TEST set was used for internal validation to compare the 

performance of our models with published ones. 

Definition of gold standard GA 

Gestational age for participants at their second and third-trimester visits was computed using 

the GA estimated during their first trimester dating scan. In our previous work (15), we had 

developed a CRL based first-trimester dating model (Garbhini-GA1) and showed it to be 

performing as well as the Hadlock’s and INTERGROWTH-21st first trimester dating models. 

We used the Garbhini-GA1 model to obtain the first trimester dating for our study participants. 
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The difference in the visit dates of the first and second trimester scans was added to the first 

trimester GA (estimated by Garbhini-GA1) to give the second and third trimester GA used for 

all subsequent analyses (Figure S1). These GA estimates were considered the Gold Standard 

or ground truth for modelling our second and third-trimester formulae. 

Feature selection 

Feature selection was implemented on a set of 21 candidate features (Table S1), including the 

five main USG variables (BPD, OFD, HP, AP & FL). Boruta, a wrapper built on a random 

forest-based classifier using the boruta package (16), was used to implement feature selection. 

Features selected by Boruta undergo a robust method of computing relative importance, a 

metric that indicates the usefulness of a feature in predicting GA. In each iteration, a feature is 

compared with a randomly shuffled version of itself called a shadow feature (Supplementary 

Methods). The highest feature importance recorded among all randomly shuffled shadow 

features called shadowMax was used as a threshold to decide if a feature was selected (Figure 

2A). 

Development of population-specific gestational dating model  

We used three different methods to develop a second and third trimester dating model for our 

dataset – polynomial regression, random forest, and gradient boosting machines. 

Random forest was implemented using the ranger package (17). The number of trees was 

decided by observing the number of trees contributing to the least mean squared error (MSE). 

Hyperparameters mtry (number of variables to randomly sample as candidates at each split), 

minimum node size (minimum number of samples within terminal nodes), sample fraction 

(proportion of the dataset to train in each iteration) were tuned using a grid search that computes 
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the out-of-bag (OOB) RMSE value for 140 sets of parameters. The optimal model was then 

used to identify the relative importance of features in decreasing order (Figure 2B). 

Polynomial model search, and Gradient Boosting methods were also implemented as potential 

GA estimating models (see Supplementary Methods). 

Comparison of dating models  

The best fit models from polynomial model search, Random Forest and Gradient Boosting 

developed on the TRAINING set were compared with Hadlock’s best performing formula (11) 

consisting of BPD, FL, HP and AP (GA = 10·85 + 0·060(HP)(FL) + 0·67(BPD) + 0·168(AP)) 

, and INTERGROWTH-21st (18) formula consisting of HP and FL (loge(GA) = 0·03243 × 

(loge(HP))2 + 0·001644 × FL × loge(HP) + 3·813). The performance of each model was 

calculated by computing the root-mean-square deviation RMSE on the TEST set (No = 1430) 

by calculating the mean of residual (difference between predicted model and gold standard) for 

each data point and taking the square root of that mean. Parity plots for each model were 

constructed by plotting the predicted GA on the y-axis and Gold Standard GA on the x-axis. 

Violin plots constructed using the ggplot2 package (19) were used to demonstrate the 

distribution of errors of estimation of GA (predicted GA – actual GA) for all the models. The 

model with the least RMSE, based on random forest modelling, named the Garbhini-GA2 

model, was picked for further comparative analyses. Using Bland-Altman analysis, the bias 

between different formulae was evaluated, and pairwise mean difference and limits of 

agreement were reported. 

A series of datasets comprising 1000 simulated data points were generated to understand a 

model’s predictions visually. Each dataset was constructed by generating random values for a 

particular USG parameter while keeping the other four a constant at the mean of their value in 

the TEST set. This process was repeated to generate simulated datasets specific to the second 
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and third trimesters as well. Three models – Garbhini-GA2, Hadlock and 

INTERGROWTH-21st were applied onto the simulated datasets to compare predicted GA 

versus USG variables visually. 

Using predicted GA from Garbhini-GA2 and Hadlock’s formula, two groups of participants 

were created from the TEST set – having an absolute difference in predicted GA of less than 

1-week and greater than 1-week, respectively. Descriptive statistics for continuous and 

categorical variables (see Table 1) were generated to compare the two groups. 

