
Development of SOA-Based Software Systems –

an Evolutionary Programming Approach

Christian Emig, Jochen Weisser, Sebastian Abeck

Cooperation & Management, Universität Karlsruhe (TH), Germany

{emig | weisser | abeck}@cm-tm.uka.de

Abstract

A software application has strong relationships with

the business processes it supports. In the analysis

phase those parts of the processes in which the

software system is applied by its future users are

analyzed. Taking an object-oriented approach, the

Unified Modeling Language (UML) is often used to

model the relevant aspects of the business processes.

In the design phase these models must be manually

mapped to the business layer of the software

application. The Service-Oriented Architecture (SOA)

offers a promising new approach: The business

process is described in a programming language [1],

i.e. a process language which can be automatically

mapped to an execution language and executed by a

process engine. This article shows how Programming

in the Large can be practically applied in a software

engineering process. The Business Process Model

Notation (BPMN) is used as a process programming

language. A BPMN description can be mapped to the

widely accepted Business Process Execution Language

(BPEL).

1. Introduction

When a software application is developed, the

future users’ requirements for the application are the

starting point for a systematic, goal-driven software

engineering approach [2]. User requirements concern

the question for which tasks and for which purposes a

user wants to utilize the software, bearing in mind that

these tasks are part of an overall business process.

In software engineering, user requirements are

evaluated in the analysis phase, the first phase of the

application development process. The results of the

analysis phase provide the input for the software

design phase which is followed by the implementation

and test phase. These phases are found in all the

different software engineering approaches (waterfall,

RUP, etc). An important goal of a systematic and

efficient software engineering approach is to make sure

that the results gained in each phase can be efficiently

used in the next phase.

The Unified Modeling Language (UML), a widely

accepted language, supports the analysis and the design

phase. UML provides a specific diagram type, namely

use case diagrams, to model the view on a software

system from the perspective of its (future) users. A use

case is a part of a business process which is supported

by the software system that helps the users carry out

specific tasks. These tasks can be described as

activities in UML. Thus, a use case can be refined by

another UML diagram, the activity diagram. Both

types of diagrams, use case and activity, together

contain the business logic of the software application.

In the design phase, the business logic is mapped to

components (e.g., a business process control and a

number of use case controls) of the application

architecture.

Software Engineering
Development Phases

Traditional Approach

(e.g. UML-based)

Business Process Oriented

(e.g. BPMN/BPEL Based)

Analysis

Phase

Design

Phase

Use Case

.

.

Use Case

Activity

Activity

Business Process

Control (BPC)

Use Case Name

Use Case Control (UCC)

Use Case Name

Use Case Control (UCC)

Manual Mapping
Automatic Mapping

BPMN BPEL+

Participant

Task….. …..

Participant

BPEL+ Execution Engine

Business Object Name

Business Object (BO)

Business Object Name

Business Object (BO)

Web Service Name

Web Service (WS)

Component Name

Figure 1. Modeling approaches in the analysis
and design phase

As shown on the left-hand side of Figure 1, the

mapping of the business logic to the components in the

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

architecture has to be done manually. This leads to the

following major deficiencies:

1. Inefficiency: Many aspects of the models that have

been described in the analysis phase could be

directly and automatically transferred into the

architecture.

2. Inconsistency: A change in a model at the analysis

level or the design level will lead to an

inconsistency if the change is not manually

propagated.

3. Inflexibility: The system is not designed to be able

to react to a changing process in a flexible way.

To overcome these deficiencies a different process

description approach has to be taken. Until now, UML

does not provide an adequate concept to map the use

case and activity diagrams to a process execution

language. Although some work has been carried out in

this area [3], there are good reasons to choose another

language to "program" the business process related

aspects. The most important reasons according to [4]

are:

Firstly, UML is alien to most business analysts.

Secondly, its language is object-oriented - not based on

a business process centric approach. Thirdly, the

mapping of UML models to a business process

execution language is not supported by UML itself.

A process language that fulfills all these

requirements is the Business Process Modeling

Notation (BPMN, [5]) standardized by the Business

Process Management Initiative (BPMI). In our

approach to business process oriented programming

BPMN is used to produce an executable process

description based on the Business Process Execution

Language (BPEL, [6]) which is standardized by

OASIS. Figure 1 gives an overview of the approach

which is described in detail in the next chapters. The

rest of the article is organized as follows: In Chapter 2,

BPMN and its (graphical) language elements are

introduced using a simple business process. In this

example process, a student orders a so-called

Transcript of Records (ToR, a special kind of report)

from the university administration. In Chapter 3 it is

shown how the BPMN description (i.e., the business

process oriented program) is mapped (i.e., compiled) to

BPEL code which can be executed by a BPEL process

engine. The BPEL code needs to be executed as well –

this is described in Chapter 4. Core Web services

which are not a composition of other Web services

(like executable BPEL processes) mark the border of

two complementary types of programming: The

composition of Web services is called "Programming

in the Large" while the development of a Web service

is called "Programming in the Small" [7]. In the

Outlook in Chapter 5, it is pointed out that the business

process oriented programming (Programming in the

Large) will not replace component-oriented and object-

oriented programming (Programming in the Small)

since both types are complementary.

