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Development of Sensory-motor Fusion based

Manipulation and Grasping Control for a Robotic

Hand-Eye System
Yingbai Hu, Zhijun Li, Senior Member, IEEE, Guanglin Li, Senior Member, IEEE, Peijiang Yuan,

Chenguang Yang, Member, IEEE, and Rong Song

Abstract—In the paper, sensory-motor fusion based manipu-
lation and grasping control has been developed for a robotic
hand-eye system. The proposed hierarchical control architecture
has three modules: vision servoing, surface electromyography
(sEMG) based movement recognition, and hybrid force and
motion optimization for manipulation and grasping. A stereo
camera is used to obtain the 3D point cloud of a target object
and provides the desired operational position. The AdaBoost-
based motion recognition is employed to discriminate different
movements based on sEMG of human upper limbs. The opera-
tional space motion planning for bionic arm and force planning
for multi-fingered robotic hand can be both transformed as a
convex optimization problem with various constraints. A neural
dynamics optimization solution is proposed and implemented
online. The proposed formulation can achieve a substantial reduc-
tion of computational load. The actual implementation includes
a bionic arm with dextrous hand, high-speed active vision, and
a EMG sensors. A series of manipulation tasks consisting of
tracking/recogniting/grasping/ of an object are implemented and
tested, and experiment results exhibit the responsiveness and
flexibility of the proposed sensory motion fusion approach.

Keywords: bionic arm, multi-fingers hand, sEMG,

quadratic programming, vision servoing

I. INTRODUCTION

Robotic bionic arms and prosthesis hands become very

useful in helping people with severe physical disabilities,

which could enable disable people to achieve greater in-

dependence and consequently increase quality of life [1],

[2], [3]. In generally, bionic arms and prosthesis hands can

be controlled by a joystick, which enables an operator to

perform manipulation, open/close of fingers, and thus offers
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an intuitive interface. However, the bionic arm control loop

short of biological signals feedback makes it very tedious to

perform simple manipulation, e.g., safely picking up, holding,

or releasing an object. Therefore, it is necessary to investigate

the replacement of the natural hand with a bionic arm and

prosthesis hand using a close-to-natural human-machine in-

terface. Humans are extremely adept at controlling the high

degree of freedom hand-wrist-arm musculo-skeletal system

and are able to grasp and manipulate objects according to task

requirements with a minimum of effort. It is of great interest

to study human manipulation and grasping behaviour in order

to extract underlying principles which may be transferred to

robotic or prosthetic devices.

Myoelectric control allows a convenient human-machine

interface by transforming electromyography (EMG) signals

into control outputs. Two control approaches are currently

employed in conventional myoelectric control: direct control

and pattern recognition (PR). Direct control links antagonistic

muscles or muscle groups directly to a single degree-of-

freedom (DoF) [4], and [20]. Various switching methods have

been presented for sequentially transition between different

DoFs or functions in finite state machines [5]. These sim-

plistic controllers provide reliable performance, but lack the

functionality to smoothly operate multiple DoFs [6].

PR methods utilize machine learning techniques, including

both classification [7] and regression [8], to decode a mapping

between myoelectric inputs and desired outputs [21], which

enhances functionality compared to direct controls by enabling

multiple DoFs without explicit switching methods. However,

increased functionality requires an updated training set which

is highly dependent on the users motion repeatability [7] and

may be influenced by many external factors [9], [10], [11].

Thus, the decoding often overfits to a small set of the full

input space, and performance tends to degrade over time [12].

An improvement method to the PR is combining concepts

of visual servoing (VS). These visual servoing-based meth-

ods extend pattern recognition principles to multiple DoFs

through linear transformations between sensor inputs and

control outputs, naturally providing both simultaneous and

proportional control. The mapping creates a redundancy in the

control scheme which reduces the precision needed in muscle

activations to control the entire task-space.

Visual servoing is defined as the use of visual feedback

mechanisms for the kinematic control of a robot. Based on the

positioning of the camera on the link and control techniques,



VS ramifies into several types. Eye-in-hand and eye-to-hand

VS are represented by the position of the camera on the robotic

manipulator. Being attached on the robot arm, eye-in-hand

VS provides a narrower field of view as compared to eye-to-

hand servoing. Many control schemes use either a direct visual

servoing or a dual loop system [19], [31]. A visual processing

method for human tracking using intelligent wheelchair was

developed in [19], and a visual servoing for stabilization of an

nonholonomic mobile robot was proposed by incorporating a

model predictive control [31].