Preterm birth analyses  

For classification of PTB, the number of participants that had a GA less than 37 weeks per 100 

participants was calculated and tabulated for the three formulae, namely Hadlock, 

INTERGROWTH-21st, Garbhini-GA2 and Gold-Standard GA on the TEST set. Further, the 

95% confidence interval for each estimate was computed using the Clopper-Pearson method 

using the binom package (20). The agreement between the Gold Standard and three formulae 

for preterm labelling was calculated using the Jaccard similarity coefficient. Classification of 

participants as preterm was graphically depicted using a quadrant plot consisting of predicted 

GA on the x-axis and gold standard GA on the y-axis divided by a line at 37 weeks, 

respectively. All modelling and statistical analysis were performed using the R programming 

language. 

Results 

Description of participants included in the study 

The median age of the participants enrolled in the study was 23 years in the TRAINING and 

TEST sets. The median weight and height in the TRAINING set was 56·5 kg (IQR 51·0 - 

63·4), and 153·1 cm (IQR 149·4 - 157), respectively and 57·2 % of participants had a normal 
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BMI (median 20·4 IQR 18·2 - 23·1). More than half of them were primigravida (51·0 %). Most 

of the participants were from the middle or lower socioeconomic strata (21). The participants 

selected in this study had a median GA of 19·4 weeks (IQR 19·1 - 20·1). Other baseline 

characteristics are given in Table 1. 

Feature selection  

Feature selection by Boruta assigned importance to all the 22 features used in the analysis and 

selected nine that crossed the threshold (shown in green in Figure 2A), namely - BPD, OFD, 

FL, HP, AP, symphysiofundal height, BMI, maternal weight, and abdominal girth. The 

remaining features were rejected (Figure 2A) as they did not cross the threshold level of 

importance. Further, the relative importance of all features showed that the five USG based 

metrics - AP, FL, OFD, HP, and BPD had a marked higher significance than non-USG based 

metrics. USG-based metrics were used to develop GA models in this study. 

Order of importance of features 

The variable importance in the random forest model was recorded by computing the decrease 

in MSE each time a variable was used to split a tree at a node. Variables that reduce the 

remaining error the most after a node is split were considered more important than others. The 

overall importance was computed by averaging the decrease in MSE across all trees in the 

forest. Most impactful variables were considered to be of most importance (Figure 2B). 

Comparison of published methods and Garbhini formulae in the second and third trimesters 

Comparisons between different dating models showed that the root-mean-square deviation 

(RMSE) on the TEST set varied between 0·89 - 1·57 weeks. Our Garbhini-GA2 model had the 

least error (0·89 weeks, 95% CI: 0·80, 0·97 weeks) and Hadlock’s formula the maximum of 

1·57 weeks with the INTERGROWTH-21st model in between at 1·16 weeks (Figure 3A, Table 
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2). This demonstrated that the error with the Garbhini-GA2 model was substantially lower than 

the Hadlock’s (by 45%) and INTERGROWTH-21st (by 23%) models. Pairwise BA analysis 

between all formulae ranged between -0·642 and 1·089, with the largest difference between 

Hadlock’s formula and Garbhini-GA2 (Table 3). The Hadlock formula underestimated GA by 

a week as compared to the Garbhini-GA2 model. The INTERGROWTH-21st model too 

underestimated GA, albeit with a lesser magnitude (3 days). 

We evaluated the contribution of foetal biometry towards the discrepancy observed among the 

three models using simulated datasets generated for the second, third and both second and third 

trimesters (see Methods). Our analyses showed that while differences were observed for the 

second and third trimester, it was slightly more for the second trimester (Figure S6). All the 

foetal biometry features seem to have contributed to the difference. Furthermore, the foetal 

biometry features were significantly lower for participants with an estimated GA difference of 

more than 1-week compared to those with less than 1-week difference (see Table S8). 

Impact of choice of dating formula on the estimation of preterm rates 

The PTB rate in the TEST set using the gold standard for GA was 9·4% (CI 8·0, 11·1). The 

PTB rates estimated when different models did the dating of pregnancy ranged between 10·6 

and 22·5% when computed on the TEST set. The PTB rates in the TEST set, when Garbhini-

GA2 (10·6%; CI 9·1, 12·3) and Garbhini-XG Boost (10·6%, CI 9·0, 12·3) were used, were 

closest to those estimated by the Gold Standard (first trimester CRL-based) dating method. 

