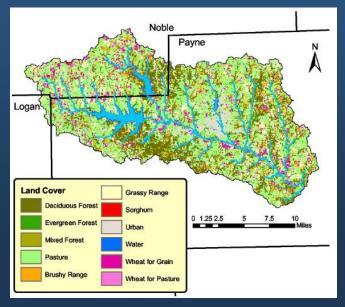
Development of Sediment and Nutrient Export Coefficients for US Ecoregions.

Mike White USDA/ARS Temple Texas

What are Export Coefficients?

- History
 - Predates models
 - Date to 1970's
 - Eutrophication linked to landuse
- Initiated monitoring studies for nutrients

What are Export Coefficients?



- Estimated mass loss per unit area per year
 - By Landuse
 - Derived from intensive edge of field monitoring
 - Widely used......Still

Example Use Watershed Load

- Easy to apply
- Area * EC = Load

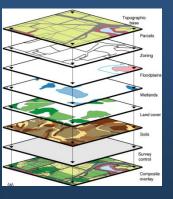
landuse	Area (ha)	Export Coeff (kg/ha/yr)	Load (kg/yr)
Forest	3500	0.1	350
Urban	500	4	2000
Corn	1000	2.5	2500
Grassland	5000	0.5	2500
Total Watershed	10000	-	7350

Problems

- Edge of field monitoring
 - Expensive
 - Relatively rare
- Vary regionally
 - Climate Topography Soils
 - Too little measured data for each region
 - Extreme extrapolation
 - High uncertainty
- Solution
 - Use SWAT to extrapolate limited monitoring data into a much larger dataset

SWAT Based Extrapolation

Woodward Delaware


Canadian Benton Putnam

Grady

Peach

Edge of Field Observations

New Location

Runoff (Weighted by Monitoring Duration)

15

10

10

15

10

10

15

10

15

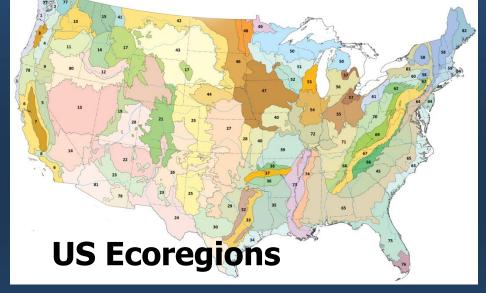
10

15

Measured (in)

Calibration Validation

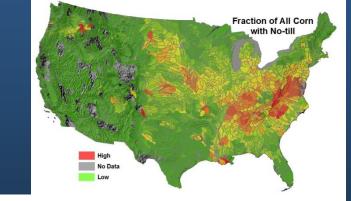
New Edge of Field Prediction (Sample)


SWAT Model

Template

Single Field

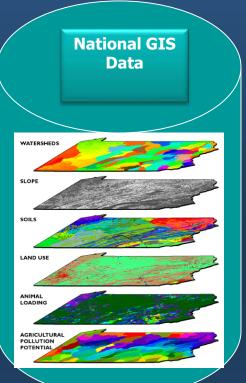
Export Coefficient Database


- Library of model predictions
 - National basis
 - Many many samples
 - Consider local conditions
 - Landuse
 - Soils
 - Climate
 - Topography
 - Management
 - Conservation
- Summarize by major landuses for every ecoregion

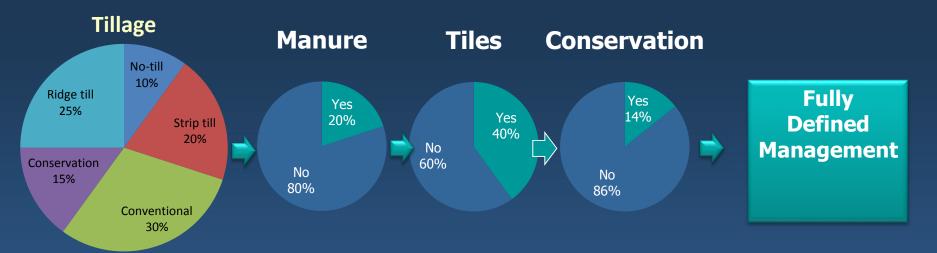


US National Data

- Existing National Data
 - Landuse NLCD CDL
 - Soils STATSGO
 - Topography NED
- Seamless Climate Data
 - 20,000 stations (1950-2010)
- Irrigation & Fertilization
 - Ag Census
- Conservation Practices
 - CEAP Survey 18,000
- Management
 - US RUSLE2 20,000 templates



