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Abstract: Diarization is an important task when work with audiodata is executed, as it provides a
solution to the problem related to the need of dividing one analyzed call recording into several speech
recordings, each of which belongs to one speaker. Diarization systems segment audio recordings
by defining the time boundaries of utterances, and typically use unsupervised methods to group
utterances belonging to individual speakers, but do not answer the question “who is speaking?” On
the other hand, there are biometric systems that identify individuals on the basis of their voices, but
such systems are designed with the prerequisite that only one speaker is present in the analyzed
audio recording. However, some applications involve the need to identify multiple speakers that
interact freely in an audio recording. This paper proposes two architectures of speaker identification
systems based on a combination of diarization and identification methods, which operate on the basis
of segment-level or group-level classification. The open-source PyAnnote framework was used to
develop the system. The performance of the speaker identification system was verified through the
application of the AMI Corpus open-source audio database, which contains 100 h of annotated and
transcribed audio and video data. The research method consisted of four experiments to select the
best-performing supervised diarization algorithms on the basis of PyAnnote. The first experiment was
designed to investigate how the selection of the distance function between vector embedding affects
the reliability of identification of a speaker’s utterance in a segment-level classification architecture.
The second experiment examines the architecture of cluster-centroid (group-level) classification, i.e.,
the selection of the best clustering and classification methods. The third experiment investigates the
impact of different segmentation algorithms on the accuracy of identifying speaker utterances, and
the fourth examines embedding window sizes. Experimental results demonstrated that the group-
level approach offered better identification results were compared to the segment-level approach,
and the latter had the advantage of real-time processing.

Keywords: diarization system; PyAnnote library; identification of speakers’ utterances; segmental
classification; cluster classification

1. Introduction

Diarization is an important step in the process of speech recognition, as it partitions
an input audio recording into several speech recordings, each of which belongs to a single
speaker. Traditionally, diarization combines the segmentation of an audio recording into
individual utterances and the clustering of the resulting segments. Segmentation identifies
points where speakers change in an audio recording, and the clustering groups speech
segments on the basis of the main characteristics of the speaker [1].

Although the development of diarization methods started more than a decade ago,
intensive research continues to improve the accuracy and computational efficiency of
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diarization algorithms. Diarization systems mainly utilize unsupervised machine learning
algorithms when utterances are shared between speakers, but it is not known which
diarization label applies to a particular speaker. This approach is known as unsupervised
diarization. However, in some applications, it is necessary to identify multiple speakers
that interact freely in an audio recording. This task can be completed using a supervised
diarization approach, which combines diarization and identification methods.

The main distinction between unsupervised and supervised diarization involves the
different ways of segment indexation. The former relies on grouping of similar segments
into separate categories (clustering), while the latter requires matching a segment with a cer-
tain speaker on the basis of voice samples (classification). Thus, the last transformation step
for supervised diarization is performed with the help of an additional output module—the
speaker‘s classifier. However, the identification of the speaker using supervised diarization
has a significant peculiarity, as it is necessary, unlike in the common biometric voice recog-
nition systems, to analyze the utterances of more than one subjects. This is a challenge,
especially under low-data conditions, as new speakers are represented only by one short
audio recording lasting dozens of seconds at most.

The application of unsupervised diarization allows for improving the readability of
automatic speech-to-text transcription due to the structure of the audio recording upon
the queue of speakers [2]. Another area where unsupervised diarization can be applied
is in long audio recordings with several speakers, where diarization is used to divide a
long audio recording into shorter ones before actual speech recognition takes place [3]. It is
also used in translation systems, where an audio recording is split into speech segments
with the help of diarization, and the system performs translation for each segment, thus
increasing the speed and accuracy of such systems [4,5].

Companies and individuals are increasingly interested not only in the audio transcrip-
tion of conversations coming from online meetings and video conferences, but also in the
automatic identification of speakers. These objectives can be achieved using supervised
diarization systems, which allow for the identification of speech segments belonging to a
particular speaker. Thus, it becomes possible to perform the voice search/indexation of
content within recorded conversations [6].