Remarkably, INTERGROWTH-21st (14·5%; CI 12·8, 16·5) and Hadlock’s formula (22·5%; 

CI 20·4, 24·8) overestimated PTB rates (Figure 3B, Table S4). The improved accuracy of 

Garbhini-GA2 was confirmed even when we redefined the Gold Standard using the Hadlock 

and INTERGROWTH-21st first trimester formulae (Table S7). 
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In terms of which births were classified as PTB, the Garbhini-GA2 dating model showed the 

highest (78·8%), and Hadlock’s formula showed the lowest agreement (41·5%) with the Gold 

Standard dating method (Table 3). This indicated that the use of Garbhini-GA2 resulted in the 

least number of misclassified births compared to the published formulae (Figure 3C). 

Discussion 

In this study, we successfully developed the Garbhini-GA2 model, using routine foetal 

biometry such as BPD, OFD, HC, AP and FL to estimate GA in the second and third trimesters 

of pregnancy with an accuracy closest to the first trimester CRL-based dating. The Garbhini-

GA2 model demonstrated 40% less error than the commonly used Hadlock’s formula and 

nearly 25% less than the most recent INTERGROWTH-21st formula. We show our Garbhini-

GA2 formula is a better fit for the foetal biometry of our population. The implication of this 

improved accuracy of GA assessment was remarkably evident when we estimated PTB rates. 

The Hadlock’s and INTERGROWTH-21st formulae overestimated the PTB rate in our TEST 

population. However, the PTB rate estimated by the Garbhini-GA2 model was the closest to 

that estimated using the Gold Standard CRL-based dating model. This was due to a lesser 

degree of misclassification between preterm and term birth by Garbhini-GA2. 

In India, the enrolment rate for antenatal care in the first trimester is low, with nearly 40% of 

the pregnant women getting their dating done in the second or third trimesters (13). The need 

for an accurate dating model for second and third trimesters, in this scenario, has been well 

recognised. Dating by LMP is inaccurate in the later trimesters due to poor recall, and that by 

ultrasonography is mired with an underestimation due to wide variations in foetal growth. The 

two approaches used to address this challenge are – first, using biometric parameters that may 

be relatively less influenced by variations in foetal growth, such as trans-cerebellar diameter 

(22) and second, developing models using a study population that has representation from 
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LMIC (18). While the first approach is desirable, novel biometric measurements come with the 

challenges of measurement standardisation and retraining of sonologists, thereby delaying their 

translation. We used the second approach because it uses routine and well-standardised 

biometric measurements, which are quickly and widely translatable to clinical practice. 

Among the three models we evaluated (Garbhini-GA2, Hadlock and INTERGROWTH-21st), 

it was not surprising that the Hadlock formula had the maximum error and bias. Hadlock 

formula was constructed using data from a low-risk North American Caucasian population. 

The variation in foetal biometry attributed to ethnic differences between North American and 

Indian populations was probably well captured in our Garbhini-GA2 model, improving its 

accuracy. The INTERGROWTH-21st formula was developed using representation from multi-

ethnic populations, including those from India and other Southeast Asian nations and therefore 

performed better than the Hadlock formula but still was less accurate than Garbhini-GA2. The 

Garbhini-GA2 model had the least error, in comparison to Hadlock or INTERGROWTH-21st 

late trimester formulae, in estimating PTB rates regardless of whether the Gold Standard 

(CRL-based) dating was derived using Garbhini-GA1, Hadlock or INTERGROWTH-21st first 

trimester formulae. This least error showed that Garbhini-GA2 had the highest accuracy in 

estimating PTB rates. Among the five biometric parameters, FL, BPD, and OFD were the most 

important features contributing to the Garbhini-GA2 model. The head (BPD and OFD) and 

femur measurements were probably more homogeneous in our population than the abdominal 

circumference, and the former measurements change as a function of gestational age. 

While our validation exercise in an unseen dataset kept aside during the model-building 

exercise showed improved performance of the Garbhini-GA2 model, it is well known that 

models perform optimistically when tested in a dataset derived from the same population. As 

we intend our models to be used across India and probably extended to the Southeast Asian 
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region, we will evaluate them in multiple other populations. Another limitation of our work is 

that most of the data we had are from 18-22 weeks in the second and 30-32 and 35-37 weeks 

in the third trimester. We aim to overcome this limitation during the validation phases. 

