Development of SSR markers in mung bean, Vigna radiata (L.) Wilczek using in silico methods
N. SINGH, ${ }^{1}$ H. SINGH, ${ }^{2}$ P. NAGARAJAN
Department of Biotechnology, Instrumentation and Environmental Science
${ }^{1}$ Department of Agril. Biochemistry, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal
${ }^{2}$ Department of Plant Molecular Biology and Bioinformatics, TNAU, Coimbatore, Tamil Nadu

Received: 04-1-2013, Revised: 25-3-2013, Accepted: 30-3-2013

Abstract

Nucleotide sequences available in public database provide a cost effective and valuable source for the development of molecular markers. In this study, the nucleotide sequence database available in National Centre for Biotechnology Information (NCBI) is utilized to identify and develop SSR markers in mungbean (Vigna radiata). A total of 803 genomic sequences, 829 EST sequences and 82 GSS sequences were downloaded from NCBI. Eight hundred and forty two SSRs from genomic sequences, 240 SSRs from EST sequences and 60 SSRs from GSS sequences were obtained using SSRIT tool. Primers pairs were successfully designed for 109 SSR motifs from genomic sequence, 110 SSR motifs from EST sequence and 25 SSR motifs from GSS sequences using Primer3 (http://frodo.wi.mit.edu) software. Fifteen SSR primers were finally characterized and validated in 24 mungbean and six urd bean accessions.

Keywords: EST, GSS, NCBI, SSR MARKER, SSRIT
Mungbean (Vigna radiata L. Wilczek) is an important pulse crop in developing countries of Asia, Africa and Latin America, where it is consumed as dry seeds, fresh green pods (Karuppanapandian et al., 2006). Mungbean serves as vital source of vegetable protein (19.1-28.3\%), mineral (0.18-0.21\%) and vitamins. It is native of India-Burma and is cultivated extensively in Asia (Khattak et al., 2007). India is the leading mungbean cultivator, covers up to 55% of the total world acreage and 45% of total production (Rishi, 2009). Molecular markers are indispensable for genomic study. Among various marker systems such as Restriction Fragment Length Polymorphism (RFLP), Random Amplified Polymorphic DNA (RAPD), Sequence Tagged Sites (STSs) and Amplified Fragment Length Polymorphism (AFLP), Simple Sequence Repeats (SSRs) have occupied a pivotal place because of their reproducibility, multiallelic nature, codominant inheritance, relative abundance and good genetic coverage. SSRs are clusters of short tandem repeated nucleotide bases distributed throughout the genome. Major features that made SSRs very popular are their abundant distribution in the genomes examined to date and their hyper variable nature (Toth et al., 2000). Production of SSR markers can be achieved by methods such as database searching, cross-species amplification, screening genomic libraries and screening of RAPD amplicons. The traditional method of SSR marker development involves construction of SSR-enriched library, cloning and sequencing, which is costly and labour intensive (Kalia et al., 2011).

With this background of knowledge, the present investigation was taken up with the aim to design primers for SSR markers isolated from Vigna radiata genomic, EST and GSS sequences using in silico techniques.

While a AT too low might possibly lead to

MATERIALS AND METHODS

Experiment was conducted in laboratory of Centre of Plant Molecular Biology (CPMB), Tamil Nadu Agricultural University (TNAU), Coimbatore. Retrieval of nucleotide sequences from NCBI database

Nucleotide sequences of Vigna radiata variety radiata are freely available at NCBI website (http://www.ncbi.nlm.nih.gov). All genomic, EST and Genomic Survey Sequences of Vigna radiata available at NCBI database were obtained.

SSR mining with SSRIT tool

This tool finds all perfect possible SSR present in sequence submitted. Sequences obtained from the NCBI database were submitted in this software. Maximum repeat motif was given heptameric repeat and minimum repeat motif was given two.

Primer designing using PRIMER3 software

SSR primers were designed using primer 3 (http://frodo.wi.mit.edu) software. Parameters selected were GC content from 45 to 60%, SSR repeats were marked as target region, product size ranges from 300 to 500 bp , primer length from 18 to 25 nucleotides and melting temperature of (50 to $65)^{0} \mathrm{C}$. A general rule followed by most primer design programs is to bracket the G/C content of primers to between 40-50 \%. A G-C pairing involves three hydrogen bonds versus two for an A-T pair, where an optimal balance of GC content enables stable specific binding, yet efficient melting at the same time. The primer melting temperature is a straightforward estimation of a DNA-DNA hybrid stability and critical in determining the annealing temperature. AT too high will result in insufficient primer template hybridization and therefore, low PCR product yield. non-specific products caused by a higher number of
base pair mis matches, where mismatch tolerance has been found to have the strongest influence on PCR specificity. Short $8-12$ mer oligo nucleotides, which have multiple annealing sites, are used in a Greedy algorithm to minimize the total number of primers needed for applications, where all the target sequences are known (Mann et al., 2009).