A prevalent supervised diarization use case is the annotation of important phone calls.
For such a purpose, a conversation recording of a caller and an operator is partitioned into
two speech clips using diarization. Afterwards, those clips are sent to a speech recognition
system that provides corresponding speech-to-text transcription. Another exemplary use
of supervised diarization is in healthcare and medical services, where the identity of a
doctor is known beforehand [7]. This allows for focusing on a doctor’s speech processing,
and thus end up with more reliable and accurate results for different use cases, such as the
detection and analysis of diagnosis, prescriptions, and procedures.

In the developing modern digital world, application scenarios of diarization systems
are constantly expanding, which often appear as components of more complex information
systems in human–machine communication. Therefore, research aimed at the development
and implementation of a flexible and open-source system capable of solving the main
problems of diarization, both in a supervised and unsupervised manner, is relevant. This
article presents the architecture of a diarization system using the PyAnnote framework
combined with external components that provide expanded functionality.

2. Materials and Methods
2.1. Literature Review

A review of literature sources gives grounds to state that diarization algorithms are
traditionally based on an unsupervised approach [8–10]. Stagewise speaker diarization
architectures containing a sequence of modules such as speech detection, speech segmenta-
tion, embedding extraction, clustering, and labeling clusters have been studied for a long
time [2,10,11]. Moreover, end-to-end diarization technology is being intensively devel-
oped, which allows for increasing the accuracy of diarization by optimizing not individual
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modules, but the system as a whole, in particular by using selected supervised speaker
clustering methods [12–14].

Although speaker diarization is usually an audio-related task, a separate field of
research, multimodal speaker diarization, has arisen. These systems use some information
in addition to the audio to improve diarization quality [15]. These may be, for exam-
ple, the speaker’s behavioral characteristics extracted from a synchronized video [16] or
linguistic content conveyed by speech cues [17].

A number of studies were devoted to the design of systems utilized for the identifi-
cation of statements in audio recordings belonging to multiple speakers [18–20]. Similar
systems combine features of diarization and identification systems. Traditional voice-based
biometric systems typically identify a person by analyzing an audio signal/recording
where only one speaker is present. Therefore, other approaches need to be developed to
identify speakers and their statements if more than one speaker are arbitrarily present in
the audio signal.

Most diarization systems work offline, that is, the diarization result is obtained after
analyzing the entire audio recording. Online audio diarization is able to output the di-
arization result of each audio segment immediately after its analysis. Maintaining online
diarization accuracy is a challenging task due to the unavailability of data from future
audio segments. The creation of online diarization systems opens up new possibilities and
extends the range of applications of modern speech processing technologies [11,21,22].

Diarization systems are used to perform a number of speech processing tasks in vari-
ous scenarios. For their implementation, proprietary solutions can be used, primarily from
such technological IT giants as IBM (IBM Watson) or Google (Google Cloud Speech) [23].
Nevertheless, it is also possible to use open-source libraries, for example, pyAudioAnaly-
sis [24], SpeechBrain [25], or PyAnnote [10].

Commercial products are first designed as solutions for speech recognition, whereas
diarization is a secondary feature. Advantages of such solutions are the simplicity of usage,
the speed of development, and system adjustment rather than good accuracy. However,
there are drawbacks as well: no possibility to adjust the system parameters or its separate
components, the price, and a dependency on the infrastructure of the service provider.

Taking into account the variety of use cases and trends mentioned in the above design
and implementation of a general-purpose system capable of solving both supervised and
unsupervised major diarization tasks is a relevant research topic from both theoretical and
practical perspectives. It also makes sense to design such a system so that it could process
audio data both in online and offline modes. It is reasonable to carry out development on the
basis of an open-source framework with a stagewise architecture, as it opens the possibility
to reuse existing components and adjust the system’s parameters. Another important
point is that the selected framework should demonstrate results comparable to those of
commercial products in terms of accuracy. After deeper analysis, the following frameworks
were identified as satisfying the above-mentioned demands: PyAnnote, SpeechBrain,
and pyAudioAnalysis.