An important issue in controlling a bionic arm combining a

multi-fingered robotic hand for object manipulation and grasp-

ing is the synthesis of the optimal motion planning and contact

force such that the planning trajectory and contact forces

are guaranteed under the stability of the manipulation and

grasping and its feasibility. This problem, known as motion-

force optimization (MFO) can be formulated as a constrained

optimization problem. Due to computational time of finding

the solution, the MFO is usually performed off-line. However,

during the execution of a manipulation task, the planning

trajectory of the arm and the position of the contact points on

the object, or the wrench (force and moment) to be balanced

by the contact forces, may change with time and cannot be

planned in advance. The planning trajectory and contact forces

must be compatible with the various constraints depending on

the joint velocity, the type of contact, as well as on the joint

torque limits of every joints. In these cases, suitable algorithms

for online computation of the solution of the constrained

MFO problem must be devised. The utilization of recurrent

neural networks is investigated in [22], [23], where the friction

constraints and the joint torque limits were considered. In [34],

an approach was proposed for computing optimal grasping and

manipulation forces, which utilizes neural network to learn the

nonlinear inverse kinematics functional relating the hand joints

positions and displacements to object displacement.

In this paper, sensory-motor fusion based manipulation and

grasping control for a robotic hand-eye system are developed.

The proposed hierarchical control architecture has three mod-

ules: vision servoing, sEMG-based movement recognition, and

hybrid force and motion optimization for manipulation and

grasping. The contributions can be summarized as follows:

(i) The AdaBoost-based motion recognition is proposed to

discriminate different movements based on sEMG of the

multi-fingers;

(ii) The operational motion planning for bionic arm and force

planning for multi-fingered robotic hand is both trans-

formed as a convex optimization problem with various

constraints. A neural dynamics optimization solution is

proposed and suitable to be implemented online.

The actual implementation utilizes a bionic arm with dextrous

hand, high-speed active vision, and a EMG sensors. A series of

manipulation tasks consisting of tracking/recogniting/grasping/

of an object are implemented and tested, and experiment

results demonstrate the responsiveness and flexibility of the

proposed sensory motion fusion approach.
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Fig. 1. The mechanical design of the bionic arm and hand.

Fig. 2. Design of dexterous hand: A. The whole view of the hand; B. One
finger; C. The inside view of hand chamber; D. Thumb with 2 DOFs

II. BIONIC ARM SYSTEM

The developed bionic arm is shown in Fig. 1, which consists

of five revolute joints: one for each shoulder abduction-

adduction, shoulder flexion-extension (flx-ext), elbow flx-

ext, and wrist flexion-extension (flx-ext), wrist pronation-

supination (pron-sup). The DC motor selected to activate

robotic articulations was a Maxon dc flat brushless motor

EC90 for the joint 1 and EC45f for other joints, respectively,

and harmonic transmission drives are used ((model SHD-17-

100-2SH for joints 1 and 3, model SHD-14-100-2SH for joints

2, 4, 5)). The physical parameters are listed in Table 1. In

the robotic device, high-resolution encoders (1024 pulse/cycle)

and Hall effect sensor are used to measure the displacement

angles between the joints.

In Fig. 2, the hand is approximately the same as human-

hand in size and shape. It comprises of five fingers (including

one thumb) and a DOF in the thumb in the roll axis, which

is suitable for stably grasping an object of arbitrary shape.

Each finger except the thumb consists of two joints, the lower

one is an active joint, the upper one is an passive joint. The

active joint is driven by an DC motor through worm gear

through Maxon controller to control its motion (see Fig. 3).

The passive joint is driven by a linkage, its joint rotation range

is limited by the active joint. The motion of the passive joint

derives from the natural motion of human hand. The palm is

constructed with five aluminum plates connected with screws.

The finger can be mounted on the palm directly. Through the

four holes located at the rear plate in the palm, the hand can



TABLE 1
THE PARAMETERS OF BIONIC ARM AND DEXTEROUS HAND

Joints Torques (Nm) Range(degree)

Shoulder (flx-ext) 44.4 -90 –90

Shoulder (abd-add) 2.46 -150–150

Elbow (flx-ext) 8.27 -90 –90

Wrist (pron-sup) 2.46 -150–150

Wrist 2.46 -120–120

Thumb 0.13 0–56

Index & Middle finger
(Ring and Litter Finger) 0.13 0-66

ComputerDataBase

Bionic hand
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Fig. 3. The control architecture of the hand.

be attached to the bionic arm.