Fast PCR analysis

FastPCR is freeware software. Primers designed were analysed in this software. To analyze pre designed primers click on the Primer Test option given in the software. Paste or type the primer or primers sequence (s) at any TAB Editors. The programme will immediately show primer characteristics its length in bases, melting temperature, CG\% content, molecular weight, the extinction coefficient (e260), nmol per one OD, the mass - $\mu \mathrm{g}$ per one OD, linguistic complexity (\%) and primer quality. If the primer is self-complementary, the program will show a picture of where this selfcomplementarity happens. A self-priming ability will also be detected and shown by the program (Kalendar et al., 2011)
PCR amplification of mungbean and urdbean accessions

SSR Primers designed using in silico methods were checked on mungbean and urdbean accessions. Mungbean and urdbean accessions were obtained from Department of Pulse at Tamil Nadu Agricultural University Coimbatore. Twenty four mungbean and six urdbean accessions were sown in pots and genomic DNA isolated from 15 days old mungbean and urdbean seedling following the modified protocol of Karuppandiyan et al. (2006). The quality and quantity of DNA checked by agarose gel electrophoresis and nanodrop spectrophotometer. The final concentration to do PCR was adjusted to $25 \mathrm{ng} \mathrm{ll}^{-1}$. PCR was taken as confirmatory tool to check it. About 50 to 100 ng of DNA were used as a template. The reaction was carried in a total reaction volume of $15 \mu 1$ containing DNA $25 \mathrm{ng} \mu \mathrm{L}^{-1}$, 10X assay buffer, Primer $(10 \mu \mathrm{~m})$, dNTPs $(2.5 \mathrm{mM})$ (Bangalore Genei Ltd., India), Taq polymerase (3 units $\mu \mathrm{L}^{-1}$) (Bangalore Genei Ltd., India) and Sterile distilled $\mathrm{H}_{2} 0$. The amplification was carried out in an Eppendorf master cycler. Agarose gel (3\%) electrophoresis was performed to separate the amplified products.

RESULTS AND DISCUSSION

The present study was focused on the development of SSR markers specific for mungbean genotype. All genomic, EST and GSS sequences were obtained from NCBI database. It was found that there were 803 genomic sequences, 829 EST sequences and

82 GSS sequences present in Vigna radiata genome. All genomic, EST and GSS sequences were submitted in SSRIT tool. SSRIT tool scrutinizes all SSR presents in submitted sequences. Maximum motif length was given heptamers and minimum number of repeat was given two. Hence, this tool searched all dinucleotide to hepta-nucleotide repeats which was at least two times repeated in a submitted sequence. SSRs which were more than or equal to ten nucleotides in length were selected for primer designing. 842 SSR repeats were obtained from genomic sequences. 242 SSR repeats were obtained from EST sequences. 60 SSR repeats motifs were present in GSS sequences. All repeat motifs do not function as SSR markers and primer designing for all repeats is not possible since primer designing depends

upon flanking sequences.
Fig. 1: Amplification percentage of different SSR markers produced from mungbean genotype

Thus, only selected repeats were taken to design primers. SSR primers were designed by Primer 3 (http://frodo.wi.mit.edu) software. 109 SSR primers were designed from genomic sequences, 110 SSR primers were designed from EST sequences and 25 SSR primers were designed from GSS sequences. SSR primers designed from genomic sequences, EST sequences and GSS sequences are respectively listed in table 1, 2 and 3. 15 primers from genomic sequences were checked on 24 mungbean and six urdbean accessions. Primers details given in table 4. Amplification percentage of 15 primers is given in fig.1. Allelic variation was obtained from primers for seven SSR namely MBSSRG1, MBSSRG2, MBSSRG10, MBSSRG11, MBSSRG12, MBSSRG13 and MBSSRG14. Amplification by MBSSRG10 given in fig. 2.