Sampling - Overview


Basis For New SWAT Simulation

Sampling - Details

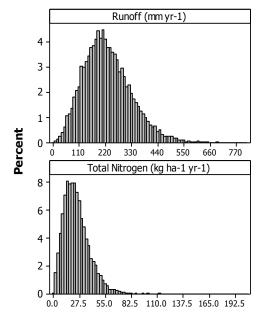
Management Assignment

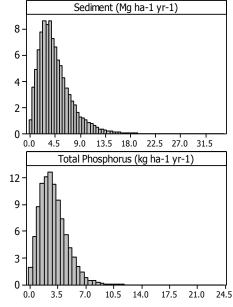
Sampling and Simulation

One Down, Millions to go

- More samples is better
 - Provide EC distribution
- Computationally Intense
 - Windows Cluster
 - 250 cores
 - 5 days
- Current National Database
 - 45 million simulations/samples
 - 1 for each 22 ha in the US

How to Use it


Simulation Library



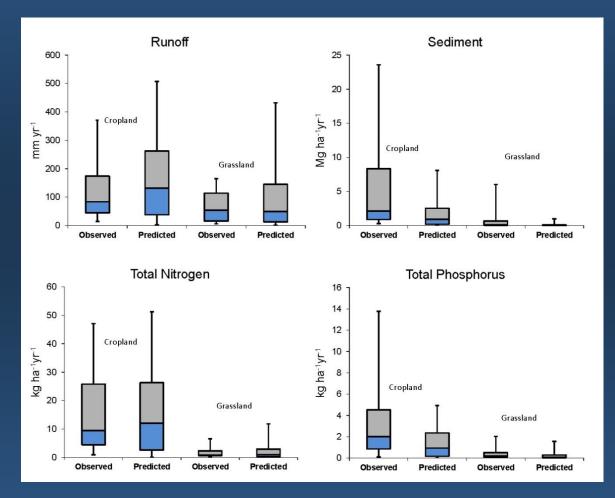
Tool
Database
Query

Corn - Texas Blackland Prairie Ecoregion

QUERY
Corn
Blackland
Prairie
Ecoregion

13,036 Samples

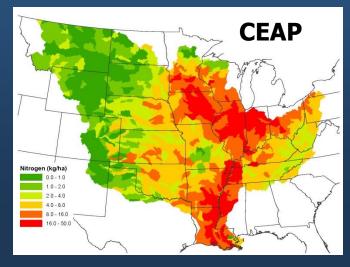
Ecoregion Summaries Cultivated Cropland


Ecoregion	n	Total Nitrogen	Total Phosphorus
		(kg ha ⁻¹ yr ⁻¹)	(kg ha ⁻¹ yr ⁻¹)
Arizona/New Mexico	719	0.547 (0.019-5.22)	0.024 (0-0.303)
Mountains			
Arizona/New Mexico	1666	0.421 (0.061-2.44)	0 (0-0.043)
Plateau			
Arkansas Valley	4889	23.2 (7.33-48.8)	2.15 (0.372-5.05)
Atlantic Coastal Pine	4851	10.1 (5.23-39.4)	0.448 (0.075-3.8)
Barrens			
Blue Mountains	6515	1.87 (0.026-25.7)	0.106 (0-2.75)
Blue Ridge	3893	27.9 (10.7-63.6)	2.89 (0.749-7.35)
Boston Mountains	878	22.7 (9.43-52.1)	2.17 (0.555-5.44)
Canadian Rockies	2797	0.24 (0.014-2.46)	0.012 (0-0.199)
Cascades	877	32.7 (1.26-165)	3.11 (0.014-18.3)
Central Appalachians	1934	56.8 (16.8-97.3)	6.48 (1.05-11.4)
Central Basin and Range	5887	0.982 (0.034-13.5)	0.021 (0-1.39)
Central California Valley	41116	1.51 (0.008-13.5)	0.022 (0-1.22)
Central Corn Belt Plains	269810	28 (11.4-48.8)	2.45 (0.501-4.47)
Central Great Plains	584648	2.03 (0.188-11.7)	0.188 (0.011-1.23)
Central Irregular Plains	139179	26.7 (10.8-53.6)	2.69 (0.912-5.73)
Chihuahuan Deserts	2822	0.04 (0.003-1.02)	0.002 (0-0.089)
Coast Range	292	46.3 (8.76-224)	4.84 (0.462-26.2)
Colorado Plateaus	2473	0.452 (0.019-5.95)	0.029 (0-0.564)

Median value with range (10th and 90th percentiles).