2. Programming of a Process Using BPMN

The Business Process Modeling Notation (BPMN)

[6, 8] which has been created by BPMI.org pursues

two objectives: First the notation should be easy to

understand for every role participating in the

development process, beginning with the business

analysts who describe the processes from the business

perspective, continuing to the technical developers

responsible for implementing the technology used to

perform these processes. The second major goal of

BPMN is to reduce the gap between the business

process design, the focus of the analysis phase, and the

process implementation being looked at in the design

and implementation phase. This is ensured by setting

up on a mathematically based, internal model that

enables the mapping from BPMN’s graphical elements

to the underlying constructs of (XML-based)

executable business process languages like BPEL as

illustrated in Figure 1. The tight connection between

analysis and implementation provides major

advantages to other modeling languages, for instance

UML which takes an object-oriented approach to the

modeling of applications, while BPMN follows a

business process oriented approach to the modeling of

IT solutions. This different focus makes UML and

BPMN non-competitive notations but they propagate

different views.

The BPMN defines both the (graphical) notation

and the semantics of a so-called Business Process

Diagram (BPD), which is based on flowcharting

techniques. The small set of core elements of a BPD

comprises the so-called Flow Objects: First of all, the

Activities, represented by a rounded-corner rectangle,

which is a generic term for work that has to be

performed. The second is called the Events, which are

diagrammed as a circle and just “happen” during the

execution of a business process. They usually affect the

process flow. Last but not least Gateway Objects

represented by a diamond symbol are used to control

the divergence and convergence of a sequential flow.

By means of these basic Flow Objects, a business

analyst can model a large variety of business process.

To ensure the intuitive understanding of a BPD,

hierarchical modeling is strongly recommended. At

first, the business process is modeled at a high level

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

where activities in the BPD usually aggregate sub-

processes, which are graphically evaluated in another

BPD. A [+] sign inside an activity denotes a process

that can be decomposed into sub-processes. The

minutest granularity of activities is described by Tasks

forming the lowest-level process in a BPD.

BPMN supports three basic types of sub-models

within an end-to-end BPMN model each of which has

a different focus on business processes:

1. Private processes are internal to a specific

organization and form the class of classical

workflow processes. BPMN uses the rectangular

symbol of a Pool representing the organization’s

boundary where many so-called Lanes can be

included as sub-partitions to organize or categorize

activities. A single private business process may be

mapped to one or more BPEL documents.

2. Abstract (public) processes take care of the

interactions between a private business process and

at least one participant. Only those activities that are

used to communicate outside the private business

process represented in its single Pool, plus the

appropriate flow control mechanisms, are included

in the abstract process. The focus is on the message

flow between the separate business organizations.

The mapping between a BPMN abstract process and

its BPEL equivalent is not yet specified in [5].

3. Collaboration (global) processes can be shown as

two or more abstract processes communication with

each other. This is the most powerful model which

cannot be mapped to BPEL but can be mapped to

various collaboration languages such as ebXML

BPSS [9] or RosettaNet [10]. The example process

now looked at is such a collaboration process.

The business process shown in Figure 2 is taken

from the higher education sector, for example a

university. The business case concerns a student who

needs consultation, for example after having failed an

exam. In the BPD the two participants are modeled in

two Pools each with their own internal sequence flow.

The Pools are connected by the exchange of messages.

Both Pools consist of explicitly modeled Start and End

Events. At the right side of the diagram all those

activities are grouped that the business analyst decided

should be supported by computer systems. Most of the

activities are quite high-leveled and have a more

detailed representation in another BPD. The

explanation is found by zooming into the Task “Get

ToR” at the bottom of Figure 2. At the granularity of

activities as Tasks, BPMN offers the possibility to add

further attributes to the Task like the information

whether a Task is a so-called Service Task or a User

Task. Service Tasks provide some sort of service which

could be a Web service or an automated application,

whereas User Tasks that are performed manually.

Furthermore, a Task can also be defined as a sender or

receiver, just sending or receiving one message to or

from a different Pool and processing it afterwards.