Table 1: SSR primers designed from genomic sequences

Gen bank no.	Primer sequences ($5^{\prime}-3{ }^{\prime}$)	$\operatorname{Tm}\left({ }^{0} \mathrm{C}\right)$	GC\%	motif	No. of repeats	Product size(bp)			
gi\|45331284	gb	AY485988.1	-132	F:GGTGTTGTCGCTGTGGTTTT	61.00	50.00	caccga	2	327
	R: CATCGCTGAATCTACGACCA	59.82	50.00						
gi\|38045974	gb	AY437639.1	-6	F: CAGCTTCTTGTTCTTGCTCCTT	60.19	45.45	ta	8	301
	R: TTGACGAGGCAATAGCAGGT	60.80	50.00						
gi\|2502086	gb	AF022926.1	-69	F: GTGGGGAAACCGGAATATCT	60.02	50.00	tcaga	2	364
	R: ACAGGCAAGACCAGAGGAGA	59.99	55.00						
gil $1478369 \mathrm{gb} \mid \mathbf{S 8 1 5 9 4 . 1 \| - 3 9 ~}$	F: GGGACTGTAATGCGGTCACT	60.00	55.00	gatga	2	355			
	R: GTCCTCACTTGGCCATCATC	60.48	55.00						
gi\| $1184120\|\mathrm{gb}\| \mathrm{U} 20808.1 \mid$ VRU20808-87	F: TGATGGTGATTTGCTGGAGA	60.20	45.00	ctatte	2	322			
	R: ATGCTGGAAGATCCAAAGTC	59.69	47.62						
gi\|1141783	gb	U31211.1	VRU31211-12	F: GTTGAGGCTCAGCAACACCT	60.45	55.00	ac	5	347
	R: CGACACACATGACACCTTGA	59.10	50.00						
gil $1006804\|\mathrm{gb}\| \mathrm{U} 34986.1 \mid$ VRU34986-105	F: CATGAACGGGTTGAAGACCT	59.97	50.00	tattac	2	333			
	R:CCAAATGGATAGAGTGTTCGTC	58.58	45.45						
gi\|967124	gb	U08140.1	VRU08140-125	F: GGCCTAGACAACCAGGCATA	60.10	55.00	gggaca	2	352
	R: TATAGTGGCCCCTCTGGATG	59.91	55.00						
gi\|951322	gb	U31467.1	VRU31467-127	F: ATTTCCGAAGGAGCAACCTC	60.58	50.00	taaaac	2	304
	R: ССТTCCCAACACCCTTTCTT	60.33	50.00						
gi\|849135	gb	U26709.1	VRU26709-119	F: GTTTCTCGCATCGGATCTTC	59.78	50.00	atggc	2	306
	R: AGGGCTTGTGTGTCCGTAAC	60.04	50.00						
gi\|506851	gb	L20507.1	VIRCALMODU-36	F: TCGATCGAAGAAACTCGAAC	58.02	45.00	aagaa	2	344
	R: AATACCCGGAATGCCTCTTT	59.80	45.00						
gi\| $506849\|\mathrm{gb}\| \mathrm{L} 20691.1 \mid$ VIRCALMOD-40	F: CAACTGAGGCAGAGTTGCAG	59.77	55.00	gatga	2	324			
	R: GTCCTCACTTGGCCATCATC	60.48	55.00						
gil458337\|gb	U06046.1	VRU06046-75	F: CTGGGGTTTCTTTGAGTTGG	59.56	50.00	tcagt	2	338	
	R: GGTACCCTTTCTCCAGTCCA	58.99	55.00						
gi\|295447	gb	L07843.1	VIRNADPHP4-153	F: TAGCCCCCTCTCTCTCСTCT	59.53	60.00	caacta	2	390
	R: TTCCTCTTCCTCCTCCATCA	59.73	50.00						
gi\|169324	gb	L07634.1	PHVC4HYDRO-117	F: ACCGCAACCTCACTCAACTC	60.31	55.00	cccgca	2	327
	R: TCTTCCTGACGTCGTCCAC	59.81	57.89						
gi\|189169789	gb	EU239689.2	-100	F: GGAATGGCACCTATCAATGG	60.16	50.00	gtggg	2	314
	R: CCCAAACACAATGTCGTCAG	60.00	50.00						
gi\|9587210	gb	AF279252.1	-118	F: CCCTGGAGATGGCAGAGTAA	60.21	55.00	agaca	2	315
	R: TTGATCTACGCTGAGCTTCC	58.20	50.00						
gi\|9587204	gb	AF279249.1	-45	F: TTCAAGGCTGGGTCTCAGAT	59.80	50.00	ggtga	2	313
	R: CAGTGACAATGGCTTGAACG	60.30	50.00						
gi\|8954297	gb	AF139470.2	-52	F: TGAACAAGGGTACCCAGGAG	59.96	55.00	caaatt	2	355
	R:CGGTGGCTACATTAGAGTACTGA	58.49	47.83						
gi\|8954296	gb	AF139469.2	-45	F: TCTCCTCTCCAGCTGTTACGA	60.14	52.38	gtgccg	2	304
	R: GCGTCCTTATGGCTCAACTC	59.84	55.00						
gi\|8954294	gb	AF139468.2	-38	F: TCCCACCAATCTATCCAAGC	59.89	50.00	aca	5	367
	R: CTTCGCGTAGTTGTCGAACC	60.83	55.00						
gi\|8954288	gb	AF139464.2	-85	F: TGGTGTTTGCTTGCTCAGAC	60.03	50.00	gcaaag	2	344