Garbhini-GA2 model with improved accuracy is primarily intended to be used by clinicians 

for dating pregnancy in women who seek antenatal care for the first time beyond 14 weeks of 

gestation. We believe, if validated externally, this will be an important intervention in assuring 

accurate dating and thereby help to time the delivery better. Precise dating will also benefit 

neonatologists to plan neonatal care, particularly for preterm neonates. From an epidemiologist 

standpoint, using the Garbhini-GA1 and Garbhini-GA2 dating formulae will improve the 

precision of the estimates of pregnancy outcomes that heavily depend on gestational age, such 

as preterm birth, small for gestational age and stillbirth in our population. Beyond clinicians 

and epidemiologists, our population-specific dating models will benefit biologists by 

improving the clinical phenotyping of these birth outcomes for mechanistic and biomarker 

studies. 

Conclusion 

A late trimester dating model that can provide GA estimation as accurate as first-trimester 

dating will be a significant intervention to improve birth outcomes. Our Garbhini-GA2 model 

almost halved the error in the estimation of GA in the second and third trimesters compared to 

the commonly used Hadlock model. After due validations in independent cohorts across the 

Southeast Asian regions, our model has the potential to be quickly translated for clinical use 

across the region. 
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Figure legends 

Figure 1: Outline of the data selection process for TRAINING and TEST set 

Exclusion criteria for each step are indicated. Np indicates the number of participants included 

or excluded by that criterion, and No shows the number of unique observations derived from 

the participants in a dataset. 

Figure 2: Feature selection and ranking of their importance 

(A) Feature selection: Variable importance graph from the output of Boruta shows the relative 

importance with a 95% confidence interval of importance estimate for each of the 22 features 

in predicting GA. Green box plots correspond to the features that are selected while red box 

plots correspond to those that are rejected. Blue box plots represent the minimum, average and 

maximum value for a shadow attribute used to select features. (B) Variables in order of 

importance in the Garbhini-GA2 Random Forest model: A bar graph denoting important 

variables as measured by recording the decrease MSE each time a variable is used as a node 

split in a tree in the Random Forest model. A variable with higher importance will have the 

largest average decrease in MSE across all the 500 trees. The variables are denoted on the y-

axis, and the relative importance of the variable is denoted in the x-axis. 

Figure 3: Performance of Garbhini-GA2 model in TEST set  

(A) Distribution of error (in weeks) in the estimation of GA compared to the Gold Standard 

GA. The x-axis is the error (the difference between predicted and Gold Standard GA), the 

y-axis is the density for each of the models in the TEST set (No = 1430). (Extended figure to 

be added in Supplementary section). (B) PTB rates by various models: PTB rates labelled by 

each model with 95% confidence intervals on TEST set (No = 1430). (C-E) Comparison of 

individual-level classification of preterm birth by a model and Gold Standard GA. Green (term 
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birth for both), red (preterm birth for both), blue (term birth for Gold Standard but preterm birth 

for model) and purple (term for model but preterm for Gold Standard).  
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Tables 

Table 1: Baseline characteristics of the participants included in the TRAINING (Np = 

1803), and TEST (Np = 772) sets 

Sociodemographic characteristics 

TRAINING set 

Median (IQR) or N (%) 

or Mean ± SD 

TEST set 

Median (IQR) or N (%) 

or Mean ± SD 

Age (years) 23 (21,26) 23 (21,26) 

GA at enrolment by USG (weeks) 20·9 ± 4·2 20·9 ± 4·2 

BMI at enrolment into the cohort     

Underweight  27·8 % 24·4 % 

Normal  57·2 % 61·0 % 

Obese  12·0 % 11·0 % 

Overweight  1·9 % 2·3 % 

Haemoglobin (g/dL) 9 (8·5 - 9·5) 9 (8·4 - 9·5) 

Weight (kgs) 56·5 (51·0 - 63·4) 57·1 (51·5 - 63·4) 

Height (cm) 153·1 (149·4 - 157) 152·7 (149·2 - 156·5) 

Socioeconomic Status    

0 0·4 % 0·6 % 

1 18·1 % 19·3 % 

2 37·9 % 33·4 % 

3 42·8 % 45·6 % 

4 0·2 % 0·5 % 

Undetermined 0·5 % 0·5 % 

Parity (number)    