Group ArtifactGroup Artifact

S
tu

d
e
n

t
C

o
u

n
s

e
lo

r
S

tu
d

e
n

t
C

o
u

n
s

e
lo

r

Get ToRGet ToR

S
tu

d
e
n

t
S

tu
d

e
n

t

Receive

Consultation

Request

Receive

Consultation

Request

Send

Appointment

Send

Appointment

Receive

Consultation

Matter

Receive

Consultation

Matter

Further

Information

needed

no

yes

Send Advice

or Information

Send Advice

or Information

Get ToRGet ToR Get Course

Information

Get Course

Information
+

+

+

Send

Consultation

Request

Send

Consultation

Request

Receive

Appointment

Receive

Appointment

Send

Consultation

Matter

Send

Consultation

Matter

Receive Advice

or Information

Receive Advice

or Information

1) I need

Consultation

2) Go see

Consultant

3) This is my

Problem

4) I can give

you this Advice

Receive

ToR

Request

Receive

ToR

Request

Lookup

Student

Lookup

Student
Get Student

Information

Get Student

Information

Is Valid

Student

no Return

Error

Return

Error

Get Institution

Information

Get Institution

Information

Get Examination

Results of

Student

Get Examination

Results of

Student

Create

ToR

Response

Create

ToR

Response

Get

corresponding

Course

Information

Get

corresponding

Course

Information

System supported Part

yes

Figure 2. Hierarchical modeling with the BPMN

After the decision gateway where the process

determined that further information has to be gathered,

a so-called Transcript of Records (ToR) is created by

the supporting system within the activity called “Get

ToR”. A Transcript of Records is a standardized

aggregation of a student’s achieved results at a

university. The activity “Get ToR” is marked with a

[+] that this is a decomposed view on this activity.

The bottom part of Figure 2 shows the detailed sub-

model for the high-level activity “Get ToR”. It contains

only Service Tasks and can therefore be directly

mapped to a BPEL process definition which is

executable in a BPEL engine. If just one Pool is

concentrated on, BPMN allows us to neglect the outer

borderline. This sub-process creates a Transcript of

Records in university environments and is used not

only in the business process of student counseling but

can be part of student self service operations as well.

All activities in this diagram are modeled as

(elementary) Tasks. This whole BPD can be mapped to

a BPEL construct whilst the single activities directly

map to so-called core Web services. This diagram has

one defined Start Event, which is triggered by the

decision gateway “Further information needed” in

Figure 2, esp. a ToR. Two bold circles which denote

the possible end points in this sub-process are seen.

According to this, the process finishes with either an

error, for example because the student does not exist,

or the regular return to the calling processes, in

particular a valid ToR. Inside the process there is a

parallel (AND) forking and joining. The four parallel

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

executed Tasks (Figure 2, top right) are core Web

services, for example implemented in Java.

3. Compilation of a BPMN Program Using

BPEL

This section shows how to map the BPMN process

depicted in Figure 2 to an executable BPEL process.

Before mapping parts of the process to executable

elements, first the architecture which is going to be

used for the deployment of the service-oriented and

process-focused elements must be introduced. Figure 3

shows a SOA design approach from a different point of

view than the conventional one focusing at an

enterprise service bus [11, 12].

SERVICE-ORIENTED ARCHITECTURE (SOA)

P
R

O
G

R
A

M
M

IN
G

 I
N

T
H

E
 S

M
A

L
L

P
R

O
G

R
A

M
M

IN
G

 I
N

T
H

E
 L

A
R

G
E

Component and

Database Layer

Core Web Services

(Java, .NET,…)

Composition Layer

(BPEL - Web services,

Fully Automated)

Presentation Layer

(GUI with User

Interaction Logic)

Choreography Layer

(BPEL+X, IT Supported Activities as

well as Activities for User Interaction)

Portal

Consulting a Student in

Examination Problems

Student Data

Course

Information

<< Business Process >>

Legacy

System

Choreography

(per se)

Service-

oriented

System

(per se)

Service-

oriented

System

Component

Component

Choreography

ToR Service

Examination

Results

Figure 3. SOA – Architectural design

The entry to the SOA is the Choreography Layer,

the layer where all kinds of business processes can be

deployed. Above that a role-based portal for any kind

of user interaction is located. Below the Choreography

Layer, a less influential layer is located, where

composition can take place as well as the interaction

with only one participant (no collaboration) – this is

subject to being handled by a default BPEL engine.

Below this Composition Layer, the layer of the core

Web services can be found. Core Web services either

act as adaptors to wrap existing interfaces of legacy

systems making them Web service capable or are Web

service interfaces of a per se service-oriented systems.