	R: GCACAACTCAGCAAAAGGTG	59.49	50.00						
gi\|7682676	gb	AF229794.1	-114	F: GCAAGCAGGCCTCTATGTTC	59.98	55.00	tgcaa	2	312
	R: AGACCAACAGCCATTTGAGC	60.26	50.00						
gi\|6979535	gb	AF195806.1	-95	F: GGTTTTGGCTCTGTTTCTGC	59.86	50.00 50	teccac	2	307
	R: GCGTCTTATGGCTGAGGTTT	59.34	50.00						
gi\|5305365	gb	AF071550.1	-405	F:AGAAGACTGTGGGAACAGTGG	59.21	52.38	tgtaaag	2	362
	R: ACGGCCACCAGAATAGTCAC	60.00	55.00						
gi\|9587206	gb	AF279250.1	-43	F: CGTGGAGGGTTACCGTATTG	60.24	55.00	aaatt	2	325
	R: CGGTGGTAGTTTCCCACTGT	59.88	55.00						
gi\|8954291	gb	AF139466.2	-61	F:CCAAGCACCACAACTTCTCA	59.87	50.00	ttcggg	2	386
	R: TCTGTCCTGGTTCCGATGAT	60.47	50.00						
gi\|269980508	gb	FJ857948.1	-37	F: CGCTCCTTCTGCTTCTCTCA	60.95	55.00	ctt	4	358
	R: GTCACTGAAGGCGGTGATTT	60.12	50.00						
gi\|16930801	gb	AF441854.1	-18	F: GCTTGGCAATCCTTGGTAGA	60.21	50.00	acttt	2	303
	R: AAAAGGTGCTAACGGCAGTG	60.30	50.00						
gi\| $13682803\|\mathrm{gb}\| \mathrm{AF} 126871.2 \mid-83$	F: CAGGTTGTGAGTGATCCAAGC	60.71	52.38	tcttg	3	326			
	R: AGGATTCATCGAGAGTAGTCA	55.64	40.91						
gi\|9587208	gb	AF279251.1	-74	F: CCAAGCCTAACAAAATCAGG R:AAGGATTCATCGAGAGTAGTCA	57.37 55.64	$\begin{aligned} & 45.00 \\ & 40.91 \end{aligned}$	tcttg	3	311
gi\|7682679	gb	AF229795.1	-115	F: TGAAGGGAGGTACGATCTGG	60.07	55.00	tgcaa	2	338
	R: TTGCAGCCCAGTTTGTGTAG	59.90	50.00						
gi\|7025484	gb	AF229849.1	-53	F: GCTGCTGATTTGATCCCTGT	60.23	50.00	tggaa	3	330
	R: GCCAGAGAAGAATGGAATGC	59.78	50.00						
gi\|158251952	gb	EF990627.1	-90	F: CAACTCCGCCAATATTCACT	57.70	45.00	aatac	2	327
	R: AGAAGGAGGGTGTTGGGTTT	59.83	50.00						
gi\|158251950	gb	EF990626.1	-87	F: AACCCAACACCCTCCTTCTT	59.83 59.58	50.00	aacgac	2	379
	R: CCATGCTGCTGTTGTCTCTC F: CGTGACCATCGAGTCTTTGA	59.58 59.83	55.00 50.00						
gi\|162296029	gb	EU288914.1	-21	F: CGTGACCATCGAGTCTTTGA R: GCTTAAACTCAGCGGGTAGC	59.83 59.14	50.00 55.00	tcagg	2	337
gi\|90969278	gb	DQ445950.1	-118	F: CCACGACTGATCCAGAAAGG	60.65	55.00	ttctaa	2	367
	R: CGCTACCCCAAAATACCAAA	59.83	45.00						
gi\|90968745	gb	DQ445738.1	-28	F: CAAACCAATCCGACTCAGC	59.23	52.63	ggag	3	314
	R: GCGTTCAAAGACTCGATGGT	60.26	50.00						
gi\|7211426	gb	AF156667.1	-133	F: CTAGTTCCGAGCTGGTGGAG	60.01	60.00	agaag	2	371
	R: TCTCCCGTAGCCTGTCTTTC	59.43	55.00						
gi\|6934187	gb	AF143208.1	-83	F: GCAGCAACAAACATCCTCAC	59.30 59.87	50.00 50.00	tggga	2	327
gi\|259019991	gb	GQ893027.1	-446	F: TTCTCACTCCACCCCAGAAC	60.09	55.00	ta	12	302
	R: CCTCGTGTCACCAGTTCAAA	59.72	50.00						
gi\|223886027	gb	FJ591131.1	-6	F: CAGCTTCTTGTTCTTGCTCCTT	60.19 58	45.45	ta	9	301
	R: AGTTGACGAGGCAATAGCAG F: CTCAGGCAAATGACGTTCG	58.13 60.40	50.00 52.63						
gi\|251831253	gb	GQ227550.1	-185	F: CTCAGGCAAATGACGTTCG R: AGCTCTTCTGATCTGGGTTG	60.40 57.03	$\begin{aligned} & 52.63 \\ & 50.00 \end{aligned}$	cccatt	2	391
gi\|238915390	gb	FJ883469.1	-23	F: CCCTTCTGTCAAGGATCGAA	60.19	50.00	ggcaag	2	346
	R: AAGGATGCGGTAAAGGGTTC	60.32	50.00						
gi\|238915388	gb	FJ883468.1	-26	F: CCCTTCTGTCAAGGATCGAA	60.19	50.00	ggcaag	2	338
	R: GGTGAAGGGTTCAAAGTCCA	59.94	50.00						