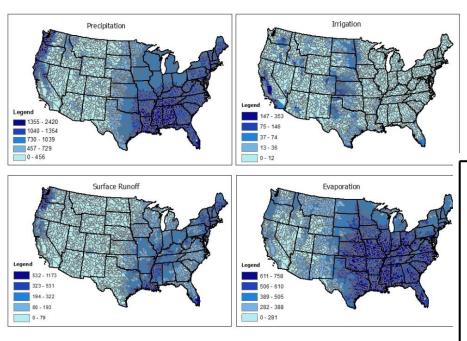
Validation Compare to Monitoring Data

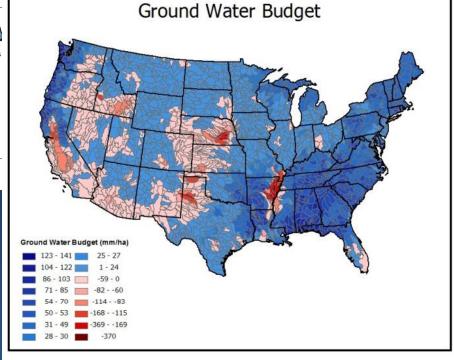
- Measured edge of field loads
 - Grassland 95 observations
 - Cropland 91 observations
- Looking for distributional overlap



Applications

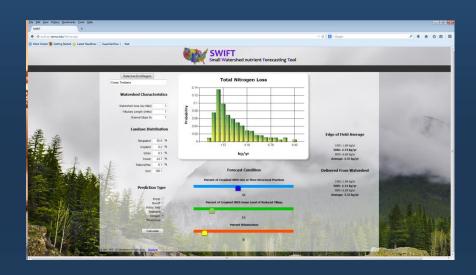
Large Scale Compare with CEAP

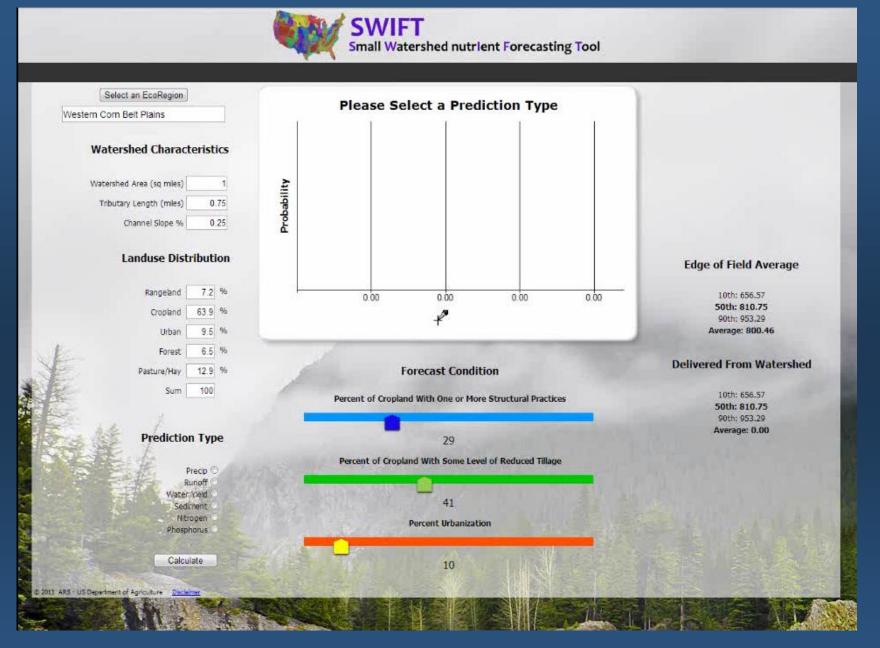

- Proper distributional sampling
 - Extract at differing spatial scales
 - Watershed HUC 8
 - County
- Compare to CEAP
 - Similar trends



National Water Balance

Full Water Balance


Areas of groundwater depletion


Small Watershed nutrIent Forecasting Tool

- Simple web based tool
- Predict nutrient and sediment loads
- Couples EC and delivery ratio concepts

http://swift.brc.tamus.edu/

Questions?

mike.white@ars.usda.gov