The analysis and design can be done by using

BPMN. When the implementation phase is reached, a

mechanism or concept is needed to automatically

generate BPEL code for the business process out of a

BPMN representation. Before illustrating and

discussing a possible concept, let us take a brief look at

the BPEL code shown in Figure 4.

Figure 4. BPEL code

The displayed code in Figure 4 is fragmentary.

Most of the attributes, variables and assigns are

omitted for better readability. The complete error

handling is also left out.

The general structure of any BPEL process looks

likes this: Inside the process tag which is the outer

element of such an XML document there are basically

three different sections. In the first section partners and

partnerLinks are defined. The partnerLinks announce

the external programs which are involved such as

clients and Web services to the BPEL process. In our

example the four Web services offer access to the

various databases where the ToR-relevant information

is stored. In this example the client is used to transform

the ToR request of a human user to a SOAP request

which can be processed by the ToR process. When the

BPEL ToR Web service sends back the XML ToR, the

same client decodes the SOAP request and displays the

received ToR to the user. These two activities of the

client are reflected by the receive and reply tag to be

discussed later.

The second section contains all the variables of the

process. Variables embody all messages and XML

documents used in a BPEL process. These variables

can be documented in the BPD using the defined

BPMN attributes. The idea is that BPMN supporting

tools save these properties for automatic conversion to

BPEL but do not print them in the BPD. That is why

they will not be considered further here. The third

section is the orchestration logic. Invoke elements call

external programs by using their SOAP interface. They

correspond to the activities in our BPMN graph. The

switch tag maps the Gateway Object of BPMN to

BPEL. Sequences are sequential actions while flows

correlate to the fork objects of BPMN. All tags can

include many attributes which have to be filtered out of

the participating Web service description.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

One main idea behind BPMN is to reduce the gap

between the business process design and the

implementation. The rest of this subchapter illustrates

how the BPMN graphs can be converted to BPEL code

under the precondition to maximize the automatically

executable parts. The lack of available software

products which can translate BPMN to BPEL in a way

so that this code can be deployed or even efficiently

developed causes a work-around.

Popkin System Architect

BPMN Program

(e.g. Process "Get ToR")

Programming of the

Business Process

BPEL Code

(SOAP interface information missing)

Oracle BPEL Designer WSDL Documents

Executable BPEL Code

Figure 5. The approach taken to support
BPMN-based process programming

As illustrated in Figure 5 there are two different

categories of relevant tools for this procedure: BPMN

modeling tools to create the BPMN graph and BPEL

design tools for managing the specific BPEL aspects

and concerns. Let us begin with the ToR process

(Figure 2) which was developed with a BPMN

modeling tool. At this point it is possible to map the

information represented in the BPMN graph manually

by using the mapping rules defined in [5]. Some

BPMN modeling tools like Popkin’s System Architect

offer functions which automatically generate BPEL

code out of BPMN. But there is one drawback. The

generated code contains almost no information about

the SOAP interface of the orchestrated elements in it.

If a Web service for a particular element already exists,

this work can be done tool-supported as its Web

service description holds all the additionally needed

information.

That is the point where a BPEL design tool like

Oracle’s BPEL Designer comes into play. The

alternative to using such a tool is to add the remaining

information manually. Most of the design tools allow

importing the existing BPEL code which can be

generated by Popkin’s System Architect as described.

The BPEL code is parsed and then displayed as a

graph. Unfortunately this graph is not in BPMN

notation but in a proprietary one. Now the WSDL

documents of the participating Web services can be

imported and missing information like variables and

messages can be added to the BPEL process.

Furthermore functionalities for testing and validating

the created BPEL process as well as a function for

deploying the process to the used BPEL engine are

available. For more extensive verification of Web

service compositions, there exist various tools like for

example the LTSA-Eclipse Tool described in [13].

4. Execution of a BPEL Process

After developing the BPEL program as described in

Chapter 3 the question arises as to how this XML-

based program can be executed. First of all it has to be

mentioned that the core Web services that are used by

the BPEL program have to be deployed in advance.

The BPEL process can only be executed if WSDL

documents of each Web service are available. In most

cases the Web service description of a Web service that

is online and running can be retrieved by appending

“?wsdl” to the Web service URL.

To execute a BPEL process a BPEL engine is

needed which parses the BPEL code and executes the

contained instructions. Examples of existing BPEL

engines are ActiveBPEL [14] by ActiveEndpoints and

the Oracle BPEL Process Manager [15]. All engines

have in common that the BPEL process, which has to

be deployed itself as well, needs to be supplemented.