Table 2: SSR primers designed from EST sequences

Gen bank no.	Primer sequences(5'-3')	Tm($\left.{ }^{0} \mathrm{C}\right)$	GC\%	Motif	No. of repeats	Product size (bp)			
gi\|213645856	gb	AM910789.1	AM910789-39	F:CCAAGGCCAACAGAGAGAAG	59.98	55.00	tgtct	2	308
	R: CTCCTTCACATCACGGACAA	59.68	50.00						
gi\|186877713	gb	AM696683.1	AM696683-26	F:GACAGGAGCCAGCAAATGAT	60.23	50.00	ccaaa	2	347
	R: AAGGAAGGCTGCTTCAGGAT	60.35	50.00						
gil186875963\|gb	AM696658.1	AM696658-17	F: GCACGTGTCAACAACTTTGG	60.20	50.00	aaat	2	348	
	R: AGAGGCTTGCTGAGCCTTTG	62.11	55.00						
gi\|186835460	gb	AM696644.1	AM696644-15	F: CCGTGGATTGGTTCCAGTAT	59.67	50.00	Gccaag	2	376
	R: TACTCGCCACGATGGTAAGG	61.04	55.00						
gil186835453\|gb	AM696637.1	AM696637-22	F: GGCTGGTTTCTTGAACTGGA	60.23	50.00	ttaat	2	301	
	R:ACATGGGATGAGCCAGAACT	59.54	50.00						
gil186834740\|gb	AM696633.1	AM696633-22	F: TGCCTACGCCTGGAGAGTAT	59.86	55.00	aatcag	2	377	
	R:CAGTCGAGACCGAGACACAA	60.02	55.00						
gi\|186834002	gb	AM696613.1	AM696613-19	F: TCAGAATGCGCTGGTAACAC	59.87	50.00	tgagg	2	323
	R: TAGACCAGCTCGCACAACAT	59.47	50.00						
gil186833259\|gb	AM696592.1	AM696592-19	F: CGGTGAGGAAGTGAGGATA	60.07	55.00	atgaga	2	305	
	R: CCGCCATAAGGATATGGACT	58.88	50.00						
gil186830309\|gb	AM696538.1	AM696538-18	F: GATCTCAAGGGTCAGCCAAA	60.20	50.00	ctttg	2	347	
	R: TCCACCCACAATGAGAAACA	59.94	45.00						
gi\|186830308	gb	AM696537.1	AM696537-14	F: TGAACCAACCAAACCTACCA	59.88	47.62	catce	2	243
	R:CAAAAAGGCATACAAGGAGACG	60.99	45.45						
gi\|186830306	gb	AM696535.1	AM696535-32	F: GGGTCAGGTGCAGAGTCAAT	60.12	55.00	tttac	2	361
	R: GCGCCCACAAAATTGTAAAC	60.36	45.00						
gil186830304\|gb	AM696533.1	AM696533-23	F: CTCAAGCGTTGATCAGATGG	59.39	50.00	gecet	2	367	
	R: ATCATCTGGGTTGGGATCTG	59.74	50.00						
gil186795581\|gb	AM696516.1	AM696516-18	F: GGTTGCTTAATGCCACAGGA	61.03	50.00	ctggt	2	325	
	R: TATGCTTCCACGTCTTGCAC	59.87	50.00						
gil186830308\|gb	AM696537.1	AM696537-14	F:CTGAACCAACCAAACCTACCA	59.88	47.62	catcc			
	R:CAAAAAGGCATACAAGGAGACG	60.99	45.45		2	243			
gil186830306\|gb	AM696535.1	AM696535-32	F: GGTGGTCATCACAACCACAT	59.08	50.00	tttac	2	350	
	R: CCCCCTCGACTCAATTTGT	59.91	52.63						
gil $186830304\|\mathrm{gb}\| \mathrm{AM} 696533.1 \mid$ AM696533-23	F: CTCAAGCGTTGATCAGATGG	59.39	50.00	gecet	2	367			
	R: ATCATCTGGGTTGGGATCTG	59.74	50.00						
gi\|186795581	gb	AM696516.1	AM696516-18	F: GGTTGCTTAATGCCACAGGA	61.03	50.00	ctggt	2	209
	R:GGGTACCCTTTGTGTTTAGGG	59.62	52.38						
gil186794691\|gb	AM696508.1	AM696508-22	F:CTCTAATGGACCACAGAGCAGA	59.50	50.00	accaca	2	311	
	R:GGATCTGGAATTGGGGAAAG	60.63	50.00						
gil186793793\|gb	AM696491.1	AM696491-15	F: AAACCTGCATGACCACACCT	60.43	50.00	ttgctg	2	228	
	R: GCTTAGGCACTTGAGGATGG	59.84	55.00						
gi\|186793789	gb	AM696487.1	AM696487-9	F: TCACCAAGCAGAGAGGGTTT	59.84	50.00	accaa	2	215
	R: GCCAGTTGAACAGGTTGCTT	60.30	50.00						
gil186791996\|gb	AM696457.1	AM696457-18	F: GCCATTAATCCCCATGCTTA	59.76	45.00	ggatg	2	304	
	R:GCCTGAAAACCTAGAGAATATACAAGA	59.66	37.04						
gil $186791110\|\mathrm{gb}\| \mathrm{AM696453.1\mid AM696453-23}$	F: CACAGGGAGAGTGATGCTGA	59.98	55.00	agtga	2	323			
	R: CCAATGGAAGTTGCACCAG	60.10	52.63						