PyAudioAnalysis is an open-source library designed for sound processing, namely,
for feature extraction from audio recordings with their further classification and segmen-
tation. Thus, such a library may be used for the purposes of supervised diarization. This
library has a number of designed tools. First, data analysis and feature extraction from
the audio recordings. It also has tools for audio segmentation and classification, but its ac-
curacy is significantly lower than that of the commercial solutions and other open-source
solutions [10].

SpeechBrain—is a set of open-source software tools designed for creating an audio
analysis system, namely for such tasks as automatic speech recognition, speaker identifica-
tion, language identification, etc. Currently, this library does not contain any tool for audio
segmentation which complicates its application for the diarization tasks [25].

PyAnnote is a directly developed open-source library for diarization tasks [3,10,26]. It
consists of trained neural network modules on which an unsupervised diarization system
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can be implemented. The above-mentioned modules may be additionally readjusted,
substituted with other modules, or added with new ones. Such an open-module structure
provides high flexibility and possibilities for the improvement of the system’s parameters.
Moreover, this library contains tools for audio processing and manipulation [10].

Thus, the authors selected PyAnnote for further research, as it provides the highest
accuracy (compared with existing commercial solutions) among the available options and
is implemented using stagewise modular approach which enables direct hyperparameters’
tuning. Thus, the core requirements formulated above are fulfilled, and PyAnnote can be
considered a suitable solution for supervised and unsupervised diarization.

2.2. Research Aim

The aim of this work was to design a general-purpose diarization system (capable
of operating in supervised and unsupervised mode) using the PyAnnote framework.
This requires adding extra modules for speaker identification along an adjustment of the
system’s parameters on the stagewise level in order to extend its functionality and improve
the diarization results.

2.3. PyAnnote—Speaker Diarization Library

The current research basically uses the unsupervised diarization system (using cluster-
ing) on the basis of PyAnnote (version 1.1) presented in Figure 1 [10].

Figure 1. Basic structure of the diarization system with clustering based on PyAnnote.

The following modules were included in the system composition:

1. Segmentation—module that uses the voice activity detection, speaker change detec-
tion, and overlapped speech detection modules to create timestamps that represent
segments of speech within an audio recording.

(a) Voice activity detection—the module’s function is to detect the time intervals
in the audio recording where a human voice is present.

(b) Speaker change detection—the module’s function is to detect the moments
of time in the audio recording where the speech of one speaker ends and the
speech of another one starts.

(c) Overlapped speech detection—the module’s function is to detect time intervals
in the audio recording where two or more speakers are talking simultaneously.
Such segments are removed from analysis, as, in such cases, additional transfor-
mations related to the separation of signals overlapping in time are performed
to detect a particular speaker.

2. Speaker embedding—a module to create a vector with a certain given dimension, of
which the numerical values represent speaker-specific features derived on the basis of
physiological voice parameters. Thus, the distance between vectors that correspond
to phrases belonging to one person is smaller than the distance to the vectors created
from the phrases spoken by the other speakers.

3. Clustering—the module responsible for grouping segments corresponding to the
speakers by using their embeddings.

2.4. Suggested Approach

At the output of an unsupervised diarization system (Figure 1), the input audio
recording is divided into segments and grouped into clusters, but it is unknown which
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cluster belongs to which speaker. We researched the idea of adapting the PyAnnote for
the purposes of the supervised diarization tasks by adding a classifier to the system.
This modification allows for the identification of speakers or, in other words, to assign a
particular group of audio segments to the particular speaker. In this regard, we propose
two architectures of a supervised diarization system (SDS):

• Architecture A (Figure 2, SDS A) was designed by substituting the clustering module
with the classification module in the basic architecture of an unsupervised diarization
system (Figure 1).

• Architecture B (Figure 2, SDS B) was designed by adding the classification module to
the basic architecture of an unsupervised diarization system (Figure 1), i.e., by com-
bining the implementation of the two modules (clusterization and classification).