III. VISION FEEDBACK CONTROL SYSTEM

A. Visual Sensor Preprocessing and its projection model

The machine vision processing adopt a Point Grey Bum-

blebee2 stereo camera with IEEE-1394 Firewire connection.

The Point Grey Bumblebee2 stereo camera is a 2 sensor

progressive scan CCD camera with fixed alignment between

the sensors. Video is captured at a rate of 20 fps with a

resolution of 640×480 to produce dense colored depth maps to

assist in tracking and a viable pose estimation of the object.

The resolution-speed trade-off has to be managed concisely

as an increased frame speed gives a smooth robot trajectory

whereas enhances the processing time. And an increased

resolution provides a denser, more accurate point cloud for

feature extraction but with increased latency. In this paper, the

adopted projection model is shown in Fig. 5.
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Fig. 4. The structure of the vision sensor.
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Fig. 5. The front view of vision localization.
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Fig. 6. The vertical view of vision localization.

Camera calibration is necessary as the use of lenses in-

troduces nonlinearities and deviates from the simple pin-hole

model such as lens distortion, namely radial and tangential

distortion. The camera parameters, namely, the intrinsic, ex-

trinsic and distortion are evaluated by using a 2D checker-

board pattern. 3D reference models were avoided due to

computational complexity and high cost of precise calibration

objects. In this paper, 20 checkerboard images were fed to the

calibrator algorithm encompassing differential angles in the

projection space. This provides enough values to estimate the

camera geometry parameters [18].

B. 3D Reconstruction

The images captured by the Bumblebee2 stereo camera in

active ambient lighting are shown in Fig. 7. Both the images

are calibrated using the camera intrinsics and are corrected

for distortion. Subsequently, the undistorted images are stereo

rectified in order to align the epipolar lines of both the

projection planes and ensure the presence of similar pixels

in a specified row of the image. The images obtained are then

frontal parallel and are ready for correspondence estimate. The

essential and the fundamental matrix are calculated by using

Epipolar geometry. The essential matrix is a 3×3 matrix with 5

parameters; two for translation and three for the rotation values

between the camera projection planes. On the other hand, the

fundamental matrix represents the pixel relations between the

two images and has seven parameters, two for each epipole



and three for homography that relates the two image planes.

Bouguets algorithm is then implemented to align the epipolar

lines and shift the epipoles to infinity.

Stereo correspondence is a method of matching pixels

with similar texture across two co-planar image planes. The

distance between the columns of these perfectly matched

pixels is defined as d = xl − xr, where xl is the column

value of left image pixel, and xr is the column value of right

image pixel. The vertical view is shown in Fig. 6.

Block matching is implemented to evaluate the correspon-

dence between the images. Block sizes of 15 pixel window are

used to find the matches by the use of SAD (sum of absolute

differences). Semi-global method is used to force the disparity

values to the neighboring pixels for a more comprehensive

result. Disparity is inversely proportional to the depth of the

pixel and is related by the Triangulation equation

D = T
f

d
(1)

where f is the focal length, d is the disparity, and T is the

baseline.

Triangulation refers to the estimation of depth of an object

by visualizing its location from two different known points.

The reconstruction of the image in the Cartesian co-ordinates

is obtained by the use of projection matrix evaluated using

Bouguets algorithm. The 3D reconstruction of the robots

workspace:

Q
[

x, y, d, 1
]T

=
[

X, Y, Z, W
]T

(2)

where D is the depth, Q is the projection matrix, X , Y , Z,

and W is the coordinates.

C. Object Detection

In the paper, color based segmentation is used in order to

separate a single color object from the background, we choose

the red color as a sign of object. The image is converted into

L × a × b color space and the Euclidean distance between

red-green and yellow-blue opponent components of the object

and a and b matrices calculated, [27], [28]. Here, represents

the L∗ luminance component, while a∗ and b∗ represent color

components. The formulae for converting an RGB image into

the coordinates can be found in previous works (e.g. and ).