0 51·0 % 50·2 % 
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1 33·6 % 32·4 % 

2 12·1 % 13·5 % 

3 2·6 % 3·2 %  

4 0·7 % 0·6 % 

5 0·1 % 0 

6 0 0 

7 0 0  

Level of education    

Illiterate 18·2 % 17·8 % 

Literate or primary school 9·6 % 12·7 % 

Middle school 16·0 % 13·9 % 

High school 22·5 % 22·4 % 

Post high school diploma 17·1 % 17·5 % 

Graduate  13·1 % 13·5 % 

Post-graduate 2·9 % 1·8 % 

Occupation    

Unemployed 92·8 % 91·4 % 

Unskilled worker 3·2 % 4·8 % 

Semi-skilled worker 1·4 % 1·7 % 

Skilled worker 1·9 % 1·2 % 

Clerk, shop, farm owner 0·1 % 0·1 % 

Semi-professional 0·3 % 0·1 % 

Professional 0·2 % 0·6 % 

Religion    

Hindu 91·6 % 91·4 % 

Muslim 7·2 % 6·7 % 
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Sikh 0·4 % 0·5 % 

Christian 0·7 % 0·9 % 

Buddhist 0·0 % 0·2 % 

More than one religion 0·1 % 0·1 % 

Other 0·0 % 0·0 % 

Fuel used for cooking     

Biomass fuel 93·0 % 92·5 % 

Clean fuel  7·0 % 7·5 % 

Source of drinking water    

Safe water  56·6 % 58·8 % 

Unsafe water 43·4 % 41·2 % 

Second-hand tobacco smoke    

Exposed 19·4 % 18·5 % 

Unexposed 0·1 % 81·4 % 

Undetermined 80·5 % 0·1 % 

History of any chronic illnesses     

Absent 98·3 % 97·5 % 

Present 1·7 % 2·5 % 

History of hypertensive disease of 

pregnancy 
  

Absent 98·9 % 99·1 % 

Present 1·1 % 0·9 % 

History of contraceptive at the time of 

conception 
   

Absent 95·9. % 95·1 % 

Present 4·1 % 4·9 % 
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Table 2: Performance characteristics of the GA estimation models compared to the Gold 

Standard GA on TEST set 

An extended table with a comparison of other models developed is given in Table S2. 

Model RMSE with 95% CI 

Hadlock 1·57 [1·52, 1·60] 

INTERGROWTH-21st 1·16 [1·08, 1·23] 

Garbhini-GA2 0·89 [0·80, 0·97] 

 

RMSE is the root mean squared error of GA estimated by each model compared to Gold 

Standard GA in weeks.  
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Table 3: Bland Altman analysis and PTB agreement on TEST set 

Each value in the bottom diagonal consists of a pairwise mean difference between the formulae 

with each other and with respect to the Gold Standard GA. The value in brackets represents the 

limits of agreement. Each value in the top diagonal is the agreement between the Gold Standard 

and three formulae for preterm labelling computed using the Jaccard similarity coefficient. An 

extended table with a comparison of other models developed is given in Table S3. 

  

  

Gold 

Standard 
Hadlock 

INTERGROWTH-

21st 

Garbhini-

GA2 

Gold Standard  41·486 60·280 78·750 

Hadlock 
1·089 (-

1·125, 3·302) 
 64·596 46·894 

INTERGROWTH-

21st 

0·447 (-1·66, 

2·554) 

-0·642 (-

1·599, 0·315) 
 72·596 

Garbhini-GA2 
0·027 (-

1·718, 1·772) 

1·061 (-

0·251, 2·374) 
0·42 (-0·702, 1·541)  
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Number of participants of GARBH-Ini 
cohort considered with valid enrollment id 

(NP = 6498)

 Number of participants with USG data in 
scans and delivery date (NP = 2720)

  Participants with live singleton births in 
second trimester (NP = 2649)

   Second and third trimester visits 
considered as separate data points 

(NO = 4768)

TRAINING SET (NO = 3338) TEST SET (NO = 1430)

Excluded (NP = 3778)

• Have no CRL and/or visit dates 

  recorded in 1st trimester

• Have no visit date recorded 

  in 2nd and 3rd trimester

• Have no visit date during delivery

Excluded (NP = 71)

• Multifetal pregnancies
• Abortions
• Still births

70 : 30 split

Figure 1
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