Figure 2. Architectures of the general-purpose diarization systems based on PyAnnote: (Architecture
A) identification via separate segments, (Architecture B) identification based on the group (cluster)
of segments, and unsupervised segment clustering.

In order to select a particular implementation of the classification algorithm, in a
real-world application, supervised diarization systems are constantly tuned in order to
support new speakers. Normally, the amount of available data for such tuning is very small
(few short phrases at best), which is not enough to train common classification models
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such as XGBoost, neural networks, and SVM. In our research, 20 s of reference speech was
used to add a new user to the diarization system. Due to this constraint, we built custom
classifier models using a distance function followed by a threshold. This was applied to
both architectures presented in Figure 2.

Type A architecture is based on straightforward segmentwise classification. Each
segment is matched to a particular speaker on the basis of the distance between the reference
embeddings of the speaker and the embeddings of the certain audio segment. Depending
on the previously adopted threshold, it is defined whether the segment belongs to the
speaker or not. This method is suitable for real-time or online diarization, which means
that it can also be used with audio streams and not only audio recordings. Grid search
was used for threshold selection. The selected thresholds for the distance functions are the
following: Euclidean distance threshold - 7.0; Cosine distance threshold - 0.8; Manhattan
distance threshold - 5.0; Pearson’s distance threshold - 0.5; Spearman’s distance threshold -
0.5. Type B architecture is based on the idea of the distance to the group (cluster centroid).
In this case, before choosing which segments refer to a particular speaker, all segments are
grouped, that is, unsupervised diarization is performed in essence. After audio-segment
embeddings are grouped, the centroid for each group is defined (the mean value of all the
embeddings in the group); afterwards, the distance from the target speaker embedding to
each of the centroids is calculated, the closest centroid is selected, and the audio segments
of its corresponding group are marked as the segments belonging to the target speaker.
This method is suitable for offline diarization only (no real-time capabilities) because it
performs the analysis of the entire speech recording as a whole.

3. Results

In order to implement the approach described in the previous section, a set of opti-
mization experiments was performed. We decided to study the impact of separate modules
and their parameters on the final results of supervised diarization. Experiments were
performed in the following order:

1. Classifier design using distance functions (Architecture A).
2. Classifier design using clustering algorithm and distance functions (Architecture B).
3. Segmentation optimization to maximize Fscore and minimize DER.
4. Embedding window optimization for the maximization of the F score and the mini-

mization of DER.

The reason for this was to design new components that eere related to supervised di-
arization, first by using default configuration from unsupervised pipeline for segmentation
and embedding modules. Afterwards, an additional optimization for the segmentation
and embedding part is run in order to boost the accuracy of supervised pipeline.

After the implementation and optimization of the supervised pipeline, its results were
compared with those of an original unsupervised pipeline. For this purpose, the following
default hyperparameters provided by the PyAnnote developers were used:

• Voice activity detection: sampling_rate = 16 kHz, input_size = 32,000 datapoints,
thresholds for o f f set = 0.48 and onset = 0.48.

• Speaker change detection: sampling_rate = 16 kHz, input_size = 32,000 datapoints,
threshold = 0.146.

• Embeddings: DNN x-vectors, vector_length = 512 units, input chunck_size = 2.0 s.
• Clustering: probabilistic linear discriminant analysis (PLDA).

All the experiments were conducted on the same dataset—AMI Corpus, which is an
open-source dataset containing audio and video recordings of meetings and gatherings
where speech is annotated and each annotation segment is assigned with the identification
number of the speaker; thus, these data are suitable for both supervised and unsuper-
vised diarization [27]. Audio data are stored in the WAV format, annotation in the XML
format, which is transformed into Rich Transcription Time Marked (RTTM) format for
work with the PyAnnote library. RTTM is the text format containing information about
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segments and speaker identification for each of the audio files. The size of the dataset was
100 h. The average duration of one audio file was 2104.48 s. The average duration of one
annotated segment was 4.1 s. The number of unique speakers was 189 (65.1% of them were
males). The average duration of audio per speaker was 546.96 s.