The minimum value gives the most accurate estimate of the

object. In the color space, the Euclidean distance between

(L1
∗, a1

∗, b1
∗) and (L2

∗, a2
∗, b2

∗) can be defined as

∆Eab =
√

(L2
∗ − L1

∗)2 + (a2∗ − a1∗)2 + (b2
∗ − b1

∗)2 (3)

which is approximately equivalent to the perceptual difference

between these two colors. Furthermore, the corners of the red-

object are calculated by Harris corner detector and the centroid

calculated by intersection of the diagonals. The depth value of

the centroid is then extracted from reconstructed point cloud

of the task space.

2

1 1

2

Fig. 7. The object landmark.
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Fig. 8. Schematic diagram of the bionic hand grasping based on sEMG.

IV. EMG BIO-FEEDBACK SERVO STRUCTURE

In this section, in order to perform the grasping of dexterous

hand, we employ EMG signal as control feedback and the

real-time EMG motion recognition can be implemented for

controlling the dexterous hand, [20], [26]. Fig. 8 shows the

schematic diagram of grasping manipulation using EMG sig-

nals. The fundamental components are the EMG acquisition,

feature extraction unit, and the classifier unit. The adopted

classification is AdaBoostSVM.

A. Data Acquisition

There are many types hand/wrist motions when studying

the dextrous hand. In daily life, all the hand motion can be

simplified as three types: hand closing (HC), hand opening

(HO) and finger pinching (FP), shown in Fig. 9. Four surface

electrodes were used to acquire the sEMG signals from the

extensor digitorum, flexor digitorum superficialus, extensor

carpiradialis, and flexor carpiulnaris, respectively, which are

related with the three motions. In order to collected high

quality sEMG signals, the skin was scrubbed with alcohol and

shaved if necessary, and then the electrodes with conductive

gel were attached to the corresponding positions.



Fig. 9. Three postures of the grasping hand.

In this paper, four groups of sEMG signals were collected

from one intact-limb subjects forearm. The four groups were

used for the training section. We collected sEMG signals of

each hand and each posture constitutes a subset. The subject

is asked to perform the three gestures. The subject hold his

posture 7 seconds and repeat 7 times.

B. Feature Extraction

In order to control a robotic hand in real time without

perceiving a time delay, the processing time of sEMG pattern

recognition should be less than 300 msec. Thus, the scheme

of a sliding window with an incremental window is adopted

for the steady-state motion recognition. For the real-time my-

oelectric hand control, all the processes including transmitting

control commands should be completed within an incremental

window. In this study, a 64-msec (64 samples) sliding window

with a 16-msec (16 samples) incremental window is selected.

After data segmentation, fourteen features would be extracted

in a sliding window. In this paper, we choose the feature

set which includes: mean absolute value (MAV ), waveform

length (WLEN ), zero crossings (ZC) and slope sign changes

(SSC). The definition of these features is listed in Table 2. We

can know that each vector of features is 8-dimension, which

consists of 4 features on each signal channel.

TABLE 2
THE DEFINITION OF FEATURES

MAV = 1

N

∑N
i=1

|xi|

ZC =
∑N

i=1
fi; fi =

{

1 if xi ∗ xi+1 < 0 and |xi − xi+1| ≥ ε

0 else

SSC =
∑N

i=1
gi; gi =











1 if (xi − xi−1)(xi − xi+1) > 0,

|xi − xi−1| ≥ ε, and |xi − xi+1| ≥ ε

0 else

WL =
∑N

i=1
|△xi|; △xi = xi − xi−1

C. Feature classification based on AdaBoostSVM

It is well known that the weak classifiers in AdaBoost is

SVM with the RBF kernel, and SVM algorithm is of a very

high accuracy in pattern recognition. However the proposed

AdaBoostSVM was proven with better generalization perfor-

mance than SVM on imbalanced classification problems [21].

Traditional RBFSVM compoment classifiers chooses a large

σ value (implying weak learning) on the initialization, the σ
values would converge as the Boosting iteration proceeds. It

would lead to a set of RBFSVM component classifiers with

better generalization using a fixed (optimal) σ value, whose

model parameters are adaptively different.

However, AdaBoostSVM updates the weights of training

samples through the called re-weighting technique. At initial-

ization, a large value is selected for σ, which is similar to

a RBFSVM classifier with very weak learning ability. Then,

RBFSVM with σ is trained as many steps until more than half

accuracy can be achieved. Otherwise, we can regulate this σ
value decreased slightly such that the learning capability of

RBFSVM is increased to enhance more than half accuracy.