gi\|186789281	gb	AM696419.1	AM696419-17	F:CTCCCCTGATGCTCTAGATTTC	59.33	50.00			
	R: CACCAAAGACAAAGCGTTCC	60.67	50.00	Aagaga	2	334			
gil186789273\|gb	AM696411.1	AM696411-29	F: TGGCACAGTCACTGCTTTCT	59.62	50.00	gaaca	2	391	
	R: CGCTGCTATGAAAGGAGCTT	59.75	50.00						
gil186729655\|gb	AM696395.1	AM696395-12	F: GCTAAATTGCGGCTTCTACC	58.99	50.00	aagag	2	303	
	R:GGCTATTCCTCAACCTGTTTGC	62.17	50.00						
gil $186728696\|\mathrm{gb}\| \mathrm{AM696364.1\mid AM696364-38}$	F: TGGTTGACCGCAGCATAGT	60.28	52.63	tcetgc	2	343			
	R: TGTGCTGCGTGACCTTAGTT	59.51	50.00						
gil186727742\|gb	AM696345.1	AM696345-25	F: CCTACACGCACCAGAACCTT	60.17	55.00	atgagga	2	307	
	R: TCTGATCTCTGGCCTGCTCT	60.25	55.00						
gil186727249\|gb	AM696322.1	AM696322-22	F: GTGGGTCAGAAACCCAAGAG	59.55	55.00	cagag	2	310	
	R: CAGCCTTTGCCACCAGTATT	60.13	50.00						
gil\|86727247	gb	AM696320.1	AM696320-22	F:GGGCCAGTGACAAATGAGAG	60.66	55.00	aga	6	342
	R: CACGACAGTTCACCAAGCAT	59.75	50.00						
gi\|186726319	gb	AM696315.1	AM696315-9	F: CTTGCACCCTCCAAGCTATT	59.34	50.00	ca	5	313
	R:GAGGACAACCCAAGCTGAAC	59.70	55.00						
gil186726315\|gb	AM696311.1	AM696311-24	F: CGCTCTTGGTTGCTATGTCA	60.01	50.00	ttec	2	311	
	R: GAGTGGTGTGATGGCAAATG	59.97	50.00						
gi\|183206217	gb	AM696051.1	AM696051-29	F: AAGTGGTAGGACCTGGTGGA	59.42	55.00	gtatg	2	357
	R: TTGGAATTCTCTCCCTGCTC	59.36	50.00						
gi\|183206214	gb	AM696048.1	AM696048-42	F:GGGCAAAGAAGAGGATCTGA	59.36	50.00	aaagga	2	397
	R:CCAAGGGTAGAATGGGACAA	59.78	50.00						
gil183206213\|gb	AM696047.1	AM696047-35	F: TAGGTGGTTGGGTTGGAGAG	59.96	55.00	gaaaa	2	304	
	R: TTCAGAGGTTCCGACTTTGG	60.22	50.00						
gil183206210\|gb	AM696044.1	AM696044-49	F: CAGAAAGGGCTTCGCATAAG	59.97	50.00	gatgtg	2	325	
	R: CGAGATGTCCTTCCCACACT	60.11	55.00						
gil $183206208\|\mathrm{gb}\| \mathrm{AM} 696042.1 \mid \mathrm{AM696042-34}$	F: AGGATCAGGGTTGAGCATGT	59.54	50.00	acttc	2	394			
	R:GCTACATGCAGTGGCAAGAA	60.02	50.00						
gi\|183206206	gb	AM696040.1	AM696040-37	F: CTCTGTACTGCATCGGTTGG	59.31	55.00	ttggg	2	352
	R: TTCTCACACCGAGGGTCTCT	59.83	55.00						
gil $183206205\|\mathrm{gb}\| \mathrm{AM} 696039.1 \mid \mathrm{AM696039-33}$	F: TCATCAATCTGCGTCTGACC	59.79	50.00	agaatc	2	317			
	R:AGAACCAGCAAACCCAGGAT	60.88	50.00						
gil $183206202\|\mathrm{gb}\| \mathrm{AM} 696036.1 \mid \mathrm{AM696036-28}$	F: GAGGCAACATCACCCTCCTA	60.07	55.00	ggtgt	2	308			
	R: TCATGGACCCACCACTGAAT	61.21	50.00						
gil183206201\|gb	AM696035.1	AM696035-26	F:CTGAAGGGTAGCCAGCAAAG	60.01		gcttt	2	321	
	R:CAGCTACTGCAGTTTCCCAGT	59.55							
gil $183206199\|\mathrm{gb}\| \mathrm{AM} 696033.1 \mid$ AM696033-32	F: TCCCCAATGGTTCGGTTA	59.70	50.00	ccttt	2	323			
	R: TCTGGATTACTGGGCCTTGA	60.59	50.00						
gil 183206198\|gb	AM696032.1	AM696032-40	F: CACCCCCTGTCCCTAAGAA	59.90	57.89	gatgaa	2	370	
	R: СТTСTTTCСССТССАССАСТ	60.48	55.00						
gi\| $183206197\|\mathrm{gb}\| \mathrm{AM} 696031.1 \mid$ AM696031-45	F: GCTGCACAGGAGTATGCTGA	60.17	55.00	attgt	2	332			
	R: CCGAAAGCTATTCAGGTCCA	60.21	50.00						
gil $183206195\|\mathrm{gb}\|$ AM696029.1\|AM696029-32	F: ATCCACGCGTTACTGAGCAT	60.69	50.00	catcaa	2	376			
	R: TCACACTTGAAGCATCACAC	60.91	50.00						