Experiments for the supervised diarization were also conducted for each speaker in
each audio recording. For example, an audio recording with 4 speakers was analyzed in
turns, and accuracy was evaluated separately for each participant. When the number of
speakers is not given, the system must determine it. Ground-truth data are given, and
performance metrics are calculated on the basis of unseen data.

The following metrics are widely used to evaluate diarization systems [26]: detection
F score, segmentation F score, diarization error rate, and identification F score.

1. Detection F score—the accuracy score for voice detection in the audio recording.
2. Segmentation F score—the accuracy score for the detection of segment boundaries

and overlaps in the audio recording.
3. Diarization error rate—the error of detecting a segment’s boundaries and overlaps in

an audio recording considering the true or false assignment of the speaker identifier to
the audio recording segment. This is the error main for diarization and is the generally
accepted metric in commercial systems.

4. Identification F sscore—the accuracy score for the identification of speakers on each
segment in an audio recording, which is calculated considering the duration of
each segment.

The identification F score (or F1 measure) was selected as the main metric, as it is the
one that correctly reflects the accuracy of assigning the speaker identifier to each of the audio
recording segments, unlike the diarization error, which uses automatic segment correlation
that is not connected to any of the speakers. The diarization error rate was selected as a
secondary metric to enable comparison between supervised and unsupervised pipelines.

3.1. Experiment 1: Classifier Design Using Distance Functions

The purpose of this experiment was to study the impact of different distance functions
in the context of the supervised diarization accuracy (DER and F-Score). The principle
of this distance-based classification is quite simple. We had a built-in reference speaker
that played audio received from the reference speaker audio. Further, for each segment in
the audio recording, we calculated the distance between the reference embedding and the
analyzed segment embedding. If the distance was lower than the defined threshold, the
segment belonged to the reference speaker. The following distance functions were studied:
Euclidean, Manhattan, Pearson’s, Spearman’s, and cosine [28,29] because they are widely
used in machine-learning and various identification tasks, and they are available in the
scikit-learn library. The results of the experiment are presented in Table 1 .

Table 1. Experiment 1 results.

Model Distance Function Diarization Error
Rate, % F Score, %

Supervised A Euclidean 30.12 75.29
Supervised A cosine 24.74 81.00
Supervised A Manhattan 42.77 61.80
Supervised A Pearson’s 25.19 80.78
Supervised A Spearman’s 25.99 80.33

The experiment results show that cosine distance had the best result, just slightly
outperforming Pearson’s and Spearman’s distances.

3.2. Experiment 2: Classifier Design Using Clustering Algorithm and Distance Functions

The goal of this experiment was to determine the impact of various clustering tech-
niques on supervised diarization performance. The experiment flow was the following:
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• Clustering all the audio segments embeddings.
• Calculating each cluster centroid.
• Calculating the distance from the reference speaker embedding to each of these

centroids, and the closest distance determines which cluster contains segments with
the reference speaker.

The following clustering algorithms were chosen: PLDA (default for an unsupervised
pipeline), K-means, hierarchical, and spectral because they are the most popular clustering
algorithms, and their implementations are available in the scikit-learn library. Taking into
account the results of the previous experiments, the cosine function was used for centroid
classification. Experimental results are presented in Table 2.

Table 2. Experiment 2 results.

Model Clustering Method Diarization Error
Rate, % F Score %

Supervised B PLDA 18.69 87.40
Supervised B K-Means 15.62 90.69
Supervised B Hierarchical 42.60 61.98
Supervised B Spectral 36.20 67.94

This table shows that K-means clustering dramatically outperformed both the hierar-
chical and spectral algorithms. A combination of K-means clustering with cosine distance
also demonstrated much better results than those of segment-wise classification presented
in Experiment 1. Thus, Architecture B was better in terms of diarization accuracy than
Architecture A. However, as mentioned earlier, it is not suitable for real-time applications
and can be utilized for offline processing only.