The accuracy of new RBFSVM would not be too strong for

the current weighted training samples through decreasing the

σ value slightly, and thus we can obtain moderately accurate

RBFSVM component classifiers. These larger diversities may

lead to a better generalization performance of AdaBoost. This

process continues until the σ is decreased to the given minimal

value.

Algorithm 1 :The Process of AdaBoostSVM

1.Input: The training samples are labeled as

(x1, y1), ..., (xN , yN ); select the initial σ, σini, the

minimal σ, σmin, the step of σ, and σstep.

2.Initialize: the weights of training samples are chosen as

: w1
i = 1/N , for all i = 1, . . . , N .

3.Do While(σ <σmin)

(1) A RBFSVM component classifier is trained, ht, on the

weighted training set.

(2) The training error of ht is chosen : ϵt =
∑N

i=1 w
t
i , yi ̸=

ht(xi);
(3) If ϵt > 0.5, choose σ value as σstep and goto (1).

(4) Choose weight for the component classifier ht: αt =
1
2 ln(

1−ϵt
ϵt

)

(5) Update the weights of training samples: wt+1
i =

wt
iexp(−αtyiht(xi))

Ct
, i = 1,...,N.

4.Output: f(x) = sign(
∑T

t=1 αtht(x)).

V. HYBRID MOTION AND FORCE OPTIMIZATION

A. Kinematics Redundant Resolution Formulation

Consider a bionic arm and denote the the transformation of

joint space vector q ∈ Rn to end-effector’s relative position

vector χ ∈ Rϱ with q̇ = [q̇T1 , . . . , q̇
T
n ]

T ∈ Rn , where q̇i is the

joint velocity. The kinematic redundancy resolution is to find

the set of joint velocity, which are feasible with respect to the

kinematic structure of the bionic arm, the corresponding joint

position and velocity limits, and minimize the joint velocity.

The balance equation for the generalized forces applied to the

object can be written in the form

J(q)q̇ = χ̇ (4)

where J(q) ∈ Rn×ρ is the Jacobian matrix.

In this paper, the constraints of position and velocity can be

represented by

qmin 6 q(t) 6 qmax (5)

q̇min 6 q̇(t) 6 q̇max (6)



where qmin and qmax are the boundedness of the joint

position, and q̇min and q̇max are the boundedness of the joint

velocity.

The inequalities (5) and (6) can also be described by the

positive definite matrix

K(q, q̇) = diag(P, V ) > 0 (7)

where

P =

[

PB,L

PB,H

]

=

[

q − qmin

−q + qmax

]

(8)

V =

[

VB,L

VB,H

]

=

[

q̇ − q̇min

−q̇ + q̇max

]

(9)

which contains the kinematic constraints from the lower limits

PB,L, VB,L and upper limits PB,H , VB,H , respectively.

Hence, we can denote the simultaneous satisfaction of the

constraints of both position and joint velocity as

K(q, q̇) = diag(P, V ) > 0 (10)

The optimization problem is defined based on the minimiza-

tion of the cost function Φ(q, q̇) as:

Φ(q, q̇) = q̇TQq̇/2 + bT (q(t)− q(0)) (11)

subject to J(q)x = χ̇, (12)

ξmin 6 K(q, q̇) 6 ξmax, (13)

where Q is symmetric positive definite matrix, and ξmin and

ξmax are the boundedness of the position and velocity.

B. Grasping-Force Optimization Formulation

Consider an object grasped by a multi-fingered robotic

hand, there exist l contact points between the object and

the fingertips, the contact wrench of the grasp is denoted by

f = [fT
1 , . . . , fT

l ]T ∈ Rlk with the i-th contact vector fi ∈ Rk

in dimension k, and the generalized external force acting on

the object is denoted by fe ∈ R6.

In this paper, we assume the point contact model with

friction is adopted and the joint actuators could provide the

required torques. The contact wrench consists of three vectors:

the normal component fi,z to the object surface, and the two

components fi,x, fi,y on the tangent plane. The friction and

joint torque constraint can be described by

1

µi

√

f2
i,x + f2

i,y ≤ fi,z (14)

τL ≤ τ ≤ τU (15)

with the tangential friction coefficient µi at the i-th contact

point, the lower τL and upper joint torque bound τU , respec-

tively.