Table 3: SSR primers designed from genomic survey sequences

Gen bank no.	Primer sequences(5'-3')	Tm (${ }^{0} \mathrm{C}$)	GC\%	Motif	No. of repeats	Product size (bp)			
$\overline{\text { gi\|257367024\|gb\|GS377372.1\|GS377372-23 }}$	F: AGCTTGGCGTAATCATGGTC	60.10	50.00	ttgcg	2	308			
	R: ACCAGAAAGCAAGCCGATCT	61.29	50.00						
gi\|166709893	gb	ET203890.1	ET203890-28	F: GTCCTCGCGAATGCATCTA	59.92	52.63	gggtt	2	400
	R: TACGAACACTTTCGCCACTG	59.90	50.00						
gi\|149939382	gb	ER896028.1	ER896028-27	F: TGATTCGAGCTCGGTACCTC	60.36	55.00 52.63	aaaat	2	543
	R: CGATTCAAACGTCGGTGAG	60.25	52.63						
gi\|149939381	gb	ER896027.1	ER896027-41	F: GTCCTCGCGAATGCATCTA	59.92	52.63	aataat	2	307
	R: GTTCTTTGCGCGAGAGAGTT	59.76 60.94	50.00 50.00						
gi\|149939380	gb	ER896026.1	ER896026-39	F: AATAAAGGGGGACCACATGC R: TGGGGAGAATAACTCTGACTGG	$\begin{aligned} & 60.94 \\ & 60.94 \end{aligned}$	$\begin{aligned} & 50.00 \\ & 50.00 \end{aligned}$	aacce	2	381
gi\|149939378	gb	ER896024.1	ER896024-29	F: ATAATGGGGGACCACATGC	60.42	52.63	aacce	2	
	R: GGGGGATAATTGGGAGAATAGG	61.82	50.00			350			
gil $144925907\|\mathrm{gb}\| \mathrm{EL522402.1\mid EI522402-29}$	F: TAACCGACGCCTAGGTGATT	59.59	50.00	catt	2	381			
	R: GAGGCAGCTAGCAAATGGAG	60.12	55.00						
gi\|149939378	gb	ER896024.1	ER896024-29	F: ATAATGGGGGACCACATGC	60.42	52.63	aacce	2	350
	R: GGGGGATAATTGGGAGAATAGG	61.82 59.59	50.00 50.00						
gil144925907\|gb	EL522402.1	EI522402-30	F: TAACCGACGCCTAGGTGATT R: GAGGCAGCTAGCAAATGGAG	59.59 60.12	50.00 55.00	ttgtg	2	381	
gi\|8602614	gb	AZ254294.1	AZ254294-26	F: TGTAACCTTGGCACAACGAG	59.76	50.00	agtt	2	319
	R: CTGTACAGGGGTGTTTAGCTTC	57.95	50.00						
gi\|8602604	gb	AZ254289.1	AZ254289-23	F: TGAGGGATCCAAGTCTTTGC	60.20	50.00	agaacc	2	303
	R: CACTGGCTTCCCCCAATAA	60.84	52.63						
gi\|8602600	gb	AZ254287.1	AZ254287-37	F: CGCTCATACTAGCTCCCCAAT	${ }_{6}^{60.61}$	52.38 55.00	tgcaa	2	312
	R: GCTGGCACAAGGGGTTACTA F: AGTGGGAGCAGGCTAAATGA	60.13 59.84	55.00 50.00						
gi\|8602580	gb	AZ254277.1	AZ254277-29	F: AGTGGGAGCAGGCTAAATGA R: AGAGTGCTCCAGCAAGCAAT	$\begin{aligned} & 59.84 \\ & 60.16 \end{aligned}$	$\begin{aligned} & 50.00 \\ & 50.00 \end{aligned}$	catt	2	351
gi\|8602569	gb	AZ254272.1	AZ254272-27	F: CTGGAGAACAAGACGGTGGT	60.15	55.00	tgtcga	2	325
	R: CACCTGCCACTACAGAGAGC	58.62	60.00						
gi\|8602559	gb	AZ254267.1	AZ254267-22	F: CTTGATCAAACTGCCTGCAA	59.99	45.00	aact	2	331
	R: GCCGGAGTTTGAGTGTCAAT	${ }_{50.12}$	50.00						
gi\|8602535	gb	AZ254255.1	AZ254255-27	F: GGTGTCATTCAAGGGCATCT R: TCGATTCCTCCTTTGACCAC	$\begin{aligned} & 59.93 \\ & 60.05 \end{aligned}$	$\begin{aligned} & 50.00 \\ & 50.00 \end{aligned}$	aagaa	2	368
gi\|8602533	gb	AZ254254.1	AZ254254-25	F: GCCAAGGTGCCAGATATGAG	60.62	55.00	ttcttg	2	354
	R: GGCATGCTAGCGAAACATTC	60.75	50.00						
gi\|8602527	gb	AZ254251.1	AZ254251-30	F: TCCTCTCCTTCACCTCGTTG	60.38	55.00	tgacaa	2	398
	R: AACACAGGCTACAGCTCAACC	59.42	52.38						
gi\|8602510	gb	AZ254243.1	AZ254243-9	F: ATGAGCAAGGGGCAAGTATG	${ }^{60.10}$	50.00	tcaaag	2	172
	R: TTCCCAACAGCTCAGTGTGT F: GAGCGTAGGCTTGCTTTGAG	59.31 60.29	50.00 55.00						
gi\|8602504	gb	AZ254240.1	AZ254240-18	R: CACGGGGAGGTAGTGACAAT	59.84	55.00	Accca	2	333
gi\|8602502	gb	AZ254239.1	AZ254239-25	F: CCAGTGTGGTGGAATTCTGA	59.52	50.00	ggtacg	2	328
	R: CCTCCAATGGATCCTCGTTA	59.89	50.00						
gi\|8602497	gb	AZ254237.1	AZ254237-29	F: TTGCCCCTATCACCTTTCAC	59.93	50.00	tacag	2	365
	R: GTAGACCCGGGTTTCCGAAT	61.09 60.01	57.89 50.00						
gi\|8602493	gb	AZ254235.1	AZ254235-30	R: CTTGCCGTACAACCTCTTGA	58.92	50.00	actga	2	304
gi\|8602488	gb	AZ254233.1	AZ254233-20	F: GCACCACAATGCATCAACAC	61.03	50.00	tgtcag	2	451
	R: GAAGCCTGTAGACCCTTGACTC	59.39	54.55						
gi\|8602484	gb	AZ254231.1	AZ254231-26	F: GGTGTTCTTTGTGACGTGGA	$\begin{aligned} & 59.57 \\ & 6047 \end{aligned}$	50.00 50.00	gccet	2	396