3.3. Experiment 3: Segmentation Optimization

The goal of this experiment was to determine how different segmentation algorithms
affect the performance of a supervised diarization pipeline. Taking into consideration the
available building blocks, the following modifications of the default PyAnnote segmenta-
tion methods are proposed:

• Standard—the default PyAnnote segmentation that relies on a combination of the
voice activity detection (VAD) and speaker change detection (SCD) modules. This
implementation is two-stage. First, VAD separates speech and nonspeech segments.
Afterwards, speech segments are additionally processed by SCD, which splits them
into single-speaker segments.

• Overlap drop-out—in addition to VAD and SCD, this approach also uses overlap
detection (also provided by PyAnnote) as the last transformation in the segmentation
pipeline. If voices are quite similar, there is a greater chance that the speaker change
detection would not be able to correctly identify the boundaries. However, after ap-
plying overlap detection, such sections can be identified as overlapped speech and can
be effectively removed. This results in increased chances of finding speaker change
boundaries and thus improving diarization performance.

Optimization was performed separately for the two architectures from Figure 2. Ex-
perimental results are presented in the Table 3.

Table 3. Experiment 3 results.

Model Segmentation
Method

Diarization Error
Rate, % F-Score, %

Supervised A Standard 24.74 81.00
Supervised A Overlap drop-out 25.49 80.75
Supervised B Standard 15.62 90.69
Supervised B Overlap drop-out 16.07 89.80
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The experimental results show that the standard segmentation method just slightly out-
performed overlap drop out while being less computationally expensive. So, we continued
with the standard PyAnnote segmentation for both SDS architectures.

3.4. Experiment 4: Embedding Optimization

The goal of this experiment was to determine the optimal size of the embedding
window. Embeddings were calculated for each individual segment using a rolling window
(with no overlap) followed by averaging. For the embedding extraction, the default
PyAnnote embedding model was used. It has a tuneable parameter called chunk_size that
controls the embedding window size. Optimization was performed separately for the two
architectures from Figure 2. Experimental results are presented in the Table 4.

Table 4. Experiment 4 results.

Model Embedding Chunk
Size, s

Diarization Error
Rate, % F-Score, %

Supervised A 0.5 22.60 83.28
Supervised A 1.0 20.14 85.89
Supervised A 1.5 20.85 85.13
Supervised A 2.0 (default) 24.74 81.00
Supervised A 3.0 27.63 77.90
Supervised A 4.0 30.13 75.25
Supervised B 0.5 22.15 82.40
Supervised B 1.0 15.52 90.79
Supervised B 1.5 15.56 90.75
Supervised B 2.0 (default) 15.62 90.69
Supervised B 3.0 15.71 90.59
Supervised B 4.0 21.53 81.82

The performance of supervised diarization was clearly correlated with the embedding
window size: the lower the window was, the better the performance. With a chunk size of
1.0 s, the supervised diarization performance increased by almost 4.5% for the supervised
architecture of Architecture A, compared to the default chunk size of 2.0 s. The performance
increase of supervised Architecture B was negligible compared to the default chunk size,
only 0.1%. The larger chunks only worsened the supervised diarization performance.

4. Discussion

To compare the pipelines, the diarization error rate (DER) metric was chosen, which
is widely used in speaker diarization tasks. It is measured as the fraction of time that
is not attributed correctly to a speaker or nonspeech. This metric does not, however,
require to correctly identify the speakers by definite identification number or name, which
renders it suitable to compare unsupervised and supervised speaker diarization systems.
For supervised speaker diarization, the F score metric is calculated, as it better reflects the
errors of labeling speakers with a wrong ID. There is also a strong negative correlation
between F score and DER (the lower the DER is, the higher the F score).

The following set of parameters were selected for the SDS of the Type A architecture:
cosine distance followed by thresholding as a classification model, embedding window
size of 1.0 s, and segmentation based on VAD, SCD, and overlap detection. The length of
the reference speaker audio per class is 20 s.

For the SDS of the Type B architecture, the following configuration was proposed:
cosine distance followed by thresholding as a classification model, K-means as clustering
algorithm followed by centroid calculation, embedding window size of 1.0 s, and segmenta-
tion based on VAD, SCD, and overlap detection. The length of the reference speaker audio
per class is 20 s.