Then, we can obtain the following relationship as

fe = Gf (16)

JT (q)f + τe = τ (17)

where the grasping matrix G ∈ R6×lk is full rank for force-

closure grasps, the external torque τe includs gravity, Coriolis,

centripetal and inertia effects at the fingers joints, τ is the

actuator torque, and J(q) ∈ Rlk×p is the hand Jacobian matrix

with the total number of the hand joints p.

Therefore, the grasping force optimization problem can be

formulated as finding the optimal grasp wrench minimizing

the internal forces acting on the object, under the above

constraints. The internal forces are contact wrenches that

satisfy the friction cone constraints and belong to the null

space of the grasp matrix G.

The frictional inequalities (14) can be described by

F (c) = diag[F1(f1), . . . , Fn(fn)] > 0 (18)

where Fi(fi) is the symmetric (2× 2) matrix

Fi(ci) =

[

fi,z +
fi,x
µi

fi,y
µi

ci,y
µi

fi,z −
fi,x
µi

]

(19)

Similarly, the torque limit constraint (15) can also be

described by

T (f, q, τe) = diag(τB) > 0 (20)

where

τB =

[

τB,L

τB,H

]

=

[

JT (q)f − τL + τe
−JT (q)f + τh − τe

]

(21)

with the lower limit (τB,L) and upper limit (τB,H), respec-

tively.

Hence, we can denote the simultaneous satisfaction of

both frictional and joint torque constraints as the positive

definiteness of the linearly constrained block-diagonal matrix

T = diag(F, T ) > 0 (22)

Let f(F ) be the contact wrench vector extracted from

the frictional constraint matrix, and τB(T ) as the vector

composed by the diagonal elements of T , and ζ(T ) =
[f(F )T , τB(T )

T ]T , the linear constraints on matrix T can be

described as

Aζ(T ) = b (23)

with A =





G 0 0
JT (q) −I 0
JT (q) 0 I



, and b =





fe
τL − τe
τH − τe



, the

null matrix is 0 and the identity matrix of proper dimension

is I .

Through minimizing the cost function Φ(T ), the optimiza-

tion can be defined as:

Φ(T ) = T TQT + bT
∫ t

0

T (t)dt (24)

subject to Aζ(P ) = b, (25)

ξmin 6 T 6 ξmax, (26)

where Q is symmetric positive definite matrix, and ξmin and

ξmax are the boundedness of T .



C. Neuro-dynamics Optimization

Considering the motion optimization (11)–(13) and force

optimization (24)–(26), the following constrained hybrid

motion-force optimization scheme for bionic arm can be

summarized as

minimize XTQX + λ

∫ t

0

X(t)dt (27)

subject to JX = Υ (28)

ξ− ≤ X ≤ ξ+ (29)

where X ∈ Rn, Q ∈ Rn×n is a symmetric positive definite

matrix, λ > 0, ξ− ∈ Rn and ξ+ ∈ Rn are the lower and upper

limits of the a joint variable vector for the motion optimization

or grasping for force optimization, respectively, and J is the

corresponding Jacobian matrix.

The dual decision variables can help solve quadratic pro-

gramming problem (27)-(29) effectively with duality theory.

First, according to the Lagrange method [22], [23], defining

ω as the m-dimensional ∞ numerically and y ∈ Rm as the

dual decision vector defined for (28).

Quadratic program (27)-(29) merged with a bound con-

straint can be defined as the linear variational inequalities

problem, and we need to get the primal-dual equilibrium

variable, then the optimization functions (27)-(29) can be

transformed as a set of linear variational inequalities, and to

find a primal-dual equilibrium vector X∗ ∈ n, y∗ ∈ m, e.g.,

[

X∗

y∗

]

∈ Ω =

{[

X
y

]

|

[

ξ−

−ω

]

≤

[

X
y

]

≤

[

ξ+

+ω

]}

⊂ Rn+m (30)

Then, we have

([

X
y

]

−

[

X∗

y∗

])T

·

([

I −JT

J 0

]

·

[

X∗

y∗

]

+

[

λ
∫ t

0
X(s)ds
−Υ

])

≥ 0, ∀

[

X
y

]

∈ Ω

(31)

where I ∈ Rn×n. Inspired by the work in [23], it is easy

to know that linear variational inequality problem (31) is

equivalent to the system of piecewise-linear equations, e.g.,

PΩ

([

X
y

]

−

([

I −JT

J 0

]

·

[

X
y

]

+





λ
∫ t

0
X(s)ds

−Υ











−

[

X
y

]

= 0

(32)

where PΩ(.) : R
n+m → Ω is a projection operator. Then, from

[30], the linear projection equation (32) can be computed by

the following recurrent neural network as

[

Ẋ
ẏ

]

= γ

(

E +

[

I J
−J T 0

]){

PΩ

([

X
y

]

−

(

[

I −J T

J 0

] [

X
y

]

+

[

λ
∫ t

0
X(s)ds
−Υ

]))

−

[

X
y

]}

(33)

where γ > 0 is designed parameters, which is used to scale

the convergence rate, and E ∈ R(n+m)×(n+m) is an identity

matrix.