Of course the general BPEL code is always the same

regardless which BPEL engine is used because it is

standardized. But in practice the deployable BPEL

packages differ from engine to engine. For instance, an

engine-specific so-called deployment descriptor is

additionally needed in order to execute the process.

Furthermore, a BPEL package usually comprises

either the WSDL documents for the involved Web

services themselves or the respective URLs where they

can be found. At this point it should be mentioned that

because BPEL needs partnerLinkType tags for each

involved Web service that are not included in a WSDL

file by default, even for remote WSDL documents

(accessible via their URLs) the BPEL packages often

contain so called wrapper WSDL documents that add

the partnerLinkType tag and import the original

WSDL. Some engines even require more

supplementary files in the packages that e.g. contain

information about partners or the WSDL catalog.

5. Conclusion and Outlook

It is important to note that business process oriented

programming, as it was illustrated in the preceding

chapters, is the next step in the evolution of software

engineering. Thus, business process oriented

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

programming does not replace but complements the

existing approaches to programming.

Structured ProgrammingStructured Programming

Modular ProgrammingModular Programming

Object-Oriented

Programming

Object-Oriented

Programming

Component-Oriented

Programming

Component-Oriented

Programming

Business Process

Oriented Programming

Business ProcessBusiness Process

Oriented ProgrammingOriented Programming

Software Crisis (1968)Software Crisis (1968)

Figure 6. Evolution of software engineering

Figure 6 gives an overview of the most important

steps in software engineering. Caused by the software

crisis, software development is no longer seen as an art

but as a structured engineering process. To be able to

decompose complex software problems, concepts such

as modularization, object orientation, and components

were introduced. This resulted in well-structured

programs. Another important result of these concepts is

reusability of software parts (modules, objects,

components) which makes the development of

software more efficient and leads to more stable

software systems.

These engineering concepts essentially concentrate

on the design and implementation of a software

system. They do not adequately support the first phase

of software engineering where business processes of

the future user of the software system have to be

analyzed, as pointed out in Chapter 1. Business process

oriented programming fills this gap by providing

executable process descriptions which are based on

service-oriented elements, typically Web services.

There is a separation of business-related aspects to be

covered by the processes, and technical aspects to be

covered by components and objects. This service is the

combining element of these two types of programming,

the "Programming in the Large" and "Programming in

the Small". Although business process oriented

programming is still in a very early stage, the high

potential of this evolutionary step in software

engineering is obvious. Standards like BPMN and

BPEL are available to apply this concept to practical

software problems as demonstrated in the paper.

6. References

[1] Christian Emig, Christof Momm, Jochen Weisser,

Sebastian Abeck: Programming in the Large based on the

Business Process Modeling Notation, In: Proceedings to

Informatik 2005 – Informatik LIVE!,

http://www.informatik2005.de, 2005.

[2] Ian Sommerville: Software Engineering – Seventh

Edition, Addison-Wesley, 2004.

[3] Keith Mantell: From UML to BPEL Model-driven

Architecture in Web Services World, IBM, 2003.

[4] Martin Owen, Jog Ray: BPMN and Business Process

Management – Introduction to the New Business Modeling

Standard, Popkin Software, 2003.

[5] Business Process Management Initiative (BPMI):

Business Process Modeling Notation (BPMN), Version 1.0,

BPMI.org, May 2004.

[6] Business Process Execution Language for Web Services

(BPEL4WS), Version 1.1,

http://www.ibm.com/developerworks/library/ws-bpel, May

2003.

[7] Frank Leymann: Web Services — Distributed

Applications without Limits, Business, Technology and Web,

Leipzig, 2003.

[8] Stephen A. White: Introduction to BPMN; IBM

Cooperation 2004.

[9] Business Process Specification Schema (ebXML BPSS),

Version 1.01, http://www.ebxml.org/specs/, OASIS, May

2001.

[10] Rosettanet Implementation Framework,

http://www.rosettanet.org/rnif, 2002.

[11] Thilina Gunasinghe, Tim Kelly: Establishing a Standard

Business Process Execution Architecture for Integrating Web

Services, Proceedings to IEEE International Conference on

Web Services (ICWS), 2005.

[12] The Burton Group: Service-Oriented Architecture –

Developing the Enterprise Roadmap, February 2005.

[13] Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff

Kramer: Tool Support for Model-Based engineering of Web

Service Compositions, Proceedings to IEEE International

Conference on Web Services (ICWS), 2005.

[14] ActiveBPEL – Open Source BPEL Engine,

http://www.activebpel.org.

[15] Oracle BPEL Process Manager,

http://www.oracle.com/technology/products/ias/bpel.

Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006)
0-7695-2522-9/06 $20.00 © 2006 IEEE