The baseline (unsupervised) PyAnnote pipeline from Figure 1 yielded a DER of 24.97%.
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The segmentwise supervised diarization pipeline (type A) yielded a DER of 20.14%,
which was an improvement over the baseline by 4.84%, and an F score of 85.89%.

The group-based supervised diarization pipeline (Type B) yielded a DER of 15.52%,
which was an improvement over the baseline by 9.45%, and an F score of 90.79%.

The main sources of performance improvement included the clustering algorithm
and distance function. The best clustering algorithm and distance function for the task
were the K-means algorithm and cosine distance, respectively. Another major source of
improvement was the transition from the unsupervised to supervised method of diarization.
Since the model knew the speaker embeddings beforehand, it was easier and more accurate
to assign the segments to the correct speaker.

Additionally, some steps can be taken to further improve diarization performance:
filtering acoustic disturbances, i.e., other nonspeech and environmental sounds, perhaps
by using speech separation techniques or other signal processing methods; addressing
diction fluctuations or different speaker expressions where one speaker with different
expressions could be identified as a different speaker; filtering segment edge effects where
speech begins or ends (or briefly overlaps with another speaker), which may affect the
speaker embedding, which in turn affects the classification performance; preventig a speech
segment from being too short or too long, which also affects the speaker embedding of a
given segment.

5. Conclusions

PyAnnote is one of the most common and functional solutions in the field of audio
signal processing, particularly involving diarization. Its main advantages over well-known
alternatives are implementation in the popular Python language, open-source code under
an MIT license, modular architecture with the possibility of adding new modules to the
system, and adjusting the parameters of existing components. In addition, PyAnnote is
almost as accurate as existing commercial solutions such as IBM Watson or Google Speech.

The existing implementations of the PyAnnote library are designed primarily for
tasks of unsupervised diarization. At the same time, there is the opportunity to expand
the functionality of the system and adapt PyAnnote to tasks of supervised diarization,
which offers new potential for speaker identification and searching an audio database for
recorded parts belonging to a specific speaker. A new architecture design and the parameter
optimization of audio processing pipeline (segmentation, embeddings extraction, clustering
and classification) was the subject of research.

The approach proposed in this paper provides the possibility to select between two
options for speaker identification using the PyAnnote framework. The first operates in
a segmentwise fashion by substituting the clustering module from the original pipeline
with a classifier. The second is based on the combination of clustering and classification.
In fact, in the first case, speaker identification is performed at the level of individual audio
segments, while in the second case, identification occurs on the basis of groups of segments
of the same type combined into clusters.

In order to investigate the proposed approach for speaker identification and optimize
the separate components of the diarization pipeline, four experiments were conducted.
All research was conducted on an open dataset, AMI Corpus, which contains the marked
audio and video recordings of working meetings and meetings. Metrics such as F score
and diarization error rate were used for pipeline evaluation.

The first experiment investigated the accuracy of diarization under different implemen-
tation classification algorithms for segment-level architecture. In the second experiment,
research was carried out to select the optimal clustering algorithm for the group-based
architecture of a supervised diarization system. In the third experiment, we examined
and selected the optimal segmentation algorithm for the two architectures. The fourth
experiment was aimed at choosing the optimal duration of the window of vector embed-
dings, which is necessary for the optimal vector representation of speakers within audio
recording segments.
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The proposed approach enabled expanding the functionality of the speaker diarization
system based on PyAnnote audio processing by adding three operational modes:

1. Unsupervised mode: ready to be used out of the box, as no additional activities are
required to add a new speaker into the system with DER of about 24.97%.

2. Segmentwise supervised mode: opens up the possibility of real-time operation for
speaker identification, and provides a DER of 20.14% and an F value of 85.89%.

3. Group-based supervised mode: provides the highest accuracy yields, a DER of 15.52%
and an F value of 90.79%.

In the future, it is appropriate to conduct additional research in order to optimize other
modules of the PyAnnote (voice activity detector, speaker change detector, speech overlap
detector, embeddings extraction algorithm) to further improve diarization accuracy.
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