Theorem 5.1: Consider any initial states, the state vector

[X∗, y∗]T of the recurrent neural network (33) converges to

an equilibrium point [X∗, y∗]T , of which the first n elements

constitute the optimal solution X∗ to the original QP problem

(27)-(29). The exponential stability can be achieved, provided

there exists a constant σ > 0 such that
∥

∥

∥

∥

[

X
y

]

− PΩ

([

X
y

]

−

([

I −J T

J 0

]

·

[

X
y

]

+

[

λ
∫ t

0
X(s)ds
−Υ

]))∥

∥

∥

∥

2
2

≥ σ

∥

∥

∥

∥

[

X
y

]

−

[

X∗

y∗

] ∥

∥

∥

∥

2
2

(34)

Proof: A Lyapunov function candidate can be defined as,

where the ∥·∥
2
2 denotes denotes the square of Euclidean two-

norm.

V

(

X
y

)

=

∥

∥

∥

∥

[

X
y

]

−

[

X∗

y∗

] ∥

∥

∥

∥

2
2

≥ 0

Its time derivative along the neural network trajectory (33) can

be obtained

dV
dt

=

([

X
y

]

−

[

X∗

y∗

])T

γ

(

E +

[

I J
−J T 0

]

)

×

{

PΩ

[

X
y

]

−

([

I J
−J T 0

] [

X
y

]

+

[

λ
∫ t

0
X(s)ds
−Υ

]))

−

[

X
y

]}

≤ −γ

∥

∥

∥

∥

[

X
y

]

− PΩ

([

X
y

]

−

([

I J
−J T 0

] [

X
y

])

+

[

λ
∫ t

0
X(s)ds
−Υ

]))∥

∥

∥

∥

2
2

− γ

∥

∥

∥

∥

([

X
y

]

−

[

X∗

y∗

]) ∥

∥

∥

∥

2
2

≤ 0

From [30], [23], the network state [X(t), y]T can be stable

and globally convergent to an equilibrium [X∗, y∗]T in view

of V̇ = 0 when [X∗, y∗]T = 0 and [X, y]T = [X∗, y∗]T . It

can be obtained that the first n elements of [X∗, y∗]T are the



optimal solution to the optimization function (27)-(29). As for

the exponential convergence, review V ([X, y]T ), V̇ ([X, y]T ),
and the extra condition

dV









X
y









dt
≤ −γ

([

X
y

]

−

[

X∗

y∗

])T

·

(

σE +

[

I J
−J T 0

])

·

([

X
y

]

−

[

X∗

y∗

])

≤ −λV

([

X
y

])

where λ = σγ > 0 is convergence rate. Thus, V ([X]T ) =
O(exp(−λ(t− t0))); ∀t ≥ t0 can be obtained, and hence
∥

∥

∥

∥

[
∫ t

0
X(t)dt
y

]

−

[
∫ t

0
X∗dt
y∗

] ∥

∥

∥

∥

2
2

= O(exp(−λ(t−t0)/2))

where ∀t ≥ t0, which completes the proof of exponential

stability.

VI. EXPERIMENT VERIFICATION

To verify the effectiveness of the proposed approaches, our

developed 5-degrees-of-freedom (DOF) bionic arm is utilized

in the experiments. In the actual implementation, the sampling

period is chosen as 50 ms. In the experiment, we choose three

hand postures-relaxing, full extension and grasping. First, the

selected subject participates in the sEMG signal collection,

there are the four sEMG sensors attached to the subject’s

forearm, as shown in Fig. 8. Fig. 9 shows the three specific

gesture: relaxing, grasping and full extension. During training,

each posture is held for 7s with 5s rest. The collected sEMG

signals are shown in Figs. 10–12, respectively. After training,

SVM classifier would label three postures as following: 0 for

relaxing, 1 for grasping, 2 for full extension. Actually, only

three fingers, for example, thumb, index finger, middle finger,

are involved in the experiment. There are four kinds of features

extracted from 4 channels of sEMG signals, shown in Tab. 2.