Table 4: Primers checked on mungbean and urdbean accessions

Marker	Gene bank no.	Primer sequences($\mathbf{5}^{\prime}-3{ }^{\prime}$)	Repeat motif	Product size (bp)	Tm(${ }^{0} \mathrm{C}$)	GC\%
MBSSRG1	HQ148143.1	F:AATTGCAGAATCCCGTGAAC	(CGG) ${ }_{4}$	308	58.4	45
MBSSRG2	HQ148143.1	R: AAGAGCGTCTTTGCCTGTTT F: GTCGATGACCCAAATCCAAT R: TGCGTTCAAAGACTCGATG	$(\mathrm{TCCTC})_{2}$	330	58.4	45
MBSSRG3	AY900122.1	F: ATCTGACGAGAGCATGTGGA R: CTCCCCTTTAGCCACAATCA	(TTGGTG) ${ }_{2}$	325	58.4	50
MBSSRG4	AY900122.1	F: GAAGCGCATTCGTACTGACA R: TACAACCGAAGACACGCAAG	$(\mathrm{GAACA}){ }_{2}$	326	58.4	50
MBSSRG5	AY683030.1	F: TGATGTGTTCCTCCCGAGTT R: AACAAGTACCCGTTGCCAAG	(TATTC) ${ }_{2}$	307	58.4	50
MBSSRG6	AY233257.1	F: ACCTTCAGGCTTCAACAACG R: CGACGTAGAAACACACGATCA	$(\mathrm{TGA})_{4}$	209	58.4	48
MBSSRG7	HQ148143.1	F: GTCGATGACCCAAATCCAAT R: TTGCGTTCAAAGACTCGATG	$(\mathrm{ACGAA})_{2}$	330	58.4	45
MBSSRG8	HQ148144.1	F: AATTGCAGAATCCCGTGAAC R: AAGAGCGTCTTTGCCTGTTT	(CGG) ${ }_{4}$	308	58.4	45
MBSSRG9	HQ148144.1	F: CGTAATGCGTCCATACCACA R: CCGATGCTCTTTTTCATGGT	$(\mathrm{CTCCT})_{2}$	383	59.4	47
MBSSRG10	HQ148144.1	F: СGССТССТСТССТСТТСАG R: CCGATGCTCTTTTTCATGGT	$(\mathrm{ACGAA})_{2}$	312	61.4	54.1
MBSSRG11	HQ148144.1	F: AATTGCAGAATCCCGTGAAC R: AAGAGCGTCTTTGCCTGTTT	$(\mathrm{CAATC})_{2}$	308	58.4	45
MBSSRG12	HQ148145.1	F: TTGCAGAATCCTGTGAACCA R: AAGAGCGTCTTTGCCTGTTT	(CGG) ${ }_{4}$	306	58.4	45
MBSSRG13	HQ148145.1	F: ATCATTGTCGATGCCCAAAC R: AGGATTCTGCAATTCACACCA	$(\mathrm{CTCCT})_{2}$	301	58.4	45
MBSSRG14	HQ148145.1	F: TTGCAGAATCCTGTGAACCA R: AAGAGCGTCTTTGCCTGTTT	$(\mathrm{CAATC})_{2}$	306	58.4	45
MBSSRG15	HQ148145.1	F: ATCATTGTCGATGCCCAAAC R: TTGCGTTCAAAGACTCGATG	$(\mathrm{GGAGGGG})_{2}$	327	58.4	45

\qquad

Fig. 2: Amplification by SSR primer MBSSRG10
Hence from this study, it is evident that development of SSR markers using database searching is more cost effective and cheap in compare to the isolation of the same from genomic libraries and cross- species amplification. Bioinformatics approach produces good and more informative microsatellite markers in a very short span of time. There is a plenty number of crops which are playing very important role to meet our food security but genetic study on the development of SSR marker is lagging in such crops. However, using database searching and bioinformatics methods we can obtain nucleotide sequence of information which can be utilized to carry out genetic study on such crops. Hence, these in silico methods are playing very important role in contributing to the development and progress in the field of science and agriculture.

REFERENCES

Kalendar, R., Lee, D. and Schulman. A. H. 2011. Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics, 2: 98.
Kalia, R. K., Rai, M. K., Kalia, S., Singh, R. and Dhawan, A. K. 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica, 177:309-34.
Karuppanapandian, T., Karuppudurai, T., Sinha, T. P. M., Hamarul Haniya, A. and Manoharan, K. 2006. Genetic diversity in green gram [Vigna radiata (L.)] landraces analyzed by using random amplified polymorphic DNA (RAPD). African J. Biotech., 5: 1214-19.
Khattak, A. B., Bibi, N. and Aurangzeb. 2007. Quality assessment and consumers acceptibilty studies of newly evolved mung bean genotypes (Vigna radiata L.). American J. Food Tech., 2:536-42.
Mann, T., Humbert, R., Dorschner, M. and Stamatoyannopoulos, J. 2009. A thermodynamic approach to PCR primer design. Nucleic Acids Res., 37: 95.
Rishi, N. 2009. Significant plant virus diseases in India and a glimpse of modern disease management technology. J. Gen. Pl. Path., 75: 1-18.
Toth, G., Gaspari, Z. and Jurka, J. 2000. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res., 10:967-81.