The four features were extracted from the segmented samples,

and then used for training the feature projected matrices. Fig.

19 shows the accuracy and error rates of the three label

classification.

The Bumblebee 2 is placed on the top of the bionic shown in

Fig. 1 such that the marker on the object can be tracked within

the range of the camera perspective. Both cameras work at 20

frames per second and are calibrated before the experiments.

The target object and the thumb of the hand have one circular

features (red dots), respectively, shown in Fig. 7. The trajectory

and position of the objects are chosen carefully to ensure the

visibility of the objects for the cameras. Fig. 20 shows the

region labeled by the black lines of the 3D point cloud. The

one of the red marker is the target object position, and the

other is the initial position of the end-effector.

By detecting the five colored circular blobs of the particular

mark, image coordinates of the feature point can be robustly

obtained by considering the color information and the known

geometrical relationship among different blobs. Furthermore,

through the use of image coordinates of the geometrical

centers of the colored circular blobs, the orientation angle of
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Fig. 10. sEMG signals in the relax status.

the bionic arm on the image plane can also be calculated in

each control cycle. By considering the approximated distance

of the camera as the depth of the feature point, we can easily

reconstruct the Cartesian coordinates of the feature point in the

camera frame using its image coordinates and the calibrated

values of camera intrinsic parameters. In the experiments,

the initial image coordinates and corresponding reconstructed

Cartesian coordinates of the feature point are required to be

stored for calculating the position and orientation of the end-

effector.

The proposed motion optimization scheme (11)–(13) with

λ = 3 is used, where Γ = 1010. The task duration time is 6

s, and the initial joint variables q(0) = [0.1π, 0.1π, 0.1π, 0]
in radians. The center of the bionic palm is the posi-

tion of the end-effector. The length of three links are:

[26.50, 33.50, 15.00]T cm, n = 4, m = 3. Figs .13–15 show

the curves of three joints tracking in joint space, respec-

tively. The position tracking trajectories in task space are

presented in Figs. 16–18, respectively. From Figs. 13–18, it

is shown that the real trajectories converges to the desired

trajectories. Fig. 21 shows the real trajectory. The grasping

model is defined by the position of three grasp points: pT =
[2.00,−11.00, 2.00]T mm; pI = [−11.00, 11.00, 2.00]mm;

pM = [15.00, 11.00, 2.00] mm. The scaling parameter λf =
1000. The transformation matrix G can be described as

GT =





























0 0 1 −0.011 −0.002 0
1 0 0 0 0.002 0.011
0 1 0 −0.002 0 0.002
1 0 0 0 0.002 −0.011
0 0 1 0.011 0.011 0
0 −1 0 0.002 0 0.011
1 0 0 0 0.002 −0.011
0 0 1 0.011 −0.015 0
0 −1 0 0.002 0 −0.015





























Force optimization solution can be solved with (24). The

mass of the target object is m = 0.51kg. The friction

coefficient is chosen as µi = 0.8. We can calculate the

corresponding torque of each finger. By using the feedback

of the force sensor, we regulate the contact forces. Figs. 24-

25 show the optimized contact force and control input motor

currents.
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Fig. 11. sEMG signals in the grasp status.
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Fig. 12. sEMG signals in the extension status.
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Fig. 21. Manipulator Trajectory
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VII. CONCLUSION

In this paper, a sensory-motor fusion based manipulation

and grasping control for a robotic hand-eye system is devel-

oped, and it consists of three modules: vision servoing, sEMG-

based movement cognition, and hybrid force and motion

optimization for manipulation and grasping. The stereo camera

is used to obtain the 3D point cloud of a target object and

provides the desired operational position. The AdaBoost-SVM
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Fig. 24. Three fingers current
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based motion recognition is proposed to discriminate different

movements based on sEMG of the multi-fingered robotic hand.

The operational space motion planning for bionic arm and

force planning for multi-fingered robotic hand can be both

transformed as a convex optimization problem, considering

also various constraints. A neural dynamics optimization so-

lution is proposed and is suitable to be implemented online.

Real-time experiments are conducted and the results exhibit

the responsiveness and flexibility of the proposed approach.
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